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Abstract
Let T : A → X be a bounded linear operator, where A is a C∗-algebra, and X
denotes an essential Banach A-bimodule. We prove that the following statements are
equivalent:

(a) T is anti-derivable at zero (i.e., ab = 0 in A implies T (b)a + bT (a) = 0);
(b) There exist an anti-derivation d : A → X∗∗ and an element ξ ∈ X∗∗ satisfying

ξa = aξ, ξ [a, b] = 0, T (ab) = bT (a) + T (b)a − bξa, and T (a) = d(a) + ξa,

for all a, b ∈ A.

We also prove a similar equivalence when X is replaced with A∗∗. This provides a
complete characterization of those bounded linear maps from A into X or into A∗∗
which are anti-derivable at zero. We also present a complete characterization of those
continuous linear operators which are ∗-anti-derivable at zero.

Keywords C∗-algebra · Banach bimodule · Derivation · Anti-derivation · Maps
anti-derivable at zero · Maps ∗-anti-derivable at zero

Mathematics Subject Classification Primary 46L05 · 46L57 · 47B47; Secondary
15A86

Communicated by Mohammad Sal Moslehian.

B Antonio M. Peralta
aperalta@ugr.es

Doha Adel Abulhamil
dabulhamil0001@stu.kau.edu.sa

Fatmah B. Jamjoom
fjamjoom@kau.edu.sa

1 Present Address: Mathematics Departments, College of Sciences, King Abdulaziz University,
P.O. Box 9039, Jeddah 21413, Saudi Arabia

2 Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada,
18071 Granada, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-020-00918-7&domain=pdf
http://orcid.org/0000-0003-2528-8357


D. A. Abulhamil et al.

1 Introduction

Let us begin this note by formulating a typical problem in recent studies about pre-
servers. Suppose X is a Banach A-bimodule over a complex Banach algebra A. A
derivation from A to X is a linear mapping D : A → X satisfying the following
algebraic identity:

D(ab) = D(a)b + aD(b), ∀(a, b) ∈ A2. (1.1)

A derivation D is called inner if there exists x0 ∈ X such that D(a) = δx0(a) = [a, x0]
= ax0 − x0 a for all a ∈ A.

A typical challenge on preservers can be posed in the following terms:

Problem 1 Suppose T : A → X is a linear map satisfying (1.1) only on a proper
subset D ⊂ A2. Is T a derivation?

There is no need to comment that the role of the setD is the real core of the question.
A typical example is provided by the set Dz := {(a, b) ∈ A2 : ab = z}, where z is a
fixed point in A. A linear map T : A → X is said to be a derivation at a point z ∈ A
if the identity (1.1) holds for every (a, b) ∈ Dz . In the literature, a linear map which
is a derivation at a point z is also called derivable at z.

Let us point out that there exist linear maps which are derivable at zero, but they
are not derivations (for example, the identity mapping on a complex Banach algebra
is a derivation at zero, but it is not a derivation).

If T : A → B is a linear mapping from A into another Banach algebra satisfying
T (ab) = T (a)T (b) for all (a, b) ∈ Dz , we say that T is a homomorphism at the
point z. Linear maps which are Jordan (∗-)derivations, or generalized (∗-)derivations,
or triple derivations, or (Jordan ∗)-homomorphisms at a point can be defined in similar
terms. We understand that term “∗-” is only employed when the involved structures
are equipped with an involution.

Let us simply observe that a linear map T between Banach algebras is a homo-
morphism at zero if and only if it preserves zero products (i.e., ab = 0 implies
T (a)T (b) = 0). We find in this way a natural link with the results on zero products
preservers (see, for example, [1,2,8,10,28,29,32,33,47–51] for additional details and
results). Burgos, Cabello-Sánchez and the third author of this note explore in [6] those
linear maps between C∗-algebras which are ∗-homomorphisms at certain points of the
domain, for example, at the unit element or at zero. We refer to [12,22,25,52–58] and
[60] for additional related results.

According to the standard terminology (cf. [1,4,7,9,23,30]),we shall say that a linear
operator G from a Banach algebra A into a Banach A-bimodule X is a generalized
derivation if there exists ξ ∈ X∗∗ satisfying

G(ab) = G(a)b + aG(b) − aξb (a, b ∈ A).

Every derivation is a generalized derivation; however, there exist generalized deriva-
tions which are not derivations. This notion is very useful when characterizing

123



Linear Maps Which are Anti-derivable at Zero

(generalized) derivations in terms of annihilation of certain products of orthogonal
elements (see, for example, Theorem 2.11 in [4, §2]). The just quoted reference [4]
contains an illustrative survey on local, 2-local and generalized derivations.

Let us revisit some recent achievements on maps derivable at certain points. For
example, every continuous linear map δ on a von Neumann algebra is a generalized
derivation whenever it is derivable at zero. If we additionally assume δ(1) = 0, we
can conclude that δ is a derivation (see [25, Theorem 4]). Furthermore, for an infinite-
dimensional Hilbert space H , a linear map δ : B(H) → B(H) which is a generalized
Jordan derivation at zero, or at 1, is a generalized derivation, even if δ is not assumed
to be a priori continuous (cf. [24]). Zhu et al. prove in [59] a significant result showing
that, for any Hilbert space H , a linear map δ : B(H) → B(H) is a derivation if and
only if it is a derivation at a nonzero point in B(H) (see [34] for another related result).

Ghahramani and Pan [16] and Fadaee and Ghahramani [13] have recently con-
sidered certain variants of Problem 1 in their studies of continuous linear operators
from a C∗-algebra A into a Banach A-bimodule X behaving like derivations or
anti-derivations at elements in a certain subset of A2 determined by orthogonality
conditions. Let us detail the problem.

Problem 2 Let T : A → X be a continuous linear operator which is anti-derivable at
zero, i.e.,

T (ab) = T (b)a + bT (a) for all (a, b) ∈ D0. (1.2)

Is T an anti-derivation or expressible in terms of an anti-derivation?

Clearly, a mapping D : A → X is called an anti-derivation if the identity (1.2)
holds for every (a, b) ∈ A2. If A is a C∗-algebra, a ∗-derivation (respectively, a
∗-anti-derivation) from A into itself, or into A∗∗, is a derivation (respectively, an anti-
derivation) d : A → A satisfying d(a∗) = d(a)∗ for all a ∈ A.

