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Abstract

Aim: To compare the effects of cold exposure and the β3-adrenergic receptor agonist

mirabegron on plasma lipids, energy expenditure and brown adipose tissue (BAT)

activity in South Asians versus Europids.

Materials and Methods: Ten lean Dutch South Asian (aged 18-30 years; body mass

index [BMI] 18-25 kg/m2) and 10 age- and BMI-matched Europid men participated in

a randomized, double-blinded, cross-over study consisting of three interventions:

short-term (~ 2 hours) cold exposure, mirabegron (200 mg one dose p.o.) and pla-

cebo. Before and after each intervention, we performed lipidomic analysis in serum,

assessed resting energy expenditure (REE) and skin temperature, and measured BAT

fat fraction by magnetic resonance imaging.

Results: In both ethnicities, cold exposure increased the levels of several serum lipid

species, whereas mirabegron only increased free fatty acids. Cold exposure increased

lipid oxidation in both ethnicities, while mirabegron increased lipid oxidation in

Europids only. Cold exposure and mirabegron enhanced supraclavicular skin
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temperature in both ethnicities. Cold exposure decreased BAT fat fraction in both

ethnicities. After the combination of data from both ethnicities, mirabegron

decreased BAT fat fraction compared with placebo.

Conclusions: In South Asians and Europids, cold exposure and mirabegron induced

beneficial metabolic effects. When combining both ethnicities, cold exposure and

mirabegron increased REE and lipid oxidation, coinciding with a higher supraclavicular

skin temperature and lower BAT fat fraction.
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brown adipose tissue, energy expenditure, lipid metabolism, metabolic disease, mirabegron,
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1 | INTRODUCTION

Obesity and associated diseases, including type 2 diabetes and car-

diovascular diseases, are a major public health problem worldwide.1

Certain ethnic subgroups, such as South Asian, are particularly vul-

nerable to developing cardiometabolic disease. This is probably, at

least in part, a result of their disadvantageous metabolic profile, con-

sisting of a susceptibility to developing abdominal obesity,

dyslipidaemia and insulin resistance.2–4 The underlying mechanisms

that explain this susceptibility are not fully understood but may

involve differences in skeletal muscle metabolism, size of metabolic

organs and regulation of adipocytokines in South Asians.5–8 Conse-

quently, treatment options to improve the metabolic profile of the

South Asian population are limited and unfocused, and specific strat-

egies are needed.

Activation of brown adipose tissue (BAT) is an interesting thera-

peutic strategy to improve energy metabolism. BAT takes up triglycer-

ide (TG)-derived fatty acids (FA)9 and glucose from the systemic blood

supply for combustion into heat, thereby increasing energy expendi-

ture and improving lipid and glucose metabolism.10,11 BAT is strongly

innervated by the sympathetic nervous system. Cold exposure,

resulting in sympathetic nervous system activation, is a potent physio-

logical activator of BAT. Upon sympathetic nervous system activation,

noradrenalin released from sympathetic nerve endings12 acts on the

β-adrenergic receptors (β-AR) of brown adipocytes to promote

thermogenesis.13–15 Simultaneously, BAT releases endocannabinoids,

which are believed to inhibit noradrenalin signalling to prevent exces-

sive activation of BAT.16,17 Circulating endocannabinoid levels are ele-

vated in obesity18–20 and, interestingly, South Asians have higher

basal circulating endocannabinoid levels compared with Europids.21

This might, at least partly, explain the reduced 18F-fluorodeoxyglucose

(18F-FDG) uptake by BAT and lower resting energy expenditure (REE)

observed in South Asians compared with Europids during cold expo-

sure.22 In addition, the cold-induced increase in free fatty acid (FFA)

levels, which generally results from lipolysis induced by sympathetic

stimulation of white adipose tissue, is lower in South Asians compared

with Europids.22 Taken together, these data suggest that South Asians

have a lower sympathetic outflow upon cold exposure compared with

Europids.

Repetitive cold exposure is an effective strategy to enhance BAT

metabolism, as cold acclimation increases BAT volume and even

reduces fat mass in healthy lean men.23 However, as a treatment or

even lifestyle involving prolonged cold exposure may be hard to

adhere to, current research is focused on pharmacological compounds

that can activate BAT. As BAT activation by cold is considered to

occur via sympathetic stimulation of β-ARs, agonists of such receptors

may be a potent way in which to activate BAT. Indeed, preclinical

studies have shown that treatment with the selective β3-AR agonist

CL316,243 strongly stimulates BAT activity, prevents fat accumula-

tion, improves dyslipidaemia and insulin sensitivity, and attenuates

the development of atherosclerosis.24 Likewise, in humans, the β3-AR

agonist mirabegron increased 18F-FDG uptake by BAT as well as REE

in healthy young men.25,26

The aim of the current study was to assess the effects of cold

exposure and the β3-AR agonist mirabegron on serum lipids, energy

expenditure and BAT fat fraction and to compare these in healthy

lean South Asian versus Europid men.

