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Abstract: Evolution algebras are non-associative algebras that describe non-Mendelian hereditary
processes and have connections with many other areas. In this paper, we obtain necessary and
sufficient conditions for a given algebra A to be an evolution algebra. We prove that the problem is
equivalent to the so-called SDC problem, that is, the simultaneous diagonalisation via congruence
of a given set of matrices. More precisely we show that an n-dimensional algebra A is an evolution
algebra if and only if a certain set of n symmetric n× n matrices {M1, . . . , Mn} describing the product
of A are SDC. We apply this characterisation to show that while certain classical genetic algebras
(representing Mendelian and auto-tetraploid inheritance) are not themselves evolution algebras,
arbitrarily small perturbations of these are evolution algebras. This is intringuing, as evolution
algebras model asexual reproduction, unlike the classical ones.

Keywords: evolution algebra; multiplication structure matrices; simultaneous diagonalisation by
congruence; simultaneous diagonalisation by similarity; linear pencil
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1. Introduction

Evolution algebras are non-associative algebras with a dynamic nature. They were introduced in
2008 by Tian [1] to enlighten the study of non-Mendelian genetics. Since then, a large literature
has flourished on this topic (see for instance [2–17]) motivated by the fact that these algebras
have connections with group theory, Markov processes, theory of knots, systems and graph theory.
For instance, in [2], the theory of evolution algebras was related to that of pulse processes on weighted
digraphs and applications were provided by reviewing and enlightening a report of the National
Science Foundation about air pollution achieved by the Rand Corporation. A pulse process is a
structural dynamic model to analyse complex networks by studying the propagation of changes,
through the vertices of a weighted digraph, after introducing an initial pulse in the system at a
particular vertex. It is based on a spectral analysis of the corresponding weighted digraph to face
large scale decision making problems. Evolution algebras also become a proper tool to introduce
useful algebraic techniques into the study of some digraphs because evolution algebras and weighted
digraphs can be canonically identified.

We recall that an algebra is a linear space A provided with a product, that is, a bilinear map from
A× A to A via the operation (a, b)→ ab. In the particular case that (ab)c = a(bc), for all a, b, c ∈ A we
say that A is associative. Meanwhile, if ab = ba, for all a, b ∈ A, then we say that A is commutative.
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An evolution algebra is defined as a commutative algebra A for which there exists a basis
B∗ = {e∗i : i ∈ Λ} such that e∗i e∗j = 0 for every i, j ∈ Λ with i 6= j. Such a basis is called natural.
Evolution algebras are, in general, non-associative. To date, most literature on evolution algebras is on
finite-dimensional ones. However, in [12] it is shown that every infinite-dimensional Banach evolution
algebra is the direct sum of a finite-dimensional evolution algebra and a zero-product algebra.

In this paper, we discuss necessary and sufficient conditions under which a given
finite-dimensional commutative algebra is an evolution algebra, namely we determine when such a
finite-dimensional algebra can be provided with a natural basis. We tackle the problem constructively
by assuming an arbitrary basis B with a multiplication table given by Equation (1) below and then
asking whether or not there is a change of basis from B to a natural basis B∗. In Section 2, Theorem 1,
we show that this problem is equivalent to the simultaneous diagonalisation via congruence of certain
n× n symmetric matrices M1, . . . , Mn, called the multiplication structure matrices obtained from the
given multiplication table.

Finding concrete sufficient conditions for a given set of matrices to be simultaneously
diagonalisable via congruence (SDC) is one of the 14 open problems posted in 1990 by Hiriart–Urruty [18]
(see also [19,20]). It has connections with other problems such as blind-source separation in signal
processing [21–24]. The SDC-problem was solved recently for complex symmetric matrices in [25].

In Theorem 2 we show that if A is a real algebra and B is a basis of A then B also is a basis of AC,
the complexification of A (with the same multiplication structure matrices) and that A is an evolution
algebra if and only if AC is an evolution algebra. This reduction of the real case to the complex one
allows us to apply the results in [25] to both real and complex algebras.

In Theorem 5 we determine if a given algebra A whose annihilator is zero is an evolution algebra
and in Theorem 6 we do the same if its annihilator is not zero. A useful characterisation of the property
of being an evolution algebra is given in the particular case that one of the multiplication structure
matrices is invertible. In this case if Mi0 is invertible then A is an evolution algebra if and only if for each
k 6= i0 the matrix M−1

i0
Mk is diagonalisable by similarity and these matrices pairwise commute.

Applications of these results are provided in the final section of this paper. They also show that
the conditions in the mentioned results are neither redundant nor superfluous.

We prove that some classical genetic algebras such as the gametic algebra for simple Mendelian
inheritance (Example 2) or the gametic algebra for auto-tetraploid inheritance (Example 5) are not
evolution algebras. Nevertheless, both of these algebras can be deformed by means of a parameter
ε > 0 to obtain an algebra Aε that is an evolution algebra for every value of the parameter ε, as shown
in Examples 3 and 6 respectively.