Concerning Problem 1, Fadaee and Ghahramani prove in [13, Theorem 3.1] that
for a continuous linear map T : A → A∗∗, where A is a C∗-algebra, the following
statements hold:

(a) T is derivable at zero if and only if there is a continuous derivation d : A → A∗∗
and an element η ∈ Z(A∗∗) (the center of A∗∗) such that T (a) = d(a) + ηa for
all a ∈ A;

(b) T is r-∗-derivable at zero (that is, ab∗ = 0 ⇒ aT (b)∗ + T (a)b∗ = 0) if and only
if there is a continuous ∗-derivation d : A → A∗∗ and an element η ∈ A∗∗ such
that T (a) = d(a) + ηa for all a ∈ A (η need not be central).

Ghahramani and Pan also considered a variant of Problem 1 in [16] in the context
of (complex Banach) algebras which are zero product determined. We recall that an
algebra A is called zero product determined if for every linear space Y and every
bilinear map V : A × A → Y satisfying V (x, y) = 0 for every x, y ∈ A with xy = 0,
there exists a linear map T : A → Y such that V (x, y) = T (xy) for all x, y ∈ A.
Brešar showed in [5, Theorem4.1] that every unital algebra A (algebraically) generated
by its idempotents is zero product determined. Since this is the case of B(H) for any
infinite-dimensional complexHilbert space H (see [39, Theorem 1]), a property which
is also enjoyed by properly infinite von Neumann algebras [39, Theorem 4], Bunce–
Deddens algebras, irrotational rotation algebras, simple unital AF C∗-algebras with
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finitely many extremal states, UHFC∗-algebras, unital simple C∗-algebras of real rank
zero with no tracial states [35, Corollary 4.9], [38, Theorem 4.6], properly infinite C∗-
algebras [31, Corollary 2.2], and von Neumann algebras of type II1 [18, Theorem
2.2(a)], all these algebras are zero product determined.

A Jordan algebra is a non-necessarily associative algebra B over a field whose
multiplication, denotedby◦, is commutative and satisfies the so-called Jordan identity:

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2) (a, b ∈ B).

Every associative algebra is a Jordan algebra when equipped with the natural Jordan
product given by a ◦ b = 1

2 (ab + ba). A Jordan derivation from B into a Jordan B-
module X is a linear mapping D : B → X satisfying D(a ◦b) = D(a)◦b +a ◦ D(b)

for all a, b ∈ B. For the basic background on Jordan algebras, Jordan modules and
Jordan derivations, the reader is referred to [20,21] and the references therein.

In what concerns Problem 1, Ghahramani and Pan proved in [16, Theorem 3.1]
that for any zero product determined unital ∗-algebra A, and every linear mapping
T : A → A, the following statements hold:

(i) T is derivable at zero if and only if there is a derivation d : A → A and an element
η ∈ Z(A) such that T (a) = d(a) + ηa for all a ∈ A;

(ii) T is r-∗-derivable at zero (that is, ab∗ = 0 ⇒ aT (b)∗ + T (a)b∗ = 0) if and
only if there is a ∗-derivation d : A → A and an element η ∈ A such that
T (a) = d(a) + ηa for all a ∈ A (η need not be central).

When considering Problem 2 and maps which are anti-derivable at zero, the avail-
able conclusions are less determinate. Concretely, assuming that A is a C∗-algebra,
Theorem 3.3 in [13] proves that for any continuous linear map T : A → A∗∗, the
following statements hold:

(i) If T is anti-derivable at zero, there is a continuous derivation d : A → A∗∗ and
an element η ∈ Z(A∗∗) such that T (a) = d(a) + ηa for all a ∈ A;

(ii) If T is r-∗-anti-derivable at zero (i.e., ab∗ = 0 in A ⇒ T (b)∗a + b∗T (a) = 0),
there is a continuous ∗-derivation d : A → A∗∗ and an element η ∈ A∗∗ such that
T (a) = d(a) + aη for all a ∈ A (η need not be central).

If A is a zero product determined unital ∗-algebra and T : A → A is a linear
mapping, Theorem 3.4 in [16] proves the following statements:

(i) If T is anti-derivable at zero, there is a Jordan derivation d : A → A and an
element η ∈ Z(A) such that T (a) = d(a) + ηa for all a ∈ A;

(ii) If T is r-∗-anti-derivable at zero, there is a Jordan ∗-derivation d : A → A and an
element η ∈ A such that T (a) = d(a) + aη for all a ∈ A (η need not be central).

In view of the previous result, it is natural to ask whether there exists a full char-
acterization of those (continuous) linear maps which are (∗-)anti-derivable at zero in
pure algebraic terms. The main aim of this note is to complete our knowledge on these
classes of continuous linear maps and to fill a natural gap which has not been fully
covered. Our first main conclusion is contained in Theorem 6 where it is established
that for each bounded linear operator T from a C∗-algebra A into an essential Banach
A-bimodule X , the following statements are equivalent:
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(a) T is anti-derivable at zero;
(b) There exist an anti-derivation d : A → X∗∗ and an element ξ ∈ X∗∗ satisfying

ξa = aξ, ξ [a, b] = 0, T (ab) = bT (a) + T (b)a − bξa, and T (a) = d(a) + ξa,

for all a, b ∈ A.

It is further shown that if A is unital, or if X is a dual Banach A-bimodule, statement
(b) above can be replaced with

(b′) There exist an anti-derivation d : A → X and an element ξ ∈ X satisfying
ξa = aξ, ξ [a, b] = 0, T (ab) = bT (a) + T (b)a − bξa, and T (a) = d(a) + ξa,

for all a, b ∈ A.

A similar conclusion holds when X is replaced with A∗∗.
In Sect. 4, we consider a C∗-algebra A and an essential Banach A-bimodule

equipped with an A-bimodule involution ∗ (i.e., a continuous conjugate linear map-
ping x 
→ x∗ satisfying (x∗)∗ = x, (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗, for all
a ∈ A, x ∈ X ). We give several natural examples of bimodule involutions. A Banach
A-bimodule equipped with an A-bimodule involution will be called a Banach ∗-A-
bimodule. Suppose T : A → X is a linear mapping from a C∗-algebra into a Banach
∗-A-bimodule. We shall say that T is r-∗-anti-derivable at zero (respectively, l-∗-anti-
derivable at zero) if ab∗ = 0 in A implies T (b)∗a + b∗T (a) = 0 in X (respectively,
a∗b = 0 in A ⇒ T (b)a∗ + bT (a)∗ = 0 in X ).

Let T : A → X be a bounded linear operator where A is a C∗-algebra and X is
an essential Banach ∗-A-bimodule. In Theorem 9, we prove the equivalence of the
following statements:

(a) T is r-∗-anti-derivable at zero (i.e., ab∗ = 0 in A ⇒ T (b)∗a + b∗T (a) = 0 in X );
(b) There exists a ∗-derivation d : A → X∗∗ and an element ξ ∈ X∗∗ satisfying the
following properties:

(i) d([a, b]) + [a, b]ξ + ξ∗[a, b] = 0, for all a, b ∈ A;
(ii) T (ab) = aT (b) + T (a)b − aξb, and T (a) = d(a) + aξ for all a, b ∈ A.