2 | MATERIALS AND METHODS

For more details of methods, see the supporting information.

2.1 | Participants

Ten healthy, young (aged 18-30 years), lean (body mass index [BMI]

18-25 kg/m2) Dutch South Asian men and 10 age- and BMI-matched

Europid men were included in the study. The study (clinical trial regis-

tration number: NCT03012113) was approved by the Medical Ethical

Committee of the Leiden University Medical Center (LUMC) and per-

formed in accordance with the principles of the revised Declaration of

Helsinki.27 Written informed consent was obtained from all volun-

teers prior to participation.
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2.2 | Study design

Participants were enrolled in a randomized, double-blinded, placebo-

controlled cross-over study conducted from June 2017 to June 2018.

The study consisted of three different interventions. During the first

study visit, participants were exposed to an individualized water-

cooling protocol to activate BAT, as previously described.22 Estimated

supraclavicular BAT volume and fat fraction were assessed with

chemical shift-encoded magnetic resonance imaging (MRI). Only if

BAT could be detected by MRI after cold exposure were participants

then randomized to receive first either 200 mg mirabegron (Betmiga,

Astellas BV, the Netherlands) or placebo in one oral dose. An over-

view of the study design is depicted in Figure S6. Before each study

day, subjects fasted for 10 hours overnight and remained fasted until

the end of the experiment.

2.2.1 | Study visit 1: cold exposure

During the first visit, a medical screening was performed to assess if

participants met the inclusion criteria. In cases of eligibility, body com-

position was measured by bioelectrical impedance analysis (Bodystat

1500, Bodystat, UK). Precooling (thermoneutral conditions), a fasted

blood sample was collected, and REE, lipid and glucose oxidation were

measured via indirect calorimetry (Oxycon Pro, CareFusion, Germany)

and cardiovascular variables (including heart rate and blood pressure)

were assessed with Finapres Nova (Finapres Medical Systems BV, the

Netherlands). Thereafter, a precooling MRI scan (3 T MRI, Philips

Ingenia, Philips Healthcare, Best, the Netherlands) was performed to

assess supraclavicular BAT fat fraction, transverse relaxation time

(T2*) and estimated BAT volume using a three-dimensional six-point

chemical shift-encoded gradient echo sequence, as described previ-

ously.28 Next, 18 wireless iButtons were placed to monitor skin tem-

perature (iButton, Maxim Integrated Products, CA, USA), and an

individualized water cooling protocol was applied to activate BAT, as

described previously.22 After maximal non-shivering thermogenesis

was reached, cold exposure continued for 60 more minutes. Thereaf-

ter, after ~ 2 hours, a blood sample was obtained and cold-induced

REE, lipid and glucose oxidation were measured again. Lastly, a sec-

ond MRI scan was performed to assess changes in supraclavicular

BAT after cold exposure.

2.2.2 | Study visits 2 and 3: mirabegron and
placebo treatment

During these study days, all measurements were performed under

thermoneutral conditions. After measurement of body composition, a

fasted blood sample was collected and REE, lipid and glucose oxida-

tion, and cardiovascular variables were assessed. Next, mirabegron or

placebo was ingested. One hour (t = 60 minutes), 2 hours

(t = 120 minutes) and 3 hours (t = 180 minutes) after administration,

REE, lipid and glucose oxidation were assessed again. At 3.5 hours

(t = 210 minutes), when reaching the maximum plasma concentration

of mirabegron (i.e. Tmax ~3-4 hours), another blood sample was drawn

and an MRI scan was performed to assess changes in supraclavicular

BAT. Between study visits 1 and 2 there was a minimum wash-out

period of 1 week, and between study visits 2 and 3 it was 2 weeks.

2.3 | Analyses

2.3.1 | Serum measurements

Commercially available enzymatic kits were used to measure serum

concentrations of TG and total cholesterol (Roche Diagnostics, the

Netherlands), HDL-cholesterol (HDL-C) (Roche Diagnostics), FFA

(Wako Chemicals, Germany) and glucose (Instruchemie, the Nether-

lands). Insulin concentrations were measured using ELISA (Crystal

Chem, IL, USA). LDL-cholesterol (LDL-C) was calculated using the

Friedewald equation.29

2.3.2 | Serum lipidomic analysis by high
performance liquid chromatography-mass
spectrometry

Serum lipidomic analysis was performed, essentially as described pre-

viously.30,31 The dataset was processed using an in-house developed

metabolomics pipeline written in R programming language (http://

www.r-project.org).