2. Characterising Evolution Algebras by Means of Simultaneous Diagonalisation of Matrices
by Congruence

An n-dimensional algebra A over a field K (= R or C) is determined by means of a basis
B = {e1, . . . , en} together with a multiplication table

eiej =
n

∑
k=1

mijk ek , i, j = 1, . . . , n , (1)

where mijk ∈ K , for i, j, k = 1, . . . , n. In fact, if a :=
n
∑

i=1
αiei and b :=

n
∑

j=1
β jej then, by bilinearity,

the product ab is obtained from the multiplication table (1) as follows

ab =

(
n

∑
i=1

αiei

)(
n

∑
j=1

β jej

)
=

n

∑
k=1

(
n

∑
i,j=1

αiβ jmijk

)
ek,
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where mijk := πk(eiej) and πk : A → K is the projection over the k-th coordinate, that is

πk(
n
∑

i=1
αiei) = αk.

These basis-dependent coefficients mijk are known as structure constants with respect to
B (see [26]). For a basis B of A, the structure constants completely determine the algebra A,
up to isomorphism.

If we organise the n3 structure constants in n matrices by defining

Mk(B) :=

 πk(e1e1) πk(e1en)
...

...
πk(ene1) πk(enen)

 =

 m11k m1nk
...

...
mn1k mnnk

 , (2)

for k = 1, ..., n, then the product of A is given by(
n

∑
i=1

αiei

)(
n

∑
j=1

β jej

)
=

n

∑
k=1

(
αT Mk(B)β

)
ek , (3)

where αT = (α1, . . . , αn), βT = (β1, . . . , βn) and T indicates the transpose operation. This motivates
the following definition.

Definition 1. If A is an algebra, B = {e1, . . . , en} is a basis of A and eiej =
n
∑

k=1
mijk ek, for i, j = 1, . . . , n ,

then the multiplication structure matrices (m-structure matrices for short) of A with respect to B are the n× n
matrices Mk(B) =

(
πk(eiej)

)
given by Equation (2) for k = 1, ..., n. Note that these matrices are symmetric

if and only if A is commutative. If the basis B is clear from the context then we will write Mk := Mk(B) for
k = 1, ..., n.

We recall that an n-dimensional evolution algebra is a commutative algebra A for which there
exists a basis B∗ = {e∗1 , ..., e∗n} such that e∗i e∗j = 0 for every i, j ∈ {1, · · · , n} with i 6= j. Such a basis B∗

is said to be a natural basis of A.
Combining the notion of evolution algebra with Definition 1 the next result is straightforward.

Proposition 1. An evolution algebra is an algebra A provided with a basis B∗ = {e∗1 , ..., e∗n} such that the
corresponding m-structure matrices M1(B∗) = (π1(e∗i e∗j )), · · · , Mn(B∗) = (πn(e∗i e∗j )) are diagonal.

Proof. Mk(B∗) is diagonal for k = 1, ..., n, if and only if e∗i e∗j = 0, for every i 6= j, or equivalently if B∗

is a natural basis (which means that A is an evolution algebra).

In the next theorem we characterise when a given algebra is an evolution algebra. To this end we
recall the following property.

Definition 2. Let M1, . . . , Mm be a set of symmetric n× n matrices. Then these matrices are (SDC) if and
only if there exists a nonsingular n× n matrix P and m diagonal n× n matrices {Dj}m

j=1 such that

PT MjP = Dj, j = 1, . . . , m.

It is worth remarking at this point that the general problem of diagonalisation via congruence
considers m symmetric matrices of dimension n, where m need not be equal to n. In reference [18],
Problem 12 is stated as follows: Find sensible and palpable conditions on the symmetric matrices
{M1, ..., Mn} ensuring they are simultaneously diagonalisable via congruence. This problem has
applications in statistical signal processing and multivariate statistics [21–24] and it was solved for
complex symmetric matrices in [25].



Mathematics 2020, 8, 1349 4 of 15

Theorem 1. Let A be a commutative algebra over K with basis B = {e1, . . . , en}. Let {M1, . . . , Mn} be the
m-structure matrices of A with respect to B. Then A is an evolution algebra if and only if the symmetric matrices
{M1, . . . , Mn} are simultaneously diagonalisable via congruence.

Proof. A is an evolution algebra if and only if A has a natural basis, say B∗ = {e∗1 , ..., e∗n} (that is a
basis such that e∗i e∗j = 0 if i 6= j). Let P = (pij) be the change of basis matrix from B to B∗ (that is
e∗i = ∑n

k=1 pkiek for i = 1, . . . , n). Then, by Equation (3),

e∗i e∗j =

(
n

∑
k=1

pkiek

)(
n

∑
k=1

pkjek

)
=

n

∑
k=1

(
αT Mkβ

)
ek, (4)

where α = Pγi and β = Pγj with γi = (0, ..., 0,
(i-th)

1 , 0, ...0)T ∈ Mn×1(K). Thus

e∗i e∗j =
n

∑
k=1

(
γT

i PT MkPγj

)
ek = 0, for i 6= j, (5)

and hence e∗i e∗j = 0 if i 6= j if and only if the matrix PT MkP is diagonal for k = 1, ..., n.

Since the problem of simultaneous diagonalisation of matrices via congruence was solved in [25]
for complex symmetric matrices, we consider the following.

