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ABSTRACT Biometric systems are exposed to spoofing attacks which may compromise their security, and
voice biometrics, also known as automatic speaker verification (ASV), is no exception. Replay, synthesis and
voice conversion attacks cause false acceptances that can be detected by anti-spoofing systems. Recently,
deep neural networks (DNNs) which extract embedding vectors have shown superior performance than
conventional systems in both ASV and anti-spoofing tasks. In this work, we develop a new concept of loss
function for training DNNs which is based on kernel density estimation (KDE) techniques. The proposed
loss functions estimate the probability density function (pdf) of every training class in each mini-batch,
and compute a log likelihood matrix between the embedding vectors and pdfs of all training classes within
the mini-batch in order to obtain the KDE-based loss. To evaluate our proposal for spoofing detection,
experiments were carried out on the recent ASVspoof 2019 corpus, including both logical and physical
access scenarios. The experimental results show that training a DNN based anti-spoofing system with our
proposed loss functions clearly outperforms the performance of the same system being trained with other
well-known loss functions. Moreover, the results also show that the proposed loss functions are effective for
different types of neural network architectures.

INDEX TERMS Spoofing detection, kernel density estimation, loss function, deep learning, automatic
speaker verification.

I. INTRODUCTION

B IOMETRIC authentication [1] aims to authenticate the
identity claimed by a given individual based on sam-

ples measured from biological processes and/or organs (e.g.,
voice, fingerprint, face, etc). Voice biometrics, in particular, is
an emerging form of biometric authentication with potential
advantages given its hands-free, liveliness and dynamic na-
ture. Automatic speaker verification (ASV) [2] is the conven-
tional way to put voice biometrics into practical usage. ASV
techniques verify the claimed identity of a given speaker by
recording her/his voice, extracting voiceprints from the voice
recordings, and deciding whether the speaker is who s/he
claims to be based on the extracted voiceprints and a set of
pre-stored voiceprints from enrolled users.

However, the vulnerability of ASV systems to malicious
attacks is a serious concern nowadays [3]. Our focus in this
work is on spoofing detection for ASV, where an impostor
could gain fraudulent bypass to the authentication system by

presenting speech resembling the voice of a genuine user.
Four types of spoofing attacks have been identified [4]: (i)
impersonation (i.e., mimicking the voice of a target speaker),
(ii) replay (i.e., using pre-recorded voice of a target user),
and, also, either (iii) text-to-speech synthesis (TTS) or (iv)
voice conversion (VC) systems to generate artificial speech
resembling the voice of a legitimate user.

Spoofing detection or presentation attack detection (PAD
in ISO/IEC 30107 nomenclature [5]) for ASV has become
a hot research topic in recent years as evidenced by the
organization of several evaluation campaigns (challenges) in
this specific topic: (i) ASVspoof 2015 [6], which focused on
logical access (LA) attacks (TTS and VC); (ii) ASVspoof
2017 [7], which focused on physical access (PA) attacks (re-
play attacks) under noisy environments; and (iii) ASVspoof
2019 [8], which addressed both the detection of LA attacks
generated with the latest TTS and VC technologies, and
simulated replay attacks under different reverberant acoustic
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conditions. One of the main conclusions withdrawn from
these challenges is that the use of deep neural networks
(DNNs) for the extraction of spoofing-aware embedding
vectors outperforms other conventional approaches for ASV
anti-spoofing [9]–[12].

DNN-based approaches have been widely explored for
audio- [13] and video-based anti-spoofing [14], [15]. Three
key points are important for building a DNN-based anti-
spoofing system with generalization capabilities: (i) archi-
tecture, (ii) input features, and (iii) loss function. Multiple
types of DNN architectures have been explored, such as feed-
forward DNN [16], convolutional neural network (CNN)
[16], [17], recurrent neural network (RNN) [17], [18], gated
recurrent neural network (GRCNN) [19], light convolutional
gated recurrent neural network (LC-GRNN) [9], light con-
volutional neural network (LCNN) [20], central difference
convolutional network (CDCN) [14], etc. Also, a wide range
of features have been proposed to train these models, such
as spectrogram [12], linear frequency cepstral coefficients
(LFCC) [21], constant Q cepstral coefficients (CQCC) [22],
raw speech samples [23], local similar pattern (LSP) features
[15], signal-to-noise mask (SNM) [19] features, etc. Nor-
mally, the architecture of the DNN is adapted to the dimen-
sion of the input features, and viceversa. However, the loss
function employed to train the DNN is usually independent
from the architecture and input features.

Within the DNN-based anti-spoofing framework, several
recent studies have focused on designing new loss functions
in order to make NNs more suitable for the specific tasks
of anti-spoofing [24], ASV [25], [26] and/or their combi-
nation [27]. However, these studies do not usually address
the following three issues. First, one particular characteristic
of anti-spoofing applications, which is shared with ASV
systems, is that embeddings extracted by DNNs should en-
able precise discrimination between bona fide speech and
spoofed speech and, at the same time, they should be able
to generalize well to unknown attacks that are not present in
the training dataset. In other words, from a metric learning
problem perspective [28]–[30], the goal is to learn a mean-
ingful embedding representation that keeps similar training
instances close to each other and the dissimilar instances
far away on the embedding space. While specialized loss
functions as the triplet network [28] specifically address
this issue, conventional losses (e.g., softmax) fall short in
achieving this goal. Second, in a supervised scenario, as
is the case for DNN-based anti-spoofing detection, metric
learning aims to learn a representation which keeps close the
embeddings belonging to the same class. To represent each
class, different representations have been investigated in the
literature, such as representing each class by a centroid in
the embedding space [25] or employing an anchor sample
to represent the positive class [31]. In these representations,
however, the training classes are not fully represented by all
the samples in the mini-batch, but by a single embedding
representation (i.e., either a centroid or an anchor sample),
which may be suboptimal for distance learning. Third, recent

loss functions, such as the siamese [24], generalized-end-to-
end (GE2E) [25] and triplet loss [31] functions, are based on
distance measures between embedding vectors. However, it
is not straightforward to select the most appropiate distance
measure as well as the embedding normalization technique.
Moreover, these loss functions typically require the usage of
an extra hyper-parameter called margin which is difficult to
optimize.

To address all these issues, we propose a new proba-
bilistic loss function for supervised metric learning, where
every training class is represented with a probability density
function (pdf) which is estimated through kernel density
estimation (KDE) [32]–[34] in each mini-batch. The mini-
batches are formed so that all training classes are present in
the mini-batch and are represented with the same number of
samples. Due to the fact that KDE techniques place a prob-
ability mass at every sample, we can argue that each class
is more accurately represented than in previous approaches,
since KDE estimates a pdf per class using all the samples
of the mini-batch rather than representing each class with
a sole point (centroid or anchor point). Thus, we replace
the concept of distance between embeddings by the concept
that an embedding belongs to a certain class with a given
probability. This has the advantage of avoiding the selection
of an appropiate distance measure as well as an embedding
normalization technique. Although the experiments support-
ing these aforementioned advantages of the proposed loss
functions are focused on ASV anti-spoofing, they could be
applied to different classification tasks.

