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Abstract
Deep ocean microbial communities rely on the organic carbon produced in the sunlit 
ocean, yet it remains unknown whether surface processes determine the assembly 
and function of bathypelagic prokaryotes to a larger extent than deep-sea physico-
chemical conditions. Here, we explored whether variations in surface phytoplankton 
assemblages across Atlantic, Pacific and Indian ocean stations can explain structural 
changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic 
communities (characterized through 16S rRNA gene sequencing), as well as changes 
in prokaryotic activity and dissolved organic matter (DOM) quality. We show that 
the spatial structuring of prokaryotic communities in the bathypelagic strongly fol-
lowed variations in the abundances of surface dinoflagellates and ciliates, as well as 
gradients in surface primary productivity, but were less influenced by bathypelagic 
physicochemical conditions. Amino acid-like DOM components in the bathypelagic 
reflected variations of those components in surface waters, and seemed to control 
bathypelagic prokaryotic activity. The imprint of surface conditions was more evi-
dent in bathypelagic than in shallower mesopelagic (200–1,000 m) communities, sug-
gesting a direct connectivity through fast-sinking particles that escape mesopelagic 
transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa 
(including potentially chemoautotrophic groups) that appear less connected to sur-
face processes than those bathypelagic taxa with a widespread vertical distribution. 
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1  | INTRODUC TION

Microbial communities in the deep bathypelagic ocean (1,000–
4,000 m depth) are assumed to be largely supported by surface-de-
rived carbon delivered as sinking particles (Arístegui, Gasol, Duarte, 
& Herndl, 2009; Herndl & Reinthaler, 2013). It is thus intuitive to 
think that surface particle-formation processes may have an impact 
on the ecology and assembly of deep ocean microbial communities. 
Indeed, a few reports have shown changes in bathypelagic prokary-
otic abundance or activity related to carbon fluxes or surface primary 
production (Hansell & Ducklow, 2003; Nagata, Fukuda, Fukuda, & 
Koike, 2000; Tamburini, Garcin, & Bianchi, 2003; Yokokawa, Yang, 
Motegi, & Nagata, 2013), and others have suggested a role of epipe-
lagic conditions on shaping microbial community composition down to 
the mesopelagic layer (200–1,000 m) in Pacific ocean waters (Cram, 
Chow, et al., 2015; Cram, Xia, et al., 2015; Parada & Furhman, 2017; 
Santoro et al., 2017). Furthermore, particles were recently proposed 
to directly transport surface prokaryotes (i.e., bacteria and archaea) 
down to the bathypelagic (Mestre et al., 2018), which suggests that 
this surface control on bathypelagic microbes may extend beyond the 
supply of surface-produced material. However, little is known about 
the mechanisms controlling the assembly of prokaryotes at layers 
deeper than the mesopelagic. In particular, whether variations in sur-
face phytoplankton assemblages can determine the spatial structuring 
and function of the bathypelagic microbiome to a greater extent than 
the in situ physicochemical environment has never been investigated.

The amount, quality, size and sinking rates of the particles leav-
ing the photic ocean are ultimately determined by the community 
structure of phytoplankton and other food web processes such as 
grazing (Bach et al., 2019; Boyd & Newton, 1995; Guidi et al., 2009; 
Laurenceau-Cornec, Trull, Davies, De la Rocha, & Blain, 2015; Stukel, 
Landry, Benitez-Nelson, & Goericke, 2011). For example, diatoms and 
mesozooplankton are considered main drivers of carbon export due 
to fast sinking rates of large cells or dense faecal pellets, respectively 
(Agustí et al., 2015; Al-Mutairi & Landry, 2001; Boyd & Newton, 1995; 
Fender et al., 2019; Stukel et al., 2011), but multiple studies have un-
veiled that groups such as picoeukaryotes, radiolarians, ciliates, dino-
flagellates and even picocyanobacteria can also be delivered at depth, 
probably as fast-sinking aggregates (Agustí et al., 2015; Amacher, 
Anderson, & Massana, 2009; Boeuf et al., 2019; Fontánez, Eppley, 
Samo, Karl, & DeLong, 2015; Guidi et al., 2016; Gutiérrez-Rodríguez 

et al., 2019; Lundgreen et al., 2019). Epipelagic planktonic assem-
blages may thus shape bathypelagic microbial communities by deter-
mining the quality and amount of the exported materials; for example, 
nutrients deriving from sinking particles were suggested to explain 
the propagation of temporal patterns in free-living microbial commu-
nity composition between surface and mesopelagic waters (Cram, Xia, 
et al., 2015; Parada & Furhman, 2017). In turn, different phytoplankton 
taxa may determine the pool of potential microbial colonizers reaching 
the deep ocean, given that different algal species harbour distinct as-
sociated prokaryotic communities (Grossart, Levold, Allgaier, Simon, 
& Brinkhoff, 2005), and that intact photosynthetic phytoplankton 
cells were recovered at 4,000 m during the Malaspina global oceano-
graphic expedition (Agustí et al., 2015).

Deep-sea prokaryotes may nonetheless be disconnected from 
surface processes. For example, the exported material may be en-
tirely remineralized before reaching the bathypelagic (Arístegui, 
Agustí, Middelburg, & Duarte, 2005), or could have been transported 
to the deep ocean by lateral advection (Baltar, Arístegui, Gasol, 
Sintes, & Herndl, 2009; Hansell, Carlson, Bates, & Poisson, 1997; Shih 
et al., 2019). In fact, a global bathypelagic survey conducted during 
the Malaspina expedition (Salazar, Cornejo-Castillo, Benítez-Barrios, 
et al., 2015) did not find evidence that deep-sea prokaryotic assem-
blages differed among Longhurst biogeographic provinces, charac-
terized by different phytoplankton communities (Longhurst, 1998), 
although they did not consider the environmental conditions asso-
ciated to each province and targeted communities from two small 
size-fractions potentially less prone to sink (0.2–0.8 µm and 0.8–
20 µm; Salazar, Cornejo-Castillo, Benítez-Barrios, et al., 2015). In ad-
dition, microbial communities in the deep ocean may no longer reflect 
the original surface processes delivering the particles if the attached 
microbial communities change during sinking, or if the local bathype-
lagic physicochemistry plays a larger role in species sorting than the 
arriving material (Boeuf et al., 2019; Datta, Sliwerska, Gore, Polz, & 
Cordero, 2016; Pelve, Fontánez, & DeLong, 2017). Finally, the prev-
alence of autotrophic metabolisms among bathypelagic prokaryotes 
(Acinas et al., 2019; Pachiadaki et al., 2017; Swan et al., 2011), or 
the ability to use recalcitrant organic matter derived from old par-
ticles (Landry, Swan, Herndl, Stepanauskas, & Giovannoni, 2017), 
could also lead to an apparent decoupling of bathypelagic microbial 
community structure from surface processes. Thus, besides parti-
cle origin and sinking rates and fluxes, the different lifestyles of the 

Our results suggest that surface planktonic communities shape the spatial structure 
of the bathypelagic microbiome to a larger extent than the local physicochemical en-
vironment, likely through determining the nature of the sinking particles and the as-
sociated prokaryotes reaching bathypelagic waters.

K E Y W O R D S

bacterial activity, carbon export, deep ocean, fluorescent dissolved organic matter, marine 
prokaryotic communities, microbial dispersal, particle sinking, particle-attached, surface 
phytoplankton
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taxa inhabiting the deep ocean (free-living versus particle-attached, 
autotrophic versus heterotrophic) may also control the extent of the 
influence of epipelagic processes on the bathypelagic microbiome by 
determining the immediacy of microbial responses to carbon supply.