The complexification of a real algebra A is defined as the complex algebra AC := A ⊕ iA =

{a + ib : a, b ∈ A}, where, for a, b, c, d ∈ A and r, s ∈ R,

(a + ib) + (c + id) = (a + b) + i(b + d),

(r + is)(a + ib) = ra− sb + i(rb + sa),

(a + ib)(c + id) = (ac− bd) + i(ad + bc).

Note that every basis B of A is trivially a basis of AC so that the real dimension of A and the
complex dimension of AC coincide.

Theorem 2. Let A be a real algebra. Then A is an evolution algebra if and only if AC is an evolution algebra.
Moreover, if A is a real evolution algebra then every natural basis of A is a natural basis of AC.

Proof. Suppose that as a real vector space dim A = n. If A is an evolution algebra and if B is a natural
basis of A then obviously B is a natural basis of AC.

Conversely, let AC be an evolution algebra and BC = {e1 + iẽ1, ..., en + iẽn} be a natural basis.
Fix j ∈ {1, ..., n}. Then, for k = 1, ..., n, there exists complex numbers zk and z̃k such that ej =

n

∑
k=1

zk(ek + iẽk), and ẽj =
n

∑
k=1

z̃k(ek + iẽk). Since

ej + iẽj =
n

∑
k=1

(zk + iz̃k)(ek + iẽk),

it follows that zj + iz̃j = 1 and zk = z̃k = 0 for every k 6= i. Therefore, ej = zj(ej + iẽj) and
ẽj = z̃j(ej + iẽj) so that, either ẽj = 0 or, otherwise, z̃j 6= 0 and ej =

zj
z̃j

ẽj. Consequently, there exist

wk ∈ C\{0} and êk ∈ A, for k = 1, ..., n, such that the given natural basis is BC = {w1 ê1, ..., wn ên}.
Therefore we conclude that B = {ê1, ..., ên} is a natural basis of A, as desired.

If A has infinite dimension then a straightforward adaptation of this reasoning concludes
the proof.
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Corollary 1. Let A be a real commutative algebra, B = {e1, ..., en} a basis and {M1, . . . , Mn} be the
m-structure matrices of A with respect to B. Then A is an evolution algebra if and only if the matrices
M1, . . . , Mn (regarded as complex matrices) are simultaneously diagonalisable via congruence.

2.1. Reviewing the Solution of the SDC Problem

The aim of this subsection is to review the solution of the SDC problem, that is, determining when
m matrices of size n× n are simultaneously diagonalisable via congruence, which was solved in [25]
for complex matrices. All matrices considered in this section are complex.

From now on, letMn denote the set of all complex n× n matrices. Moreover, letMSn be the set
of all symmetric matrices inMn and GLn be the set of nonsingular matrices inMn.

We recall the following definition of simultaneous diagonalisation of matrices via similarity (SDS),
not to be confused with Definition 2 involving simultaneous diagonalisation via congruence (SDC).
Nevertheless, the solution of the problem of determining when a set of complex matrices is SDC given
in [25] is related to the problem of determining the SDS of a certain set of related matrices, as we will
show below.

Definition 3. Let N1, ..., Nm ∈ Mn. These matrices are said to be simultaneously diagonalisable by similarity
(SDS) if and only if there exists P ∈ GLn such that P−1NkP is diagonal for every k = 1, ..., m.

The following result is well known (Theorem 1.3.12 and Theorem 1.3.21 in [27]).

Proposition 2. Let N1, ..., Nm ∈ Mn. These matrices are SDS if and only if they are each diagonalisable by
similarity and they pairwise commute.

Remark 1. Concerning the statement of the above theorem in [27] we point out that the fact that the symmetric
matrices {N1, ..., Nm} commute assures that {N1, ..., Nm} are simultaneously diagonalisable by similarity only
when {N1, ..., Nm} are diagonalisable matrices (and obviously not otherwise).

In [25], to solve the SDC problem, Theorems 3 and 4 below were proved. To state them, we recall
the next definition.

Definition 4. Given M1, ..., Mm ∈ Mn, define the associated linear pencil to be the map M : Cm → Mn

given by M(λ) :=
m

∑
j=1

λj Mj, for every λ = (λ1, ..., λm) in Cm. Since, for λ 6= 0,

rank M(λ) = rank M
(

λ

‖λ‖

)
,

it follows that

sup{rankM(λ) : λ ∈ Cm} = sup{rankM(λ) : λ ∈ Cm with ‖λ‖ = 1} ∈ {0, 1, ..., n}.

Consequently, this supremum must be achieved so that there exists λ0 ∈ Cm with ‖λ0‖ = 1 such that

r0 := rank M(λ0) = max{rank M(λ) : λ ∈ Cm},

and we say that r0 is the maximum pencil rank of M1, ..., Mm.

The next theorem corresponds to Theorem 7 in [25] and deals with the case when the maximum
pencil rank of the matrices is n.
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Theorem 3. Let M1, ..., Mm ∈ MSn have maximum pencil rank n. Let λ0 ∈ Cm be such that r0 := rank
M(λ0) = n. Then M1, ..., Mm are SDC if, and only if, M(λ0)

−1M1, ..., M(λ0)
−1Mm are SDS.

Proposition 2 gives the following result.

Corollary 2. Let M1, ..., Mm ∈ MSn, and λ0 ∈ Cm be such that

r0 := rankM(λ0) = n.

