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Abstract The most salient generic feature of a compos-
ite Higgs boson resides in the nonlinearity of its dynam-
ics, which arises from degenerate vacua associated with
the pseudo-Nambu–Goldstone (PNGB) nature of the Higgs
boson. It has been shown that the nonlinear Higgs dynamics
is universal in the IR and controlled only by a single param-
eter f , the decay constant of the PNGB Higgs. In this work
we perform a fit, for the first time, to Wilson coefficients
of O(p4) operators in the nonlinear Lagrangian using the
golden H → 4L decay channel. By utilizing both the “rate”
information in the signal strength and the “shape” informa-
tion in the fully differential spectra, we provide limits on the
Goldstone decay constant f , as well as O(p4) Wilson coef-
ficients, using Run 2 data at the LHC. In rate measurements
alone, the golden channel prefers a negative ξ = v2/ f 2 cor-
responding to a non-compact coset structure. Including the
shape information, we identify regions of parameter space
where current LHC constraint on f is still weak, allowing
for ξ � 0.5 or ξ � −0.5. We also comment on future sensi-
tivity at the high-luminosity upgrade of the LHC which could
allow for simultaneous fits to multiple Wilson coefficients.

1 Introduction

The Higgs boson plays a central role in our understanding
of physics at the electroweak scale, the energy scale being
probed by the Large Hadron Collider (LHC). Precise mea-
surement of its property is among the top priorities of exper-
imental programs at the LHC as well as any possible future
electron–positron and hadron colliders. A major goal of these
efforts is to understand the microscopic nature of the 125 GeV
Higgs boson:

– Is the Higgs boson a fundamental particle like the electron
or a composite particle such as the pion?
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Such a question could carry far reaching implications in our
understanding of the Universe at the most fundamental scale,
especially given the fact that no other fundamental scalar
particles have been observed in nature. While current data
at the LHC is consistent with the expectation of a Standard
Model (SM) Higgs boson, the experimental uncertainty is
still sizeable, on the order of 10–20% or more [1–3]. Such
a large uncertainty can hardly be characterized as “precise”
and the question of whether the 125 GeV Higgs boson is
indeed the SM Higgs remains open.

There is a long history in the idea of a composite Higgs
boson, dating back to the classic papers [4,5] several decades
ago, where the Higgs boson arises as a pseudo-Nambu–
Goldstone boson (PNGB) like the pion in low-energy QCD.
Models with a PNGB Higgs were revived and refined much
later, via the little Higgs theories [6–8] and the holographic
Higgs models [9,10]. By now they are collectively referred
to as the composite Higgs models.

There are numerous composite Higgs models [11] which
differ in several aspects. For example, the choice of symmetry
breaking pattern G/H where G is the broken group in the
UV and H is the unbroken group containing the electroweak
SU (2)L ×U (1)Y gauge groups. The Higgs arises as a PNGB
when G is spontaneously broken to H at a scale Λ ∼ 10 TeV.
One other aspect that varies greatly is the implementation
of additional fermions associated with the third generation
quarks in the SM, which are introduced to reduce the UV
sensitivity in the Higgs mass originating from the SM top
quark. In some cases the new fermions do not even have to
carry SM color charge [12] or electroweak quantum numbers
[13,14].

In spite of all these variations in model-building, there is
one salient prediction that is generic to the entire class of
composite Higgs models:
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– Nonlinear dynamics in Higgs interactions with the elec-
troweak gauge boson, as well as self-interactions carrying
derivatives.

The origin of nonlinear Higgs interactions goes to the essence
of a composite Higgs: the PNGB nature of the Higgs boson.
It is the same nonlinear dynamics appearing in interactions
of pions in chiral symmetry breaking, or any other Nambu–
Goldstone bosons observed in nature. The theoretical tool
employed to construct effective Lagrangians of Nambu–
Goldstone bosons was developed half a century ago, in
the seminal papers by Callan, Coleman, Wess and Zumino
(CCWZ) [15,16]. In the CCWZ approach each symmetry
breaking pattern G/H results in a seemingly different effec-
tive Lagrangian, each with its own set of nonlinear interac-
tions and experimental predictions.

Only in recent years was it realized that the nonlinear
interaction of a PNGB has very little to do with the details of
the UV group G that is being spontaneously broken. This
can be seen either by imposing shift symmetries on the
Nambu–Goldstone bosons in the IR [17,18], or by soft boot-
strapping tree-level amplitudes of nonlinear sigma model
(nlσm) [19,20]. More specifically, the nonlinear interaction
of Nambu–Goldstone bosons owes its presence to the exis-
tence of degenerate vacua in the deep IR and knows very
little about the details of the broken Group G [21]. The only
information on G resides in the overall normalization of the
Goldstone decay constant f , which can be taken as an input
parameter in the low-energy.

Following this progress, the complete list of modifica-
tions to the couplings of one Higgs boson to two elec-
troweak gauge bosons (HVV), two Higgs bosons with two
electroweak gauge bosons (HHVV), one Higgs coupled to
three electroweak gauge bosons (HVVV), as well as triple
gauge boson couplings (TGC), were studied in Refs. [22,23]
up to four-derivative order and all orders in 1/ f . These cor-
rections are the universal predictions of a composite Higgs
boson. In particular, a set of “universal relations” among the
couplings were proposed which depend on only one input
parameter f . Experimental confirmation of these universal
relations would be a striking signal of the PNGB nature of
the 125 GeV Higgs.