The conclusion in (b) can be improved if A is unital or if X is a dual Banach
A-bimodule. Finally, a complete characterization of those bounded linear operators
T : A → X which are l-∗-anti-derivable at zero is presented in Theorem 11 (see also
Corollary 12).

In Sect. 2, we take a closer look at anti-derivations from a general C∗-algebra A into
a Banach A-bimodule. Theorem 4 shows that these maps are in general very scarce.

2 Are there Anti-Derivations on C∗-Algebras?

If one is interested on the study of linear maps from a C∗-algebra A into a Banach
A-bimodule which are anti-derivable at zero, a first natural step is to explore the
class of anti-derivations on C∗-algebra. For this purpose, we initiate our study by
paying some attention to anti-derivations. An anti-derivation from an (associative)
algebra A into a Banach A bimodule X is a linear mapping d : A → X satisfying
d(ab) = d(b)a + bd(a) for all (a, b) ∈ A2. An example seems to be welcome. Let
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us fix an element x0 ∈ X satisfying

x0[a, b] = [a, b]x0. (2.1)

for all a, b ∈ A, where [a, b] = (ab − ba) denotes the Lie product or commutator of
a and b. The prototype of derivation from A into X is given by δx0 : A → X , δx0(a) =
[a, x0] (a ∈ A). The assumption (2.1) implies that abx0 − x0ab = bax0 − x0ba and
thus

δx0(ab) = abx0 − x0ab = bax0 − x0ba = bx0a − x0ba + bax0 − bx0a

= δx0(b)a + bδx0(a),

for all a, b ∈ A, witnessing that δx0 is a derivation and an anti-derivation. But, does
such an element x0 exist with the additional property that δx0 �= 0? Let us observe that
δx0 also satisfies the following property:

δx0([a, b]) = [[a, b], x0] = 0, for all a, b ∈ A. (2.2)

We shall see next that the identity in (2.2) actually characterizes anti-derivations.

Lemma 3 Let δ : A → X be a linear mapping from an associative algebra into an
A-bimodule. Then, the following statements are equivalent:

(a) δ is a derivation and δ([a, b]) = 0, for all a, b ∈ A;
(b) δ is an anti-derivation and δ([a, b]) = 0, for all a, b ∈ A.

Proof The equivalence is clear by just observing that δ([a, b]) = 0, for all a, b ∈ A
if and only if δ(ab) = δ(ba), for all a, b ∈ A. �


A central result in the theory of derivations on C∗-algebras was established by
Ringrose who proved that every (associative) derivation from a C∗-algebra A to a
Banach A-bimodule X is (automatically) continuous (compare [44]). Johnson estab-
lished in [26] another result to have in mind by proving that every bounded Jordan
derivation from a C∗-algebra A into a Banach A-bimodule X is an associative deriva-
tion. By a result due to Russo and the third author of this note, we know that every
Jordan derivation from A into X is continuous [42, Corollary 17]; consequently, every
Jordan derivation from A into X is a derivation.

Let δ : A → X be an anti-derivation fromaC∗-algebra into aBanach A-bimodule. It
is clear that δ(a◦b) = δ(a)◦b+a◦δ(b) (a, b ∈ A), andhence, δ is a Jordanderivation. It
follows from the arguments in the previous paragraph that δ is a continuous derivation.
So, every anti-derivation from aC∗-algebra A into a Banach A-bimodule is continuous
and a derivation; therefore, a linear mapping T : A → X is an anti-derivation if and
only if it is a derivation and T ([a, b]) = 0 for all a, b ∈ A. So, the natural question is
whether there exist non-trivial derivations vanishing on all commutators.

Let A be a C∗-algebra. According to the usual notation, we write c(A) := {[a, b] :
a, b ∈ A}. The available literature contains awide list of papers conducted to determine
when an element in a C∗-algebra can be expressed as a finite sum of commutators (see,
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for example, [14,15,19,36–38,43] and references therein). Let us remark two concrete
results Fack and de la Harpe showed in [15] that in any finite von Neumann algebra
M with central trace τ , an element x ∈ M with τ(x) = 0 can be expressed as a sum
of ten commutators. In another remarkable result, Halpern proved that every element
a in a properly infinite von Neumann algebra M can be written as the sum of two
commutators (cf. [19, Theorem 3.10]).

Let X be a Banach A-bimodule, where A is a C∗-algebra. In this note, we shall
deal with the bidual, X∗∗, of X , and we shall regard it as a Banach A∗∗-bimodule.
For this purpose, we shall refresh our knowledge on Arens extensions and Arens
regularity (cf. [3]). Let m : X × Y → Z be a bounded bilinear map where X ,
Y and Z are Banach spaces. According to the construction defined by R. Arens,
we define m∗(z′, x)(y) := z′(m(x, y)) (x ∈ X , y ∈ Y , z′ ∈ Z∗). We obtain in
this way a bounded bilinear mapping m∗ : Z∗ × X → Y ∗. The same method can
be applied to define m∗∗ = (m∗)∗ and m∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗. The mapping
x ′′ 
→ m∗∗∗(x ′′, y′′) is weak∗ to weak∗ continuous whenever we fix y′′ ∈ Y ∗∗, and
the mapping y′′ 
→ m∗∗∗(x, y′′) is weak∗ to weak∗ continuous for every x ∈ X . The
previous construction can be applied to the transposed mapping mt : Y × X → Z ,

mt (y, x) = m(x, y), and we define an extension mt∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗. Now,
the mapping x ′′ 
→ mt∗∗∗t (x ′′, y) is weak∗ to weak∗ continuous whenever we fix
y ∈ Y , and the mapping y′′ 
→ mt∗∗∗t (x ′′, y′′) is weak∗ to weak∗ continuous for
every x ′′ ∈ X∗∗. It should be remarked that the mappings mt∗∗∗t and m∗∗∗ need not
coincide in general (cf. [3]). The mapping m is called Arens regular if mt∗∗∗t = m∗∗∗.
One of the best known examples of Arens regular maps is given by the product of
any C∗-algebra. That is, every C∗-algebra A is Arens regular and the unique Arens
extension of the product of A to A∗∗× A∗∗ coincides with the product of its enveloping
von Neumann algebra (cf. [11, Corollary 3.2.37]).