2.3.3 | Skin temperature

Eighteen wireless iButton temperature sensors were placed as

adapted from 14 prescribed ISO-defined positions32 (forehead, left

chest, right abdomen, right thigh, right shinbone, right foot, back of

the neck, right scapula, left lower back, left upper leg, right deltoideus,

right forearm, right fingertip, and left supraclavicular) and four addi-

tional positions (left hand, left lower leg, left elbow, and right arm-

pit).33 Data were analysed using Temperatus software.34 Armpit

temperature was estimated and used as a proxy of core body temper-

ature.35 Supraclavicular skin temperature was estimated from an

iButton placed above the left clavicula. Distal skin temperature was

calculated as the average temperature of the left hand and right

foot.36 Proximal skin temperature was defined as the average of the

iButtons on the chest, abdomen, scapula and lower back.37

2.3.4 | Indirect calorimetry

VO2, and carbon dioxide production were determined every minute.

Mean VO2 and VCO2, obtained by indirect calorimetry, were entered
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into Weir's abbreviated equation (see below) to estimate energy expen-

diture, and REE was calculated as VCO2/VO2:

REE kcal=minð Þ=3:941×VO2 L=minð Þ+1:106×VCO2 L=minð Þ:

Additionally, nutrient oxidation rates (i.e. carbohydrate and fat

oxidation) were determined using Frayn equations.38

2.3.5 | MRI analysis

An in-house water-fat separation algorithm was used to reconstruct

fat fraction maps, combined with a region-growing scheme to mitigate

main field inhomogeneity effects.39–42 Regions of interest

encompassing the known location of the left supraclavicular BAT

depot43 were drawn manually by one observer (Figure S7). Registra-

tion was performed using the image registration software Elastix.44,45

The average fat fraction, T2*, and estimated BAT volume of the supra-

clavicular adipose depot were computed for pre- and postcooling,

postmirabegron and postplacebo scans. Only voxels with a fat fraction

of 50%-100% were included for data analysis. One participant was

excluded from all MRI analyses because of a failure to reconstruct the

scan caused by excessive movement.

2.3.6 | Statistical analysis

Data were analysed using IBM SPSS Statistics for Windows version

22.0 (SPSS, Chicago, IL, USA). Figures were created by GraphPad

Prism version 7.00 (GraphPad Software, La Jolla, CA, USA). Paired

t-tests were used to study the effect of cold exposure, mirabegron

and placebo treatments on serum lipids and skin temperature. Fur-

thermore, paired t-tests were used to study the effect of cold on

REE and nutrient oxidation, and two-way repeated measures

ANOVA was applied to study the effect of placebo versus

mirabegron on REE and nutrient oxidation. To study differences

between interventions (cold exposure vs. mirabegron vs. placebo) in

BAT MRI outcomes and the deltas (value after minus before inter-

vention) of serum lipids and skin temperature, we performed one-

way ANOVA with Bonferroni adjustments for post hoc compari-

sons. Moreover, to study changes in REE and nutrient oxidation

over time and to assess differences between mirabegron and pla-

cebo treatments herein, we performed a two-way repeated mea-

sures ANOVA with the variables ‘time’ (0, 1, 2 and 3 hours) and

‘treatment’ (mirabegron or placebo) as within-subject factors. For

the lipidomics data, mixed model analyses were used. P-values were

adjusted for false rate of discovery (FDR) using the Benjamini-

Hochberg procedure. All main analyses are presented per ethnicity

(Europids vs. South Asians), as well as combined for both ethnicities

as we did not observe interaction between ethnicity, treatment and

metabolic outcome variables. P < .05 was considered statistically

significant.

3 | RESULTS

3.1 | Participant characteristics

Participant characteristics are summarized in Table 1. Europid and

South Asian participants were equal with respect to age (24.4 ± 1.0

vs. 22.9 ± 0.7 years) and BMI (22.7 ± 0.6 vs. 22.3 ± 0.3 kg/m2). South

Asians were, however, shorter (1.77 ± 0.1 vs. 1.86 ± 0.02 m, P < .01),

had a higher body fat percentage (16.7% ± 1.2% vs. 12.9% ± 0.8%,

P < .05) and lower fat-free mass (59.5 ± 1.9 vs. 67.6 ± 1.3 kg, P < .01)

in comparison with Europids. Basal fasting glucose, insulin and lipid

levels were comparable between ethnicities, except for LDL-C levels,

which tended to be higher in South Asians compared with Europids

(4.3 ± 0.4 vs. 3.1 ± 0.4 mmol/L, P = .051).

3.2 | Mirabegron increases serum FFA and insulin
levels

Because active BAT takes up lipids and glucose from the circulation,

we first compared the effect of cold exposure and mirabegron on

these serum variables in Europids and South Asians.