In this work we continue with the exploration of univer-
sal Higgs nonlinearity and its implications in Higgs coupling
measurements. In particular, we will study the possibility
of measuring and constraining Wilson coefficients of four-
derivative operators in the effective Lagrangian of a compos-
ite Higgs boson using the H → 4L decay channel, the so-
called “Golden channel” because it is the clearest and clean-
est among all Higgs decay channels. The small background
contamination combined with the availability of full kine-
matic distributions of decay products offers not only a pow-
erful probe of the spin and CP property of the Higgs boson

[24,25], but also a unique opportunity to employ advanced
multivariate techniques [26–37] to enhance the experimental
sensitivity.1 We will use the publicly available LHC analyses
in the 4L channel to probe and constrain, for the first time,
Higgs nonlinear dynamics and the associated Wilson coef-
ficients. Furthermore, we demonstrate that the conventional
approach of bounding the decay constant f using the signal
strength (total rate) in HVV measurements is incomplete,
especially when effects of O(p4) operators are included.

This work is organized as the follows. In Sect. 2, we briefly
review the universal Higgs nonlinearity, listing all operators
modifying the HVV couplings up toO(p4). We also map out
the correspondence to the tensor structure basis used in the
LHC analyses. Then in Sect. 3, we study the experimental
constraints from both the rate and shape measurements in the
H → 4L channel, as well as in H → Zγ two body decays.
Future sensitivity projections at the high-luminosity (HL)
LHC are also provided in this section as well as a brief study
of precision electroweak constraints. Finally we conclude in
Sect. 4.

2 Universal Higgs nonlinearity

The effective Lagrangian of a PNGB Higgs boson contains
two expansion parameters,

– Nonlinear expansion characterized by π/ f , where π

denotes a generic Nambu–Goldstone field like a com-
posite Higgs boson. The expansion in π/ f is highly non-
linear for a PNGB Higgs boson.

– Derivative expansion chararcterized by ∂μ/Λ. If some
of the unbroken symmetry is gauged, one replaces the
ordinary derivative by the gauge covariant derivative,
∂μ → Dμ = ∂μ − i Aμ. In this power counting the gauge
field Aμ then counts as one derivative.

This is similar to the chiral Lagrangian in low-energy QCD,
which describes interactions of pions as PNGB’s arising from
spontaneously broken SU (2)L × SU (2)R chiral symmetry
[40]. In the chiral Lagrangian f = fπ ∼ 93 MeV is the pion
decay constant and Λ = Λχ SB ∼ 1 GeV is the scale where
QCD becomes strongly coupled and chiral symmetry is spon-
taneously broken. In naive dimensional analysis (NDA) [41],
requiring quantum corrections from higher loops to be com-
parable in size to the derivative expansion in ∂/Λ leads to the
relation

Λ ∼ 4π f , (1)

1 Analyses of Higgs couplings based on information geometry have
also been shown to be powerful [38,39].
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which is saturated in a strongly interacting theories with
no relevant small adjustable parameters. Then the effective
Lagrangian of Nambu–Goldstone bosons based on a nonlin-
ear sigma model (nlσm) is organized as follows

Snlσm =
∫

d4x Λ2 f 2 L
(

π

f
,

∂

Λ

)

=
∫

d4x
[
L(2) + L(4) + · · ·

]
,

(2)

where L(n) represent operators containing n derivatives. In
this work we focus on n ≤ 4. While L(n) incorporates the
derivative expansion at a well-defined order, the nonlinear
expansion is resummed to all orders in π/ f in L(n). Con-
ventional wisdom from the CCWZ approach [15,16] has it
that the nonlinear expansion realizes the spontaneously bro-
ken symmetries in the UV. The summation of operators to all
orders in π/ f and only at a certain order in ∂/Λ stems from
requiring the resummed operators to have well-defined trans-
formation properties under the broken symmetry. The nonlin-
ear Higgs dynamics then follows. However, the CCWZ per-
spective obscures the universality in the Nambu–Goldstone
interactions. It turns out that these nonlinear interactions arise
entirely from the presence of degenerate vacua in the IR
and are insensitive to the coset structure G/H in the UV
[17,18,21,22]. The only parameter dependent on the coset
structure is the normalization of f . In the end, by probing and
measuring the Higgs nonlinear dynamics, one could poten-
tially gain insight on a broad range of composite Higgs mod-
els, regardless of the G/H coset.

Invoking the custodial invariance and focusing on the sce-
nario where the 125 GeV Higgs transforms as a fundamen-
tal representation of an unbroken SO(4) group, the lead-
ing two-derivative Lagrangian is simple, upon gauging an
SU (2)L ×U (1)Y subgroup of SO(4) [22,23],

L(2) = 1

2
∂μh∂μh + g2 f 2

4
sin2(θ + h/ f )[W+

μ W−μ (3)

+ 1

2 cos2 θW
ZμZ

μ] , (4)

where h is the 125 GeV Higgs boson. In the above sin θ ≡
v/ f , where v = 246 GeV, is the vacuum misalignment angle
and W± and Z are the electroweak massive gauge bosons,
whose masses can be read off from Eq. (3):

mW = mZ

cos θW
= 1

2
gv = 1

2
g f sin θ . (5)

As emphasized previously, L(2) contains two-derivative
operators that are to all orders in h/ f . In particular, coeffi-
cients of operators at different orders in h/ f are all prede-
termined by a single parameter f and resummed to the form

sin(θ + h/ f ). Although not transparent at all, this particular
form is enforced by four “shift symmetries” acting on the
four components of the scalar SU (2)L doublet containing
the neutral scalar h [18].

Expanding Eq. (3) in h/v, one obtains corrections to the
SM HVV and HHVV couplings at the two-derivative level,

1

2
∂μh∂μh +

[
2
√

1 − ξ
h

v
+ (1 − 2ξ)

h2

v2 + · · ·
]

×
(
m2

WW+
μ W−μ + 1

2
m2

Z ZμZ
μ

)
.

(6)

where ξ ≡ v2/ f 2. Given that f is an input parameter
whose normalization is UV dependent, Eq. (6) is the basis
for extracting f using the signal strength in HVV coupling
measurements.