By analysing prokaryotic communities attached to particles of 
different sizes (up to 200 µm), we recently observed that most of the 
bathypelagic prokaryotic taxa detected across eight oceanic stations 
were also present in surface waters, and that particle-attached com-
munities at 3 m and 4,000 m displayed comparable spatial differ-
ences across stations (Mestre et al., 2018). Although we suggested 
the possibility of a vertical transfer of biogeographic patterns via the 
particle-driven delivery of surface prokaryotes, we did not identify 
the mechanisms behind these biogeographic patterns, nor whether 
the observed distribution of deep-sea prokaryotic assemblages was 
determined to any extent by surface conditions related to particle 
origin and formation. Here, we build on that study to assess whether 
the nature of surface phytoplankton communities can explain spa-
tial variations in deep-sea prokaryotic community structure, and we 
compare it with the role of in situ bathypelagic physicochemical con-
ditions. In addition, we explore whether surface conditions deter-
mine the composition of the dissolved organic matter (DOM) pool in 
the deep ocean, as sinking particles release DOM through solubiliza-
tion by heterotrophic microbes (Herndl & Reinthaler, 2013) and this 
could affect the structuring and activity of deep sea prokaryotes. 

To do so, we compared variations in the composition of prokaryotic 
communities (free-living and attached to particles of different sizes) 
sampled down to 4,000 m at eight open-ocean stations (Mestre 
et al., 2018) to quantitative variations in surface micro-, nano- and 
picophytoplankton group abundances, average chlorophyll-a con-
centration and productivity levels of the respective Longhurst prov-
inces, and local bathypelagic environmental conditions, including 
proxies for fluorescent dissolved organic matter (FDOM) quality. 
We hypothesize that, due to the direct particle-driven inoculation 
of surface prokaryotes (Mestre et al., 2018), shifts in epipelagic phy-
toplankton communities should be related to the spatial structuring 
of bathypelagic prokaryotic assemblages, but this surface imprint 
should be progressively attenuated towards deeper waters. We also 
expect a surface influence on the quality of DOM in the bathype-
lagic, which might impact not only the prokaryotic community com-
position but also the heterotrophic activity.

2  | MATERIAL S AND METHODS

2.1 | Study area and sampling design

Details of the studied stations and sampling can be found in Mestre 
et al. (2018), Morán et al. (2017) and Estrada et al. (2016). Briefly, 

F I G U R E  1   Differences in surface 
phytoplankton community composition 
and average productivity across the 
studied stations. (a) Map showing the 
location of the eight sampled stations. 
The size of the dot and the colour gradient 
indicate the mean annual chlorophyll 
concentration (Chl, mg m−2) integrated 
over the photic layer and the mean daily 
rates of net primary production (Prod, 
gC m−2 day-1), respectively, associated 
with the Longhurst provinces to which 
each station belongs (see Table 1). (b–c) 
Cell absolute abundances of different 
eukaryotic and cyanobacterial plankton 
groups in the surface (3 m) waters of 
each station, measured by either inverted 
microscopy (b), or flow cytometry 
(c) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the sampling was carried out in eight stations distributed across 
the Atlantic, Pacific and Indian oceans (Figure 1a) as part of the 
Malaspina circumnavigation expedition (Duarte, 2015). At each sta-
tion, water samples were collected with a Rosette sampling system 
fitted with twenty-three 10 L Niskin water sampling bottles (which 
can be remotely closed at the desired depth) and a conductivity-
temperature-depth (CTD) probe, and with a 30 L Niskin bottle in the 
case of surface samples.

Four depths were sampled at each station (Table 1): sur-
face (3 m), the depth of the deep chlorophyll-a maximum (DCM, 
48–150 m), mesopelagic (250–670 m), and bathypelagic wa-
ters (3,105–4,000 m). Inorganic nutrient concentrations at each 
depth (nitrate, phosphate, silicate) were determined as in Catalá 
et al. (2016). In those samples in which nutrient concentrations 
were not available, they were obtained from the data included 
in the World Ocean Atlas 2013 (WOA13) database (Garcia et al., 
2014).

2.2 | Microplankton, nanoplankton and 
picophytoplankton community composition

Nanoplankton (2–20 µm) and microplankton (20–200 µm) commu-
nities from surface and DCM waters were sampled as detailed in 
Estrada et al. (2016). Briefly, samples were fixed with hexamine-
buffered formaldehyde solution (4% final concentration). For exami-
nation, 100 cm3 composite chambers were filled with each sample 
and left to settle for 48 hr. Quantification and identification of all 
the organisms was done using an inverted microscope at 312X or 
125X magnification. Classification was done at the genus or spe-
cies level when possible, but for the purpose of the present study 
we grouped organisms into major groups including: Total diatoms, 
dinoflagellates, naked ciliates, coccolithophores, acantharians, fora-
minifers, radiolarians, tintinnids and unidentified nanoflagellates 
(3–20 μm). Picophytoplankton (Prochlorococcus, Synechococcus and 
photosynthetic picoeukaryotes) enumeration was done by flow cy-
tometry as detailed in Agustí, Lubián, Moreno-Ostos, Estrada, and 
Duarte (2019).

2.3 | In situ chlorophyll-a concentration and average 
properties of Longhurst provinces

In situ chlorophyll-a (Chl) concentration in the studied surface wa-
ters was measured as detailed in Estrada et al. (2016). In addition, 
we used mean annual chlorophyll-a concentration and primary pro-
duction associated to the Longhurst province to which each station 
belonged as proxies for the annual average productivity conditions 
within the sunlit layer of each station. The partition of the ocean in 
Longhurst's biogeographic provinces is based on changes in phys-
icochemical oceanic and atmospheric variables (e.g., turbulence, 
temperature, irradiance and nutrients) that determine phytoplank-
ton distribution (Longhurst, 1998). Longhurst chlorophyll-a and 

productivity (hereafter Longhurst-Chl and Longhurst-pprod) data 
were downloaded from the Marine Regions site (http://www.marin 
eregi ons.org), and represent mean annual chlorophyll-a concentra-
tions (mg m−2) and mean daily rates of net primary production (gC 
m−2 d−1) integrated for the photic zone.

2.4 | Free-living prokaryotic abundances and bulk 
heterotrophic activity

Total free-living prokaryotic abundances at each depth were de-
termined by flow cytometry as described in Gasol and del Giorgio 
(2000). Bulk prokaryotic heterotrophic production for samples 
above 1,000 m was estimated using the 3H-leucine incorporation 
method (Kirchman, Knees, & Hodson, 1985). Briefly, four aliquots 
(1.2 ml) and two trichloroacetic acid (TCA)-killed controls (5% final 
concentration) were incubated with 3H-leucine (160 Ci mmol−1, 
20 nM final conc.) for about 2–4 hr in the dark at in situ tempera-
ture. The incorporation was stopped by adding cold TCA (5% final 
concentration), and samples were processed by the centrifugation 
method of Smith and Azam (1992). For deeper samples (>1,000 m), 
two 40 ml aliquots and two formaldehyde-killed controls (2% 
final concentration) were incubated at in situ temperature with 
3H-leucine (160 Ci mmol−1, 5 nM final concentration) for six up 
to 14 hr depending on the expected activity. Incubations were 
stopped with formaldehyde (2% final concentration), samples 
were filtered through 0.2 μm filters, rinsed three times with 5 ml 
of cold TCA (5%) and the radioactivity on dry filters was counted 
on a Beckman scintillation counter.