Two hours of cold exposure increased total cholesterol (TC) in

Europids only (+16%, P < .05; Figure 1A). This was accompanied by an

increase in HDL-C (+9%, P < .05) in Europids, an observation that also

reached significance in South Asians (+11%, P < .01; Table S1). TG

levels were not changed upon cold exposure (Figure 1B), while FFA

levels were increased, but only in Europids (+61%, P < .001;

TABLE 1 Participant characteristics

Europids (n = 10) South Asians (n = 10)

Age (years) 22.9 (2.2) 24.4 (3.1)

Height (m) 1.86 (0.06) 1.77 (0.05)**

Weight (kg) 77.7 (5.9) 71.5 (7.6)

Body mass index (kg/m2) 22.3 (1.1) 22.7 (1.8)

Waist circumference (cm) 82.1 (5.6) 78.2 (5.2)

Hip circumference (cm) 86.7 (4.7) 86.1 (5.4)

Fat mass (%) 12.9 (2.5) 16.7 (3.7)*

Fat body mass (kg) 10.1 (2.5) 11.9 (3.2)

Fat-free mass (kg) 67.6 (4.2) 59.5 (6.3)**

Glucose (mmol/L) 4.5 (0.4) 4.6 (0.3)

Insulin (pg/mL) 126 (59.1) 203 (182.8)

Free fatty acids (mmol/L) 0.43 (0..2) 0.48 (0.1)

Triglycerides (mmol/L) 0.79 (0.5) 0.87 (0.7)

Total cholesterol (mmol/L) 4.8 (1.5) 6.0 (1.3)

HDL-cholesterol (mmol/L) 1.4 (0.2) 1.2 (0.3)

LDL-cholesterol (mmol/L) 3.1 (1.3) 4.3 (1.3)

Note: Values are presented as mean (standard deviation). Unpaired t-tests

were used for comparison between South Asians versus Europids.

*P < .05; **P < .01.
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Figure 1C). Glucose, LDL-C (Table S1) and insulin (Figure 1D) levels

were not affected by cold exposure in either ethnicity. There was no

significant interaction between ethnicities and, therefore, we per-

formed combined analyses of data from both ethnicities. Pooling of

ethnicities showed that cold exposure significantly increased TC

(Figure S1A), TG (Figure S1B) and FFA (Figure S1C).

One dose of mirabegron did not affect TC (Figure 1A), TG

(Figure 1B), LDL-C or HDL-C (Table S1) in Europids or South Asians,

or when both groups were combined in a single analysis (Figure S1

and Table S1). Mirabegron increased FFA levels in Europids (+214%,

P < .001) and South Asians (+155%, P < .001) (Figure 1C). In addition,

mirabegron similarly increased insulin levels in Europids (+23%,

P < .05) and South Asians (+38%, P < .01) (Figure 1D), without affect-

ing glucose levels (Table S1).

3.3 | Mirabegron does not change the serum
lipidome

To obtain a more comprehensive understanding of changes in

the lipid profile induced by cold exposure and mirabegron,

we performed a semi-targeted high performance liquid

chromatography-mass spectrometry–based analysis of the

lipidome in serum.

F IGURE 1 Effect of cold
exposure, mirabegron and
placebo on serum lipids and
insulin in Europids and south
Asians. Serum was collected
precold and postcold, mirabegron
(Mira) or placebo (Plac) in
Europids (n = 10) and south
Asians (n = 10), and assayed for

(A) total cholesterol (TC),
(B) triglycerides (TG), (C) free fatty
acids (FFA) and (D) insulin. Data
are presented as means ±95%
CI. Paired t-tests were used to
assess the effect of the different
treatments on serum variables.
*P < .05; **P < .01; ***P < .001
before versus after intervention.
One-way ANOVA was performed
to study the deltas in time (after
treatment minus before) between
treatments. #P < .05 delta time
between treatments
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Cold exposure increased 132 and 83 out of ~1000 annotated

lipid species in Europids and South Asians, respectively (Figure 2A).

Of these increased lipid species, 67 (51%) and 72 (87%) were long-

chain TG in Europids and South Asians, respectively. These changes

were accompanied by increases in diglycerides in both ethnicities.

Cold exposure also increased 21 sphingomyelins, 13 cholesteryl

esters, nine ceramides and four phosphatidylethanolamines in

Europids, whereas in South Asians only two ceramides were

increased. Although this suggests an ethnicity-specific response to

the cooling protocol, there were no statistically significant differ-

ences between Europids and South Asians upon cold exposure for

any of the lipid species.

Interestingly, none of these cold-induced changes in the lipidome

were observed in Europids or South Asians after treatment with

mirabegron (Figure 2B) or placebo (not shown). In fact, mirabegron

downregulated three lipid species in Europids and four in South

Asians. In addition, there was no statistically significant difference

between mirabegron and placebo treatment for any of the lipid spe-

cies in either ethnicity (Figure 2C), or when data of the individuals

from both ethnicities were combined into a single analysis

(Figure S2C).

3.4 | Mirabegron increases lipid oxidation

As BAT activation can influence energy expenditure and sub-

strate use, we compared the effect of cold exposure and

mirabegron on REE and lipid and glucose oxidation in Europids

and South Asians.