It is worth to recall some notions. Two projections p and q in a von Neumann
algebra M are called (Murray–von Neumann) equivalent if there is a partial isometry
e ∈ M such that e∗e = p and ee∗ = q. We write this fact as p ∼ q. A projection p in
M is said to be finite if there is no projection q < p that is equivalent to p. A projection
p in M is infinite if it is not finite, and properly infinite if p �= 0 and zp is infinite
whenever z is a central projection such that zp �= 0 (cf. [46, Definition V.1.15]). The
von Neumann algebra M is said to be finite, infinite or properly infinite according to
the property of its identity [46, Definition V.1.16].

Let M be a von Neumann algebra. A (faithful) center-valued trace on M is a linear
mapping τ from M onto its center Z(M) satisfying:

(a) τ(x∗x) = τ(xx∗) ≥ 0 for all x ∈ M ;
(b) τ(ax) = aτ(x), for all a ∈ Z(M), x ∈ M ;
(c) τ(1) = 1;
(d) τ(x∗x) �= 0 for every nonzero x ∈ M .

A von Neumann algebra M is finite if and only if it admits a faithful center-valued
trace (which is further weak∗ continuous) [46, Theorem V.2.6].

Suppose X is a Banach A-bimodule over a C∗-algebra A. Let π1 : A × X → X
and π2 : X × A → X stand for the corresponding module operations given by
π1(a, x) = ax and π2(x, a) = xa, respectively. Given a ∈ A∗∗ and z ∈ X∗∗, we
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shall write az = π∗∗∗
1 (a, z) and za = π∗∗∗

2 (z, a). It is known that X∗∗ is a Banach
A∗∗-bimodule (and also a Banach A-bimodule) for the just defined operations ([11,
Theorem 2.6.15(i i i)]). An additional property of this construction tells that

ax = π∗∗∗
1 (a, x) = w∗- lim

λ
w∗- lim

μ
aλxμ, and

xa = π∗∗∗
2 (x, a) = w∗- lim

μ
w∗- lim

λ
xμaλ, (2.3)

in theweak∗ topologyof X∗∗,whenever (aλ) and (xμ) are nets in A and X , respectively,
such that aλ → a ∈ A∗∗ in the weak∗ topology of A∗∗ and xμ → x ∈ X∗∗ in the
weak∗ topology of X∗∗ (cf. [11, (2.6.26)]). The reader should be warned that the
module operations on X∗∗ need not be separately weak∗ continuous. This handicap
produces some difficulties in our arguments.

Let d : A → M be an (anti-)derivation from a C∗-algebra into a Banach A-
bimodule. We have already seen that d is continuous and hence d∗∗ : A∗∗ → X∗∗ is
weak∗ continuous. It follows from (2.3) that d∗∗ is (anti-)derivation.

It is clear from the above that in a C∗-algebra where every element coincides with
a finite sum of commutators, every anti-derivation is zero. In particular, every anti-
derivation froma properly infinite vonNeumann algebra M into aBanach M-bimodule
is zero by Halpern’s theorem [19, Theorem 3.10]. We can improve this conclusion in
the next result.

Theorem 4 Let δ : A → X be an anti-derivation from a C∗-algebra to a Banach
A-bimodule. Then, there exists a finite central projection p1 in A∗∗ and an element
x0 ∈ X∗∗ such that

δ∗∗(x) = δx0(τ (p1x)) = [τ(p1x), x0], for all x ∈ A∗∗,

where τ : p1A∗∗ → Z(p1A∗∗) is the (faithful) center-valued trace on p1A∗∗.
Furthermore, if we also assume that zx = xz for all z ∈ Z(A∗∗) and x ∈ X∗∗ (for

example, when X = A or A∗ or A∗∗), every anti-derivation δ : A → X is zero.

Proof We have already commented in previous paragraphs that δ is a continuous
derivation with δ([a, b]) = 0 for all a, b ∈ A. Furthermore, δ∗∗ : A∗∗ → X∗∗ is an
anti-derivation too. Therefore δ∗∗ is a derivation and vanishes on every commutator
of A∗∗.

By [46, TheoremV.1.19 andLemmaV.1.7], the identity of the vonNeumann algebra
A∗∗ is uniquely written as the sum of (centrally) orthogonal projections p1 and p2
such that p1 is finite and p2 is properly infinite. It follows that A∗∗ decomposes as the
orthogonal direct sum of M1 = p1A∗∗ p1 and M2 = p2A∗∗ p2, M1 is finite and M2
is properly infinite. By Theorem 3.10 in [19], every element a2 in M2 can be written
as the sum of two commutators in M2. Furthermore, let τ : M1 → Z(M1) be the
faithful center-valued trace of the finite von Neumann algebra M1. Theorem 3.2 in
[15] asserts that every element b1 in M1 with τ(b1) = 0 coincides with the sum of ten
commutators in M1. Since for each a1 ∈ M1, the element b1 = a1 − τ(a1) ∈ M1 has
zero trace, we deduce that a1 − τ(a1) writes as the sum of ten commutators in M1.
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Since commutators in A∗∗ are sums of commutators in M1 and M2, we deduce from
the properties of δ∗∗ that

δ∗∗(a1 + a2) = δ∗∗(τ (a1)), for all a1 ∈ M1, a2 ∈ M2.

On the other hand, X∗∗ is a dual Z(M1)-bimodule with respect to the restricted
bimodule operations, and δ∗∗|Z(M1) : Z(M1) → X∗∗ is a derivation and an anti-
derivation. Since every commutative C∗-algebra C is amenable (i.e., for every Banach
C-bimoduleY , every derivation from C intoY ∗ is inner (see, for example, [11, Theorem
5.6.2(i)]), there exists x0 ∈ X∗∗ such that δ∗∗(z) = [z, x0] for all z ∈ Z(M1). This
finishes the proof of the first statement.

Let us deal with the last statement. Suppose that zx = xz for all z ∈ Z(A∗∗) and
x ∈ X∗∗. In this case, δ∗∗(z) = [z, x0] = 0 for all z ∈ Z(M1), and thus, δ = 0. �


Let A = C[0, 1] and X = C equipped with the bimodule operations defined by
f · λ := f (0)λ and λ · f := f (1)λ. According to this structure, there exist elements
f ∈ C[0, 1] such that f · 1 �= 1 · f . The mapping δ1 : C[0, 1] → X is a nonzero
anti-derivation.

3 Linear Maps Anti-Derivable at Zero

Let A and B be C∗-algebras. It is known that every bounded bilinear form V : A ×
B → C admits a unique norm preserving separately weak∗ continuous extension to
A∗∗ × B∗∗ (cf. [27, Lemma 2.1]). Actually, the same conclusion also holds when A
and B are JB∗-triples (see [41, Lemma 1]).