This paper is organized as follows. Section II outlines
the most popular loss functions used to train DNNs for
developing ASV and anti-spoofing systems. Then, in Section
III, we describe the proposed loss functions based on KDE.
Section IV describes the speech corpora, neural networks
and loss functions which are then evaluated in Section V for
spoofing detection. Finally, we summarize the conclusions
derived from this research in Section VI.

II. RELATED WORK

This section describes several loss functions that can be used
in the context of distance metric learning in order to learn a
meaningful embedding representation for the data samples
assuming that the target labels are available a priori (i.e.,
supervised scenario). Some of these functions have already
been successfully applied to either ASV or anti-spoofing.

In this section we use the following notation: eji denotes
the embedding (output of a hidden layer of the DNN) of the
i-th utterance of the class j, M is the number of utterances
per class in the mini-batch, and N is the number of classes
of the training set. In addition, we consider that every mini-
batch is composed of N × M utterances. In anti-spoofing,
the number of classes N is usually the number of training
spoofing attacks plus the genuine class.
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A. CROSS ENTROPY LOSS FUNCTION
The cross entropy loss, also known as softmax loss, is widely
used to train DNNs for classification tasks. Typically, when
the softmax loss function is used in ASV and anti-spoofing
systems, embeddings are extracted from a middle or the last
hidden layer of the DNN. Assuming this latter case, where
embeddings are extracted from the last hidden layer of the
DNN, the softmax loss function can be expressed as,

Lsoftmax =
N∑
j=1

M∑
i=1

−log
exp(wT

j eji + bj)∑N
k=1 exp(wT

k eji + bk)
, (1)

where w = [w1, ...,wN ] and b = [b1, ..., bN ] are the weight
matrix and bias vector of the output layer, respectively.

B. ADDITIVE MARGIN LOSS FUNCTION
The additive margin (AM) softmax loss function [35] was
proposed to replace the inner product operation of the soft-
max loss function in Eq. (1) with the cosine similarity opera-
tion in order to widen the inter-class margin in the embedding
space [36]. The AM softmax loss function can be expressed
as,

LAM =
N∑
j=1

M∑
i=1

−log
exp(s · (cos(wj , eji)−m))

exp(s · (cos(wj , eji)−m)) + rji
,

(2)

rji =

N∑
k=1
k 6=i

exp(s · cos(wk, eji)), (3)

where m is an additional margin and s is a scaling factor for
stabilizing training. This loss function is a generalized ver-
sion of the angular softmax loss [35]. Recently, this type of
loss function has been successfully applied to anti-spoofing
[37] and speaker verification systems [38], [39].

C. GENERALIZED END-TO-END LOSS FUNCTION
In the generalized end-to-end (GE2E) loss, which was orig-
inally proposed for ASV, each class (speaker) is represented
by a centroid obtained averaging all the embeddings belong-
ing to that class in the mini-batch. From those centroids,
two loss functions were proposed in [25] which seek for
minimizing the distance between the embeddings and their
corresponding class centroids, while also maximizing the
distance with the centroids from the other speakers. In anti-
spoofing, the speakers are replaced by attacks. The distance
between the embedding of the i-th utterance of the j-th attack
(eji) and the centroid of the k-th attack (ĉk), is computed as:

Sji,k = ω · cos(eji, ĉk) + b, (4)

where ω and b are learnable parameters for score scaling
and shifting, S is the similarity matrix, and the centroid
embedding is computed by averaging the embeddings of each
attack:

ĉk =
1

M

M∑
i=1

eki. (5)

The GE2E loss function consists of two losses which are
computed using the values of the similarity matrix S: (i)
softmax loss, and (ii) contrast loss. The softmax loss of the
embedding eji is expressed as follows,

LGE2E-softmax(eji) = −Sji,j + log
N∑

k=1

exp(Sji,k). (6)

Likewise, the contrast loss of the embedding eji is computed
as,

LGE2E-contrast(eji) = 1− σ(Sji,j) + max
1≤k≤N
k 6=j

σ(Sji,k), (7)

where σ(x) is the sigmoid function. This contrast loss func-
tion deserves some comments. For every utterance, exactly
two components are added to the loss: (i) a positive com-
ponent, which is associated with a positive match between
the embedding eji and its true class centroid ĉj ; and (ii)
a negative component, which is associated with a negative
match between the embedding eji and the centroid ĉk with
the highest similarity among all false class centroids.

Combining equations (6) and (7), the final GE2E loss
function is the sum of the two losses over the similarity
matrix:

LGE2E =

N∑
j=1

M∑
i=1

[
LGE2E-softmax(eji) + LGE2E-contrast(eji)

]
.

(8)

D. SIAMESE LOSS FUNCTION
The siamese architecture processes two utterances at once
using the same neural network, obtains two embeddings
eji and ek∼, and computes a loss based on the embedding
distance:

Lsiamese =
N∑
j=1

M∑
i=1

δjk ·D(eji, ek∼)

+ (1− δjk) ·max(m,D(eji, ek∼)), (9)

where ek∼ denotes any embedding of the class k, δjk ∈
{0, 1} is a label which indicates whether the embeddings
eji and ek∼ belong to the same class (i.e., when k = j),
D(eji, ek∼) is any distance measure between eji and ek∼,
and m is a hyper-parameter distance margin. There are
many siamese network variants reported in the literature for
different applications, such as face recognition [40], person
identification [41], image recognition [42], etc.
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E. TRIPLET LOSS FUNCTION

The triplet network [28] is a neural network architecture
which attempts to learn an embedding representation of a
multi-class labeled dataset which favours a small distance
between example pairs labeled as similar, and large distances
for pairs labeled as dissimilar. However, unlike the siamese
networks, this architecture works with triplets of embed-
dings. In particular, it defines a loss function which ensures
that an anchor embedding (eji) of class j is closer to other
positive samples (ejp, p 6= i) than to any negative sample
(en∼, n 6= j) [31]. Thus, if we consider a batch size ofN×M
utterances, the triplet loss which is minimized is:

Ltriplet =
N∑
j=1

M∑
i=1

max
[
‖eji − ejp‖22−‖eji − en∼‖

2
2+α, 0

]
,

(10)

where α is a margin which is enforced between the positive
and negative distances. Thus, given an anchor embedding eji,
its corresponding triplet (eji, ejp, en∼) will be built with a
hard positive embedding ejp and a hard negative embedding
en∼ such that indices p and n are selected according to the
following criteria: p = argmax r 6=i ‖eji − ejr‖

2
2, and n =

argmins6=j ‖eji − es∼‖
2
2.