2.5 | Analysis of fluorescent 
dissolved organic matter

At each station and depth, DOM composition was described on the 
basis of fluorescence excitation/emission matrices (EEMs) as ex-
plained in Catalá, Reche, Fuentes-Lema et al. (2015). Four main fluo-
rescence components were recovered from the EEMs using parallel 
factor analysis (PARAFAC): Components C1 and C2, previously re-
lated to refractory, humic-like material, and C3–C4, associated with 
more biolabile material of amino-acid like nature. In particular, the 
amino acid-like C3 and C4 have been attributed to tryptophan and 
tyrosine, respectively, shown to represent more biodegradable and 
fresher microbially-produced FDOM (for more details see Catalá, 
Reche, Fuentes-Lema et al. , 2015). The percentage contribution of 
each component was calculated relative to the summed maximum 
fluorescence of the four PARAFAC components.

2.6 | Prokaryotic community composition

The sampling for DNA extraction was carried out as explained pre-
viously in Mestre et al. (2018). Briefly, samples were collected by 

http://www.marineregions.org
http://www.marineregions.org
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sequentially filtering 10 L through a 200 μm mesh and 20, 5.0, 3.0, 
0.8, and 0.2 μm pore-size filters with a peristaltic pump. At each sta-
tion, communities associated with five different size fractions (0.2–
0.8, 0.8–3.0, 3.0–5.0, 5.0–20, and 20–200 μm) were recovered from 
the four sampled depths, representing free-living (0.2–0.8 μm) as-
semblages as well as communities associated to particles of different 
sizes. A total of 155 communities were collected, because bathype-
lagic communities from station Ind1 (Table 1) could not be sampled. 
The characterization of prokaryotic communities was performed 
through Illumina sequencing of the 16S rRNA gene using primers 
515F and 926R (Parada, Needham, & Fuhrman, 2016) and quality se-
quences were binned into operational taxonomic units (OTUs, ≥99% 
similarity), as explained in Mestre et al. (2018). To avoid redundan-
cies when comparing with picophytoplankton flow cytometry data, 
cyanobacterial sequences were excluded prior to analyses, and the 
OTU table was rarefied to 7,000 reads per sample (except for 19 
samples that had lower numbers -range 2,524–6,806 reads- but 
were nonetheless kept). Raw sequence data are publicly available in 
the European Nucleotide Database (ENA) under accession numbers 
ERP109198 and ERS2539749–ERS2539903. The complete nonrare-
fied OTU table, taxonomy table and environmental data used in this 
study table are provided as Tables S1–S4.

2.7 | Functional annotation of prokaryotic taxa

As unfortunately there is no available metagenomic information of 
bathypelagic bacterial communities associated with the different 
size-fractions considered in this study, we used an indirect method 
to roughly infer the functional potential of the detected prokaryotic 
taxa (Faprotax: Louca, Wegener-Parfrey, & Doebeli, 2016). Faprotax 
converts the taxonomic microbial community profiles into putative 
functional profiles, based on the taxa present in the samples, their 
corresponding abundance, and the empirical evidence of metabolic 
phenotypes for the different taxa described in the literature.

2.8 | Statistical analyses

Spatial differences between prokaryotic communities at each depth 
were visualized using nonmetric multidimensional scaling (NMDS, 
metaMDS function, R Vegan package, Oksanen et al., 2015) based 
on Bray-Curtis distances. Differences in taxonomic composition 
among treatments were tested using ANOSIM (Analysis of Similarity, 
anosim function R Vegan). The envfit function (R Vegan) was used 
to explore the correlations between the different environmen-
tal or surface variables and the NMDS taxonomic ordination pat-
terns, after selecting in each case the best subset of environmental 
variables through the BIOENV approach (bioenv function R Vegan). 
BIOENV finds the combination of variables whose Euclidean dis-
tances (based on scaled values) have the maximum correlation with 
prokaryotic community dissimilarities (Clarke & Ainsworth, 1993). 
The significance of the envfit associations was determined by 999 

random permutations, and only significant variables were plotted 
onto the NMDS.

The role of individual physicochemical or surface biotic variables 
in explaining changes in prokaryotic communities (or in the quality 
of the DOM pool) within each ocean layer was first assessed by 
means of Mantel linear correlations (R Vegan). For each depth, dis-
tance matrices were constructed computing the Euclidean distances 
of each single variable and were correlated to either the Euclidean 
distances of the DOM matrix (i.e., the intensities of the four compo-
nents, C1–C4), or the Bray-Curtis dissimilarities between prokary-
otic communities at each ocean layer. For simplification, and based 
on our previous results showing that communities attached to the 
three largest fractions were more similar to each other and different 
from the two small ones (Mestre et al., 2018), these analyses were 
performed considering together the small (0.2–0.8 and 0.8–3 µm, 
n = 62) and large (3–5, 5–20 and 20–200 µm, n = 93) size-fractions 
instead of the five size-fractions separately.

The relative importance of the local physicochemical conditions 
and surface biotic factors in explaining the spatial differences be-
tween prokaryotic communities was then assessed in more detail 
only for the bathypelagic ocean through generalized dissimilarity 
modelling (GDM, Ferrier, Manion, Elith, & Richardson, 2007) using 
the gdm function (gdm R package, Manion et al., 2018). GDMs allow 
analysing and predicting spatial patterns of turnover in commu-
nity composition along environmental gradients within a nonlinear 
framework. Specifically, GDMs account for two types of nonlinear-
ity: (i) the nonlinear (curvilinear) relationships commonly observed 
between increasing environmental distance (e.g., differences in 
environmental properties) and community dissimilarity; and (ii) a 
variable rate of compositional changes along a given gradient (see 
Ferrier et al., 2007 for details). GDMs were fit separately to each 
of the five different prokaryotic size-fractions in the bathypelagic, 
using as predictors the local bathypelagic conditions (temperature, 
salinity, dissolved oxygen, nutrient concentrations and the four 
FDOM components C1–C4) and surface biotic factors (Longhurst-
Chl and primary production, in situ surface Chl-a, and surface abun-
dances of all the planktonic groups identified). Although the effect 
of latitude and longitude on variations in prokaryotic communities or 
in the FDOM pool was assessed via Mantel tests, dispersal limitation 
due to geographic distance was not considered in the GDMs due 
to the difficulty of interpreting geographical distances in the bat-
hypelagic, where submerged landmasses and ocean circulation may 
determine the physical isolation between microbial communities 
independently of geographic position. All GDMs were fitted using 
a linear combination of three I-spline basis function (the default 
value in the gdm function). Predictor significance was tested using 
the gdm.varImp function, with 250 permutations per step until only 
significant (α < 0.05) variables remained in the model. The percent-
age of deviance explained by each GDM was recorded as the metric 
of model fitting, and the relative importance of each predictor was 
measured as the percent change in deviance (that is, comparing a 
model fit with the variable permuted and unpermuted). When we 
considered DCM rather than surface biotic variables as drivers of 
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prokaryotic communities, essentially the same results were ob-
served, but the patterns were generally weaker and less significant 
(details not shown). Given that in our previous study it was precisely 
in surface waters (3 m) where most of the prokaryotic diversity de-
tected at any other depth was found (Mestre et al., 2018), we fo-
cused our exploration on the role of surface biotic properties.

Correlations between individual variables were calculated using 
the Pearson's correlation coefficient. Finally, we identified two pools 
of bathypelagic OTUs: “surface-related” OTUs, i.e., bathypelagic taxa 
that were also detected in any sunlit surface or DCM sample, and 
“endemic” OTUs, i.e., bathypelagic taxa that were never detected in 
surface or DCM samples. All analyses were run using the R software 
version 3.5.3 (R Core Team, 2013).