Along this note, the self-adjoint part of a C∗-algebra A will be denoted by Asa .
Let A be a Banach algebra. If instead of requiring A to be zero product determined

we only request that for every Banach space Y and every continuous bilinear form
V : A × A → Y satisfying V (a, b) = 0 for every a, b ∈ Asa with ab = 0, there
exist continuous functionals φ, ϕ ∈ A∗ such that V (a, b) = φ(ab) + ϕ(ba) for all
a, b ∈ A, a celebrated theorem due to Goldstein (see [17, Theorem 1.10]) affirms
that every C∗-algebra satisfies this latter property. This is one of the advantages in the
study of derivations on C∗-algebras.

Let X be a Banach A-bimodule over a Banach algebra A. According to the usual
terminology, we shall say that X is essential if the linear span of the set {axb : a, b ∈
A, x ∈ X} is dense in X .

If A is a non-unital C∗-algebra, 1 denotes the unit in A∗∗, and (uλ) is a bounded
approximate unit in A (cf. [40, Theorem 1.4.2]), it is known that (uλ) → 1 in the
weak∗ topology of A∗∗. Furthermore, if we regard X∗∗ as a Banach A∗∗-bimodule, it
follows from the basic properties commented in the first section that

(ηa)1 = w∗- lim
λ

(ηa)uλ = w∗- lim
λ

η(auλ) = ‖.‖- lim
λ

η(auλ) = ηa,

for all a ∈ A and η ∈ X . Assuming that X is essential, we get η1 = π∗∗∗
2 (η, 1) = η

(and similarly 1η = π∗∗∗
1 (1, η) = η) for all η ∈ X . Actually, limλ ‖ηuλ − η‖ = 0 =
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limλ ‖uλη−η‖ for all η ∈ X . Let us take η ∈ X∗∗, and pick via Goldstine’s theorem a
bounded net (ημ) in X converging to η in the weak∗ topology of X∗∗. Since π∗∗∗

2 (·, 1)
is weak∗ continuous, we have

η1 = π∗∗∗
2 (η, 1) = w∗- lim

μ
π∗∗∗
2 (ημ, 1) = w∗- lim

μ
ημ1 = w∗- lim

μ
ημ = η. (3.1)

Our next result is a modular version of [13, Lemma 2.2].

Lemma 5 Let X be a Banach A-bimodule over a C∗-algebra A. Let ξ be an element
in X satisfying the following property: hξk = 0 for every h, k ∈ Asa with hk = 0. Let
1 denote the unit of A∗∗. Then, the element η = 1ξ1 ∈ X∗∗ satisfies aηb = aξb, for
all a, b ∈ A, and commutes with every element in A, that is, ηa = aη, for all a ∈ A.

Proof Since Amay be non-unital, we shall consider A∗∗ and the space X∗∗ as aBanach
A∗∗-bimodule. Let η = 1ξ1 ∈ X∗∗. By the basic properties of the A∗∗-bimodule X∗∗,
we have aηb = aξb for all a, b ∈ A and η1 = 1η = η.

Let us fix an arbitrary φ ∈ X∗ and define the bounded bilinear form given by
Vφ : A × A → C, Vφ(a, b) = φ(aηb) = φ(aξb). It follows from the hypothesis that
Vφ(h, k) = 0, for every h, k ∈ Asa with hk = 0, witnessing that Vφ is an orthogonal
form in the sense of Goldstein [17]. Theorem 1.9 in [17] implies the existence of two
functionals ϕ1, ϕ2 ∈ A∗ satisfying Vφ(a, b) = ϕ1(ab) + ϕ2(ba) for all a, b ∈ A. We
denote by the same symbol Vφ the (unique) separate weak∗ continuous extension of
Vφ to A∗∗ × A∗∗. We can therefore conclude that

φ(aη) = Vφ(a, 1) = ϕ1(a) + ϕ2(a) = Vφ(1, a) = φ(ηa),

for all a ∈ A. The arbitrariness of φ ∈ X∗ combined with the Hahn–Banach theorem
implies that ηa = aη, for all a ∈ A. �


We can now present our characterization of those continuous linear maps on a
C∗-algebra which are anti-derivable at zero.

Theorem 6 Let T : A → X be a bounded linear operator where A is a C∗-algebra
and X is an essential Banach A-bimodule. Then, the following are equivalent:

(a) T is anti-derivable at zero;
(b) There exists an anti-derivation d : A → X∗∗ and an element ξ ∈ X∗∗ satisfying

ξa = aξ, ξ [a, b] = 0, T (ab) = bT (a) + T (b)a − bξa, and T (a) = d(a) + ξa,

for all a, b ∈ A;

Proof (a) ⇒ (b) Suppose T is anti-derivable at zero. Let us pick h1, k, h2 ∈ Asa

with h j k = 0 (and thus kh j = 0) for j = 1, 2, it follows from the hypothesis that
T (k)h2 + kT (h2) = 0 and therefore

h1T (k)h2 = h1(T (k)h2 + kT (h2)) = 0. (3.2)

This shows that themapping T : A → X satisfies the hypotheses of [4, Theorem2.11];
we therefore conclude from the just quoted result that T : A → X is a generalized
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derivation, that is, there exists ξ ∈ X∗∗ such that

T (ab) = T (a)b + aT (b) − aξb, ∀a, b ∈ A. (3.3)

By replacing ξ with 1ξ1, we can assume that 1ξ = ξ1 = ξ and (3.3) holds.
It is not hard to check from (3.3) that the mapping d : A → X∗∗, d(a) = T (a)−ξa

is a derivation satisfying T (a) = d(a) + ξa for all a ∈ A.
If we pick h, k ∈ Asa with hk = 0 (and thus kh = 0). We deduce from the

hypothesis that T (h)k + hT (k) = 0, and by (3.3):

0 = T (hk) = T (h)k + hT (k) − hξk,

identities which combined give hξk = 0 (for any h, k ∈ Asa with hk = 0). Lemma 5
guarantees that ξa = aξ for all a ∈ A.

We shall next show that d is an anti-derivation. Let (Y ,�) denote the opposite
Banach A-bimodule Xop, that is, y � a = ay and a � y = ya for all a ∈ A,
y ∈ Y . Let us pick h1, k, h2 ∈ Asa with h j k = 0 for j = 1, 2. We have seen
in (3.3) that h1 � T (k) � h2 = h2T (k)h1 = 0. Then, the mapping T̃ : A → Y ,
T̃ (a) = T (a) (a ∈ A) satisfies that h1 � T̃ (k) � h2 = 0 for every h1, k, h2 ∈ Asa

with h j k = 0. We deduce from [4, Theorem 2.11] the existence of η ∈ X∗∗ such that
T (ab) = T (a) � b + a � T (b) − a � η � b, ∀a, b ∈ A, equivalently,

T (ab) = bT (a) + T (b)a − bηa, ∀a, b ∈ A. (3.4)

Replacing η with 1η1, we can always assume that η = η1 = 1η.
By mimicking the arguments above, fix h, k ∈ Asa with hk = 0. We deduce from

the hypothesis (with kh = 0) that T (h)k + hT (k) = 0, and by (3.4)

0 = T (kh) = T (h)k + hT (k) − hηk.