Then M1, ..., Mm are SDC if and only if M(λ0)
−1M1, ..., M(λ0)

−1Mm are all diagonalisable and
pairwise commute.

Given 1 ≤ r < n, and matrices Mr ∈ Mr and Nn−r ∈ Mn−r, denote by Mr ⊕ Nn−r the n× n
matrix given by (

Mr 0r×(n−r)
0(n−r)×r Nn−r

)
.

When the pencil rank of M1, ..., Mm ∈ MSn is strictly less than n, then the SDC problem can be
reduced to a similar one in a reduced dimension as the following result (Theorem 9 in [25]) shows.

Theorem 4. Let M1, ..., Mm ∈ MSn have maximum pencil rank r. Then the following assertions
are equivalent:

(i) M1, ..., Mm are SDC;
(ii) dim(∩m

j=1 ker Mj) = n− r and there exists P ∈ GLn satisfying PT MjP = D̃j ⊕ 0n−r where D̃j ∈ MS r

is diagonal for 1 ≤ j ≤ m.

Moreover, if either of the above conditions is satisfied, then the pencil D̃ associated with the matrices
D̃1, ..., D̃m is non-singular. Indeed, if λ0 ∈ Cm with ‖λ0‖ = 1 is such that r = rank M(λ0) then
D̃(λ0) ∈ GLr.

2.2. Checking When an Algebra Is an Evolution Algebra

We apply the above results to the m-structure matrices M1, . . . , Mn of an algebra A with respect
to a basis B = {e1, ..., en} as in (2). For a real algebra A we consider the complexification AC provided
with the same basis B.

We recall that the annihilator of an algebra A is the set

Ann(A) = {b ∈ A : ab = ba = 0, for every a ∈ A}.

This set is an ideal of A.

Lemma 1. Let A be a commutative algebra and B = {e1, ..., en} be a basis of A. Let {M1, . . . , Mn} be the
m-structure matrices of A with respect to B. Then

Ann(A) = {
n

∑
i=1

βiei : (β1, ..., βn)
T ∈ ∩n

j=1 ker Mj}.

Proof. Since
(

n
∑

i=1
αiei

)(
n
∑

j=1
β jej

)
=

n
∑

k=1

(
αT Mkβ

)
ek, as shown in (3) we have that if (β1, ..., βn)T ∈

∩n
j=1 ker Mj then b :=

n
∑

j=1
β jej ∈ Ann(A) as ab = ba = 0 for every a ∈ A (because Mkβ = 0).
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Conversely, if b :=
n
∑

j=1
β jej ∈ Ann(A) then eib = 0 for every i = 1, ..., n. It follows that,

(0, ..., 0,
(i−th)

1 , 0, ..., 0)Mk(β1, ..., βn)
T = 0,

for i, k ∈ {1, ..., n}. Fixing k and running i we deduce that, for each k = 1, ..., n,

(β1, ..., βn)
T ∈ ker Mk,

Consequently, (β1, ..., βn)T ∈ ∩n
j=1 ker Mj, as desired.

Theorem 5. Let A be a complex commutative algebra with Ann(A) = {0}. Let B = {e1, . . . , en} be a basis of
A, and let M1, . . . , Mn be the m-structure matrices of A with respect to B .

(i) If M1, ..., Mn have maximum pencil rank n, and λ0 ∈ Cn with ‖λ0‖ = 1 is such that rank M(λ0) = n then
A is an evolution algebra if and only if each of the matrices M(λ0)

−1M1, ..., M(λ0)
−1Mn are diagonalisable

and they pairwise commute.
(ii) If M1, . . . , Mn have maximum pencil rank r < n then A is not an evolution algebra.

Proof. (i) If λ0 ∈ Cn with ‖λ0‖ = 1 is such that rank M(λ0) = n then, by Corollary 2, we conclude that
A is an evolution algebra if and only if the matrices M(λ0)

−1M1, ..., M(λ0)
−1Mn are diagonalisable

and they pairwise commute. (ii) Otherwise the maximum pencil rank of {M1, . . . , Mn} is r < n
and, by the above lemma, dim Ann(A) = ∩n

j=1 ker Mj = 0 6= n− r. Consequently, by Theorem 4,
we conclude that A is not an evolution algebra.

Corollary 3. Let A be a complex commutative algebra and let B = {e1, . . . , en} be a basis of A. Let M1, . . . , Mn

be the m-structure matrices of A with respect to B. If Mi0 is invertible for some 1 ≤ i0 ≤ n then Ann(A) = 0,
and A is an evolution algebra if and only if the matrices M−1

i0
M1, ..., M−1

i0
Mn are diagonalisable for j = 1, ...n

and they pairwise commute.

Proof. Since Ann(A) ⊆ ker Mi0 by Lemma 1, we obtain that if Mi0 is invertible then Ann(A) = 0.

Moreover, for λ0 = (0, ..., 0,
(i0−th)

1 , 0, ..., 0) we have

rank(M(λ0)) = rank(Mi0) = n

and the result follows from Theorem 5.