Recently, the triplet loss function has been successfully
applied to train face verification systems [31], ASV systems
[43], [44], and joint ASV and PAD systems [27].

III. KERNEL DENSITY ESTIMATION LOSS FUNCTION

In this section we describe the proposed loss functions based
on KDE for training DNN-based embedding extraction sys-
tems. Section III-A describes the computation of the log
likelihood matrix employed by all the proposed losses. After
that, the proposed KDE-based loss functions are described in
Section III-B.

A. KDE-BASED LOG LIKELIHOOD MATRIX

Similarly to the GE2E loss method described in Section II-C,
every mini-batch consists of N ×M utterances from the N
different training classes (genuine class and N − 1 spoofing
attacks), and each class is represented with M utterances.
Thus, each utterance i (1 ≤ i ≤ M) from the training class
j (1 ≤ j ≤ N), represented by its sequence of feature
vectors Xji, is fed into a neural network in order to obtain
the embedding vector eji = g(Xji;Θ), where Θ represents
all the parameters of the neural network.

Let the embedding vectors from the k-th training class
ek1, ..., ekM ∈ Rq be independent and identically distributed
random samples from an unknown distribution fk(e). The
estimation of its multivariate pdf using KDE [32], [45] is
given by,

f̂k(e) =
1

M

M∑
m=1

1

det(Hk)
K
(
H−1k (e− ekm)

)
=

1

M

M∑
m=1

KHk

(
e− ekm

)
, (11)

where K(·) is the kernel function, Hk is a nonsigular and
symmetric bandwidth matrix [46], [47], and KHk

(u) =
K(H−1k u)/det(Hk). A range of kernel functions are com-
monly used, such as uniform, triangular, Gaussian and
Epanechnikov [48]. For instance, the probability density
function with a Gaussian kernel (that is, KHk

(u) =
N (u;0,Σk)) can be computed as,

f̂k(e) =
1

M

M∑
m=1

N (e;µk = ekm,Σk = σ2
k · I), (12)

where µk and Σk are the mean vector and covariance matrix
of the Gaussian distribution N (·), I is the identity matrix,
and σ2

k represents the bandwidth of the KDE model for
class k. Every class has its corresponding bandwidth, which
is a learnable parameter that is constrained to be positive
(σ2

k > 0). In this way, the kernel density estimator f̂k(e)
places a probability mass at each observation embedding ekm
according to a Gaussian probability model.

Once all the probability density functions of the considered
mini-batch have been built, they are evaluated for every
embedding belonging to that mini-batch. That is, all possi-
ble f̂k(eji) (k, j = 1, ...N ; i = 1, ...,M) are computed.
Then, these probabilities are arranged in the following log-
likelihood matrix:

Lji,k =


log
(

1
M

M∑
m=1

KHk

(
eji − ekm

))
k 6= j

log
(

1
M−1

M∑
m=1
m6=i

KHk

(
eji − ekm

))
k = j

.

(13)
To avoid trivial solutions and make training stable, the em-
bedding vector eji is removed when estimating the density
function of the true class (i.e., when k = j in Eq. (13)).
Fig. 1 illustrates the whole process for obtaining the log
likelihood matrix with input features, embedding vectors
and likelihoods from different training classes (genuine and
spoofing attacks), represented by different colors.

From the log likelihood matrix Lji,k in Eq. (13), we
strive to achieve two goals simultaneously during the DNN
training. First, we aim at maximizing the probability of each
embedding vector eji belonging to its class j, that is,

maximize
Θ

Lji,j = log f̂j(eji), (14)

where Θ are the neural network parameters to be optimized
in the training stage. At the same time, the probability of
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FIGURE 1. System overview for computing the log likelihood matrix of a mini-batch of N ×M utterances.

each embedding vector eji belonging to the rest of the classes
should be minimized:

minimize
Θ

Lji,k = log f̂k(eji) (k 6= j). (15)

In other words, as depicted in Fig. 1, we strive to find the
optimum set of weights Θ that results in large log likelihood
values for red cells in the figure and small values for the blue
cells in the figure. We achieve these two simultaneous goals
by means of three alternative loss functions, as described in
the next section.

B. KDE-BASED LOSS FUNCTIONS
There are several ways to implement the requirements de-
scribed above. In this section, we describe three alternative
losses to achieve our goal during the training of the neural
network: softmax, contrast and triplet KDE based losses.

1) KDE-Softmax Loss
As described in Section II-A, the softmax function is typi-
cally used in tandem with the negative log-likelihood (NLL),
such that: L(y) = −log(softmax(y)). The output of the
softmax function can be interpreted as the probabilities that
a certain set of features belong to a certain class, which is
combined with the NLL in order to build the popular cross-
entropy or softmax loss.

The softmax loss can be directly applied to KDE using the
log likelihood matrix, such that:

LKDE-softmax =
N∑
j=1

M∑
i=1

[
−Lji,j+log

N∑
k=1

exp
(
Lji,k

)]
. (16)

This loss function tries to increase the probability of each
embedding belonging to its true class, while minimizing the
probability of the embedding belonging to the rest of the
classes.

2) KDE-Contrast Loss
The contrast loss is formed by two terms: (i) a positive term,
which is the probability of the embedding eji belonging to

the true class; and (ii) a hard negative term, which is the
highest probability of that embedding belonging to any of
the negative classes, that is,

LKDE-contrast =

N∑
j=1

M∑
i=1

max
[(
− Lji,j + max

1≤k≤N
k 6=j

Lji,k

)
, 0
]
.

(17)

3) KDE-Triplet Loss
In the following we describe the adaptation of the triplet loss
to our KDE-based framework. Similarly to the triplet loss,
we want to find an embedding representation that, for a given
anchor embedding eji, the probability of such embedding
to the positive class j is large, whereas the probability of a
negative exemplar of belonging to the same class is small.
While this loss is motivated in [31] in the context of nearest-
neighbour classification [49], here the quadratic distances are
replaced by log likelihoods.

This loss tries to ensure that an embedding vector eji
(anchor) of a specific class j (positive class) obtains a higher
probability of belonging to that class than any other embed-
ding vector en∼ (negative) from other class (n 6= j). In this
way, the triplet is formed by: (i) an anchor embedding eji,
(ii) a negative embedding en∼, and (iii) a positive estimated
density function f̂j .