In a strongly coupled theory there are typically composite
resonances below the cutoff scale Λ, as is evident in low-
energy QCD. In composite Higgs models these resonances
are represented by the scale Mρ = gρ f , where 1 � gρ �
4π . Assuming there is a mass gap between Mρ and f , one
could further integrate out the composite resonances and the
resulting effective Lagrangian, which is valid at energy E ∼
f , inherits the nonlinear interactions from above the scale Mρ

[42]. This effective theory is often referred to as the SILH
Lagrangian,

SSI LH =
∫

d4x M2
ρ f 2 L

(
π

f
,

∂

Mρ

)
, (7)

which has the same nonlinear structure as in Eq. (2), but with
Λ → Mρ . In particular, at the two-derivative level, Eq. (3)
remains unchanged even after integrating out Mρ , and cor-
rections to HVV and HHVV couplings are also unchanged.
There are effects that could potentially spoil the nonlinear
structure of the effective Lagrangian. These are related to
“explicit” symmetry breaking effects and examples include
the Higgs potential and the Higgs coupling to fermions. How-
ever, as argued in Ref. [22], they would modify the nonlinear-
ity HVV and HHVV couplings only at the loop-level.2 The
typical spectrum in a composite Higgs model is displayed in
Fig. 1.

2.1 O(p4) operators

The two-derivative nonlinear Lagrangian in Eq. (3) is valid
when

v

f
� 1 and

E

Λ
� 1 , (8)

2 These loop effects are non-universal and beyond the scope of current
work.

123



  829 Page 4 of 13 Eur. Phys. J. C           (2020) 80:829 

Fig. 1 Typical spectrum of composite Higgs models. The nlσm
Lagrangian is valid below Λ ∼ 4π f , which is the highest cutoff
in the model. Below the composite resonances the SILH effective
Lagrangian is valid, although with identical nonlinear structure to the
nlσm Lagrangian, assuming a sufficient mass gap between Mρ and f

where E is the typical energy scale probed by the experi-
ment. In particular, resumming contributions to all orders in
v/ f allows for an f not too far above the weak scale set
by v ≈ 246 GeV. We can further extend the range of valid-
ity of the effective action by including higher order terms
in the derivative expansion, such as O(p4) operators. Chiral
Lagrangian operators that are O(p4) and to all orders in π/ f
have been enumerated in Ref. [43]. In the context of com-
posite Higgs bosons the relevant four-derivative operators for
Higgs couplings were given in Refs. [22,23] in the unitary
gauge.

More specifically, the SILH Lagrangian at O(p4), includ-
ing the full nonlinearity structure, can be written as

S(4)
SI LH =

∫
d4x M2

ρ f 2 L(4)

(
π

f
,
D

Mρ

)
=

∫
d4x

∑
i

ci
g2
ρ

Oi ,

(9)

where ci are expected to be order unity constants parame-
terizing the incalculable UV physics at the scale Λ ∼ 4π f .
In some cases operators contributing to couplings of neutral
particles and an on-shell photon are further suppressed by
additional loop factors. In total there are 7 operators labelled
by O1, O2, O3, O

±
4 and O±

5 , each with the corresponding
unknown Wilson coefficients ci . These 7 Wilson coefficients
contribute to a dozen different observables that can be mea-
sured in HVV and HHVV couplings [22,23]. Focusing on
those relevant for HVV couplings we have, in the unitary
gauge,

L(1h) = m2
W

M2
ρ

[
Ch

1
h

v
ZμDμν Zν + Ch

2
h

v
Zμν Z

μν

+Ch
3
h

v
ZμDμν Aν + Ch

4
h

v
Zμν A

μν

+Ch
5
h

v
(W+

μ DμνW−
ν + h.c.)

+ Ch
6
h

v
W+

μνW
−μν

]
, (10)

where Dμν = ∂μ∂ν − ημν∂2. Although there are six coeffi-
cientsCh

i , i = 1, . . . , 6 in the unitary gauge, they are secretly
related by only five Wilson coefficients residing in Eq. (9), as
well as the input parameter defined by sin θ = √

ξ = v/ f ,
in a composite Higgs model:

Ch
1 = 4c2w

c2
w

(−2c3 + c−
4

) + 4

c2
w

c+
4 cos θ , (11)

Ch
2 = −2c2w

c2
w

(
c−

4 + 2c−
5

) − 2

c2
w

(
c+

4 − 2c+
5

)
cos θ , (12)

Ch
3 = 8

(−2c3 + c−
4

)
tw , (13)

Ch
4 = −4

(
c−

4 + 2c−
5

)
tw , (14)

Ch
5 = 4(−2c3 + c−

4 ) + 4c+
4 cos θ , (15)

Ch
6 = −4(c−

4 + 2c−
5 ) − 4

(
c+

4 − 2c+
5

)
cos θ . (16)

In the above cw, c2w, tw denote cos θW , cos 2θW , tan θW
respectively, where θW is the weak mixing angle.

2.2 H → 4L tensor structure

The operators listed in Eq. (10) enter into H → 4L decays
and manifest themselves through kinematic distributions of
the decay product. For our analysis we utilize the “Golden
Channel” analysis framework developed in Refs. [26,28,30–
32,34,35] which parametrizes the effective Higgs boson cou-
plings to pairs of neutral vector boson pairs in terms of the
Lorentz tensor structures,

Γ
μν
V = 1

v

[
AV

1 m
2
Z g

μν + AV
2 (kν

1k
μ
2 − k1 · k2g

μν)

+AV
3 εμναβk1αk2β + (AV

4 k
2
1 + ĀV

4 k
2
2)gμν

]
,

(17)

where V = (Z Z , Zγ, γ Z , γ γ ). We assume massless lep-
tons, using the notation and conventions defined in [32],
but have also included the AV

4 tensor structures which were
not included previously. Note that electromagnetic gauge
invariance requires Aγ γ