Precooling REE was lower in South Asians compared with

Europids (1347 ± 46 vs. 1563 ± 66 kcal/day, P < .05; Figure 3A), while

lipid oxidation and carbohydrate oxidation were comparable. Of note,

the ethnic differences in REE were no longer present after correction

for lean body mass (data not shown). Cold exposure increased REE in

F IGURE 2 Effect of cold
exposure, mirabegron and placebo on
serum lipidome in Europids and south
Asians. Volcano plots showing
lipidomics data in response to (A) cold
exposure, (B) mirabegron or (C) the
difference between mirabegron and
placebo in Europids (n = 10) and south
Asians (n = 10). Fold change

represents the change of these lipids
in comparison to the baseline (log (2))
(x-axis). P-value was corrected by the
false rate of discovery (FDR). The
horizontal dash line shows the level of
significance (FDR-corrected P < .05).
CE, cholesteryl ester; CER, ceramide;
DG, diglyceride; LPC,
lysophosphatidylcholine; PC-O,
phosphatidylcholine
etherphospholipid; (L)PE, (Lyso)
phosphatidylethanolamine; PE-O,
phosphatidylethanolamine
etherphospholipid; PI,
phosphatidylinositol; PS,
phosphatidylserine; SM,
sphingomyelin; SM4, sulfatide; TG,
triglycerides. q-value represents
P-value after FDR corrections
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both Europids (+20%, P < .01) and South Asians (+29%, P < .05)

(Figure 3A). In addition, cold exposure increased lipid oxidation in

Europids (+114%, P < .01) and South Asians (+97%, P < .05)

(Figure 3B), whereas carbohydrate oxidation remained unchanged in

both ethnicities (Figure 3C). The increases in REE and lipid oxidation

upon cold exposure were still observed when both groups were

analysed together (Figure S3A and B).

Mirabegron treatment did not increase REE over time when com-

pared with placebo in Europids or South Asians (Figure 3A). However,

mirabegron did promote lipid oxidation in Europids when compared

with placebo (P for time*treatment = .035; Figure 3B), whereas this

was not the case in South Asians (P for time*treatment = .270;

Figure 3B). Mirabegron did not affect carbohydrate oxidation

(Figure 3C).

Because two-way ANOVA with repeated measurements did not

reveal an interaction between ethnicities in any of the tests (all

P > .05), we performed combined analyses. These analyses showed

that mirabegron significantly increased REE compared with placebo

treatment, specifically in the second hour after treatment (Figure S3A).

This was because of an increase in lipid oxidation (P for

F IGURE 3 Effect of cold exposure and mirabegron in comparison with placebo on resting energy expenditure (REE) and nutrient oxidation in
Europids and south Asians. Precold (red boxes) and postcold (blue boxes) REE and nutrient oxidation in Europids (n = 10) and south Asians
(n = 10). Paired t-tests were performed to study the effect of cold exposure. The effect of mirabegron or placebo on (A) REE, (B) lipid oxidation
and (C) carbohydrate oxidation were studied by a repeated measures two-way ANOVA with ‘time’ (0, 1, 2 and 3 hours) and ‘treatment’
(mirabegron or placebo) as within-subject factors. The analyses were performed per ethnicity. P for time, P for treatment and P for
time*treatment were obtained from the two-way ANOVA. Data are presented as mean ±95% CI. *P < .05; **P < .01

NAHON ET AL. 7



time*treatment < .001; Figure S3B), while carbohydrate oxidation was

slightly decreased after 2 hours of treatment compared with baseline

(P < .05; Figure S3C).

3.5 | Mirabegron increases supraclavicular skin
temperature

The main function of BAT is heat production. Because supra-

clavicular skin temperature positively associates with 18F-FDG

uptake by BAT in young healthy lean men,46 we compared the

effects of cold exposure and mirabegron on skin and core tempera-

ture in Europids and South Asians.

Cold exposure increased armpit skin temperature (as a proxy of

core temperature) in Europids (+1.0�C, P < .01) and South Asians

(+0.8�C, P < .05) (Figure 4A). Likewise, supraclavicular skin tempera-

ture was increased in Europids (+1.6�C, P < .001) and South Asians

(+1.7�C, P < .001) (Figure 4B). Furthermore, as expected, cooling

decreased proximal skin temperature in Europids (−3.2�C, P < .001)

and South Asians (−4.9�C, P < .001) (Figure 4C) as well as distal skin

temperature (−2.4�C, P < .01 and − 3.1�C, P < .01, respectively)

(Figure 4D).