Thus, this loss tries to ensure

f̂j(en∼) + α < f̂j(eji), (18)

where α is a margin that is enforced between the true and
false positive probabilities. Using the log likelihood matrix
of Eq. (13), the loss which is minimized is

LKDE-triplet =
N∑
j=1

M∑
i=1

max
[
Ln∼,j − Lji,j + α, 0

]
, (19)

where α is a hyper-parameter margin which is enforced
between the positive and negative likelihoods.
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Generating all possible triplets would result in many of
them being easily satisfied (i.e., fulfill constraint (18)). Thus,
not all of them would contribute to the training, which might
result in a slower convergence. Therefore, it is crucial to se-
lect hard triplets which do not fulfill constraint (18), and can
therefore contribute to improving the model. As suggested
in [31], instead of picking the hardest positives, we use all
anchor-positive pairs within the mini-batch. In addition, [31]
shows that selecting the hardest negatives can in practice lead
to a bad local minima in training. In order to mitigate this,
we select semi-hard negative exemplars which lie inside the
margin α [31]:

f̂j(en∼) < f̂j(eji) < f̂j(en∼) + α. (20)

4) Analysis and relation with other loss functions
From equations (16), (17) and (19), we can observe that
the KDE softmax, contrast and triplet loss functions have
in common the term −Lji,j , which aims at maximizing the
probability of the embedding eji belonging to the estimated
density function of the true class. The difference between
these three loss functions lies in the penalization term, which
tries to separate the positive class j from the rest of train-
ing classes. Specifically, the penalization term of these loss
functions is:
• KDE-softmax loss: the sum of the likelihoods that the

embedding vector eji belongs to all training classes.
• KDE-contrast loss: the highest log likelihood between

the embedding vector eji and any negative class.
• KDE-triplet loss: the log likelihood that a negative em-

bedding vector en∼ belongs to the anchor class j, plus
a margin α.

If we combine the KDE softmax and contrast loss func-
tions (Eqs. (16) and (17)), we can derive a probabilistic
version of the GE2E loss described in Section II-C, which
we call it as full kernel density estimation (FKDE) loss, that
is,

LFKDE =
N∑
j=1

M∑
i=1

[
LKDE-softmax(eji) + LKDE-contrast(eji)

]
.

(21)
However, while the G2E2 technique computes a cosine sim-
ilarity matrix, our proposed FKDE loss computes a log like-
lihood matrix. Furthermore, the GE2E technique represents
each class by means of a centroid, while our technique esti-
mates a pdf for each class. From a clustering point of view,
we argue that the latter is a superior and more informative
representation.

On the other hand, the KDE-triplet loss function in (19)
can be shown to be a generalization of the classical triplet
loss in (10) when KDE with Gaussian kernel (GKDE) and
diagonal covariance matrix is employed. In fact, if we only
consider an embedding eji for estimating the probability
density function in (12), and we introduce a positive index

p such that 1 ≤ p ≤M , p 6= i, the GKDE triplet loss in (19)
would become:

L =
N∑
j=1

M∑
i=1

max
[
Ln∼,j(i) − Ljp,j(i) + α, 0

]
=

N∑
j=1

M∑
i=1

max
[
logf̂ (i)j (en∼)− logf̂ (i)j (ejp) + α, 0

]
, (22)

where,

logf̂ (i)j (e) = log
exp
(
− 1

2 (e− eji)
TΣ−1j (e− eji)

)
(2π)q/2|Σj |2

,

(23)
and q is the embedding size. Since we consider a diagonal
covariance matrix Σj = σ2

j · I , this log probability density
function can be simplified to:

logf̂ (i)j (e) = −q
2

log(2πσ2
j )−

1

2σ2
j

‖e− eji‖22 . (24)

Finally, if we consider a constant bandwidth for the GKDE
σ2
j = 1, and substitute (24) into (22), the modified version of

the proposed GKDE triplet loss equals the classical triplet
loss function:

L =
N∑
j=1

M∑
i=1

max
[
‖eji − ejp‖22−‖eji − en∼‖

2
2+α, 0

]
.

(25)

To sum up, the combination of the KDE softmax and
contrast loss functions results in a probabilistic version of the
GE2E loss. In addition, the GKDE triplet loss is a generalized
version of the classical triplet loss.

IV. EXPERIMENTAL SETUP
This section is organized as follows. First, the speech corpora
which was employed for the evaluation of the proposed tech-
niques is described. Then, Section IV-B outlines the system
configuration and network training. After that, Section IV-C
provides the implementation details of the the loss functions
that are evaluated, including our proposals and other well-
known losses from the literature. Finally, the performance
metrics employed to evaluate the performance of the anti-
spoofing system are discussed.

A. SPEECH CORPORA
We conducted experiments on the recent ASVspoof 2019
database [8] which encompasses two partitions for the assess-
ment of logical and physical access scenarios. A summary
of their composition in terms of speakers and number of
utterances is presented in Table 1.
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TABLE 1. Structure of the ASVspoof2019 data corpus divided by the training,
development and evaluation sets [8].

#speakers #utterances

Subset Male Female
Logical Access Physical Access

Bona fide Spoof Bona fide Spoof

Training 8 12 2,580 22,800 5,400 22,800
Development 4 6 2,548 22,296 5,400 24,300

Evaluation 21 27 7,355 63,882 18,090 116,640

1) ASVspoof 2019 Logical Access Corpus
The LA database contains bona fide speech and spoofed
speech data generated using 17 TTS and VC systems. Six
of these systems are designated as known attacks, with the
other 11 being designated as unknown attacks. The training
and development sets only contain known attacks, whereas
the evaluation set contains 2 known and 11 unknown spoof-
ing attacks. Among the 6 known attacks there are 2 VC
systems and 4 TTS systems. VC systems use a neural-
network-based and spectral-filtering-based approaches [50].
TTS systems use either waveform concatenation or neural-
network-based speech synthesis using a conventional source-
filter vocoder [51] or a WaveNet based vocoder [52]. The 11
unknown systems comprise 2 VC, 6 TTS and 3 hybrid TTS-
VC systems and were implemented with various waveform
generation methods including classical vocoding, GriffinLim
[53], generative adversarial networks [54], neural waveform
models [55], waveform concatenation, waveform filtering
[56], spectral filtering, and their combination.

2) ASVspoof 2019 Physical Access Corpus
The PA database contains bona fide speech and spoofed
speech data generated according to a simulation of their pre-
sentation to the microphone of an ASV system within a rever-
berant acoustic environment. Training and development data
is created by simulating 27 different acoustic and 9 different
replay configurations. Acoustic configurations comprise an
exhaustive combination of 3 categories of room sizes, 3 cat-
egories of reverberation and 3 categories of speaker-to-ASV
microphone distances. Replay configurations comprise 3 cat-
egories of attacker-to-talker recording distances, and 3 cat-
egories of loudspeaker quality. Evaluation data is generated
in the same manner as training and development data, albeit
with different, random acoustic and replay configurations.
Thus, the set of room sizes, levels of reverberation, speaker-
to-ASV microphone distances, attacker-to-talker recording
distances and loudspeaker qualities, are different from those
of training and development.