1 = AZγ
1 = Aγ γ

4 = 0. In general
the AV

i can be momentum dependent form factors which
are functions of Lorentz invariant products of the exter-
nal momenta. For our purpose it is sufficient to take them
to be real and constant coefficients in which case we have
A4 = Ā4. Furthermore, in the massless lepton case we have
Zμ∂νVμν = ZμDμνVν . Then the relation between AV

i and
the Wilson coefficients defined in Eq. (10) is quite simple:

AZZ
1 = 2

√
1 − ξ,

AZZ
2 = 4

m2
W

M2
ρ

Ch
2 ,

123



Eur. Phys. J. C           (2020) 80:829 Page 5 of 13   829 

AZZ
4 = m2

W

M2
ρ

Ch
1 ,

AZγ
2 = 4

m2
W

M2
ρ

Ch
4 ,

AZγ
4 = m2

W

M2
ρ

Ch
3 . (18)

For simplicity we have kept only CP-even terms and
neglected effective couplings to pairs of photons in Eq. (17),
which do not appear in universal Higgs nonlinearity, though
it would be straightforward to include them in the fit. Note
that as ξ → 0 we recover the SM value for the tree level
HZZ coupling, AZZ

1 = 2. The important observation is:

– Only AZZ
1 is directly related to ξ ; the other tensor struc-

tures are dependent on both Mρ and Ch
i .

At the leading order in derivative expansion, the sig-
nal strength in HVV coupling measurements is attributed
entirely to AZZ

1 , which is then used to constrain ξ [44]. We see
this is not the case anymore whenO(p4) effects are included.
It turns out that all couplings in Eq. (18) can be extracted from
the fully differential spectra of H → 4L decays. In what fol-
lows we use CMS H → 4L data to constrain the AV

i coeffi-
cients, which then translate into limits on ξ and the Wilson
coefficients Ch

i .

3 Experimental constraints

3.1 The golden channel: H → 4L

In this subsection we will use both the “rate information,”
which pertains to the signal strength measured in H →
4L channel, and the “shape information”, as contained in
the differential spectra of final state leptons, to place con-
straints on the Wilson coefficients in the nonlinear Higgs
Lagrangian in Eq. (10). In particular, we utilize the fully dif-
ferential decay width analytically computed in [28,30] for H
→ 2e2μ, 4e, and 4μ assuming on-shell decay of the Higgs
boson. Interference effects between the different tensor struc-
tures in Eq. (17), as well as among identical final states in
the case of 4e and 4μ, have been fully accounted for. Before
examining current CMS constraints, we briefly review the H
→ 4L partial decay width and fully differential spectra.

For our purpose it is convenient to single out the AV
i depen-

dence in the differential decay width, which can be written
schematically as

dΓH→4L

dO =
∑
i j

Ai A
∗
j × dΓ̂i j

dO , (19)

where O represents all observables available in the H → 4L
decay channel [28,30] and i, j sum over all of the possible
tensor structures in Eq. (17). The advantage of doing so is
then the remaining quantities dΓ̂i j/dO can be calculated and
integrated over a particular phase space. We can then define
the ‘sub-widths’ for each combination of Ai A∗

j as

Γ̂i j =
∫

dΓ̂i j

dO dO , (20)

which is just a numerical constant once a selection cut over
the phase space is chosen. It is worth emphasizing that the
sub-widths could be negative for certain combinations of ten-
sor structures when they interfere destructively. However, the
partial width written as the sum

ΓH→4L =
∑
i j

Ai A
∗
j × Γ̂i j , (21)

must be positive and is now a function of the effective cou-
plings and the phase space cuts. Equations (19) and (21) allow
for a full reconstruction of the differential decay spectra and
the partial width of H → 4L, respectively.

It will be convenient to normalise ΓH→4L to the (tree level)
SM expectation, which corresponds to AZZ

1 = 2 and all other
couplings set to zero,

R4L ≡ ΓH→4L

Γ SM
H→4L

=
∑
i j

Ai A
∗
j × Γ̂i j

Γ SM
H→4L

. (22)

Performing the integration over phase space we obtain the
normalized partial width in Eq. (22) for the 2e2μ and 4e/4μ