If A is an algebra with Ann(A) 6= {0} (suppose that dim Ann(A) = r > 0) then we can fix a basis
of Ann(A) which can be extended to a basis of A. Therefore we obtain a basis B̃ = {e1, ..., er, er+1, ..., en}
of A such that {er+1, ..., en} is a basis of Ann(A) and the m-structure matrices M1(B̃), . . . , Mn(B̃) of A
with respect to B̃ satisfy Mk(B̃) = M̃k ⊕ 0n−r, for certain r× r matrices M̃k ∈ MS r.

Theorem 6. Let A be a commutative complex algebra with Ann(A) 6= {0}. Let B̃ = {e1, ..., er, er+1, ..., en}
be a basis of A such that {er+1, ..., en} is a basis of Ann(A). Let M1(B̃), ..., Mn(B̃) be the m-structure
matrices of A with respect to B̃ with Mk(B̃) = M̃k ⊕ 0n−r, where M̃k ∈ MS r. Then A is an evolution
algebra if and only if there exists ‖λ0‖ = 1 such that the pencil M̃(λ0) is invertible, each of the matrices
M̃(λ0)

−1M̃1,..., M̃(λ0)
−1M̃n, is diagonalisable by similarity and they pairwise commute.

Proof. From Equation (2) it is clear that Mk(B̃) = M̃k ⊕ 0n−r, for certain r× r matrices M̃k. On the
other hand, there exists ‖λ0‖ = 1 such that the pencil M̃(λ0) is invertible if and only if the maximum
pencil rank of Mk(B̃) is r. If this happens then dim(∩n

j=1 ker Mj(B̃)) = n − r, as dim Ann(A) =

dim(∩n
j=1 ker Mj(B̃)) by Lemma 1. If M̃(λ0) is invertible then, by Corollary 2, we have that M̃1, ..., M̃n
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are SDC if and only if each of the matrices M̃(λ0)
−1M̃1, ..., M̃(λ0)

−1M̃n is diagonalisable by similarity
and they pairwise commute. Since the matrices M̃1, ..., M̃n are SDC (by Pr ∈ GLr) if and only if
the matrices M1(B̃), ..., Mn(B̃) are SDC (by Pn := Pr ⊕ In−r), the result follows from Theorem 1.

Remark 2. The above result shows that the condition that A/Ann(A) be an evolution algebra is a necessary
condition for A to be an evolution algebra. This is known because it was proved in [3] that the quotient of an
evolution algebra by an ideal is an evolution algebra. However Theorem 6 proves that this condition is not
sufficient (which is new). In fact, if dim Ann(A) := r < n, and we consider a basis B̃, as in Theorem 6 above,
with m-structure matrices given by Mk(B̃) = M̃k ⊕ 0n−r for k = 1, ..., n, then A is an evolution algebra if,
and only if, M̃1,..., M̃n are SDC. Suppose then that M̃1,..., M̃r are SDC but that M̃1,..., M̃n, are not SDC. It turns
out that A/Ann(A) is an evolution algebra but A is not (because the m-structure matrices of A/Ann(A) with
respect to the basis B̃A/Ann(A) = {e1 + Ann(A), ..., er + Ann(A)} are precisely M̃1,..., M̃r). It is easy to come
up with particular examples of this situation (see Remark 3 below).

We conclude this section by providing a procedure, obtained from Theorems 1, 5, 3 and 6 above,
to determine in a finite number of steps whether or not a given commutative algebra A with fixed
basis B = {e1, ..., en} is an evolution algebra. Let M1, ..., Mn be the m-structure matrices of A with
respect to B.

While one can try to check directly, see Example 1 below, if the matrices M1, ..., Mn are SDC this
is generally not easy to do. Alternatively, to determine if A is an evolution algebra we can proceed
as follows.

Check if any one of the matrices M1, ..., Mn is invertible.
(a) Suppose that Mi0 is invertible, for some 1 ≤ i0 ≤ n. If M−1

i0
M1, ..., M−1

i0
Mn are all diagonalisable

(by similarity) and they pairwise commute then we can conclude that A is an evolution algebra,
and otherwise we conclude that A is not an evolution algebra.

(b) If none of the matrices M1, ..., Mn is invertible then we determine Ann(A), that is, by means
of (3), we describe those elements a ∈ A such that aei = 0 for every i = 1, ..., n.

(b.1) If Ann(A) = {0} then we check if there exists some λ0 = (λ1, ..., λn) ∈ Cn with ‖λ0‖ = 1

such that M(λ0) :=
n

∑
i=1

λi Mi is invertible. If such a λ0 does not exist then we conclude that A is not

an evolution algebra. Otherwise we have that A is an evolution algebra if, and only if, the matrices
M(λ0)

−1M1, ..., M(λ0)
−1Mn are all diagonalisable (by similarity) and they pairwise commute.

(b.2) If Ann(A) 6= {0} then we construct a basis B̃ = {ẽ1, ..., ẽr, ẽr+1, ..., ẽn}, such that {ẽr+1, ..., ẽn}
is a basis of Ann(A) 6= {0}. We then have Mk(B̃) = M̃k ⊕ 0n−r for k = 1, ..., n and r × r matrices
M̃1, ..., M̃n. Next, we check if there exists λ0 = (λ1, ..., λn) ∈ Cn with ‖λ0‖ = 1 such that M̃(λ0) :=
n

∑
i=1

λi M̃i is invertible as an r× r matrix. In particular, this is the case whenever M̃i0 is invertible for

some 1 ≤ i0 ≤ n (in which case we can choose M̃(λ0) = M̃i0). If such a λ0 does not exist then we
conclude that A is not an evolution algebra. Otherwise, we have that A is an evolution algebra if,
and only if, the matrices M̃(λ0)

−1M̃1, ..., M̃(λ0)
−1M̃n are all diagonalisable (by similarity) and they

pairwise commute.