F IGURE 4 Effect of cold
exposure, mirabegron and
placebo on skin temperature in
Europids and south Asians. Skin
temperature was measured pre-
and postcold, mirabegron (Mira)
and placebo (Plac) in Europids
(n = 10) and south Asians (n = 10).
We directly measured (A) armpit

and (B) supraclavicular skin
temperatures, whereas
(C) proximal and (D) distal skin
temperatures were calculated
following equations described in
the supporting information. Data
are presented as mean ±95%
CI. Paired t-tests were used to
evaluate the effect of the
interventions. *P < .05, **P < .01,
and ***P < .001 before versus
after intervention. #P < .05
differences between the delta
between treatments
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Mirabegron also increased armpit skin temperature in Europids

(+0.6�C, P < .05) and South Asians (+0.3�C, P < .01) (Figure 4A). Fur-

thermore, mirabegron increased supraclavicular skin temperature in

both Europids (+0.4�C, P < .05) and South Asians (+0.7�C, P < .01)

(Figure 4B). In contrast to cold exposure, mirabegron increased proxi-

mal skin temperature in Europids (+1.2�C, P < .001) and South Asians

(+1.4�C, P < .001) (Figure 4C), without affecting distal skin tempera-

ture (Figure 4D). Of these measures, only the increase in supra-

clavicular skin temperature after mirabegron treatment in Europids

was higher compared with placebo (P < .05; Figure 4B). Combining

individuals of both ethnicities to perform a single analysis resulted in

comparable results (Figure S4).

3.6 | Mirabegron reduces supraclavicular BAT fat
fraction without affecting T2* or estimated BAT
volume

Because BAT combusts intracellular lipids,24 studying changes in fat

fraction of the supraclavicular fat depot by MRI has been used as a

read-out for BAT activity. Therefore, we compared the effect of cold

exposure, mirabegron and placebo on BAT fat fraction, T2* and esti-

mated BAT volume in Europids and South Asians. Hereby, T2* is

defined as the effective transverse relaxation time which is influenced

by both perfusion of oxygen-rich blood and the removal of deoxygen-

ated blood in the tissue.47 When BAT becomes activated, oxygen con-

sumption increases because of enhanced metabolic activity and, at

the same time, perfusion increases to keep up with this demand.

Deoxygenated blood causes a local distortion of the magnetic field

resulting in signal loss, and thereby a shorter T2*. However, increased

perfusion leads to a longer T2* because of the presence of more

blood, and therefore more oxyhaemoglobin. Thus, oxygen consump-

tion leads to a decrease in T2*, whereas increased blood perfusion

leads to the opposite effect.27 Cold exposure lowered BAT fat frac-

tion, both in Europids (−3.2%, P < .001; Figure 5A) and South Asians

(−1.5%, P < .05). Cold did not affect fat fraction in the dorsocervical

and deltoid subcutaneous adipose tissues, as well as in deltoid skeletal

muscle (data not shown).

There was no difference in BAT fat fraction after mirabegron ver-

sus placebo treatment in Europids or South Asians. Also, compared

with placebo, mirabegron did not affect fat fraction in the dors-

ocervical and deltoid subcutaneous adipose tissues, as well as in del-

toid skeletal muscle (data not shown). Furthermore, while there was

no effect of any of the treatments on BAT T2*, cold exposure lowered

the estimated BAT volume in Europids only, probably as a result of

lowered fat fraction (Figure 5B,C). When both ethnicities were com-

bined in a single analysis, cold exposure still lowered BAT fat fraction

(−2.3%, P < .001; Figure S5A) as well as estimated BAT volume

(−1.3%, P < .05; Figure S5C). Of note, the average BAT fat fraction

was lower after mirabegron versus placebo treatment (−1.4%, P < .01;

Figure S5A). Furthermore, BAT T2* still remained unaltered after all

treatments (Figure S5B).

3.7 | Mirabegron increases heart rate

Although mirabegron is a comparatively specific β3-AR agonist, it

does cross-react with β1-AR and β2-AR. Because subtypes of β-AR

are abundantly present on heart and blood vessels, we investigated

the effects of mirabegron on heart rate and blood pressure. Cold

exposure decreased heart rate in white Caucasians (−2 beats/minute,

P < .01) and tended to decrease heart rate in South Asians (−1 beats/

minute, P = .10) (Table S2). In addition, cooling increased systolic

(+9%, P < .05) and diastolic (+22%, P < .05) blood pressure in South

Asians only (Table S2). Mirabegron increased heart rate both in South

Asians (+10 beats/minute, P < .01) and white Caucasians (+7 beats/

minute, P < .001), while systolic or diastolic blood pressure were not

significantly changed.

F IGURE 5 Effect of cold exposure, mirabegron and placebo on
brown adipose tissue (BAT) fat fraction (FF), T2* and estimated
volume in Europids and south Asians. MRI was used to determine
(A) BAT FF, (B) T2* and (C) estimated volume in Europids (n = 10) and
south Asians (n = 9). Red boxes represent BAT-related outcomes
before cold exposure and blue boxes represent BAT-related outcomes
after cold exposure, green boxes after mirabegron (Post-Mira) and

grey boxes after placebo (Post-Plac) treatment. All analyses were
performed per ethnicity. One-way ANOVA was performed to study
differences in BAT variables between treatments. *P < 0.05 and
***P < .001 between treatments. One south Asian was excluded from
analyses because of movement in the MRI