B. SYSTEM DESCRIPTION
This section provides a detailed description of the imple-
mented systems:

1) Spectral Analysis
Speech signals were analyzed using a Blackman analysis
window of 25 ms length with 10 ms of frame shift. Log mag-

TABLE 2. LCNN architecture used in the experiments. MFM stands for Max
Feature Map activation. FC stands for Fully Connected layer. "q" denotes the
dimension of the embedding vectors extracted by the LCNN.

Type Filter / Stride Output size # Parameters

Conv. 5× 5 / 1× 1 256× 400× 16 416
MFM - 256× 400× 8 -

MaxPool 2× 2 / 2× 2 128× 200× 8 -
Batch Norm. - 128× 200× 8 -

Conv. 1× 1 / 1× 1 128× 200× 16 144
MFM - 128× 200× 8 -

Batch norm. - 128× 200× 8 -
Conv. 3× 3 / 1× 1 128× 200× 32 2336
MFM - 128× 200× 16 -

MaxPool 2× 2 / 2× 2 64× 100× 16 -
Batch norm. - 64× 100× 16 -

Conv. 1× 1 / 1× 1 64× 100× 32 544
MFM - 64× 100× 16 -

Batch norm. - 64× 100× 16 -
Conv. 3× 3 / 1× 1 64× 100× 32 4640
MFM - 64× 100× 16 -

MaxPool 2× 2 / 2× 2 32× 50× 16 -
Batch norm. - 32× 50× 16 -

Conv. 1× 1 / 1× 1 32× 50× 32 544
MFM - 32× 50× 16 -

Batch norm. - 32× 50× 16 -
Conv. 3× 3 / 1× 1 32× 50× 32 4640
MFM - 32× 50× 16 -

MaxPool 2× 2 / 2× 2 16× 25× 16 -
FC - 2× q 12800× q

MFM - q -

nitude spectrogram features (STFT) with 256 frequency bins
were obtained to feed the neural network. No normalization
was applied to the input features.

We considered two techniques for obtaining an unified
time-frequency (T-F) shape of features. First, we truncated
the spectrum along the time axis with a fixed size of T =
400 frames in order to feed a convolutional neural network
(CNN). During this procedure, short utterances were ex-
tended by repeating their contents if necessary to match the
required length. Second, we used a sliding window approach
of W = 32 frames with a shift of δ = 12 frames in order to
feed a RNN.

2) Light Convolutional Neural Network

A simplified version of the recently proposed Light Con-
volutional Neural Network (LCNN) [37] was employed in
most of our experiments, which is an architecture that has
demonstrated to be very effective to detect spoofed speech
in the last two ASVspoof challenges [20], [37]. It was the
best system of the ASVspoof 2017 challenge [20], and the
best single system in the LA scenario of the ASVspoof 2019
challenge [37].

Table 2 details the architecture of the LCNN used in our
experiments. In this model we truncated the spectrum of the
utterances to a fixed size of T = 400 frames. As can be seen,
the specific charasteristic of the LCNN architecture [10] is
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TABLE 3. LC-GRNN architecture used in the experiments. MFM stands for
Max Feature Map activation. FC stands for Fully Connected layer. "q" denotes
the dimension of the embedding vectors extracted by the LC-GRNN.

RNN Type Filter / Stride Output # Parameters

Layer 1
Conv. 5× 5 / 1× 1 256× 32× 16 2496
MFM - 256× 32× 8 -

MaxPool 2× 1 / 2× 1 128× 32× 8 -
Batch Norm. - 128× 32× 8 -

Layer 2

Conv. 1× 1 / 1× 1 128× 32× 16 864
MFM - 128× 32× 8 -
Conv. 3× 3 / 1× 1 128× 32× 32 7008
MFM - 128× 32× 16 -

MaxPool 2× 1 / 2× 1 64× 32× 16 -
Batch Norm. - 64× 32× 16 -

Layer 3

Conv. 1× 1 / 1× 1 64× 32× 32 3264
MFM - 64× 32× 16 -
Conv. 3× 3 / 1× 1 64× 32× 16 6690
MFM - 64× 32× 8 -

MaxPool 2× 1 / 2× 1 32× 32× 8 -
Batch Norm. - 32× 32× 8 -

-
FC - 2× q 16384× q

MFM - q -

the usage of the Max-Feature-Map activation (MFM) which
is based on the Maxout activation function [57]. Thus, the
LCNN is composed of 7 convolutional layers with MFM
activation, 4 max-pooling layers with kernel of size 2 × 2
and stride of size 2 × 2 in order to reduce both time and
frequency dimension, 6 batch normalization layers in order
to increase the stability and convergence speed during the
training process, and one fully connected layer with MFM
activation where the embedding vectors are extracted.

3) Light Convolutional Gated Recurrent Neural Network

We also used the Light Convolutional Gated Recurrent Neu-
ral Network (LC-GRNN) that we proposed in our previous
works [9], [19]. It was one of the ten top performing single
systems of the ASVspoof 2019 challenge [8]. This archictec-
ture, in contrast to the LCNN described above, is based on
a RNN, thus, having the potential advantage that there is no
need to truncate the utterance to extract the embeddings.

Table 3 shows a summary of the LC-GRNN architecture.
It processes context windows of W = 32 frames with a shift
of δ = 12 frames. It consists of 3 recurrent layers, where
each one has different light convolutional layers followed by
a max-pooling operation which reduces the frequency dimen-
sion. Also, batch normalization is applied in order to increase
the stability and convergence speed of the training process.
Once all the frame-level context windows are processed by
the convolutional and recurrent layers, 8 feature maps of size
32 × 32 are flattened to make up a feature vector of 8192
components. Then, this vector is fed to a fully connected
layer with MFM activation to obtain the embedding vector
of the utterance.

4) Training setup
The neural networks were trained using the Adam optimizer
[58] with a learning rate of 3 ·10−4. Also, early stopping was
applied when no improvement of the loss on the validation
set was obtained after five epochs. To prevent the problem of
overfitting, a 60% dropout was applied in the fully connected
layer of the two models. All the specified hyperparameters
of the systems were optimized using the validation set of
the data corpora. The Pytorch toolkit [59] was employed to
implement the deep learning framework.