By combining the previous two identities, we get hηk = 0 for all h, k ∈ Asa with
hk = 0. A new application of Lemma 5 guarantees that ηa = aη for all a ∈ A.

Now, combining the fact that ξ and η commute with any element in A, and (3.3)
and (3.4) with a = b, we have ηa2 = ξa2 for all a ∈ A. Since A is a C∗-algebra,
it follows that aη = ηa = ξa = aξ for all a ∈ A. Therefore, there is no loss of
generality in assuming ξ = η in (3.3) and (3.4).

Now, let us apply (3.4) and (3.3) to deduce the following identities:

T (ab) = T (b)a + bT (a) − bξa, and T (ba) = T (b)a + bT (a) − bξa,

for all a, b ∈ A. Therefore,

T ([a, b]) = T (ab − ba) = 0 for all a, b ∈ A. (3.5)
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Let us analyze the identity (3.3). Let (uλ) be an approximate unit in A. Since the
identity

T (uλb) = T (uλ)b + uλT (b) − uλξb

holds for every λ, T ∗∗ is weak∗ continuous (and hence T ∗∗(uλ) → T ∗∗(1) in the
weak∗ topology), uλT (b) → T (b) in norm because X is essential, the product of A∗∗
is separately weak∗ continuous [45, Theorem 1.7.8], π∗∗∗

1 (·, ξb) is weak∗ continuous
(and thus uλξb = π∗∗∗

1 (uλ, ξb) → π∗∗∗
1 (1, ξb) = 1ξb = ξb in the weak∗ topology),

we conclude that

T (b) = T ∗∗(1)b + T (b) − 1ξb, or equivalently, T ∗∗(1)b = 1ξb = ξb, (3.6)

for all b ∈ A.
Let us recall that a continuous bilinear mapping V : A × A → X preserves zero

products if

ab = 0 in A ⇒ V (a, b) = 0.

By [1, Example 1.3(2.), Theorem 2.11 and Definition 2.2], every continuous bilinear
mapping V preserving zero products satisfies V (ab, c) = V (a, bc) for all a, b, c ∈ A.
By hypothesis, the mapping V (a, b) := T (b)a + bT (a) is continuous and preserves
zero products and therefore

T (c)ab + cT (ab) = V (ab, c) = V (a, bc) = T (bc)a + bcT (a),

for all a, b, c ∈ A. If in the above equality we replace c with uλ, where (uλ) is an
approximate unit in A, and we take weak∗ limits, we get

T ∗∗(1)ab + T (ab) = T (b)a + bT (a), for all a, b ∈ A.

Since ξab = T ∗∗(1)ab (cf. (3.6)) and T (ab) = T (ba) = d(ba) + ξba, it follows
that

ξab + d(ba) + ξba = d(b)a + ξba + bd(a) + ξba = d(ba) + 2ξba,

witnessing that ξ [a, b] = 0.
Therefore, by (3.5)

d([a, b]) = T ([a, b]) − ξ [a, b] = 0 for all a, b ∈ A.

Lemma 3 proves that d is an anti-derivation.
(b) ⇒ (a) Suppose there exist an anti-derivation d : A → X∗∗ and an element

ξ ∈ X∗∗ satisfying the stated properties. Let us take a, b ∈ A with ab = 0. It follows
from the assumptions that
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T (b)a + bT (a) = (d(b) + ξb)a + b(d(a) + ξa) = d(ab) + 2ξba = 0 + 2ξab = 0.

�

Remark 7 If in Theorem 6 the C∗-algebra A is unital or if X is a dual Banach A-
bimodule, statement (b) can be replaced with the following:

(b′) There exist an anti-derivation d : A → X and an element ξ ∈ X satisfying
ξa = aξ, ξ [a, b] = 0, T (ab) = bT (a) + T (b)a − bξa, and T (a) = d(a) + ξa,

for all a, b ∈ A.

A closer look at the proof of Theorem 6 shows that the desired statement will follow
as soon as we prove that the element ξ lies in X . If A is unital, this is clear because
T (1) = d(1) + ξ = ξ ∈ X . If X is a dual Banach space, we can repeat the arguments
in the proof of [1, Proposition 4.3 or Theorem 4.6].

EveryC∗-algebra A is an essential A-bimodule because it admits a bounded approx-
imate unit (see [40, Theorem1.4.2]). The second dual, A∗∗, of A is an A-bimodulewith
respect to the natural product. In general, A∗∗ need not be an essential A-bimodule,
consider, for example, A = c0 and A∗∗ = 
∞. However, if A is unital, A∗∗ is an
essential A-bimodule. Despite that A∗∗ is not in general an essential A-bimodule, A is
weak∗ dense in A∗∗ by Goldstine’s theorem, and it is known that A admits a bounded
approximate unit (see [40, Theorem 1.4.2]) which converges to the unit of A∗∗ in the
weak∗ topology. Applying these special properties, the proofs of [4, Lemma 2.10, The-
orem 2.11] remain valid to characterize when a bounded linear operator T : A → A∗∗
is a generalized derivation. Therefore, the proof of Theorem 6 can be combined with
Theorem 4 to get the following result:

Theorem 8 Let T : A → A∗∗ be a bounded linear operator where A is a C∗-algebra.
Then, the following are equivalent:

(a) T is anti-derivable at zero;
(b) There exists ξ ∈ A∗∗ satisfying ξa = aξ, ξ [a, b] = 0, and T (a) = ξa, for all

a, b ∈ A.

The preceding theorem can be regarded as a generalization of [16, Corollary 3.8(i)].

4 Linear Maps ∗-Anti-Derivable at Zero

In this section, we shall deal with continuous linear maps which are r-∗-anti-derivable
at zero.We shall first recall the basic theory on bimodules equipped with an involution.
Let X be a Banach A-bimodule over a C∗-algebra A. By an A-bimodule involution
on X , we mean a continuous conjugate linear mapping X → X , x 
→ x∗, satisfying
(x∗)∗ = x, (ax)∗ = x∗a∗, and (xa)∗ = a∗x∗, for all a ∈ A, x ∈ X . The natural
involutions on A and on A∗∗ are A-bimodule involutions when A and A∗∗ are regarded
as Banach A-bimodules. Another typical example can be given in the following way:
For each functional ϕ ∈ A∗ and a ∈ A, the functionals aϕ, ϕa ∈ A∗ are defined by
(aϕ)(b) = ϕ(ba), and (ϕa)(b) = ϕ(ab), for all b ∈ A, respectively. These operations
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define a structure of Banach A-bimodule on A∗. Furthermore, for each ϕ ∈ A∗ we
define ϕ∗ ∈ A∗ by ϕ∗(b) := ϕ(b∗) (∀b ∈ A). It is easy to check that (aϕ)∗ = ϕ∗a∗
and (ϕa)∗ = a∗ϕ∗ for all a ∈ A, ϕ ∈ A∗. Therefore, ϕ 
→ ϕ∗ defines an A-bimodule
involution on A∗.

