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Abstract: Internet of Things (IoT) is an emerging technology in the field of education, which has
not yet been consolidated. Acceptance and adoption studies of IoT in higher education are scarce.
Accordingly, the purpose of this study was to explore the acceptance of the IoT by university professors
for future adoption in higher education. An online survey was implemented based on the unified
theory of acceptance and use of technology (UTAUT), in a sample of 587 Spanish university teachers,
aged between 21 and 58. The results showed that performance expectancy, facilitating conditions,
and attitude toward using technology were influential in behavioral intention to use IoT. While the
intention for use was similar between men and women and with respect to age. However, in the
different constructs of the UTAUT model, the highest average scores were obtained in men and
in teachers over 36 years of age. Finally, the findings and implications of the paper are discussed,
showing empirical evidence on the adoption and acceptance of IoT in higher education in the context
of Spain, highlighting the need for further research on emerging technologies in a context that is
marked by COVID-19.

Keywords: Internet of Things; innovative teaching practices; adoption factors; UTAUT; higher
education; Spain

1. Introduction

The first two decades of the 21st century have witnessed unparalleled development in the field of
communications and technology [1]. The globalization of commercial transactions, the flow of people
and the rise of the well-known Information and Communication Technologies (ICT), has conceived a
new relational paradigm of interaction between humans and objects [2,3]. In this sense, the current
period in which we live can be classified according to various aspects.

On one hand, from the industrial development, placing us in the fourth revolution (from 2010
onwards) characterized by the so-called intelligent industry [4–6], where the decision making is
autonomous by cyberphysical systems through the use of automatic learning and data analysis [7].
On the other, it can also be placed within the so-called fourth wave of computing, known as the Internet
of Things (IoT) [8].

There is no doubt that the historical stage in which we are immersed is producing and will produce
very significant changes for humanity. This technological period is characterised by new challenges
for users that arise from the increase in the amount of data (Big Data) [9,10], from decisions taken
automatically (artificial intelligence and robots) [11], from reduced visibility and greater ambiguity [12],
and from greater risks to security and privacy (cybersecurity) [13,14]. In addition, there is the possibility
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that only a select group of the population will benefit, so it is important to study this stage from a
perspective of digital inequality, where the digital divide means differences between the population
that has access to the Internet and those that cannot connect to it at home. The IoT, the International
Telecommunication Union (ITU) [15] defines it as “a global infrastructure for the information society,
enabling advanced services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies”. In this sense, Ashton [16]
coined the term “Internet of Things”, to describe the network connecting objects in the physical world
to the Internet [17]. The idea behind this concept is that, every day, physical devices in our homes,
businesses, or educational centers [18,19], connect through the Internet with virtual servers and perform
interactions generating a huge amount of information. These devices, such as temperature probes,
geolocators, cameras, movement sensors, pressure sensors, etc., have the capacity to be programmed
and to interact with them from any part of the world, without the need to resort to presence for their
operation [11]. The joint use of these devices can enable much more complex applications, such as
the development of smart appliances, smart vehicles, and smart homes with automation systems, as
well as facility management and safety systems [12], all of which have a high impact in areas, such as
medicine and health, transport, construction, agriculture, and industrial applications [20]. In the case
of education, the literature reviewed [18,19,21–27] suggests that the impact of IoT today is less than in
other sectors.

In particular, IoT technology in education has a greater impact on Higher Education than in other
educational stages. This is due to the fact that the characteristics of higher studies and educational
institutions are more open and favorable to innovation and the incorporation of technologies for both
teaching and research [22]. IoT technology in Higher Education has the potential to clearly impact
on how education systems are re-imagined and redesigned, from a traditional system to one that is
scalable, adaptable, flexible, and more adaptive to dynamic and rapid changes [28]. Similarly, in the
logistics of educational management and the design of learning, facilities can be more responsive to
the learning needs of students. As well as the reconstitution of training delivery systems, previous
studies show that, for this technology to become a reality in higher education, attitudes towards IoT
and material access. So, that educational and income differences, need to be taken into account and
not generate inequalities and therefore a possible rejection of its implementation [3]. Another factor
that affects its dissemination is the level of training. Thus, people with higher education, like those
with higher incomes, have more positive attitudes and are the first to actually buy IoT technology [29].
This also means that they are the first to develop the necessary skills and engage in diverse use
of IoT [30].