5) Final classifier
The embeddings extracted from the utterances were finally
processed by a classifier, which produces a score per utter-
ance, indicating whether the utterance is genuine or spoofed.
Based on the results from our previous works [9], [19], we
used a probabilistic linear discriminant analysis (PLDA). We
also applied a posterior normalization of the scores. Provided
the prior of the different classes is uniform, the normalized
score of the embedding vector e is

p(genuine|e) = log
exp(p(e|genuine))∑N

j=1 exp(p(e|j))
, (26)

where p(e|j) is the log posterior predictive probability of the
embedding vector e given class j (j = 1, ..., N ).

C. LOSS FUNCTIONS
This section details the usage and hyper-parameters of the
different loss functions employed to train the LCNN and LC-
GRNN models. We used N = 7 and N = 2 training classes
in the LA and PA scenarios, respectively. In the LA scenario,
we used the 6 known spoofing attacks and the genuine class.
In the PA scenario, we only used 2 classes: genuine and
spoofed speech.

1) Cross entropy or softmax loss
This loss processes the embedding vectors with an additional
fully connected layer with softmax activation of N neurons
to discriminate between the genuine and the N − 1 spoofing
classes of the training set. After that, it applies the NLL to
build the cross-entropy or softmax loss.

2) Additive margin loss
In our preliminary experiments we evaluated the cosface
[60], arcface [61] and sphereface [35] versions of the ad-
ditive margin loss. The difference between them lies in the
additional margin m = 30°, 64°, 64° and the scaling factor
s = 0.4, 0.5, 1.35, respectively. The best performance in
the preliminary experiments was obtained with the cosface
version, so that we evaluated it in the rest of the experiments
as angular softmax loss.

3) Generalized end-to-end (GE2E) loss
The number of training classes (N ) is equal to the number of
spoofing attacks of the training set plus the genuine class. We
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evaluated two versions of the GE2E loss: (i) GE2E with only
the softmax loss, and (ii) GE2E with the softmax and contrast
losses together, as it is indicated in Eq. (8).

4) Siamese loss
We evaluated a siamese variant called siamese-classification
hybrid architecture [62], which has been successfully applied
for replay spoofing detection [24]. This siamese network was
trained by outputting a softmax layer over the two targets:
similar and dissimilar input pairs. Thus, the network was
trained to identify genuine-genuine or spoof-spoof speech
as similar input pairs, and genuine-spoof pairs as dissimilar
inputs.

5) Triplet loss
We evaluated the triplet loss using all anchor-positive pairs
of the mini-batch and selecting the semi-hard negative utter-
ances which lie inside the margin α = 1.0, as shown in Eq.
(10).

6) KDE-based loss functions
We computed the log likelihood matrix Lji,k for every mini-
batch and evaluated three KDE-based loss functions: (i) KDE
softmax from Eq. (16), (ii) combination of KDE softmax and
contrast from Eq. (21), and (iii) KDE triplet from Eq. (19).
We evaluated them using different types of kernel functions,
as it is discussed in Section V-A1. In the KDE triplet loss, we
used all anchor-positive pairs of the mini-batch and selected
the semi-hard negative utterances which lie inside the margin
α = 1.0.

D. PERFORMANCE METRICS
The evaluation of the anti-spoofing system is done in terms of
the pooled equal error rate (EER) across all attacks, and the
minimum normalized tandem detection cost function (min-
tDCF) [63] for both the LA and PA scenarios, separately.

V. EXPERIMENTAL RESULTS
This section presents the results from the evaluation on
the ASVspoof 2019 corpus. First, Section V-A evaluates
the performance on the LA and PA evaluation sets of the
anti-spoofing system based on a LCNN, which is trained
using different embedding sizes, batch sizes and training
techniques. Then, Section V-B is devoted to evaluate the
performance of the anti-spoofing system based on a more
complex neural network (LC-GRNN), which is trained with
the proposed loss functions, and its performance is compared
to other state-of-the-art systems.

A. LCNN RESULTS
1) Evaluation of the kernel function
The objective of this experiment is to analyze the per-
formance of the proposed KDE loss functions when us-
ing different types of kernel functions. Table 4 reports the
EERs obtained when training the LCNN with the proposed

FIGURE 2. Class bandwidths optimization along the training process of the
GKDE softmax loss function in the LA evaluation scenario.

KDE based loss functions, with different kernels and using
learnable bandwidths per training class (see next section for
more details about the optimization of the bandwith). From
our preliminary experiments, we chose an embedding size
of 32 and a batch size of 140. As can be seen, the best
performance is obtained with the Gaussian kernel, followed
by the Epanechnikov [48], triangular [64] and uniform [64]
kernels, respectively. The maximum difference of EER is
0.34 and 0.43%, which is achieved when comparing the uni-
form and Gaussian kernels in the KDE softmax and contrast
loss function on the LA and PA scenarios, respectively. This
means that there are no large differences of performance
when employing different kernels. Since the Gaussian kernel
obtains the best results, we will use it in the rest of the paper,
and the resulting loss function will be referred to as Gaussian
kernel density estimation (GKDE) based loss function.

2) Evaluation of the GKDE bandwidth

Next, we evaluate the performance achieved by the GKDE
losses when using either fixed bandwiths σ2

k (0.5, 1.0 and
2.0) or learnable bandwidths, which are optimized along with
the rest of parameters of the LCNN. As can be seen in Table
5, using a fixed bandwidth of σ2

k = 1.0 slightly achieves a
better performance than using fixed bandwidths of σ2

k = 0.5
and σ2

k = 2.0. This can be due to the effect of under-
smoothing and over-smoothing when using small and large
bandwidths, respectively. However, the best performance is
always obtained when the class bandwidths are optimized
along with the rest of parameters of the neural network.
For instance, optimizing the bandwidths with the rest of
parameters overcomes the fixed bandwidth of σ2

k = 1.0 by an
absolute EER of 0.68 and 0.63 % when evaluating the GKDE
triplet loss function on the LA and PA scenarios, respectively.

Fig. 2 shows the optimization process of the class band-
widths through the different epochs when training the LCNN
for the LA scenario. Despite the values for the different
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TABLE 4. Results on ASVspoof 2019 logical and physical access test sets in terms of EER (%) of the LCNN based anti-spoofing system trained using KDE based
loss functions (embeddings size of 32 and batch size of 140) with different kernel functions and optimizable bandwidths.

Loss Function
EER (%) (Logical Access / Physical Access)

Uniform Triangular Epanechnikov Gaussian

KDE - Softmax 5.38 / 2.71 5.17 / 2.46 5.09 / 2.26 5.04 / 2.32

KDE - Softmax + Contrast 5.19 / 2.16 5.05 / 2.04 4.93 / 1.85 4.85 / 1.73

KDE - Triplet 4.97 / 1.97 4.76 / 1.82 4.65 / 1.74 4.56 /1.65

TABLE 5. Results on ASVspoof 2019 logical and physical access test sets in terms of EER (%) of the LCNN based anti-spoofing system trained using GKDE
based loss functions (embeddings size of 32 and batch size of 140) with fixed and optimizable bandwidths.