Suppose x 
→ x∗ is an A-bimodule involution on a Banach A-bimodule X . We
shall regard X∗ as a Banach A-bimodule with module operations given by (aφ)(x) =
φ(xa), and (φa)(x) = φ(ax), for all a ∈ A, x ∈ X and φ ∈ X∗. We shall consider
the natural involutions on X and X∗∗ naturally induced by the A-bimodule involution
of X , defined by φ∗(x) := φ(x∗) (∀φ ∈ X∗, x ∈ X ) and z∗(φ) := z(φ∗) (∀φ ∈
X∗, z ∈ X∗∗). Clearly, the involution z 
→ z∗ is weak∗ continuous on X∗∗. Let a ∈ A,

z ∈ X∗∗, and let (xμ) ⊂ X a bounded net converging to z in the weak∗ topology of
X∗∗. By the properties of the module operation on X∗∗ (see page 7), we have

(az)∗ = π∗∗∗
1 (a, z)∗ = w∗ − lim

μ
π1(a, xμ)∗ = w∗ − lim

μ
π2(x∗

μ, a∗)

= π∗∗∗
2 (z∗, a∗) = z∗a∗,

and

(za)∗ = π∗∗∗
2 (z, a)∗ = w∗ − lim

μ
π2(xμ, a)∗ = w∗ − lim

μ
π1(a

∗, x∗
μ)

= π∗∗∗
1 (a∗, z∗) = a∗z∗.

A Banach A-bimodule equipped with an A-bimodule involution will be called a
Banach ∗-A-bimodule. Along this section, X will stand for a Banach ∗-A-bimodule
over a C∗-algebra A. A linear mapping T : A → X will be called r-∗-anti-derivable
at zero (respectively, l-∗-anti-derivable at zero) if ab∗ = 0 in A implies T (b)∗a +
b∗T (a) = 0 in X (respectively, a∗b = 0 in A ⇒ T (b)a∗ + bT (a)∗ = 0 in X ). It is
easy to see that T is r-∗-anti-derivable at zero if and only if the mapping S : A → X ,
S(a) := T (a∗)∗ (∀a ∈ A) is l-∗-anti-derivable at zero.

We can now state our main conclusion for continuous linear maps which are r-∗-
anti-derivable at zero.

Theorem 9 Let T : A → X be a bounded linear operator where A is a C∗-algebra and
X is an essential Banach ∗-A-bimodule. Then, the following statements are equivalent:

(a) T is r-∗-anti-derivable at zero (i.e., ab∗ = 0 in A ⇒ T (b)∗a + b∗T (a) = 0 in
X );

(b) There exists a ∗-derivation d : A → X∗∗ and an element ξ ∈ X∗∗ satisfying the
following properties:

(i) d([a, b]) + [a, b]ξ + ξ∗[a, b] = 0, for all a, b ∈ A;
(ii) T (ab) = aT (b) + T (a)b − aξb, and T (a) = d(a) + aξ for all a, b ∈ A.

If we further assume that A is unital or X is a dual Banach A-bimodule, we can
replace (b) with the following:

(b′) There exists a ∗-derivation d : A → X and an element ξ ∈ X satisfying the
properties (i)–(i i) above.
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Proof (a) ⇒ (b) Suppose T is r-∗-anti-derivable at zero. As in the proof of Theorem 6
we observe that given h1, h2, k ∈ Asa with h j k = 0 for j = 1, 2, we have T (h1)

∗k +
h1T (k) = 0, and consequently,

0 = (T (h1)
∗k + h1T (k))h2 = h1T (k)h2. (4.1)

Theorem 2.11 in [4] assures that T is a generalized derivation, that is, there exists an
element ξ ∈ X∗∗ satisfying

T (ab) = T (a)b + aT (b) − aξb, ∀a, b ∈ A. (4.2)

By replacing ξ with 1ξ1, we can assume that ξ = 1ξ = ξ1. It is routine to check that
the mapping d : A → X∗∗, d(a) = T (a) − aξ is a derivation and T (a) = d(a) + aξ

for all a ∈ A.
The same arguments employed in the proof of Theorem 6 (3.6) prove that

T ∗∗(1)b = 1ξb = ξb, for all b ∈ A. (4.3)

We consider the continuous bilinear mapping V : A × A → X defined by
V (a, b) := T (b∗)∗a + bT (a). If a(b∗)∗ = ab = 0, the hypothesis implies that
V (a, b) = 0. Therefore, V preserves zero products. We conclude from [1, Example
1.3(2.), Theorem 2.11 and Definition 2.2] that V (ab, c) = V (a, bc), or equivalently,

T (c∗)∗ab + cT (ab) = T (c∗b∗)∗a + bcT (a)

for all a, b, c ∈ A. So, if (uλ) is an approximate unit in A, we have

T (uλ)
∗ab + uλT (ab) = T (uλb∗)∗a + buλT (a),

for all λ, a, b ∈ A. We can take norm limits on the right- hand side. For the left-
hand side, we observe that the bimodule operations π∗∗∗

2 (·, ab) and π∗∗∗
1 (·, T (ab))

are weak∗ continuous. Taking weak∗ limits in λ in the previous equality, we derive

T ∗∗(1)∗ab + T (ab) = T ∗∗(1)∗ab + 1T (ab) = T (b∗)∗a + bT (a), (4.4)

and
b∗a∗T ∗∗(1) + T (ab)∗ = a∗T (b∗) + T (a)∗b∗, (4.5)

for all a, b ∈ A. Replacing a with uλ, we get

b∗uλT ∗∗(1) + T (uλb)∗ = uλT (b∗) + T (uλ)
∗b∗,

for all λ, b ∈ A. Now, taking weak∗ limits in λ we obtain

b∗T ∗∗(1) + T (b)∗ = T (b∗) + T ∗∗(1)∗b∗,
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equivalently,

T (b)∗ − T ∗∗(1)∗b∗ = T (b∗) − b∗T ∗∗(1), for all b ∈ A.

Consequently,

T (h) + T ∗∗(1)∗h = T (h)∗ + hT ∗∗(1), ∀h ∈ Asa, (4.6)

that is,

d(h) + hξ + T ∗∗(1)∗h = d(h)∗ + ξ∗h + hT ∗∗(1), ∀h ∈ Asa .