Among the potential benefits that IoT can offer to education are improved campus security,
efficient facility energy systems, customized training plans accessible at any time in a ubiquitous and
context-aware learning environment [31], improved student performance and increased accountability
through data collection and subsequent analysis to find more efficient ways of teaching and learning [32].
The use of this technology provides deeper learning experiences, as it changes the way that we all learn
and engage in learning activities, allowing for students to participate in their own learning and content
creation and helping teachers to deliver personalized content that improves student outcomes [26].

Likewise, the implementation of IoT in universities offers opportunities and challenges.
The technologies implied by IoT promote the development of an IoT society and the promotion
of a new digital culture, where the opportunities to obtain online degrees and easy access to learning
content in both structured and unstructured formats are pushing higher education institutions to make
a digital turnaround that represents a drastic change in the traditional educational paradigm [25].
The challenges include the need for access to training content on demand at any time, the use and
development of mobile applications for teaching and learning [33], ensuring the security of devices,
services and the privacy of the IoT ecosystem [34], ensuring the quality of training and assessment
of students, and, finally, seeking alternative strategies and resources to maintain the high cost of
maintaining the IoT technology itself [35]. Based on these ideas, the purpose of this study was to
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explore the acceptance of the IoT by university professors for future adoption in higher education.
The following research question was followed:

RQ: Do the factors of the UTAUT model influence the acceptance of the IoT in higher education?

2. Theoretical Background and Hypotheses Development

The unified theory of acceptance and use of technology (UTAUT) has been applied, since it is
the main methodological framework for knowing the intention to use a certain technology [36–42].
This model was developed by Venkatesh et al. [43] to explain the behavior and predisposition of users
to use the technology. The main factors of the UTAUT model have been extracted from eight different
theoretical frameworks that make up the central constructions of the model: performance expectancy,
effort expectancy, facilitating conditions, and social influence [43,44]. In this study, the different
constructs were adapted to the IoT. Therefore, all of the dimensions were adequately contextualized
with the central topic of the research.

The research model was composed of the constructions of the UTAUT: performance expectancy
(PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), attitude toward using
technology (ATUT), and behavioral intention to use (BI). In the established hypothetical model, BI is
affected by PE, EE, SI, FC, and ATUT. While gender and age affect PE, EE, SI, FC, and ATUT (Figure 1).

Figure 1. Research model.

2.1. Performance Expectancy (PE)

Several studies conclude that PE significantly influences the intention to use a certain
technology [37,45,46]. In particular, performance expectancy is defined as “the degree to which
an individual believes that using the system will help him or her to attain gains in job performance” [43].
In the context of research, performance expectancy relates to the improvement of job performance.
They were proposed as hypotheses:

Hypothesis 1 (H1): Performance expectancy has a significant effect on behavioral intention to use IoT.

Hypothesis 2 (H2): Gender is a factor that has a significant effect on performance expectancy of IoT.

Hypothesis 3 (H3): Age is a factor that has a significant effect on performance expectancy of IoT.
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2.2. Effort Expectancy (EE)

This construct has shown in previous studies to have a significant impact on the intention to
use a certain technology [36,47,48]. In particular, effort expectancy is defined as “the degree of ease
associated with the use of the system” [43]. In the context of the research, effort expectancy was related
to the ease of use of the IOT by teachers. They were proposed as hypotheses:

Hypothesis 4 (H4): Effort expectancy has a significant effect on behavioral intention to use IoT.

Hypothesis 5 (H5): Gender is a factor that has a significant effect on effort expectancy of IoT.

Hypothesis 6 (H6): Age is a factor that has a significant effect on effort expectancy of IoT.

2.3. Social Influence (SI)

This construct has shown in previous studies a significant influence on the intention to use certain
technologies [49–51]. Social influence is defined as the “degree to which an individual perceives that
important others believe he or she should use the new system” [43]. In the context of research, social
influence refers to the opinion of other teachers, friends and family about the use of IoT. They were
proposed as hypotheses:

Hypothesis 7 (H7): Social influence has a significant effect on behavioral intention to use IoT.