3  | RESULTS

The stations sampled were distributed across the temperate and 
equatorial Atlantic, Pacific and Indian oceans and belonged to seven 
Longhurst provinces (Table 1) ranging widely in average annual 
chlorophyll-a (Chl) concentration and productivity levels (Figure 1a). 
The surface waters at each station differed in temperature, salin-
ity, Chl (range 0.06–0.36 µg Chl L−1) and heterotrophic prokaryote 
abundances (range 2.7–13.1 × 105 cells ml −1, Table 1). Micro- and 
nanoplankton communities also varied across stations, both in terms 
of total abundance (range 9,600–47,800 cells L−1 in surface, and 
6,100–72,500 cells L−1 at the DCM) and in the contribution of differ-
ent eukaryotic groups to total cell counts (Figure 1b,c, Figure S1). In 
general, and aside from picophytoplankton, the surface planktonic 
assemblages were numerically dominated by coccolithophores, 
small nanoflagellates (3–20 μm) and dinoflagellates (Figure 1b). 
Diatoms showed generally low abundances (<650 cells L−1) except in 
the Equatorial Pacific (Stn. Pac1, >2,000 cells L−1), where the highest 
abundances of coccolithophores were also observed (>36,000 cells 
L−1, Figure 1b). Picophytoplankton assemblages were dominated by 
Prochlorococcus cyanobacteria in all cases, with Synechococcus com-
prising between 0.8% and up to 19% of the total picocyanobacte-
ria in Stns. Atl3 and Ind3, respectively (Figure 1c). Photosynthetic 
picoeukaryotes ranged between 120 and 8,200 cells ml−1. Patterns 
at the DCM were similar to those of surface communities, with the 
exception of Stn. Atl3, which showed the shallowest DCM and much 
higher abundances of photosynthetic cells than in the overlying sur-
face waters, and station Stn. Ind2, which showed comparably lower 
cells abundance than in surface waters (Figure S1).

The composition of the fluorescent fraction of DOM at each 
layer (in terms of the four components identified by PARAFAC) 
showed spatial variations that were not related to changes in phyto-
plankton communities across surface and DCM waters, but changed 
largely with depth (Figure S2). Sunlit waters were dominated by 
the labile amino acid-like FDOM components C3 and C4, which 
decreased pronouncedly towards the bathypelagic, whereas clear 
increases in the contribution of the humic-like FDOM components 
C1 and C2 were observed with depth. The more recalcitrant C1 and 

C2 dominated the bathypelagic FDOM pool in all stations except 
in Atl1, where C3 and C4 showed increased fluorescence intensity 
(Figure S2a). As expected, the activity and abundance of free-living 
prokaryotes decreased pronouncedly from surface to bathypelagic 
waters (Table 1).

3.1 | Spatial variability of prokaryotic communities 
at different depths

The NMDS ordination of prokaryotic communities at each depth 
showed a clear segregation between small and large size-fractions 
in surface, DCM and mesopelagic waters (Figure 2a–c), but not in 
bathypelagic waters (Figure 2d). Interestingly, of all the variables 
tested, only Longhurst-Chl, in situ surface Chl concentration, pro-
portion of amino acid-like FDOM component C3 (%C3) and the 
surface abundances of dinoflagellates and nanoflagellates appeared 
to be significantly related to the NMDS ordination patterns. In par-
ticular, bathypelagic communities showed a very clear clustering 
based on the Longhurst-Chl gradient in overlying surface waters 
(ANOSIMbyLonghurst_Chl = 0.71, p = .001, Figure 2d), which was more 
important than the clustering of communities based on ocean basin 
(ANOSIMbyOcean = 0.51, p = .001, Figure 2d).

3.2 | Drivers of prokaryotic communities or DOM 
composition throughout the water column

Mantel tests showed that differences in in situ surface Chl concen-
tration and average annual Chl values among Longhurst provinces 
(Longhurst-Chl) were strongly correlated with taxonomic changes 
in prokaryotic communities across stations, at the surface but also in 
mesopelagic and bathypelagic waters (Figure 3). Among the planktonic 
groups studied, spatial (i.e., horizontal) variations in surface dinoflag-
ellate and ciliate abundances showed the strongest correlations with 
taxonomic changes in prokaryotic assemblages at both surface and 
deeper layers. Interestingly, bathypelagic communities from the large-
size fractions responded to spatial differences in surface biotic vari-
ables in almost the same way than their surface counterparts, as the R 
coefficients of the respective significant Mantel correlations covaried 
strongly and positively (Figure S3c). This pattern was not as clearly 
maintained when comparing with mesopelagic and DCM communities 
(Figure S3a,b), which showed a lower number of significant Mantel cor-
relations than surface and bathypelagic prokaryotes (Figure 3).

In contrast, surface biotic conditions did not appear to influence 
the DOM pool; we did not find any significant correlation between 
variations in surface biotic properties and changes in FDOM qual-
ity across stations (Figure S2c, Figure S4), and all the variability in 
FDOM was attributed to changes in physicochemical conditions at 
each depth. However, compositional changes in the bathypelagic 
FDOM were strongly linked to variations in the amino acid-like com-
ponents C3 and C4 from surface waters (Mantel R = 0.67 and 0.84, 
respectively, p < .001, Figure S4).
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3.3 | Role of in situ physicochemistry versus surface 
biotic conditions in bathypelagic community assembly

The fact that both local physicochemical and surface biotic variables 
showed significant Mantel correlations with prokaryotic communi-
ties at all depths (Figure 3) suggests that different mechanisms may 
be simultaneously controlling the assembly of prokaryotic communi-
ties in the deep ocean. For example, community differentiation along 
bathypelagic environmental gradients might imply local selection of 
species occurring in the deep ocean, whereas taxonomic changes 
linked to surface properties might point to a direct or indirect influ-
ence of surface biological processes related to particle formation and 
sinking. In order to disentangle the relative importance of these two 
mechanisms in the assembly of bathypelagic communities associated 
with each of the different size-fractions, we used generalized dissim-
ilarity modelling (GDM) including both bathypelagic physicochemical 
and surface biotic predictors (Figure 4). The best models explained 
between 91% to 98% of the variation in the observed taxonomic dis-
similarity of bathypelagic assemblages from the five size-fractions 
(Figure 4a–e, Figure S5), and the selection of predictors highlighted 
a more important role of surface variables than local environmental 

conditions in all cases (Figure 4). Taxonomic changes in free-living 
(0.2–0.8 µm) communities across bathypelagic stations appeared 
related to surface abundances of the cyanobacteria Synechococcus 
and Prochlorococcus (Figure 4a). Conversely, Longhurst-Chl was 
identified as the most important determinant of community turno-
ver in bathypelagic assemblages from size-fractions 0.8–3, 5–20 and 
20–200 µm (Figure 4b,d,e). The proportion of the amino acid-like 
C3 (%C3) appeared to be relevant in size-fraction 3–5 µm, although 
taken together, the selected surface variables had a more important 
role (Figure 4c). When Longhurst-Chl was excluded, however, %C3 
emerged as the main predictor in three of the particle-attached frac-
tions (details not shown).

3.4 | Vertical connectivity of prokaryotic 
communities along surface gradients

If the observed reflection of surface conditions is due to the parti-
cle-driven delivery of surface taxa (Mestre et al., 2018), bathype-
lagic prokaryotic communities should be more similar to those from 
overlaying surface waters in sites with high particle export rates. 