channels respectively,

R2e2μ = 0.25|AZZ
1 |2 + 0.00092AZZ

1 Aγ γ
2 + 2.97|Aγ γ

2 |2
+ 0.0868AZZ

1 AZγ
2 − 0.1253Aγ γ

2 AZγ
2

+ 9.30|AZγ
2 |2 − 0.0696AZZ

1 AZZ
2

+ 0.0000346Aγ γ
2 AZZ

2 − 0.0292AZγ
2 AZZ

2

+ 0.0253|AZZ
2 |2 + 2.508|Aγ γ

3 |2
− 0.0958Aγ γ

3 AZγ
3 + 5.14|AZγ

3 |2
+ 0.0003935Aγ γ

3 AZZ
3 − 0.01301AZγ

3 AZZ
3

+ 0.009033|AZZ
3 |2 − 0.03134AZZ

1 AZγ
4

+ 0.03914Aγ γ
2 AZγ

4 − 1.815AZγ
2 AZγ

4

+ 0.0007644Aγ γ
2 AZZ

4 + 0.008514AZZ
2 AZγ

4

+ 0.6082|AZγ
4 |2 + 0.2445AZZ

1 AZZ
4

+ 0.08802AZγ
2 AZZ

4 − 0.06939AZZ
2 AZZ

4

− 0.02968AZγ
4 AZZ

4 + 0.2468|AZZ
4 |2,

R4e/4μ = 0.25|AZZ
1 |2 − 0.076AZZ

1 Aγ γ
2 + 15.19|Aγ γ

2 |2
+ 0.088AZZ

1 AZγ
2 − 0.1845Aγ γ

2 AZγ
2

+ 8.34|AZγ
2 |2 − 0.0659AZZ

1 AZZ
2
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− 0.00567Aγ γ
2 AZZ

2 − 0.02475AZγ
2 AZZ

2

+ 0.02168|AZZ
2 |2 + 14.14|Aγ γ

3 |2
− 0.1297Aγ γ

3 AZγ
3 + 4.507|AZγ

3 |2
− 0.0248Aγ γ

3 AZZ
3 − 0.00875AZγ

3 AZZ
3

+ 0.00704|AZZ
3 |2 − 0.0423AZZ

1 AZγ
4

+ 0.05394Aγ γ
2 AZγ

4 − 1.74AZγ
2 AZγ

4

− 0.0334Aγ γ
2 AZZ

4 + 0.0103AZZ
2 AZγ

4

+ 0.6957|AZγ
4 |2 + 0.2316AZZ

1 AZZ
4

+ 0.08167AZγ
2 AZZ

4 − 0.06262AZZ
2 AZZ

4

− 0.03494AZγ
4 AZZ

4 + 0.2251|AZZ
4 |2, (23)

with cuts and reconstruction corresponding to ‘CMS-like’
phase space selections [45–47]. To be specific, we take the
Higgs mass to be mh = 125 GeV and limit our phase space
to approximate the cuts used by CMS [45] as indicated by
following cuts and reconstruction:

– pT � > 20, 10, 7, 7 GeV for lepton pT ordering,
– |η�| < 2.4 for the lepton rapidity,
– 40 GeV ≤ M1 and 12 GeV ≤ M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always impose
M1 > M2 and take M1 to be the reconstructed invariant mass
for a particle and anti-particle pair which is closer to the Z
mass.

In this work we have included the AZZ/Zγ
4 couplings,

which were not included in previous studies [32,35]. For
completeness we have included all of the operators in
Eq. (17), though below we will focus on those relevant for
the nonlinear Higgs dynamics we are interested in. Note
terms linear in the CP-odd couplings (AVV

3 ) do not appear
because they integrate to (nearly) zero when choosing CMS-
like selection cuts, which reflects the fact that “rate” mea-
surements are not sensitive to CP violation. In this regard,
one could employ the shape information in the differential
spectra [32,34,35] or the construction of forward-backward
asymmetries [48] to probe CP violation, but we do not explore
this possibility here.

In the CMS analyses in Refs. [45,46], the signal strength in
H → 4L is measured in two categories, depending on whether
the production channels involve Higgs couplings to fermions
(ggH and ttH channels) or Higgs couplings to electroweak
bosons (VBF and VH channels),

μ4L
i = σ(i → H → 4L)

σ (i → H → 4L)SM
= σ(i → H)

σ (i → H)SM
× Γ SM

H

ΓH
× ΓH→4L

Γ SM
H→4L

,

(24)

where i = F, V represents the ggH+ttH channels and
VBF+VH channels, respectively. In the following we will
focus on the fermionic production channels, ggH+ttH, for
two reasons: (1) ggH is by far the dominant production chan-
nel of the 125 GeV Higgs at the LHC and the uncertainty
is smaller and (2) any modification in HVV couplings will
enter into both the production and decay amplitudes in the
VBF+VH channels. For simplicity we assume the production
cross-sections in ggH+ttH channels are equal to their SM val-
ues as well as the total Higgs width. Under these assumptions
the deviation in “rate measurements” in μ4L

F arises entirely
from the decay amplitudes:

μ4L
F = ΓH→4L

Γ SM
H→4L

= R4L. (25)

For completeness we briefly summarize the procedures
taken by the CMS collaboration in Refs. [45,46], which we
refer the reader to for details. For CP-even couplings, which
we focus on in this work, CMS built three multi-variate like-
lihood functions, each optimized for a particular anomalous
Higgs coupling in Eq. (17): AZZ

2 , AZZ
4 and AZγ

4 . In each
likelihood function all anomalous couplings, other than the
one the likelihood function is specifically optimized for, are
set to zero [49]. In other words, in these analyses the anoma-
lous HVV couplings are turned on only one at a time. (See
Refs. [30,31] for a framework that allows for simultaneous
measurements of several anomalous Higgs couplings at the
same time.) The likelihood function allows one to constrain
and fit: (1) the rate (signal strength) in H → 4L decays and
(2) the “fraction” of the observed 4L events originated from
the anomalous HVV coupling. It turns out that the best fit
value for the three CP-even anomalous HVV couplings ana-
lyzed in Refs. [45,46] all have central values extremely close
to zero, albeit with varying degrees of uncertainties. As a
result, CMS provided four different fits to the signal strength
in 4L channel, under the assumption of vanishing anomalous
HVV couplings. The relevant CMS results are summarized
in Table 1, where we have computed the 95% C.L. from the
67% C.L. by assuming a Gaussian distribution. As for the
shape measurements, CMS provided limits on the ratio3

RV
i ≡ AV

i /AZZ
1 , (26)

from the differential spectra in the 4L decays. This is pos-
sible because different tensor structures in Eq. (17) result in
different shapes in the differential distributions. We quote
the results in Table 2 and give a visual representation of the
bounds in Fig. 2.