Hypothesis 8 (H8): Gender is a factor that has a significant effect on social influence of IoT.

Hypothesis 9 (H9): Age is a factor that has a significant effect on social influence of IoT.

2.4. Facilitating Conditions (FC)

This construct has been related as an influential factor in the intention to use a certain
technology [52–54]. In particular, facilitating conditions are defined as the “degree to which an
individual believes that an organizational and technical infrastructure exists to support use of the
system” [43]. In the research context, facilitating conditions was related to the human, organizational,
and technical support for using the IO. They were proposed as hypotheses:

Hypothesis 10 (H10): Facilitating conditions has a significant effect on behavioral intention to use IoT.

Hypothesis 11 (H11): Gender is a factor that has a significant effect on facilitating conditions of IoT.

Hypothesis 12 (H12): Age is a factor that has a significant effect on facilitating conditions of IoT.

2.5. Attitude Toward Using Technology (ATUT)

This construct has been linked to the intention of use in several studies [44,55,56]. In particular,
attitude toward using technology is defined as “an individual’s overall affective reaction to using a
system” [43]. In the research context, attitude toward using technology refers to the predisposition of
teachers to use IoT in their teaching activities. They were proposed as hypotheses:

Hypothesis 13 (H13): Attitude toward using technology has a significant effect on behavioral intention to
use IoT.

Hypothesis 14 (H14): Gender is a factor that has a significant effect on attitude toward using technology of IoT.
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Hypothesis 15 (H15): Age is a factor that has a significant effect on attitude toward using technology of IoT.

3. Method

3.1. Participants and Procedure

We adopted a cross-sectional study design by applying an online questionnaire to a total of 587
Spanish university teachers of Educational Sciences. The research used a convenience sampling. Thus,
the participants were invited to participate in the survey via e-mail, where information was provided
regarding the purpose of the study and the anonymous processing of the data. By conducting the
survey, all participants gave their informed consent. The data collection period took place during the
month of March 2020.

The sample of university professors was composed of 162 men (27.6%) and 425 women (72.4%),
aged between 21 and 58 years (M = 35.18; SD = 6.97). The World Health Organization division was
used to establish the age ranges [57]. Thus, in the 21–35 year age group, corresponding to young adults,
there were 215 teachers (36.6%) and, in the ≥36 age group, corresponding to older adults, there were
372 teachers (63.4%).

3.2. Measures

The items that made up the constructs of the UTAUT model were telematically applied through
a self-reporting questionnaire. The dimensions performance expectancy (PE), effort expectancy
(EE), social influence (SI), facilitating conditions (FC), attitude toward using technology (ATUT),
and behavioral intention to use (BI) [43], were adapted to the specific technology IoT. The response
mode of the scale followed that of the UTAUT models, based on a seven-level Likert scale (1 = strongly
disagree to 7 = strongly agree) [58,59]. In the case of UTAUT models, psychometric properties are
calculated in all studies, which have a uniform premise regarding the adequacy of psychometric
properties and internal consistency [36–42]. Data regarding validity and reliability were collected in
results section.

3.3. Data Analysis

Statistical tests were used t-test to check for significant differences between two populations,
convergent and discriminant validity and structural equation modeling (SEM). Convergent validity
and discriminant validity were calculated to establish the adequacy in the psychometric properties of
the instrument. The measurement model [60] was used for this purpose.

On the other hand, the structural equation model (SEM) was carried out for the contrast of
hypotheses, since it allowed to observe the interrelations between the constructions [61]. It was an
indispensable condition for establishing the SEM to check the hypothesis of multivariate normality of
the data, which was confirmed by the Mardia coefficient [62]. The model’s goodness-of-fit indexes
were also calculated. Finally, the constructions and suitability of the model were checked by means of
path analysis.

The data were analyzed with the statistical packages IBM SPSS and IBM SPSS Amos, version 24
(IBM Corp., Armonk, NY, USA).

4. Results

Based on the means, standard deviations, and differences based on gender, certain distinctions
were found in the adoption of the IoT by men and women (Table 1). Men obtained higher scores in all
the constructs of the UTAUT model. However, these differences were only significant in EE (p = 0.020),
FC (p = 0.002), and ATUT (p = 0.005).
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Table 1. Mean and standard deviation of scores by scale and differences based on gender.