F I G U R E  2   Spatial patterns of prokaryotic communities at each ocean layer. NMDS ordination of prokaryotic communities from each 
depth based on Bray-Curtis dissimilarities. The symbols indicate the different oceans, and samples are colour-coded according to mean 
annual chlorophyll-a concentration (mg m−2) of each overlying Longhurst province (Longhurst_Chl, see Table 1 and Figure 1a). The size of 
the symbols indicates the size fraction, either small (i.e., 0.2–0.8 and 0.8–3 μm, small symbols) or large (i.e., 3–5, 5–20 and 20–200 μm, large 
symbols). The arrows indicate the local physicochemical variables or the surface biotic conditions that fit best onto the NMDS ordination 
space (envfit analysis, see Section 2). C3, percentage of fluorescent FDOM component C3; Long_Chl, mean annual Chl concentration of 
each overlying Longhurst province; Dinof, Nanof, surface abundances of dinoflagellates or nanoflagellates, respectively; Chl, measured 
chlorophyll-a concentration in surface waters [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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We computed the vertical dissimilarity between surface and deep 
(meso- and bathypelagic) prokaryotic communities at each station, 
and explored whether this vertical dissimilarity changed along sur-
face productivity gradients. Surface and deep prokaryote commu-
nities were increasingly similar (i.e., lower Bray-Curtis dissimilarity 
between each other) towards more productive sites (i.e., higher 
Longhurst-Chl and primary production, where higher particle export 
might be expected), but this was only apparent for communities at-
tached to the largest particles (Figure 5).

3.5 | Drivers of bathypelagic prokaryotic 
abundance and heterotrophic activity

We investigated whether any of the studied physicochemical or 
surface biotic variables could explain the observed patterns in 
free-living prokaryotic abundance and bulk heterotrophic activity 
measured at each depth. These two variables were not correlated 
across the studied stations. Prokaryotic abundance was not related 
to surface biotic variables in any case (Figure 6a). In the bathypelagic, 
only dissolved oxygen, salinity, nutrients and the FDOM compo-
nent C1 showed significant relationships with prokaryote numbers 
(Figure 6a). Surface prokaryotic activity showed strong positive cor-
relations with the abundances of foraminifers, tintinnids, coccolitho-
phores and diatoms, and no variable appeared significantly related 
to prokaryotic activity in the DCM (Figure 6b). In deeper layers, 
the in situ physicochemical conditions, in particular the quality of 
FDOM, were the most important drivers of prokaryotic activity, and 

no significant relationship was found with surface biotic parameters 
(Figure 6b). In the bathypelagic in particular, strong positive correla-
tions were found with the absolute fluorescence intensity of the hu-
mic-like FDOM component C2 and the amino acid-like components 
C3 and C4 measured in the bathypelagic. Surprisingly, bathypelagic 
prokaryotic activity also responded positively to variations in C3 and 
C4 in the overlying surface waters (Figure 6b).

The latter observation was likely due to the fact that both bathy-
pelagic FDOM components C3 and C4 strongly covaried with their 
surface counterparts; i.e., stations with higher fluorescence intensi-
ties of C3 and C4 in surface waters had also more C3 and C4 in the 
bathypelagic, and this was not observed for the humic-like C1 and C2 
FDOM components (Figure 6f,g). This covariation was only found in 
the bathypelagic, but not in upper mesopelagic waters (Figure 6c,d). 
In consequence, the strong positive correlation between bathype-
lagic prokaryotic activity and the intensity of C3 and C4 (Figure 6h) 
was not found in the mesopelagic, where C4 actually showed an op-
posite negative correlation with prokaryotic activity (Figure 6e).

3.6 | Surface-related versus endemic deep ocean 
prokaryotes

The above patterns suggest that, besides delivering surface 
prokaryotes (Mestre et al., 2018), sinking particles influence the 
dissolved organic matter environment in the deep ocean, which 
in turn modulates the bulk activity of the bathypelagic prokary-
otic communities. In order to distinguish bathypelagic OTUs that 

F I G U R E  3   Role of in situ physico-
chemistry and surface biotic factors 
on shaping prokaryotic communities at 
each ocean layer. Heatmap showing R 
coefficients of the Mantel correlations 
between prokaryotic community (Bray-
Curtis) dissimilarity across stations and 
spatial differences (Euclidean distances) 
in individual geographic (Geo.) or local 
environmental variables measured at 
each depth, or in surface biotic variables, 
including mean annual chlorophyll-a 
concentration and primary production 
of each overlying Longhurst province 
(Longhurst_Chl, Longhurst_pprod), 
measured chlorophyll-a concentration 
in surface waters (3 m, Surface Chl), and 
surface abundances of the different 
micro-, nano- and pico- planktonic 
groups. Prokaryotic assemblages are split 
between small (0.2–0.8 and 0.8–3 µm) 
and large (3–5, 5–20 and 20–200 µm) 
size-fractions. Only R coefficients 
of significant correlations are shown 
(p < .05) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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may have been delivered with particles from those that are ex-
clusively found in the deep ocean, we identified “surface-related” 
OTUs (i.e., bathypelagic OTUs also detected in sunlit-surface and 
DCM-waters) and “endemic” bathypelagic OTUs (i.e., bathype-
lagic OTUs not detected in any sunlit sample). The endemic and 
surface-related components of bathypelagic communities com-
prised completely different phylogenetic groups; whereas classes 
like Actinobacteria, Alphaproteobacteria, Gammaproteobacteria 
and Flavobacteriia dominated the surface-related component 
(Figure 7a), Thaumarchaeota, Deltaproteobacteria, OM190 and 
Planctomycetacia prevailed among the bathypelagic endemic taxa 
(Figure 7b). Surface-related OTUs numerically dominated all as-
semblages, whereas the endemic component comprised between 
1% and 10% of bathypelagic community sequences. It is impor-
tant to note, however, that our data are compositional and we do 
not have estimates of the actual abundances of prokaryotes as-
sociated to the different particle fractions; it is thus possible that 
the contribution of the endemic pool to the total community is 
larger than what our size-fractionation data suggest.

The community structure of the surface-related bathypelagic 
OTUs followed the same surface biotic gradients observed before 
for the whole communities (Figures 7c and 2d). Endemic bathypelagic 
OTUs, conversely, did not reflect such surface variations and appeared 
mostly related to local variations in temperature, and in the percent-
age of the FDOM components C1 and C3 (Figure 7d). An indirect esti-
mation of the potential metabolic functions associated with these two 
taxa pools using FAPROTAX (see Section 2) showed a significantly 
higher proportion of chemolithoautotrophic metabolisms present 
among the endemic than among the surface-related bathypelagic 
OTUs (Figures S6a,b). Within the large-size fractions, the proportion 
of chemolithoautotrophic metabolisms associated to the endemic 
bathypelagic and surface-related components varied across stations 
depending on surface productivity. For example, surface-related as-
semblages showed the highest proportions of chemolithoautotrophic 
metabolisms in sites belonging to the most oligotrophic Longhurst 
provinces (Longhurst-Chl = 2 mg m−2), and autotrophic metabolisms 
associated with endemic bathypelagic OTUs were only detected in 
stations with Longhurst-Chl values lower than 4 mgm−2 (Figure S6b).