3. Some Examples and Applications

We discuss some examples where our approach is useful to determine whether or not certain
classical genetic algebras are evolution algebras. Mostly these algebras are defined in the literature as
real algebras but, in our case, they can be regarded as complex algebras (with the same basis, and hence
with the same structure m-structure matrices) as shown in Theorem 2 and Corollary 1.

We will consider the class of gametic algebras discussed by Etherington [28]. Gametic algebras,
widely used in genetics, are simply baric algebras: they are endowed with a weight function. To decide
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if these algebras are evolution algebras or not we do not need further background about them.
Nevertheless the reader is referred to [29,30] for a review of these algebras.

Example 1. Let A be the algebra with basis B = {e1, e2} and e2
1 = e1, e1e2 = e2 = e2e1, e2

2 = e1. Define ξ :
A→ K by ξ(αe1 + βe2) = α + β. Obviously ξ is linear and if a = αe1 + βe2 and if b = γe1 + δe2 then

ab = (αγ + βδ)e1 + (αδ + βγ)e2,

so that ξ(ab) = (αγ + βδ) + (αδ + βγ) = (α + β)(γ + δ) = ξ(a)ξ(b), and hence ξ is a non-zero algebra
homomorphism. Consequently A is a baric algebra [28].

The corresponding m-structure matrices with respect to B are M1 =

(
1 0
0 1

)
and M2 =

(
0 1
1 0

)
.

Since for P =

(
1 1
1 −1

)
we have thatPT M1P =

(
2 0
0 2

)
and PT M2P =

(
2 0
0 −2

)
, by Theorem 1,

we obtain that A is an evolution algebra. In fact B̃ = {ẽ1, ẽ2} with ẽ1 = e1 − e2 and ẽ2 = e1 + e2 is a natural
basis of A, as ẽ1 ẽ2 = 0.

Remark 3. Let M1 and M2 be as above and consider a matrix M3 that does not commute with M2, say for

instance M3 =

(
1 0
0 −1

)
. Then we have that M−1

1 M2 and M−1
1 M3 do not commute so that, by the proof

of Theorem 6 (or alternatively using Section 3.3 in [25]), the 3 × 3 matrices M1 ⊕ 01×1, M2 ⊕ 01×1 and
M3 ⊕ 01×1 are not SDC, while M1 and M2 are SDC. Therefore, the algebra Ã with basis B̃ = {e1, e2, e3} and
product e2

1 = e1 + e3, e2
2 = e1 − e3, e2

3 = 0, e1e2 = e2 = e2e1, e1e3 = e3e1 = e2e3 = e3e2 = 0 is an algebra
such that Ann(Ã) = Ke3. By Theorem 6 (see also Remark 2) we have that Ã is therefore not an evolution
algebra whereas Ã/Ann(Ã) is an evolution algebra isomorphic to the evolution algebra A in Example 1.

Example 2 (Gametic algebra for simple Mendelian inheritance). Let A0 denote a commutative
2-dimensional algebra over R, corresponding to the gametic algebra describing simple Mendelian inheritance
(see [30]). In terms of the basis B = {e1, e2} the multiplication table is

e2
1 = e1, e1e2 = e2e1 =

1
2
(e1 + e2), e2

2 = e2 .

The associated m-structure matrices M1, M2 can be read off easily:

M1 =

(
1 1

2
1
2 0

)
, M2 =

(
0 1

2
1
2 1

)
.

It is easy to check that A0 is a baric algebra, with weight function defined by ξ(e1) = ξ(e2) = 1. Note that

M−1
1 =

(
1 1

2
1
2 0

)−1

=

(
0 2
2 −4

)
while

M−1
1 M2 =

(
0 2
2 −4

)(
0 1

2
1
2 1

)
=

(
1 2
−2 −3

)

is not diagonalisable by similarity, as λ = −1 is the unique eigenvalue and the associated eigenspace has
dimension 1. Therefore, by Corollary 3, we obtain that A0 is not an evolution algebra. (This last assertion
can also be deduced from Theorem 1, with more tedious calculations, by directly checking that M1 and M2 are
not SDC).

We will now deform this algebra in order to construct an evolution algebra.
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Example 3 (Evolution algebra for deformed Mendelian inheritance). Consider a deformation of the algebra
A0 of the previous example. We denote these deformed algebras by Aε, which depend on the free parameter ε ∈ R.
In terms of the basis B = {e1, e2}, the multiplication table for Aε is given by

e2
1 = (1− ε)e1 + ε e2, e1e2 = e2e1 =

1
2
(e1 + e2), e2

2 = e2 .

The associated m-structure matrices M1, M2 are now:

M1 =

(
1− ε 1

2
1
2 0

)
, M2 =

(
ε 1

2
1
2 1

)
.