NAHON ET AL. 9



4 | DISCUSSION

Targeting BAT by cold exposure or adrenergic receptor agonism is

considered a treatment strategy to combat cardiometabolic disease,

which is more prevalent in South Asians compared with Europids. In

the current study, we investigated the effect of targeting BAT by cold

exposure and the β3-AR agonist mirabegron on the serum lipidome,

REE, lipid oxidation, skin temperature variables and BAT fat fraction,

T2* and estimated BAT volume in healthy lean South Asians versus

Europids. We found that the response to cold and mirabegron on

these variables was largely comparable between both ethnicities. We

report that, in all subjects combined, both cold exposure and

mirabegron increase serum FFA levels, lipid oxidation and supra-

clavicular skin temperature, while they decrease BAT fat fraction com-

pared with placebo. Cold exposure, but not mirabegron treatment,

induced changes in the serum lipidome, including the appearance of

long-chain TG and diglycerides. This study supports the notion that

both cold exposure and mirabegron may induce beneficial metabolic

effects in Europid and South Asian subjects.

Because we included both South Asians and Europids in the cur-

rent study, this gave us the opportunity to investigate whether the

response to cold exposure and mirabegron would be different

between ethnicities. We had reason to hypothesize this, because

South Asians have a lower FFA response upon cold exposure22 and

higher circulating endocannabinoid levels compared with Europids,21

suggesting they have lower cold-induced sympathetic outflow to

BAT. Because mirabegron is believed to activate BAT directly via

β-AR, we thus expected a more pronounced effect of mirabegron on

REE and BAT fat fraction in South Asians compared with cold by cir-

cumventing sympathetic activation. Here, we confirmed a lower FFA

response in South Asians upon cold exposure. However, coun-

teracting our hypothesis, mirabegron enhanced lipid oxidation com-

pared with placebo only significantly in Europids, and the responses

of other metabolic variables to mirabegron were comparable between

Europids and South Asians. It could still be possible that the extent to

which noradrenalin is released from sympathetic nerve endings is

lower in South Asians, contributing to a lower sympathetic stimulation

of BAT. Alternatively, β3 independent pathways may contribute to

cold-induced activation of BAT and these may differ between ethnici-

ties. Clearly, future studies are needed to clarify whether there is a

true difference in sympathetic output upon cooling between South

Asians and Europids.

We also aimed to compare the effects of mirabegron with cold

exposure on several metabolic variables, and showed that

mirabegron increased FFA levels to a greater extent than cold expo-

sure in both ethnicities. Although placebo treatment also increased

FFA levels, suggesting an effect of prolonged fasting on serum FFA,

the increase in FFA levels after cold exposure and mirabegron was

larger than after placebo in both groups. A possible explanation for

the more pronounced increase in FFA levels after mirabegron com-

pared with cold exposure may be a higher relative effect of

mirabegron on liberating FFA from white adipose tissue compared

with stimulating FFA uptake or combustion (e.g. by BAT). To further

investigate specific changes in the lipidome, we also performed

lipidomic analysis. We observed in both ethnicities that cold expo-

sure, but not mirabegron, increased levels of long-chain TG, as well

as a set of diglycerides. This is suggestive of increased hepatic pro-

duction of very low-density lipoprotein (VLDL)-TG, probably attrib-

utable to globally enhanced sympathetic outflow as induced by cold

exposure, coupled to increased peripheral lipolysis (e.g. by BAT).

Indeed, we previously showed that a comparable duration and mode

of cooling increased serum concentration of large VLDL-TG particles

accompanied by an increased mean size of VLDL particles, further

supporting enhanced hepatic VLDL production.48 The fact that the

changes in lipidome mainly point towards increased hepatic VLDL

production, probably induced by global sympathetic activation fol-

lowing cold exposure, may well explain the lack of effect of

mirabegron on the lipidome.

It would be interesting to study the effect of mirabegron in com-

bination with a treatment that further stimulates FFA combustion

(e.g. by inducing a stronger activation of BAT) to reveal potentially

beneficial effects on blood lipids in the short timeframe that was used

in our study. However, it might be expected that after prolonged ther-

apy, FFA liberation will ultimately be compensated by increased

energy expenditure.