F I G U R E  4   Surface biotic conditions drive the taxonomic structure of bathypelagic prokaryotes. Generalized dissimilarity modelling 
(GDM) was used to predict the taxonomic changes in bathypelagic prokaryotic communities associated to each size-fraction (a–e) in 
relation to different factors. The model fit to the relationship between the Bray-Curtis dissimilarity and the environmental distance (after 
I-spline transformation of each predictor, see Section 2) is shown in the upper panels, where the percentage of total taxonomic variation in 
prokaryotic communities explained by each model is also indicated (grey numbers). The importance of the predictors used to fit each model 
is indicated by the height of the bars in the lower panels as % of deviance (see Section 2). The colours indicate whether the predictors are 
surface biotic variables (green) or local bathypelagic physicochemical factors (orange). Abbreviations of predictors: Mean annual chlorophyll-
a concentration (Longhurst_Chl) or primary production (Longhurst_pprod) of each overlying Longhurst province; Chl, measured chlorophyll-a 
concentration in surface waters; in situ temperature (Temp.), salinity (Sal.), dissolved oxygen (O2), nitrate (NO3), phosphate (PO4) and silicate 
(SiO4) concentrations, percentage of fluorescent FDOM components C1–C4 (%C1–%C4), surface abundances of dinoflagellates (Dinof), 
ciliates (Cil), tintinnids (Tint), nanoflagellates (Nanoflag), acantharians (Acanth), radiolarians (Radio), foraminifers (Foram), coccolithophores 
(Cocco), diatoms (Diat), photosynthetic picoeukaryotes (Picoeuk), Synechococcus (Synech) and Prochlorococcus (Prochl) [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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4  | DISCUSSION

Our recent finding that sinking particles transport prokaryotes from 
surface to bathypelagic waters (Mestre et al., 2018) suggests that 
the influence of epipelagic processes on the deep-sea microbiome 
extends beyond the delivery of photosynthetically-produced ma-
terial (Arístegui et al., 2009; Herndl & Reinthaler, 2013). However, 
most recent efforts to characterize the global biogeography or the 
functional potential of bathypelagic microorganisms have focused 
exclusively on the bathypelagic layer itself, disregarding the po-
tential connectivity with surface stocks or processes (Acinas et al., 
2019; Pernice et al., 2015, 2016; Salazar, Cornejo-Castillo, Benítez-
Barrios, et al., 2015; Salazar, Cornejo-Castillo, Borrull, et al., 2015). 
Here, we show a link between the spatial structure of bathypelagic 
prokaryotic assemblages and planktonic community composition in 
the overlying surface waters. Our results suggest that the processes 
that control the quality and amount of particles produced in the 
surface shape bathypelagic prokaryotic assemblages to a larger ex-
tent than the bathypelagic physicochemical environment, and thus 
should be carefully considered in future deep sea microbial ecology 
studies.

4.1 | Surface biotic processes determine the 
structure of deep ocean prokaryotic communities

The stations sampled covered a relatively wide gradient of surface 
conditions and average productivity levels across the subtropical and 
tropical waters, since they belonged to seven different Longhurst 
provinces (Longhurst, 1998). This was reflected in variations in the 
abundances of surface micro-, nano- and pico-photosynthetic and 
heterotrophic organisms, which probably translated into diverse 
food-web structures and interactions that ultimately modulate the 

export fluxes and the nature of the sinking particles reaching the 
deep ocean (Bach et al., 2016; Boeuf et al., 2019; Guidi et al., 2009; 
Stukel et al., 2011).

Accordingly, of all the variables tested, surface conditions such 
as Longhurst-associated chlorophyll-a or the abundances of certain 
planktonic groups such as dinoflagellates, ciliates and nanoflagel-
lates, many of which were heterotrophic, explained shifts in prokary-
otic communities associated particles of different sizes at all depths, 
more so than local environmental variables measured at each site. 
Despite the obvious link between phytoplankton community struc-
ture and particle formation, only a few studies have considered 
phytoplankton diversity among the factors potentially driving the 
biogeography of marine particle-attached prokaryotes (e.g., Sison-
Mangus, Jiang, Kudela, & Mehic, 2016). Our results suggest that the 
surface abundances of major planktonic groups are strong determi-
nants of the structure of particle-associated prokaryotic communi-
ties at depth, and highlight that this role might be obscured using 
approaches such as 18S rRNA amplicon sequencing, which do not 
yield absolute abundances of taxa (Piwosz et al., 2020).

Coccolithophores and diatoms did not explain any change in 
prokaryotic assemblages from layers other than the surface. This 
was unexpected due to the numerical dominance of the former 
group across our stations and the fast sinking rates reported for 
diatoms even during the same expedition (Agustí et al., 2015). 
However, it is important to note that we did not measure carbon 
export or settling particles, and thus this surface signature may 
not reflect the sinking efficiency of specific plankton groups, but 
rather structural differences in surface planktonic communities as-
sociated with varying carbon fluxes. For instance, a dominance of 
dinoflagellates, ciliates and nanoflagellates may represent mature 
communities for which some export had already occurred (Hansen, 
Ohde, & Wasmund, 2014; Schmoker, Ojeda, & Hernández-
Leon, 2014), or assemblages where intense particle production 

F I G U R E  5   Higher surface primary 
productivity is associated with stronger 
vertical connectivity in particle-attached 
prokaryotic communities. Variation in 
vertical taxonomic differences (Bray-
Curtis dissimilarity) between surface and 
mesopelagic (Meso.), or between surface 
and bathypelagic (Bathy.) prokaryotic 
communities along gradients in average 
annual chlorophyll-a concentration and 
mean annual primary productivity of 
Longhurst provinces for each of the 
five size fractions. Asterisks (*) indicate 
significant (p < .05) relationships (all 
p-values < .0001) [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


     |  1831RUIZ-GONZÁLEZ Et aL.

as zooplankton faecal pellets is occurring (Wiedmann, Reich, 
Reigstad, Sundfjord, & Basedow, 2014). In any case, nanoflagel-
lates, ciliates or dinoflagellates have also been found in sediment 
traps deployed at depth (Amacher et al., 2009; Boeuf et al., 2019; 

Fontánez et al., 2015; Gutiérrez-Rodríguez et al., 2019), and photo-
synthetic dinoflagellates represented more than 60% of the auto-
trophic microplankton sampled in the bathypelagic ocean in some 
areas of the North Atlantic and Indian Ocean during our expedition 

F I G U R E  6   Linkages between surface and deep ocean FDOM composition drive bathypelagic prokaryotic abundance and activity. (a–b) 
Heatmap showing Pearson's correlation coefficients (R, indicated by the colour gradient) of the linear correlations between prokaryotic 
abundance (a) or heterotrophic activity (b) at each depth and individual in situ physicochemical or surface variables. Only significant correlations 
(p < .05) are shown. (c–h) Changes in the different FDOM PARAFAC components in mesopelagic (c, d) and bathypelagic (f, g) stations as a 
function of the amino acid-like FDOM components C3 and C4 measured in surface waters, or as a function of the prokaryotic activity (e, h) in 
deep sea waters. Data are expressed as maximum fluorescence intensity of each of the four PARAFAC components in Raman units (RU). Lines 
are linear regressions. Only significant relationships (p < .05) are shown [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(Agustí et al., 2015). We thus cannot discard a direct contribution 
of these plankton groups in the downward transport of prokaryotic 
diversity across the global oligotrophic ocean.

When the role of in situ bathypelagic conditions and surface 
conditions was tested simultaneously, Longhurst-Chl emerged as 
the most important predictor for most particle-associated bathype-
lagic communities, contributing to explain up to the 98% of the Bray-
Curtis prokaryotic dissimilarity across bathypelagic stations. Given 
the generally slow growth and the potential capacity of bathypelagic 
prokaryotes to survive during long carbon scarcity periods (Arístegui 
et al., 2009; Arrieta et al., 2015; Sebastián et al., 2018, 2019), it 
makes sense that the local community structure is the net result of 
microbial responses to a mixture of recent and older particle-export 
episodes, which are presumably better integrated by the mean an-
nual Chl associated to a given province than by the measured in situ 
Chl concentrations. As an analogous example, Hansell and Ducklow 
(2003) found that bathypelagic bacterial abundance in the Arabian 

Sea could be better explained by the mean annual carbon flux rather 
than by direct measurements of episodic carbon inputs.