Multiplying by k1 ∈ Asa on the left and by k2 ∈ Asa on the right and applying (4.3),
we get

k1d(h)k2 + k1hξk2 + k1ξ
∗hk2 = k1d(h)k2 + k1hξk2 + k1T ∗∗(1)∗hk2

= k1d(h)∗k2 + k1ξ
∗hk2 + k1hT ∗∗(1)k2

= k1d(h)∗k2 + k1ξ
∗hk2 + k1hξk2,

for all h, k1, k2 ∈ Asa . It then follows that

ad(h)b = ad(h)∗b, for all h ∈ Asa, a, b ∈ A.

Since the mappings π∗∗∗
1 (·, d(h)b) and π∗∗∗

1 (·, d(h)∗b) are weak∗ continuous, we can
replace a with uλ and take weak∗ limits in λ to deduce that

d(h)b = d(h)∗b, and b∗d(h)∗ = b∗d(h), for all h ∈ Asa, b ∈ A. (4.7)

Now, by the local Gelfand theory, for each h ∈ Asa , there exist h1, h2 ∈ Asa with
h1h2 = h2h1 = h. If we apply (4.7) and the fact that d is a derivation, we arrive at

d(h)∗ = d(h1h2)
∗ = (d(h1)h2 + h1d(h2))

∗ = h2d(h1)
∗ + d(h2)

∗h1

= h2d(h1) + d(h2)h1 = d(h2h1) = d(h).

The arbitrariness of h ∈ Asa proves that d(a)∗ = d(a∗) for all a ∈ A, witnessing that
d is a ∗-derivation.

We claim that

d([a, b]) + ξ∗[a, b] + [a, b]ξ = 0 for all a, b ∈ A. (4.8)

Namely, by (4.3) and (4.4) for all a, b, c ∈ A we have

cξ∗ab + cT (ab) = cT ∗∗(1)∗ab + cT (ab) = cT (b∗)∗a + cbT (a),
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equivalently

cξ∗ab + cd(ab) + cabξ = cd(b∗)∗a + cξ∗ba + cbd(a) + cbaξ

= cd(ba) + cξ∗ba + cbaξ,

where in the last equality we applied that d is ∗-derivation. Therefore,

cd([a, b]) + cξ∗[a, b] + c[a, b]ξ = 0, for all a, b, c ∈ A.

Replacing c with uλ, where (uλ) is an approximate unit in A, and having in mind
that the maps π∗∗∗

1 (·, d([a, b])) and π∗∗∗
1 (·, ξ∗[a, b]) are weak∗ continuous, by taking

weak∗ limits in λ we obtain the identity claimed in (4.8).
(b) ⇒ (a) Suppose there exists a ∗-derivation d : A → X∗∗ and an element

ξ ∈ X∗∗ satisfying properties (i)–(i i) in the statement. Let us fix a, b ∈ A with
ab∗ = 0. It follows from the assumptions that

T (b)∗a + b∗T (a) = d(b)∗a + ξ∗b∗a + b∗d(a) + b∗aξ

= d(b∗)a + b∗d(a) + ξ∗b∗a + b∗aξ

= d(b∗a) + ξ∗b∗a + b∗aξ = d([b∗, a]) + ξ∗[b∗, a] + [b∗, a]ξ
= (by (i)) = 0.

The proof of the last statement can be obtained with the arguments we gave in
Remark 7. �


As we commented before, for a C∗-algebra A, the proofs of [4, Lemma 2.10,
Theorem 2.11] remain valid to characterize when a bounded linear operator T : A →
A∗∗ is a generalized derivation. So, the proofs of Theorem 9 remains valid to get the
following result:

Theorem 10 Let T : A → A∗∗ be a bounded linear operator, where A is a C∗-algebra.
Then, the following statements are equivalent:

(a) T is r-∗-anti-derivable at zero (i.e., ab∗ = 0 in A ⇒ T (b)∗a + b∗T (a) = 0 in
A∗∗);

(b) There exists a ∗-derivation d : A → A∗∗ and an element ξ ∈ A∗∗ satisfying the
following properties:

(i) d([a, b]) + [a, b]ξ + ξ∗[a, b] = 0, for all a, b ∈ A;
(ii) T (ab) = aT (b) + T (a)b − aξb, and T (a) = d(a) + aξ for all a, b ∈ A.

The description of those continuous linear operators which are l-∗-anti-derivable at
zero is a straight consequence of Theorem 9.

Theorem 11 Let T : A → X be a bounded linear operator where A is a C∗-algebra
and X is an essential Banach ∗-A-bimodule. Then, the following statements are equiv-
alent:
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(a) T is l-∗-anti-derivable at zero (i.e., a∗b = 0 in A ⇒ T (b)a∗ + bT (a)∗ = 0 in
X );

(b) There exists a ∗-derivation d : A → X∗∗ and an element η ∈ X∗∗ satisfying the
following properties:

(i) d([a, b]) + [a, b]η∗ + η[a, b] = 0, for all a, b ∈ A;
(ii) T (ab) = aT (b) + T (a)b − aηb, and T (a) = d(a) + ηa for all a, b ∈ A.

If we further assume that A is unital or X is a dual Banach A-bimodule, we can
replace (b) with the following:

(b′) There exists a ∗-derivation d : A → X and an element η ∈ X satisfying the
properties (i)–(i i) above.

Proof By observing that T is l-∗-anti-derivable at zero if and only if the mapping
S : A → X , S(a) := T (a∗)∗ (∀a ∈ A) is r-∗-anti-derivable at zero, an application of
Theorem 9 tells that this is the case if and only if there exists a ∗-derivation d : A →
X∗∗ and an element ξ ∈ X∗∗ satisfying the following properties:

(i) d([a, b]) + [a, b]ξ + ξ∗[a, b] = 0, for all a, b ∈ A;
(ii) S(ab) = aS(b) + S(a)b − aξb, and S(a) = d(a) + aξ for all a, b ∈ A.

Taking η = ξ∗, the rest can be straightforwardly checked by the reader. �


Corollary 12 Let T : A → A∗∗ be a bounded linear operator where A is a C∗-algebra.
Then, the following statements are equivalent:

(a) T is l-∗-anti-derivable at zero;
(b) There exists a ∗-derivation d : A → A∗∗ and an element η ∈ A∗∗ satisfying the

following properties:

(i) d([a, b]) + [a, b]η∗ + η[a, b] = 0, for all a, b ∈ A;
(ii) T (ab) = aT (b) + T (a)b − aηb, and T (a) = d(a) + ηa for all a, b ∈ A.
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