Loss Function
EER (%) (Logical Access / Physical Access)

σ2
k = 0.5 σ2

k = 1.0 σ2
k = 2.0 Learnable σ2

k

GKDE - Softmax 5.91 / 3.37 5.57 / 2.92 6.06 / 3.59 5.04 / 2.32

GKDE - Softmax + Contrast 5.86 / 2.81 5.65 / 2.42 5.91 / 2.97 4.85 / 1.73

GKDE - Triplet 5.49 / 2.62 5.24 / 2.28 5.57 / 2.70 4.56 /1.65

FIGURE 3. Bar plot of pooled EERs (%) evaluated in the logical and physical
access test sets when the LCNN (embedding and batch size: 32 and 280,
respectively) is trained with different techniques: (i) softmax; (ii) angular
softmax; (iii) triplet loss; (iv) GE2E softmax; (v) GE2E softmax + contrast; (vi)
GKDE softmax; (vii) GKDE softmax + contrast; (viii) GKDE triplet.

classes are not very different, the bandwidth of the genuine
class is the one which achieves the smallest value, followed
by the two types of VC attacks (A05 and A06). This result
makes sense since genuine speech should be the most ho-
mogeneous class in the space of spoofing-aware embedding
vectors. Furthermore, let us consider the three different types
of speech data in the LA training set: (i) genuine speech,
(ii) converted speech using two types of VC techniques
(A05 and A06), and (iii) artificial speech using four types of
TTS techniques (A01, A02, A03 and A04). As can be seen,
the optimized bandwidths are similar within each group of
speech nature, apart from the A02 attack which results to be
more similar to VC attacks. This can be due to the fact that the
waveform generator and acustic model employed to generate
A02 attack are similar to the ones employed for generating
the A05 attack [8].

According to the results of this study, we use learnable
bandwidths in the rest of experiments of this work.

3) Evaluation of the embeddings size
Table 6 reports the EER and min-tDCF metrics achieved by
the LCNN-based anti-spoofing system when trained using
the maximum batch size which we can hold in our com-
putational resources of 280 utterances (N = 7 classes and

M = 40 utterances per class for the LA scenario, and
N = 2 classes and M = 140 utterances per class for the
PA scenario), different embedding sizes (16, 32 and 64) and
the loss functions described in Sections II and III, namely:
softmax, angular softmax, siamese, triplet, GE2E softmax,
GE2E softmax and contrast, GKDE softmax, GKDE softmax
and contrast, and GKDE triplet. It can be seen that the
proposed GKDE based loss functions yield the best perfor-
mance in terms of EER and min-tDCF, irrespective of the
embedding size, on both the LA and PA evaluation scenarios.
Regarding the loss functions described in Section II, the
triplet loss achieves the best performance on both the LA and
PA scenarios, followed by the softmax, angular softmax and
siamese techniques. On the other hand, the GE2E based loss
functions yield the worst performance. This could be due to
the effect of smoothing caused by the use of a centroid for
representing each class.

Moreover, the use of an embedding size of 32 is the
best option for almost all the loss functions, and this size
matches the embedding size selected in [20], which employs
a similar LCNN based anti-spoofing system. To highlight the
performance differences between the different techniques,
Fig. 3 shows the pooled EERs achieved by each technique
when using an embedding size of 32. As it can be seen,
the proposed GKDE softmax loss function outperforms its
counterpart softmax and GE2E softmax loss functions by
an absolute pooled EER of 1.34 and 1.97% in the LA
scenario, respectively, as well as by 1.25 and 2.29% in the
PA scenario, respectively. Furthermore, when the softmax
GE2E and GKDE loss functions are combined with a contrast
loss, they yield a better performance due to the fact that
the contrast loss helps to increase the inter-class variance.
Related to this fact, the GKDE triplet loss, which is able to
increase the inter-class variance while decreasing the intra-
class variance at the same time, yields the best performance
of all loss functions, outperforming its counterpart triplet loss
by an absolute pooled EER of 1.31 and 1.20% in the LA and
PA test sets, respectively.
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TABLE 6. Results on ASVspoof 2019 logical and physical access test sets in terms of EER (%) and min-tDCF of the LCNN based anti-spoofing system trained
using different loss functions and embedding sizes, and a batch size of 280 utterances.

Loss Function
Logical Access Results (EER (%) / min-tDCF) Physical Access Results (EER (%) / min-tDCF)

Emb. Size: 16 Emb. Size: 32 Emb. Size: 64 Emb. Size: 16 Emb. Size: 32 Emb. Size: 64

Softmax 5.84 / 0.1106 5.76 / 0.1078 6.10 / 0.1124 3.46 / 0.0975 3.22 / 0.0885 3.38 / 0.0984

Angular Softmax 6.04 / 0.1118 5.87 / 0.1084 6.21 / 0.1158 3.54 / 0.1003 3.16 / 0.0878 3.32 / 0.0917

Siamese 5.88 / 0.1062 5.64 / 0.1044 6.01 / 0.1087 4.02 / 0.1063 3.67 / 0.1021 3.51 / 0.0976

Triplet 5.38 / 0.1025 5.15 / 0.1001 5.42 / 0.1034 2.70 / 0.0822 2.54 / 0.0806 2.81 / 0.0828

GE2E - Softmax 6.74 / 0.1212 6.39 / 0.1138 6.89 / 0.1296 4.39 / 0.1151 4.26 / 0.1102 4.52 / 0.1164

GE2E - Softmax + Contrast 6.34 / 0.1178 6.14 / 0.1127 6.44 / 0.1202 3.94 / 0.1041 3.78 / 0.1008 4.11 / 0.1086

GKDE - Softmax 4.76 / 0.1009 4.42 / 0.0935 4.64 / 0.0994 2.19 / 0.0735 1.97 / 0.0711 2.28 / 0.0756

GKDE - Softmax + Contrast 4.51 / 0.0961 4.04 / 0.0905 4.32 /0.0903 1.56 / 0.0517 1.40 / 0.0465 1.74 /0.0548

GKDE - Triplet 4.28 /0.0911 3.84 /0.0857 4.35 / 0.0943 1.51 /0.0486 1.34 /0.0452 1.65 / 0.0557