In their Run 2 analyses CMS did not provide a fit to
Aγ γ /Zγ

2 [45,46], because these are better constrained from

3 Note we use a slightly different normalization than in the CMS anal-
ysis [45,46].
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Table 1 Summary of CMS rate measurements of H→4L from ggh+ttH
production channels [45,46]. Each measurement is optimized with
respect to a particular anomalous HVV coupling as indicated. How-
ever, the fit is performed assuming AV

i = 0

μ4L
F (Ai ) Best fit at Ai = 0 95% C.L. [46]

μ4L
F (AZZ

2 ) 1.19 [0.857, 1.602]
μ4L
F (AZZ

4 ) 1.26 [0.907, 1.652]
μ4L
F (AZγ

4 ) 1.24 [0.907, 1.612]

Table 2 Summary of CMS shape measurements on ratios of anoma-
lous HVV couplings [45,46]. In the middle column we indicate the
assumptions on the Higgs total width

Ri = Ai/AZZ
1 Constraint 95% CL

RZ Z
2 ΓH = Γ SM

H [−0.381, 0.180] [46]

RZ Z
4 ΓH = Γ SM

H [−0.272, 0.129] [46]

RZγ
4 On-shell events [−0.792, 0.287] [46]

Fig. 2 Visual representation of bounds from Table 2

direct H→ γ γ and H → Zγ two body decays. It turns out
that only AZγ

2 is universal in nonlinear Higgs dynamics, as
Aγ γ

2 requires shift-symmetry breaking effects. In Sect. 3.2,

we perform a separate fit to AZγ
2 using the direct Zγ channel.

It is worth emphasising that, in order to properly con-
strain nonlinear Higgs dynamics, one would need to adapt
the present CMS analyses. In particular, we would like to

1. fit the magnitude of the AV
i coefficient in Eq. (17), instead

of just the fraction.
2. allow all anomalous HVV couplings to be present at the

same time.

It would be of interest to study the impact on the signal
strength (μF ) measurement by relaxing the assumption of
vanishing anomalous HVV couplings. In what follows we
will perform a limited analysis within the framework of the
CMS analyses, and await a more comprehensive experimen-
tal study in the future.

3.1.1 Constraints from rate measurements

Using the CMS bounds given in Tables 1 and 2 we can now
study limits derived from rate measurements. We restrict our-
selves to the CP-even HVV couplings AZZ

1 , AZZ
2 , AZZ

4 and

AZγ
4 , and trade AZZ

1 for the nonlinear parameter ξ . Then
Eq. (25) can be written as

μ4L
F (Ri ) = 4(1 − ξ)

(
0.25 − 0.0696RZ Z

2 + 0.2445RZ Z
4

− 0.0313RZγ
4 + 0.0253|RZ Z

2 |2 + 0.2468|RZ Z
4 |2

+ 0.6082|RZγ
4 |2 − 0.06939RZ Z

2 RZ Z
4

− 0.02968RZγ
4 RZ Z

4 + 0.008514RZ Z
2 RZγ

4

)
,

(27)

where we have used only the 2e2μ normalized partial width
in Eq. (23) with similar results obtained using the 4e channel
for the operators of interest in this study. With Eq. (27) we
can perform two kinds of fits to ξ :

1. In the right-panel of Fig. 3, we present bounds on ξ by
setting all Ri = 0 and applying the measured μ4L

F in
Table 1, where the constraints are obtained assuming that
the anomalous HVV coupling vanishes. The values of ξ

for the different analysis vary because different catego-
rization and observables are utilized.

2. In the left-panel of Fig. 3, we use the central value of μ4L
F

from Table 1 in the left-hand side of Eq. (27) and plug
in the experimental limits on the corresponding Ri from
Table 2 in the right-hand side. We then invert Eq. (27) to
derive a limit on ξ .

The moral of these two fits on ξ is very different, and
neither is perfect.

In the first fit, we assume all the observed 4L events came
from the gμν tensor structure in Eq. (17), which is similar
in spirit to the conventional approach of using the signal
strength to constrain ξ without including O(p4) effects. We
have seen in Sect. 2 that this holds only at leading order in the
derivative expansion. One could justify this approach some-
what by pointing out that the central values of the anomalous
HVV couplings from the shape information are all extremely
close to zero [46]. However the uncertainties remain signif-
icant, as can be seen in Table 2, and it is not clear how to
interpret μ4L

F when the anomalous couplings are turned on.
In the second fit, we attempted to subtract out the 4L events

originating from the anomalous HVV coupling, by using the
experimental limit on RV

i in Table 2. The remaining events
then can be interpreted as arising entirely from the gμν tensor
structure, whose coefficient is given by 2

√
1 − ξ in Eq. (18).

However, it is not clear what “signal strength” one should use
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Fig. 3 Lower: fits to ξ using the rate information in the H → 4L chan-
nel, assuming the anomalous HVV couplings vanish. Upper: fits to ξ

using the shape information and the constraints on RV
i . See the main

text for more details

to subtract out the anomalous 4L events, as μ4L
F in Table 1 is

extracted assuming the anomalous coupling vanishes.
Having made these qualifications on our fitting proce-

dures, there are interesting features in Fig. 3 which are likely
to survive even after a more rigorous fitting is adopted:

– The most prominent feature in the right panel of Fig. 3 is
that ξ is preferred to be negative, due to the fact that μ4L

F
in Table 1 is larger than 1 in all three different likelihood
fits.

– In the left panel, the uncertainty in ξ is still rather large,
allowing for ξ � 0.5 whenRZγ

4 is turned on or ξ � −0.5
when RZ Z

4 is allowed. It turns out that the reason behind
the rather loose limits on ξ is different between these two
scenarios.
In the case ofRZγ

4 , the loose constraint is due to a combi-
nation to two factors: the rather large experimental uncer-
tainty in Table 2 and a large numerical coefficient, from
phase space integration, in front of the |RZγ

4 |2 term in
Eq. (27). The large experimental uncertainty implies the
differential spectra from AZγ

4 are quite similar to those
from the leading order AZZ

1 . As a consequence, the like-
lihood fit is unable to separate the two tensor structures.
On the other hand, while the limit onRZ Z

4 is the strongest
in Table 2, implying the likelihood fit is capable of dis-

tinguishing this particular tensor structure efficiently, any
small presence of AZZ

4 is amplified by the large numer-
ical coefficient from phase space integration defined in
Eq. (20). This can be seen explicitly either in Eq. (27),
where the interference term linear in RZ Z

4 has a numeri-
cal coefficient as large as the leading order coefficient.