For genetic applications, we restrict 0 < ε ≤ 1 so that all coefficients in these matrices are non-negative.
Moreover, Aε is baric with weight function defined by ξ(e1) = ξ(e2) = 1, for any ε. In fact ξ(eiej) =

ξ(ei)ξ(ej) = 1, for i, j = 1, 2. Obviously, the undeformed case corresponds to ε = 0.
Let us study whether Aε is an evolution algebra by using Theorem 5. First of all, the maximal rank of the

linear pencil M(λ) = λ1M1 + λ2M2 is r = 2 because M1 is nonsingular for all ε, so we can take λ0 = (1, 0).
Thus M(λ0) = M1. To see that Aε is an evolution algebra we prove that M−1

1 M2 is diagonalisable by similarity.
It is easy to check that

M−1
1 M2 =

(
1 2

4ε− 2 4ε− 3

)
and that if

P =

(
1 1
−1 2ε− 1

)
then

P−1M−1
1 M2P =

=

(
1
2ε (2ε− 1) − 1

2ε
1
2ε

1
2ε

)(
1 2

4ε− 2 4ε− 3

)(
1 1
−1 2ε− 1

)

=

(
−1 0
0 4ε− 1

)
.

Since

PT M(λ0)P = PT M1P =

(
1 −1
1 2ε− 1

)(
1− ε 1

2
1
2 0

)(
1 1
−1 2ε− 1

)

=

(
−ε 0
0 ε

)
,

and det P = 2ε, we conclude by Theorem 5 that the algebra Aε is an evolution algebra if and only if ε 6= 0.
For completeness, we show the diagonalisation of the original matrices:

PT M1P =

(
−ε 0
0 ε

)
, PT M2P =

(
ε 0
0 ε(4ε− 1)

)
,

which shows by Theorem 1, that Aε is an evolution algebra for every ε > 0, having B = {e1 − e2, e1 + (2ε−
1)e2} as a natural basis.
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Example 4. The annihilator of every algebra Aε in the above example is zero as one of its m-structure matrices
is invertible. To get a similar example with algebras having non-zero annihilator consider for instance the algebra
Aε with natural basis B̂ = {e1, e2, e3} and product given by

e2
1 = (1− ε)e1 + ε e2 − ε e3, e2

2 = e2 − e3; e2
3 = 0,

e1e2 = e2e1 =
1
2
(e1 + e2 − e3), e1e3 = e3e1 = e2e3 = e3e2 = 0.

Here, the m-structure matrices are Mk(B̂) = Mk ⊕ 0 (for i = 1, 2, 3) where 0 denotes the 1× 1 zero
matrix, M1 and M2 are given in the above example and M3 = −M2. Hence if

P =

 1 1 0
−1 2ε− 1 0
0 0 1


we obtain, from the calculations in the above example, that PT Mk(B̂)P is diagonal for every k = 1, 2, 3 and
hence Aε is an evolution algebra. Nevertheless, for ε = 0 we do not obtain an evolution algebra. Indeed, if we
denote this algebra by A then the quotient algebra A/Ann(A) is exactly the algebra A0 in Example 2 which is
not an evolution algebra and, consequently, A is not an evolution algebra (see Remark 2).

Example 5 (Gametic algebra for auto-tetraploid inheritance). Let T0 denote a 3-dimensional commutative
algebra over R, considered the simplest case of special train algebras in polyploidy Chapter 15 in [28]
(see also [29,30]). In terms of the basis {e1, e2, e3} the multiplication table is given by

e2
1 = e1, e2

2 = e1e3 =
1
6
(e1 + 4e2 + e3),

e2
3 = e3, e2e3 =

1
2
(e2 + e3), e1e2 =

1
2
(e1 + e2) .

The corresponding m-structure matrices M1, M2, M3 are

M1 =

 1 1
2

1
6

1
2

1
6 0

1
6 0 0

 , M2 =

 0 1
2

2
3

1
2

2
3

1
2

2
3

1
2 0

 , M3 =

 0 0 1
6

0 1
6

1
2

1
6

1
2 1

 .

The algebra T0 is baric, with a weight function defined by ξ(ej) = 1, j = 1, 2, 3.
To see that this algebra is not an evolution algebra note that

M−1
1 =

 0 0 6
0 6 −18
6 −18 18

 ,

and that

M−1
1 M2 =

 0 0 6
0 6 −18
6 −18 18


 0 1

2
2
3

1
2

2
3

1
2

2
3

1
2 0

 =

 4 3 0
−9 −5 3

3 0 −5


is not diagonalisable by similarity because it has a single eigenvalue (λ = −2) and the dimension of the associated
eigenspace is 1 (indeed, (1,−2, 1)T generates it). Consequently, A is not an evolution algebra by Corollary 3.
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On the other hand,

M−1
1 M3 =

 0 0 6
0 6 −18
6 −18 18


 0 0 1

6
0 1

6
1
2

1
6

1
2 1

 =

 1 3 6
−3 −8 −15

3 6 10


so that

M−1
1 M2M−1

1 M3 = M−1
1 M3M−1

1 M2 =

 −5 −12 −21
15 31 51
−12 −21 −32

 .

This proves that, in Theorem 5, the condition that the matrices M(λ0)
−1M1, ..., M(λ0)

−1Mn pairwise
commute is not sufficient to ensure that the given algebra is an evolution algebra (see also Proposition 2).