On the other hand, although free-living assemblages were 
shown to be much less vertically connected than particle-attached 
assemblages (Mestre et al., 2018), our results indicate that they 
still retain a certain surface imprint, with the abundances of sur-
face picocyanobacteria emerging as the strongest predictors of 
free-living bathypelagic communities. Variations in picocyanobac-
teria can also be indicators of varying carbon export rates, given 
that small primary producers enable the formation of dense aggre-
gates that can sink efficiently (Bach et al., 2019; Guidi et al., 2016; 
Richardson & Jackson, 2007). Thus, a possibility is that a fraction 
of the attached communities arriving via sinking particles de-
taches and appears in the free-living realm (Mestre et al., 2018), 
explaining the signature of surface conditions on free-living taxa. 
Alternatively, deep-sea free-living assemblages may reflect spatial 
changes in the nature of organic matter or nutrients delivered to 

F I G U R E  7   Surface-related versus endemic bathypelagic OTUs. (a–b) Taxonomic composition of surface-related (a) and endemic (b) 
bathypelagic OTUs across the five size-fractions. The classification was performed at the class level except for the phylum Woesearchaeota. 
The corresponding phylum is indicated before the name of the class: Eury, Euryarchaeota; Thaum, Thaumarchaeota; Acid, Acidobacteria; 
Actin, Actinobacteria; Bact, Bacteroidetes; Cya, Cyanobacteria; Chloro, Chloroflexi; Planc, Planctomycetes; Prot, Proteobacteria. Only the 
classes representing more that 1% of the total surface-related or endemic sequences, respectively, are presented. (c–d) NMDS ordination 
of bathypelagic communities considering only surface-related (c) or endemic (d) components, colour-coded according to mean annual Chl 
concentration (mg m−2) of each overlying Longhurst province. The symbols indicate the different oceans, and the symbol size indicates 
either small fractions (i.e., 0.2–0.8 and 0.8–3 μm, small symbols) or communities attached to larger particles (i.e., 3–5, 5–20 and 20–200 μm, 
large symbols). The arrows indicate the local environmental or surface biotic variables that fit best onto the NMDS ordination space (envfit 
analysis, see Section 2), and the size of the arrow is proportional to the strength of the correlation of each variable to the ordination. Temp, 
bathypelagic temperature; %C1–%C3, percentage of fluorescent FDOM components C1 and C3 in bathypelagic waters; surface abundances 
of dinoflagellates (Dinoflag), nanoflagellates (Nanoflag); Chl, surface measured chlorophyll-a concentration; Long_Chl, mean annual 
chlorophyll-a concentration of each overlying Longhurst province [Colour figure can be viewed at wileyonlinelibrary.com]
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the bathypelagic, as suggested for shallower depths (Cram, Xia, 
et al., 2015; Parada & Furhman, 2017; Richert et al., 2019; Santoro 
et al., 2017).

4.2 | Vertical connectivity in the oceanic DOM 
pool and links with bathypelagic prokaryotic activity

We explored the latter possibility by investigating whether the na-
ture of the DOM pool in the deep ocean could be linked to surface 
biotic gradients, yet we found that only variations in the local physic-
ochemistry at each depth appeared to drive most changes in FDOM 
quality. However, the amino acid-like components C3 and C4 in the 
bathypelagic strongly followed variations in C3 and C4 in the overly-
ing surface waters. This did not happen for the humic-like C1 and 
C2, which dominated the bathypelagic FDOM pool. Although the 
four components have been related to chlorophyll-a and microbial 
metabolism across the global epipelagic ocean (Catalá et al., 2016), 
C3 and C4 are considered microbially-produced fresher labile mate-
rial, whereas C1 and C2 represent more recalcitrant humic-like ma-
terial (Catalá et al., 2016; Catalá, Reche, Fuentes-Lema et al. , 2015). 
The tight covariation of the two labile C3 and C4 FDOM compo-
nents between surface and bathypelagic waters may indicate that 
sinking particles arriving at the deep ocean release preferentially 
these components, in accordance with the finding that particles 
reaching 4,000 m had organic carbon-specific energy values similar 
to surface phytoplankton (Grabowski, Letelier, Laws, & Karl, 2019). 
Interestingly, changes in bathypelagic C3 and C4 were strongly cor-
related with bathypelagic prokaryotic activity, suggesting that deep-
sea communities preferentially use these labile DOM components 
released from surface-derived particles. This agrees with a metapro-
teomics study in the Atlantic ocean showing that the microbial com-
munities from 100 to 5,000 m used similar transporter proteins 
throughout the water column despite large changes in community 
structure, with amino-acid transporters showing the highest expres-
sion values at all depths (Bergauer et al., 2018). Although in situ mi-
crobial production and accumulation of DOM has been linked to the 
distribution of DOM across the global bathypelagic ocean (Catalá, 
Reche, Álvarez, et al., 2015; Catalá, Reche, Fuentes-Lema et al. , 
2015), to our knowledge this is the first study comparing variations 
in the bathypelagic DOM pool with surface gradients in biotic prop-
erties or in the composition of DOM from overlying surface waters.

4.3 | Stronger surface imprint on the bathypelagic 
than on the mesopelagic microbiome

As it is known that most of the exported material is remineralized in 
mesopelagic layers and only a small fraction reaches the bathype-
lagic (Arístegui et al., 2009; Herndl & Reinthaler, 2013), we expected 
to find a gradual loss of the surface signature towards deeper layers. 
However, the tight covariation between surface and bathypelagic C3 
and C4 FDOM components was not observed in upper mesopelagic 

or DCM layers. Similarly, surface and bathypelagic communities 
from the large size-fractions showed more similar responses to sur-
face biotic conditions than surface and DCM or mesopelagic com-
munities. An analogous finding was reported in Pacific Ocean waters 
for free-living communities, where seasonality was detected at 5 m 
and 890 m but not in intermediate layers (Cram, Chow, et al., 2015; 
Cram, Xia, et al., 2015). These patterns may be explained by the ex-
istence of distinct pools of particles arriving at different depths; for 
example, most particles reaching the bathypelagic realm appear to 
be fast-sinking material of recent phytoplankton origin that escape 
all remineralization and transformation processes occurring in upper 
layers (Grabowski et al., 2019), in accordance with the recovery of 
intact phytoplankton cells at 4,000 m during our expedition (Agustí 
et al., 2015). Conversely, material in the mesopelagic may also in-
clude slowly sinking particles that can be subject to more intense 
microbial degradation (Grabowski et al., 2019), as well as in situ ex-
cretion of labile material by migrating zooplankters and fish that ac-
tively transport large amounts of carbon from the surface (Davison, 
Checkley, Koslow, & Barlow, 2013). This presumably allows the 
establishment of a higher diversity of microbial niches in the mes-
opelagic (e.g., Calleja et al., 2018), in accordance with the higher 
proportion of unique or endemic OTUs (i.e., OTUs not detected in 
upper waters) found in the mesopelagic compared to bathypelagic 
assemblages (Mestre et al., 2018). Phytoplankton-derived particles 
sinking at fast rates, which during our expedition were estimated to 
range between 124 and 732 m day−1 (Agustí et al., 2015), may thus 
comprise a direct connectivity pathway between the euphotic zone 
and the bathypelagic that has little influence on intermediate mes-
opelagic layers, governed by other processes. The tight response of 
bathypelagic prokaryotic activity to variations in surface-derived la-
bile DOM components, which was not observed at any other depth, 
further supports a much stronger reliance of bathypelagic prokary-
otes on the surface-derived sources of carbon in bathypelagic wa-
ters than of their upper layers counterparts (Arístegui et al., 2009; 
Herndl & Reinthaler, 2013).