It is possible to further obtain constraints on the Wilson
coefficients defined in Eq. (10), by using the mapping in
Eq. (18). Again we can perform two different fits using the
rate and the shape information, respectively.

For rate measurements, we re-write Eq. (27) in terms of
ξ, gρ and Ch

i ,

μ4L
F (Ci ) = (1 − ξ)

+
[
0.0519Ch

1 − 0.0591Ch
2 − 0.00666Ch

3

] √
1 − ξ ξ

g2
ρ

+
[
0.00278 (Ch

1 )2 + 0.00456 (Ch
2 )2 + 0.00686 (Ch

3 )2

− 0.00313Ch
2C

h
1 − 0.000335Ch

3C
h
1

+ 0.000384Ch
2C

h
3

] ξ2

g4
ρ

, (28)

where we have plugged in Mρ = gρ f . With this we can use
the rate measurements in 4L channel to examine bounds in
the (Ci , ξ) and (gρ, ξ) two dimensional planes, by fixing the
third variable. In the top row of Fig. 4, we fix gρ = 1.5 and
examine the (Ci , ξ) plane. (Recall that in QCD αs(mb) ≈
0.22, which corresponds to gs ≈ 1.7.) We see that turning
on Ch

i could have a non-negligible impact on the extraction
of ξ . However, the impact gets diminished as gρ becomes
larger and larger because of the 1/g2

ρ and 1/g4
ρ dependence

in Eq. (28). This feature is demonstrated explicitly in the
second row of Fig. 4 where we fix Ch

i = 1 and plot the
constraints in the (gρ, ξ) plane.

As for the shape measurements, since the CMS constraints
are presented in terms of the percentage of 4L events origi-
nating from the anomalous HVV couplings [45,46], we find
it convenient to obtain bounds on the ratios Ch

i /AZZ
1 , which

are independent of the 4L signal strength. The outcome is
presented in Fig. 5. We see that current bounds are still weak
and, depending on which coupling is varied in the fit, still
allow for large positive or negative values of the Ch

i .

3.1.2 Projections with multi-dimensional parameter
likelihood fits

Currently at the LHC only one parameter fits are performed
in the 4L channel [45,46]. In the future this channel offers
a golden opportunity to conduct multi-parameter fits, as
demonstrated in the matrix element method (MEM) frame-
work developed in Refs. [28,30–32,35]. In this framework
all decay observables are utilized and a combined likelihood
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Fig. 4 Top: allowed parameter space in the (Ch
i , ξ) plane using using

24.8 f b−1 (7 + 8 TeV) + 80.2 f b−1 (13 TeV) of 4L data [46]. Bot-
tom: same as top, but in the (gρ, ξ) plane

Fig. 5 Fits to Ch
i /AZZ

1 using Eq. (18) and taking as input the CMS
limits on Ai shown in Table 2

for the 2e2μ, 4e, 4μ final states is constructed from the nor-
malized fully differential decay width. The dominant qq̄ →
4L background, computed analytically in Refs. [26,28,30],
is also included in the likelihood. This likelihood function
is a function of all anomalous HVV couplings in Eq. (17),
and allowing all them to vary simultaneously we can obtain
projection curves for future sensitivity to the Wilson coef-
ficients in the nonlinear Higgs Lagrangian by the mapping
in Eq. (18). Details of the statistical analysis and likelihood
maximization procedure can be found in [28,30–32,35,36].

In the left panel of Fig. 6 we show projections of the
95% C.L. contours forCh

i /AZZ
1 from the shape measurement

as a function of luminosity (L), or number of signal events
(NS), at the LHC, assuming Mρ = 1 TeV. When calculating

Fig. 6 Projected 95% C.L. contours forCh
i /AZZ

1 using shape informa-
tion as a function of luminosity or number of signal events (NS). In the
case of luminosity we assume the SM ggH+VBF Higgs production at
a 14 TeV LHC and 100% lepton selection efficiency. For these curves
the 2eμ, 4e, 4μ channels are combined and the dominant qq̄ → 4L
background is also included

the necessary luminosity we include the ggH+VBF produc-
tion channels at

√
S = 14 TeV. The solid lines are projections

for an 8-dimensional parameter fit, allowing all anomalous
HVV couplings in Eq. (17) to vary simultaneously while the
dashed lines are obtained allowing only a single coupling to
vary, as done in current CMS analyses. In the projection we
have included Ch

4 , although it is not currently included in the
CMS shape measurements in the 4L channel using Run 2
data.

On the right-panel we present projections for Mρ from
the shape measurements using Ch

i /AZZ
1 = 1/2. We can see

that, in both plots, at large statistics single parameter and
multi-parameter fits converge to similar values. However, at
low statistics we see that single parameter fits could lead
to an overly optimistic sensitivity to the Wilson coefficients
and in particular for Ch

4 . Eventually at the HL LHC [50],
the sensitivity to each coupling could improve by around
an order of magnitude from current limits. As can also be
seen, the strongest sensitivity corresponds to Ch

4 where val-
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ues |Ch
4 /AZZ

1 | ∼ 4 can eventually be probed or correspond-
ingly, scales Mρ ∼ 750 GeV. This stronger sensitivity is
due to the fact the differential spectra corresponding to the
AZγ

2 can be efficiently distinguished from the dominant tree
level AZZ

1 operator [32]. This is primarily due to the photon
propagator which introduces a pole at low di-lepton invari-
ant mass. However, in the case of the AZγ

4 (corresponding to
Ch

3 ), the k2
1,2 dependence in the tensor structure (see Eq. 17)

cancels this pole thus eliminating the distinguishing feature
in the differential spectra.