Example 6 (Evolution algebra for deformed auto-tetraploid inheritance). Consider now a deformation
of the algebra T0 of the previous example. We denote this deformed algebra by Tε, which depends on the free
parameter ε ∈ R. In terms of the basis {e1, e2, e3} the multiplication table for Tε is:

e2
1 = e1 + 2 ε(e1 + 4e2), e2

2 =
1
6
(e1 + 4e2 + e3)− ε(3e2 − 13e3), e2

3 = e3 + 10 εe3 ,

e1e3 =
1
6
(e1 + 4e2 + e3) + 10 εe3, e2e3 =

1
2
(e2 + e3) + 10 εe3, e1e2 =

1
2
(e1 + e2) + 10 εe3 .

The corresponding m-strucuture matrices M1, M2, M3 are

M1 =

 1 + 2 ε 1
2

1
6

1
2

1
6 0

1
6 0 0

 , M2 =

 8 ε 1
2

2
3

1
2

2
3 − 3 ε 1

2
2
3

1
2 0

 ,

M3 =

 0 10 ε 1
6 + 10 ε

10 ε 1
6 + 13 ε 1

2 + 10 ε
1
6 + 10 ε 1

2 + 10 ε 1 + 10 ε

 .

For genetic applications, we restrict 0 < ε ≤ 2/9, so all coefficients in the above matrices are non-negative.
The algebra Tε is baric, with weight function defined by ξ(ej) = 1 + 10 ε, j = 1, 2, 3.

Let us consider whether Tε is an evolution algebra. First of all, the maximal rank of the linear
pencil M(λ) = λ1M1 + λ2M2 + λ3M3 is r = 3 because M1 is nonsingular for all ε, so we can take
λ0 = (1, 0, 0). Thus M(λ0) = M1. By Theorem 5, a necessary condition is that the matrices M−1

1 M2

and M−1
1 M3 are simultaneously diagonalisable by similarity: in particular, they must commute. Let us write

these matrices explicitly:

M−1
1 M2 =

 4 3 0
−9 −5− 18 ε 3
3 18 ε −5

 ,

M−1
1 M3 =

 1 + 60 ε 3 + 60 ε 6 + 60 ε

−3(1 + 40 ε) −2(4 + 51 ε) −15(1 + 8 ε)

3(1− 4 ε− 240 ε2) 6(1− 5 ε− 120 ε2) 2(5− 6 ε− 360 ε2)

 .
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It is straightforward to show that these matrices commute for all ε (even for ε = 0). Regarding the
Jordan decomposition for M−1

1 M2 and M−1
1 M3 we find that if ε > 0 then these matrices are simultaneously

diagonalisable: in fact, there is a nonsingular matrix P such that P−1M−1
1 M2P is diagonal:

P−1M−1
1 M2P =

 −2 0 0
0 −2− 9ε− 3Sε 0
0 0 2− 9ε + 3Sε

 , Sε =
√

3ε(3ε + 4) .

Explicitly, in terms of the radical Sε,

P =

 1 1 1
−2 −2− 3ε− Sε −2− 3ε + Sε

1− 12ε 1 + 3ε + Sε 1 + 3ε− Sε

 .

We find det P = −24εSε which shows there is a problem at ε = 0. It is easy to show that at ε = 0 the
Jordan form of M−1

1 M2 is not diagonal. For ε > 0 the Jordan form of M−1
1 M2 is diagonal and so is the Jordan

form of M−1
1 M3:

P−1M−1
1 M3P =

 1− 72ε− 720ε2 0 0
0 1 + 9ε + 3Sε 0
0 0 1 + 9ε− 3Sε

 .

For completeness we show the diagonalisation of the original matrices:

PT M1P = ε

 −2 0 0
0 4 + 3ε + Sε 0
0 0 4 + 3ε− Sε

 ,

PT M2P = −2ε

 −2 0 0
0 4 + 39ε + 27ε2 + (9ε + 7)Sε 0
0 0 4 + 39ε + 27ε2 − (9ε + 7)Sε

 ,

PT M3P = ε

 α 0 0
0 4 + 75ε + 54ε2+(18ε + 13)Sε 0
0 0 4 + 75ε + 54ε2−(18ε + 13)Sε

 ,

where α = −2 + 144ε + 1440ε2.

4. Conclusions and Discussion

In this paper we determine completely whether a given algebra A is an evolution algebra,
by translating the question to a recently solved problem, namely the problem of simultaneous
diagonalisation via congruence of the m-structure matrices of A. This is relevant because evolution
algebras have strong connections with areas such as group theory, Markov processes, theory of knots,
and graph theory, among others. In fact, every evolution algebra can be canonically regarded as a
weighted digraph when a natural basis is fixed, and because of this evolution algebras may introduce
useful algebraic techniques into the study of some digraphs.

We also consider applications of our results to classical genetic algebras. Strikingly, the classical
cases of Mendelian and auto-tetraploid inheritance are not evolution algebras, while slight
deformations of them produce evolution algebras. This is interesting because evolution algebras
are supposed to describe asexual reproduction, unlike these classical cases. In future work we will
more closely study the relation between baric algebras and evolution algebras, in order to better
understand this phenomenon.
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