We did not consider geographic distance in our analyses due to 
the difficulty of determining dispersal limitation in the bathypelagic 
layer, where submerged landmasses and ocean circulation may de-
termine the physical isolation between microbial communities inde-
pendently of geographic position. However, we acknowledge that 
the patterns we show may be partially influenced by dispersal limita-
tion. Actually, particle-attached assemblages (0.8–20 µm) sampled 
from 30 stations during our expedition were shown to differ among 
bathypelagic basins, but the pure effect due to geographic distance 
between locations explained only 5% of the variance in community 
composition (Salazar, Cornejo-Castillo, Borrull, et al., 2015). In our 
case, the factors most strongly driving prokaryotic activity and di-
versity (i.e., Longhurst-Chl, phytoplankton communities or the DOM 
pool) did not show a clear spatial structuring (Figure 1 and Figure S2), 
discarding that the observed spatial distribution was entirely driven 
by the geographic position. We suggest instead that local or regional 
differences in surface particle formation and sinking determine spa-
tial variations in the nature of the particulate or dissolved material 
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reaching bathypelagic waters, as well as in the identity of the poten-
tial particle-attached colonizers.

4.4 | Bathypelagic prokaryotes have different 
degrees of connectivity with surface processes

In our previous study we showed that bathypelagic prokaryotic 
communities were numerically dominated by taxa present in sun-
lit waters, so we attributed their pronounced changes with depth 
to shifts in the abundances of particle-attached taxa during sink-
ing as particle or surrounding environmental conditions change 
(Mestre et al., 2018). Accordingly, here we found that the surface-
related taxa present in the bathypelagic strongly reflected sur-
face biotic gradients and were dominated by typical copiotrophic 
and eukaryote-associated groups belonging to Actinobacteria, 
Alphaproteobacteria, Gammaproteobacteria and Flavobacteriia, in 
agreement with studies showing that that surface particles are first 
colonized by motile particle- or eukaryote-associated specialists fol-
lowed by other groups of copiotrophic taxa (Datta et al., 2016; Duret, 
Lampitt, & Lam, 2019; Fontánez et al., 2015; LeCleir, DeBruyn, Maas, 
Boyd, & Wilhelm, 2014; Pelve et al., 2017; Thiele, Fuchs, Amann, 
& Iversen, 2015). If many of these taxa thrive in the bathypelagic, 
particle sinking might be seeding deep-sea assemblages with spe-
cific sets of microbial traits selected from within the pool of surface 
prokaryotes, perhaps explaining why deep-sea prokaryotes seem 
more adapted to the attached lifestyle than surface ones (DeLong 
et al., 2006; Zhao, Baltar, & Herndl, 2020). In situations of high parti-
cle flux, however, some of these surface-related taxa may be surface 
prokaryotes not adapted to deep-sea conditions, as communities 
from surface and deeper waters were more similar in sites beneath 
productive epipelagic waters. Although this was only apparent for 
size-fractions larger than 5 µm, our results indicate that a fraction 
of the deep-sea prokaryotic diversity detected by DNA sequencing 
might just be a legacy of intense transport, playing no role in com-
munities and partially obscuring our understanding of deep-sea mi-
crobial ecology.

On the other hand, some bathypelagic prokaryotes may be less 
directly (or less immediately) connected to surface processes if rely-
ing on metabolisms involving inorganic carbon fixation (Acinas et al., 
2019; Pachiadaki et al., 2017; Swan et al., 2011), on organic carbon 
produced in situ by other autotrophs (Bayer et al., 2019), or on re-
calcitrant carbon of older origin (Landry et al., 2017). Interestingly, 
we identified a fraction of bathypelagic endemic taxa that were not 
detected in any sunlit water, and that were less strongly related to 
surface biotic conditions than the surface-related component; local 
factors such as temperature and the proportions of the FDOM com-
ponents C1 and C3 in bathypelagic waters appeared as the most 
important drivers of the taxonomic structure of this endemic com-
ponent of deep sea prokaryotic assemblages.

Endemic bathypelagic OTUs differed very clearly from the 
surface-related OTUs in terms of taxonomic composition. For 
example, groups like the Marine Group I (Thaumarchaeota), 

cluster SAR324 (Deltaproteobacteria), several Oceanospirillales 
(Gammaproteobacteria) and Planctomycetes dominated this en-
demic bathypelagic pool, many of which are known to contain or-
ganisms capable of fixing inorganic carbon using energy from the 
oxidation of substrates, such as ammonium, nitrite, and reduced sul-
fur compounds (Beman, Leilei, & Popp, 2013; Pachiadaki et al., 2017; 
Reinthaler, van Aken, & Herndl, 2010; Swan et al., 2011). An indirect 
inference of the potential functions based on the taxonomy of these 
OTUs supported a higher proportion of chemoautotrophic metab-
olisms among the endemic than among the surface-related taxa, 
which may explain a less tight dependence of endemic bathypelagic 
OTUs on freshly arrived surface carbon, and thus a decoupling from 
surface processes. For prokaryotes associated with the large par-
ticles, the proportion of autotrophic metabolisms was higher be-
neath the most oligotrophic provinces, both in the surface-related 
and in the endemic bathypelagic taxa. Although we are aware that 
these results can be biased depending on the genomic information 
available (Louca et al., 2016), they suggest that a less intense flux of 
organic carbon might promote a higher metabolic versatility among 
bathypelagic prokaryotes, allowing them to exploit a wider variety of 
carbon or energy sources.

Both endemic and surface-related bathypelagic groups were 
present across all size fractions, so endemic particle-attached pro-
karyotes might represent bathypelagic taxa that colonize older 
suspended particles resulting from the disaggregation of the sink-
ing ones, or which might be autochthonously produced (Herndl 
& Reinthaler, 2013). In support of this hypothesis, microbial com-
munities associated to suspended or sinking mesopelagic particles 
were found to differ in their structure, and the differences were at-
tributed to variations in organic matter quality and freshness (Duret 
et al., 2019). In any case, the fact that even the structure and activ-
ity of free-living bathypelagic communities retain a certain surface 
signature, coupled to the notion that particles are hotspots for mi-
crobial life and activity in the deep ocean (Bochdansky, Clouse, & 
Herndl, 2016; Herndl & Reinthaler, 2013), suggest that surface con-
ditions play a key role in shaping the diversity and functioning of the 
bathypelagic microbiome.

In conclusion, we show that bathypelagic prokaryotes to a large 
extent mirror the spatial variations in surface biotic conditions such 
as the structure of phytoplankton communities in overlying sun-
lit waters, likely as a consequence of surface particle formation 
processes, colonization and downward dispersal. These surface 
conditions are more important drivers of spatial changes in deep 
ocean prokaryotic structure than environmental factors within 
the bathypelagic layer, particularly for prokaryotes attached to 
the largest particles, but even free-living assemblages retain a cer-
tain surface imprint. The fluorescence intensity of amino acid-like 
DOM components in bathypelagic waters seems to originate from 
surface-produced material and apparently controls bathypelagic 
prokaryotic activity. Fast-sinking particles may comprise a direct 
connection pathway between the epipelagic and bathypelagic 
ocean with little influence on mesopelagic prokaryotes, which are 
presumably more influenced by slower and older sinking material 
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or by mesopelagic-specific processes, such as zooplankton and fish 
diel vertical migration. We finally postulate that the local structure 
of bathypelagic communities is composed by a mixture of taxa with 
different origins and lifestyles, each differently related to surface 
processes: A surface-related component, comprising prokaryotes 
arriving via sinking particles, which seem largely structured by the 
nature of the exported material, and a pool of endemic taxa, perhaps 
reliant to a larger extent on chemoautotrophic metabolisms or on re-
calcitrant compounds, which appear less tightly (or less immediately) 
connected to surface biological processes.
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