Construct
Men Women

t df p
M SD M SD

PE 18.64 6.532 17.98 6.480 1.088 585 0.277
EE 20.56 5.660 19.28 6.078 2.327 585 0.020
SI 17.85 6.980 17.32 6.902 0.826 585 0.409
FC 17.77 5.390 16.27 5.207 3.079 585 0.002

ATUT 21.17 5.524 19.68 5.843 2.808 585 0.005
BI 16.63 5.156 16.04 5.143 1.251 585 0.212

Note: df = degrees of freedom.

On the other hand, means, standard deviations, and differences based on age also showed certain
distinctions (Table 2). The age group over 36 years obtained the highest mean scores in almost all
constructs (EE, PE, SI, and ATUT). While teachers in the 21–35 age range only excelled in FC and
BI. Significant differences were established in the PE (p = 0.031) and EE (p = 0.020) constructs. Thus,
the degree of acceptance of university professors was above 16 on average, in terms of gender and age.
Taking into account that the BI scores range from 1 to 21, the value is high. Furthermore, the scores
obtained by the teachers in the value 16, 17, 18, 19, 20, and 21 add up to 62.5% of responses, corresponding
to a high acceptance of the IoT.

Table 2. Mean and standard deviation of scores by scale and differences based on age.

Construct
21–35 ≥36

t df p
M SD M SD

PE 17.40 6.608 18.60 6.397 −1.697 551 0.031
EE 18.88 6.132 20.07 5.867 −2.083 551 0.020
SI 17.23 7.026 17.60 6.866 −0.242 551 0.540
FC 17.06 5.091 16.47 5.406 1.545 551 0.190

ATUT 20 5.876 20.15 5.748 −0.366 551 0.759
BI 16.27 5.103 16.16 5.182 0.322 551 0.814

Note: df = degrees of freedom.

Regarding convergent validity and reliability of the instrument, the composite reliability (CR)
values of the constructs were above 0.8 and the average variance extracted (AVE) was above 0.5 in
all of them [60] (Table 3). The reliability values of Cronbach’s alpha coefficient were acceptable in all
constructs [63], with the majority being above 0.8 and an overall reliability of 0.946.

In discriminant validity analysis, the square root of AVE was taken to correlate the latent constructs
(Table 4). It was found that each factor represented a different dimension, so the psychometric
characteristics of the instrument were acceptable [64]. Therefore, factor loads were adequate and the
instrument was found to have strong convergent and discriminant validity [65].
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Table 3. Convergent validity measures and reliability.

Construct Item Factor
Loading CR AVE α Global α

PE

PE1 0.837

0.926 0.758 0.939

0.946

PE2 0.863
PE3 0.886
PE4 0.896

EE

EE1 0.792

0.897 0.687 0.909
EE2 0.816
EE3 0.850
EE4 0.856

SI

SI1 0.863

0.919 0.740 0.927
SI2 0.865
SI3 0.811
SI4 0.901

FC

FC1 0.688

0.838 0.565 0.734
FC2 0.734
FC3 0.820
FC4 0.761

ATUT

ATUT1 0.728

0.802 0.510 0.805
ATUT2 0.850
ATUT3 0.715
ATUT4 0.528

BI
BI1 0.929

0.957 0.881 0.946BI2 0.935
BI3 0.953

Table 4. Discriminant validity measures.

PE EE SI FC ATUT BI

PE 0.870
EE 0.660 0.828
SI 0.903 0.711 0.860
FC 0.621 0.494 0.696 0.752

ATUT 0.501 0.750 0.568 0.433 0.714
BI 0.402 0.398 0.404 0.352 0.532 0.939

Note: Diagonals represent the average variance extracted, while the other matrix entries represent the squared correlations.

With regard to the establishment of the SEM, the hypothesis of multivariate data normality was
confirmed. To do this, it was necessary for the value obtained in the Mardia coefficient to be below
p*(p + 2) [66], where p corresponded to 23, with this being the total number of variables in the scale.
Likewise, the value of the Mardia coefficient was 158,341, less than 575.