In addition, in contrast to cold exposure, we observed that a sin-

gle dose of mirabegron increased serum insulin levels without affect-

ing glucose levels. This is in line with the data of Cypess et al.,26 who

also showed increased insulin levels upon administration of the same

dose of mirabegron in healthy lean volunteers. While this may be a

very early sign of insulin resistance, the mirabegron-induced increase

in FFA may also stimulate the pancreas to release insulin,49 which has

been reported as essential for efficient energy replenishment of acti-

vated BAT, at least in mice.50 Alternatively, mirabegron may induce

insulin release through acting on the β3-AR on the pancreas. Stimula-

tion of β3-AR on blood vessels in the pancreas might induce local

vasodilatation resulting in increased blood flow,51 and thus increased

the supply of glucose and FA to β-cells, thereby stimulating insulin

release. Insulin stimulates the activity of lipoprotein lipase in adipose

tissues.52 In addition, insulin increases glucose uptake by tissues

because of increased translocation of GLUT4 to the cell membrane. In

this way, increased insulin levels could contribute to increased uptake

of TG-derived FA and glucose from the circulation by BAT to facilitate

intracellular combustion.50 By contrast, two recent studies have

shown that long-term treatment (4-12 weeks) with mirabegron

improves insulin sensitivity in healthy, slightly overweight and obese

subjects, possibly because of enhanced adiponectin levels and/or

improved β cell function.53,54 An interesting result of the current

study was that, in contrast to cold exposure, mirabegron did not affect

REE in Europids or in South Asians. A small increase in fat oxidation

was only observed in Europids. Interestingly, this increase was found

after 2 hours, while the Tmax of mirabegron is 3-4 hours. We can only

speculate about the underlying cause. Possibly, the effect on fat oxida-

tion occurs acutely, resulting in a quick peak, at least in the Europids.

When both ethnicities were combined in a single analysis, mirabegron

did increase REE. In the study by Cypess et al.,26 a similar dose of
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mirabegron did induce a significant increase in resting metabolic rate

(+203 ±40 kcal/day). Our data support the notion that the applied dose

of mirabegron (200 mg) is less efficient in activating BAT compared with

cold exposure. Possibly, cold activates BAT via other mechanisms

besides β adrenergic signalling, such as via FFA release.

We also observed an increase in supraclavicular skin temperature

upon mirabegron treatment, which may reflect local heat production,

possibly as a consequence of BAT activation.46 Alternatively, this may

be attributable to a direct effect of mirabegron on skin blood flow.

Supporting increased BAT activation, we found a reduced BAT fat

fraction upon mirabegron treatment in the combined group analysis.

As was expected, we did not find an increase in the estimated BAT

volume after acute cold exposure and mirabegron treatment. Such an

increase may have been foreseen, if participants were acclimated to

cold conditions or treated with mirabegron for a longer period,

resulting in the recruitment of beige/brown adipocytes.55 Instead, we

found a reduction in the estimated BAT volume after cold exposure

because of the exclusion of MRI voxels, for which the fat fraction fell

below the segmentation threshold, as is more extensively described in

our previous work.27 On the contrary, the estimated BAT volume

after mirabegron treatment remained unaltered, which is most proba-

bly attributable to the smaller effect compared with cold exposure.

Cypess et al.26 previously reported a massive increase in uptake of

the glucose label 18F-FDG by BAT as measured via positron emission

tomography-computed tomography (PET-CT) scan after the same

dose of mirabegron as used in the current study. Besides resulting

from more active BAT, this increased 18F-FDG uptake might also

result from vasodilation within BAT caused by binding of mirabegron

on β3-AR on the endothelium of arteries or because of the stimulation

of other adrenergic receptors on blood vessels within BAT.56,57 It

would be of interest to further investigate the extent to which

mirabegron activates BAT, also because of the lack of increase in REE,

as mentioned above. Future studies should probably also investigate

BAT activity with other imaging modalities and tracers, such as 11C-

acetate to investigate the oxidative capacity of the tissue. A positive

feature of our study is that we were able to analyse the effect of cold

exposure and mirabegron on multiple variables associated with BAT in

two different ethnicities. In addition, a placebo was used to discrimi-

nate between the effects of mirabegron treatment and effects

induced by, among others, prolonged fasting. A limitation of the cur-

rent study is that we measured BAT fat fraction at only one time point

after cold exposure, mirabegron and placebo treatment. Because acti-

vated BAT also takes up lipids from the blood to restore intracellular

lipid stores, we cannot exclude that this interfered with measurement

of fat fraction as a proxy of BAT activity. This may thus result in an

underestimation of the effect size of cold exposure and mirabegron

on combustion of intracellular TG by BAT. For future studies, it would

be preferable to combine fat fraction measurement by MRI with a

tracer for lipid uptake by PET-CT scan.58 Furthermore, because we

only found significant effects on REE and fat fraction after combining

both ethnicities, the study may have been underpowered for these

variables. Because of the exploratory nature of the study we did not

correct for multiple testing. Furthermore, we only investigated healthy

lean men. Future studies should investigate if these results also apply

to the general population, including women.

In conclusion, we have shown that South Asians and Europids have a

comparable beneficial metabolic response to mirabegron and cold expo-

sure. More specifically, both mirabegron and cold exposure increased

FFA, lipid oxidation and supraclavicular skin temperature, while they

decreased supraclavicular BAT fat fraction. Only cold exposure induced

changes in the lipidome indicative of changes in VLDL-TG production and

lipolysis. Future studies should aim at unravelling the relative effect of

both treatments on BAT activity by using alternative tracers such as those

that assess glucose and lipid uptake, or oxidative capacity.
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