4) Evaluation of the batch size

Fig. 4 and 5 shows the pooled EERs evaluated in the LA
and PA test sets, respectively, obtained by training the LCNN
with different loss functions and using different batch sizes
(70, 140, 210 and 280). The objective is to study the effect
of the batch size on the anti-spoofing results. The softmax,
angular softmax and siamese loss functions are not affected
by the selection of the batch size, since they almost obtain
the same EER in the four cases of batch size. However,
the performance of the rest of loss functions does depend
on the batch size. For instance, the triplet loss employs an
online selection of the positive and negative samples within
the batch, and it is more likely to find hard samples in a
larger mini-batch. Likewise, the GE2E and GKDE based
loss functions attain better performance when increasing
the batch size, since a better representation of every class
is obtained. Moreover, this performance difference is more
noticeable in the LA scenario than in the PA scenario, due
to the fact that M = 40 utterances per class are employed
in the LA scenario, while M = 140 utterances per class
are used for training the LCNN in the PA scenario. It is
also quite remarkable that the proposed GKDE based loss
functions are the ones which quantitatively improve more
their performance when using a larger batch size. This is due
to the fact that KDE estimates the pdf of each class in a 32-
dimensional space (embedding size) by placing a probability
mass at every embedding sample within the mini-batch, so
the more samples per mini-batch are used the more accurate
is the representation of the pdf for the classes. In contrast, the
GE2E based techniques represent each class with a centroid,
being this representation less affected by the changes in the
batch size in comparison with the KDE-based representation
of every class in GKDE.

5) t-SNE embeddings representation

For illustrative purposes, we represent the LA test embed-
dings (10,000 embeddings per class) in a two-dimensional
space using t-SNE [65], which preserves distances in a two-
dimension space. Fig. 6 shows the embeddings obtained by
the following loss functions: (a) softmax loss, (b) GKDE soft-
max loss, (c) triplet loss, and (d) GKDE triplet loss. As we

FIGURE 4. Bar plot of pooled EERs (%) evaluated in the logical access test
set using an embedding size of 32 and training the LCNN with different batch
sizes and techniques.

FIGURE 5. Bar plot of pooled EERs (%) evaluated in the physical access test
set using an embedding size of 32 and training the LCNN with different batch
sizes and techniques.

can see, the clusters of the different LA attacks and genuine
class are more separated in the GKDE based loss functions
than in the classical softmax and triplet losses, which ex-
plains the better performance of the proposed GKDE based
loss functions. According to the results of the ASVspoof
2019 challenge [8], the VC attack A17, which is generated
using waveform filtering and employing a variational autoen-
coder as acoustic model, is the most difficult to detect. This
fact can also be seen in the t-SNE embeddings representa-
tions, where the cluster of the A17 attack is the one that
overlaps the most with the genuine class cluster in the four
cases.
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(a) (b) (c) (d)

FIGURE 6. Representation of the logical access test embeddings using t-SNE: (a) softmax loss; (b) GKDE softmax loss; (c) triplet loss; (d) GKDE triplet loss.

TABLE 7. Comparison of single anti-spoofing systems performance on the
ASVspoof 2019 logical and physical access test sets in terms of EER (%) and
min-tDCF.

System
EER (%) / min-tDCF

Logical Access Physical Access

Baseline: CQCC + GMM [8] 9.57 / 0.2366 11.04 / 0.2454

Baseline: LFCC + GMM [8] 8.09 / 0.2116 13.54 / 0.3016

STFT + LCNN + AM [37] 4.53 / 0.1028 -
CQT + LCNN + AM [37] - 1.23 / 0.0295

TDNN + Softmax [66] 8.44 / 0.2251 -
SincNet + Softmax [67] 20.11 / 0.3563 2.11 / 0.0527

ResNet + Softmax [11] 7.69 / 0.2166 4.43 / 0.1070

LC-GRNN + Softmax [9] 6.28 / 0.1523 2.23 / 0.0614

GRCNN + Softmax [19] 3.85 / 0.0952 1.09 / 0.0234

LC-GRNN + GKDE - Softmax 3.77 / 0.0842 1.06 / 0.0222

LC-GRNN + GKDE - Soft. + Cont. 3.39 / 0.0805 0.97 / 0.0210

LC-GRNN + GKDE - Triplet 3.03 /0.0776 0.92 /0.0198

B. LC-GRNN RESULTS
To study the effect of employing a more complex neural
network architecture, we also evaluated the effectiveness of
the proposed GKDE losses on the LC-GRNN.

Table 7 compares the performance attained with the pro-
posed GKDE based loss functions on the ASVspoof 2019
database using the LC-GRNN architecture and other other
state-of-the-art single anti-spoofing systems from the litera-
ture. As can be seen, our proposed systems outperform the
baseline anti-spoofing systems released with this database
(CQCC + GMM and LFCC + GMM), as well as the other
top performing single systems (presented to the ASVspoof
2019 Challenge [8]) and our previous GRCNN [19], in both
the LA and PA scenarios. Specifically, the LC-GRNN trained
with the GKDE based triplet loss yields a 5.06 % and 10.12
% lower pooled EER than the best baseline systems of the
LA and PA scenarios, respectively. In addition, it achieves
a 3.25 % and 1.31 % better pooled EER than the same
system trained with the classical softmax loss proposed in
our previous work [9] for both the LA and PA scenarios,
respectively.

According to this evaluation, we can conclude that the pro-
posed GKDE based loss functions are effective for different

types of neural network architectures such as CNNs, RNNs
and their combination. Moreover, the proposed single anti-
spoofing systems are among the best state-of-the-art systems
at detecting the recent attacks based on the latest technologies
[8].

VI. CONCLUSION

In this paper we proposed various loss functions, based on
kernel density estimation (KDE) techniques, which estimate
the probability density function (pdf) of every training class
in each mini-batch, and compute a log likelihood matrix by
using the embedding vectors and pdfs of all training classes
within the mini-batch. These loss functions address three
main problems that have been detected in conventional loss
functions: (i) the training samples which belong to the same
class are kept close to each other and the dissimilar instances
are kept far away on the embedding space by using hard
negative mining, (ii) the training classes are fully represented
by all the samples within the mini-batch, by estimating with
KDE a pdf per class which places a probability mass at every
embedding sample, and (iii) the concept of distance measure
between embedding vectors is replaced by the concept of the
probability that an embedding vector belongs to a certain
class, which has the advantage of avoiding the selection of
an appropiate distance measure and embedding normaliza-
tion technique. Experimental results on the ASVspoof 2019
database have shown that the proposed losses outperform
other conventional loss functions that have been used so far
for training DNN-based antispoofing systems. Furthermore,
it is shown that the performance gains are not restricted to
a sole neural network architecture, but the proposed loss
functions are effective for training different types of neural
networks such as CNNs, RNNs and their combination.

We hope that this new concept of loss functions can be
rather considered a general approach since it can be ap-
plied to any DNN-based embedding extraction system which
comprises fully connected layers. As future work, we will
evaluate the proposed loss functions in other speech related
tasks such as ASV and integration of ASV and PAD systems.
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