The model’s goodness-of-fit indices, on the other hand, were well matched to the data: Chi-square
(χ2 = 0.564); degrees of freedom (df = 2); the ratio χ2/df was 0.282; goodness-of-fit index (GFI = 1);
square-root mean square approximation error (RMSEA = 0.000); normalized fit index (NFI = 1);
comparative fit index (CFI = 1.000); and, adjusted goodness-of-fit index (AGFI = 0.996).

The contrast of hypotheses through the path analysis gathered the support of seven hypotheses
out of the 15 initially established, the hypotheses that were not supported were rejected (Table 5).
The relationships that supported the hypothesis about having a significant and positive effect on
behavioral intention to use IoT were: performance expectancy (H1), facilitating conditions (H10),
and attitude toward using technology (H13). Gender had a significant and negative effect on facilitating
conditions (H11), and attitude toward using technology (H14). Additionally, age had a significant and
positive effect on performance expectancy (H3) and effort expectancy (H6).
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Table 5. Hypothesis testing results.

Hypothesis Relationship Path Coefficient CR p Results

H1 PE→ BI 0.175 2.688 0.007 Supported
H2 PE← Gender −0.026 −0.628 0.530 Rejected
H3 PE← Age 0.114 2.731 0.006 Supported
H4 EE→ BI −0.013 −0.235 0.814 Rejected
H5 EE← Gender −0.080 −1.936 0.053 Rejected
H6 EE← Age 0.093 2.234 0.026 Supported
H7 SI→ BI −0.071 −1.015 0.310 Rejected
H8 SI← Gender −0.026 −0.616 0.538 Rejected
H9 SI← Age 0.051 1.211 0.226 Rejected

H10 FC→ BI 0.218 5.228 *** Supported
H11 FC← Gender −0.135 −3.245 0.001 Supported
H12 FC← Age −0.051 −1.219 0.223 Rejected
H13 ATUT→ BI 0.376 8.214 *** Supported

H14 ATUT←
Gender −0.118 −2.826 0.005 Supported

H15 ATUT← Age −0.014 −0.325 0.745 Rejected

Note: CR = critical radio; *** Significant at p < 0.001.

In the SEM, only the values of significant effects were collected, while the non-significant relations
were shown with broken lines to facilitate their interpretation (Figure 2). Thus, the trajectory coefficients
of H1, H3, H6, H10, H11, H13, and H14 are shown. Of the total constructs of the UTAUT model,
effort expectancy and social influence did not influence the behavioral intention to use IoT. The model
determination coefficients (R2) for each construct were for PE (R2 = 0.015); EE (R2 = 0.018); SI (R2 = 0.004);
FC (R2 = 0.018); ATUT (R2 = 0.013); and, BI (R2 = 0.325).

Figure 2. Structural measurement model. Note: * Significant at p < 0.05; ** Significant at p < 0.01;
*** Significant at p < 0.001.

Finally, the results indicated differences according to gender and age. At the same time, significant
constructs were found in the intention of use IoT by university professors.
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5. Discussion

The process of adoption of a specific type of technology takes place when there is a degree of
harmony between various factors that have an impact on human behavior. It is a complex process that
involves personal, interpersonal, and social factors that directly influence whether a particular subject
interacts with the technological device [37,39].

Based on this idea, the present work determined as a fundamental objective to study which factors
influence the degree of acceptance of IoT in Higher Education teachers. To do so, it was framed in
the conceptual bases established by the UTAUT model in terms of socio-demographic variables that
participate in this decision process. Thus, the predictive power of the model was 43% of the variance,
which was adequate, while taking into account that in most of the researches that have applied this
model have reached values between 20% and 70% [38].

The main findings of the research determined that, on the basis of gender, men scored higher
overall than women. In addition, through the t test the differences presented in EE, FC, and ATUT
were found to be significant. In this sense, a line is established that coincides with other studies in the
scientific literature that have applied the UTAUT model and in which gender was presented as an
influential factor [37]. Therefore, the constructs that received the highest scores were EE and ATUT,
parameters that are associated with intrapersonal perception in attitudinal and competency terms
towards the technological device, results previously obtained in previous UTAUT models [12,28].
In other words, higher education teachers show a positive predisposition towards the use of IoT,
as well as confidence that they can correctly interact with this type of technology and extract optimum
performance from it.

The results showed that teachers aged 36 and older had higher scores in UTAUT model (except
FC) than those who were younger. The t-test found that those differences were significant for PE and
EE. This finding is surprising, as it undoubtedly shows a sense of change in the multiple studies that
determine how there is a direct correlation between age and the attitude and predisposition to use
technology, as well as the belief in the difficulty of using it [35]. Accordingly, it changes the trend
highlighted in previous studies, where the fact of being younger has been associated with having a
greater predisposition towards the use of technology.

On the other hand, the configuration of the UTAUT model through the path analysis showed
how seven hypotheses out of the 15 proposed at the beginning of the research were supported by
the obtained results. Firstly, with respect to PE, it was shown that it directly influenced behavioral
intention (H1), as indicated by previous research using this same type of model [36,37]. It is, therefore,
essential that teachers perceive the usefulness and the many educational opportunities that reside
in IoT in order to make use of it in the future. Likewise, age was presented as a significant factor
affecting PE and EE (H3, H6). Similarly, FC is presented as a powerful factor affecting the behavioral
intention to use IoT (H10). Thus, the idea is established that the use of IoT will be greater by teachers if
there is a technical infrastructure that supports the use of IoT. Therefore, it will be essential that when
using IoT in universities, the relevant channels and tools are available to guarantee optimum use of
the technology. In relation to this same construct, the model made it possible to know that gender
has a significant effect on FC (H11). Finally, it allowed extracting that ATUT has a significant effect
in behavioral intention to use IoT and that the gender factor is determinant in presenting a greater
predisposition of use or not.

In contrast, the remaining construct of the model, SI, did not present any significance in the model
and, therefore, it can be stated that they do not present any significance when it comes to influencing
the adoption of IoT in this study. These results do not correspond to previous studies in which SI was
postulated as a powerful predictor in the adoption towards the technological device [43,51].

The limitations of this work are found in the limited use of the constructs, where, in future studies,
it would be possible to incorporate other constructs for the UTAUT model, such as the experience of
the teaching staff with IoT or the willingness to use a certain technology. However, only the gender and
age variables were chosen, because the insertion of more external variables would have lowered the
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predictive power of the model. On the other hand, in terms of prospective study in this sense, it can
establish the focus on the analysis of the adoption of different types of technology that are bursting into
today’s society and, therefore, into the education system. An example of this is the case of artificial
intelligence, an area that is destined to occupy the educational reality in the coming years.

6. Conclusions

In recent years technology has brought about changes in society at a dizzying rate. This has caused
the education system to mark as a challenge the immersion of new resources that have burst into the
classrooms, promoting a change in how we understood teaching until now. Specifically, the appearance
of IoT has promoted a new range of teaching possibilities that the university must take into account in its
educational plans.

For this reason, the aim of this study was to find the degree of acceptance of IoT among Spanish
university teachers. The findings obtained in the research showed that the participants present a
high degree of acceptance to IoT (with averages above value 16 in a range of 1 to 21), as well as an
acceptable predisposition to its future use. This translates into a percentage of 62.5% of university
teachers of Educational Sciences. Therefore, we are in a new scenario for the educational system and
its professionals, so it is necessary that the institutions bet on the immersion of these resources in
the universities, as well as to promote a digital training in the teachers that predicts innovation and
improvement of educational pragmatics. Here lies the main contribution of this paper, which acts as a
testing of the situation of IoT in university education in a context that is marked by the COVID-19
pandemic, where virtual and training processes through virtual platforms are marking the way
of learning.

In conclusion, we must continue on a path of work that gradually manages to mitigate the existing
resistance to the use of technology in university classrooms. In this case, IoT is considered to be one of
the main drivers of the so-called industry 4.0 and the transformation of companies and institutions.
Therefore, from the educational context, we must favor this position through quality training in this
area, as well as the adoption of this type of emerging resources in the classroom, with the aim of
making universities a space in which the configuration of innovative learning ecosystems takes place,
promoting dynamic citizens who are up to date with the demands and needs that are presented by
society today.
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