3.2 Direct H → Zγ decay

The Wilson coefficient Ch
4 contributes to on-shell H → Zγ

decays, which can be parametrized as [42]:

μZγ = Γ (H → Zγ )

Γ (H → Zγ )SM



∣∣∣∣∣1 − 1.1
(1 TeV)2

M2
ρ

Ch
4

∣∣∣∣∣
2

, (29)

where the O(1) coefficient in front of Ch
4 is due to the fact

that the SM H → Zγ process arises at the one-loop level.
Although present measurements from the LHC on the signal
strength μZγ only gives 6.6 at 95% CL upper limit [51,52],
it already puts strong constraint on the coefficient Ch

4 :

Mρ√
|Ch

4 |
> 0.56(0.84) TeV, (30)

with Ch
4 > 0(Ch

4 < 0) respectively. The HL-LHC will be
able to measure this channel with 20% uncertainty [53],
which will in turn give the constraint on Ch

4 :

Mρ√
|Ch

4 |
> 2.2(2.5) TeV (31)

In Fig. 7, we show the 95% C.L. constraint onCh
4 with Mρ =

1 TeV from the present measurement with integrated lumi-
nosity L = 36.1 fb−1 [51] and from the HL-LHC prospec-
tive [53]. Note also that when combining the μZγ signal
strength with the H → V ∗V signal strength, their ratio is
directly sensitive to the nonlinearity of a composite Higgs
boson [54].

3.3 Precision electroweak constraints

While we have demonstrated that precision Higgs measure-
ments, in particular the golden H → 4L channel, can directly
constrain nonlinear Higgs dynamics, it is well-known that
there are other low-energy, indirect constraints on anomalous
HVV couplings from precision electroweak test (EWPT),

Fig. 7 The bound onCh
4 from H → Z γ on-shell measurement at the 13

TeV LHC with luminosity L = 36.1 fb−1 [51] and from the prospective
HL-LHC [53]

which we consider in this section. The S, T parameters are
related to ξ as follows [55]:

SH = ξ

12π
ln

Λ2

m2
h

, TH = − 3

16π

ξ

c2
w

ln
Λ2

m2
h

, (32)

where Λ is the UV cutoff that regularizes the logarithmic
divergence. In the following, we will choose Λ = 4π f . The
fact that the IR contributions to the S, T parameters have
different sign put a strong constraint on the value of ξ , as
the EWPT gives strong positive correlation 92% among the
S and T parameter [56]. The present fit to the EWPT gives
[56]:

S = 0.02 ± 0.07 , T = 0.06 ± 0.06 , (33)

which will be used in the following analysis.
In addition to the IR contribution, there are potential UV

contributions arising from the presence of O(p4) operators
in the effective Lagrangian. In particular, O+

5 will contribute
to the S parameter at the tree-level.

SO5 = 32π

g2
ρ

ξ c+
5 (Mρ) . (34)

There are also contributions from the one-loop threshold cor-
rections involving the vector or fermionic resonances, which
are model-dependent [57–59]. Instead of going into the detail
of a particular UV construction, we simply choose some
benchmark values for the these contributions. Note that the
one loop effects can give negative and p5ositive contribu-
tions to the S and T parameters, respectively, which are in
the opposite direction from the IR contribution in Eq. (32).
This observation can potentially relax the bound on ξ from
EWPT.

In addition, since O+
5 contribution to the S parameter

arises at the tree-level, as can been seen from the large coeffi-

123



Eur. Phys. J. C           (2020) 80:829 Page 11 of 13   829 

cient in Eq. (34), only a small negative c+
5 is needed to relax

the bound. They can be achieved by noticing that there are
potential cancellations between different contributions to c+

5
in the Lagrangians of the composite spin-1 resonances [60]:

c+
5 = 1

4
(1 − 4 α2 g

2
ρ) (35)

where α2 is the coefficient of the operator Q2 defined in
Ref. [60]. There are also potential positive contribution to
the T parameter coming from the loop of the fermionic
resonances, for example, the electroweak singlet top part-
ner [61,62]. We are not going to discuss in detail this possi-
bility, but only take a benchmark value of T f = 0.08 as an
illustration. In the left panel of Fig. 8, we show the Δχ2 as
function of ξ under different three different assumptions:

1. c+
5 /g2

ρ = 0, T f = 0 ,
2. c+

5 /g2
ρ = −1/162, T f = 0 ,

3. c+
5 /g2

ρ = −1/162, T f = 0.08.

We can see that the constraint on ξ is very strong in the
absence of other contributions: ξ ∈ [−0.11, 0.002] at 95%
C.L., which again prefers a negative value of ξ . A small
negative value of c+

5 relax the bound on the negative ξ to
−0.19 and additional positive contribution from T f can relax
the bound on positive value of ξ ∈ [−0.015, 0.16]. In the
right panel we present the 95% C.L. allowed region in the
ξ − c+

5 plane with gρ = 1.5. We can see that the bound
on ξ is very strong with only IR contribution and can be
significantly relaxed in the presence of small negative value
of c+

5 and positive contribution T f , which is consistent with
the results discussed above.

We emphasize that the precision electroweak constraints
are orthogonal to direct measurements of Higgs couplings,
as they involve different sets of assumptions. Therefore it is
important to pursue both of them independently.

4 Conclusions

Nonlinear dynamics of the 125 GeV Higgs boson is the most
salient feature of a composite Higgs boson. The nonlinear
interaction realize the PNGB nature of the Higgs, in the
same way pions in low-energy QCD manifest their PNGB
nature through the nonlinear interactions. In fact, the nonlin-
ear dynamics can serve as the defining property of a com-
posite Higgs boson, independent of how the fermionic sector
is implemented, even when the so-called top partner is neu-
tral under all SM charges. In particular, recent theoretical
advances showed the nonlinear interaction is an IR prop-
erty of the composite Higgs boson that is insensitive to the
symmetry-breaking pattern invoked in the UV. At the two-

Fig. 8 Bounds from S, T parameters. Left plot: Δχ2 as a function of
ξ under different assumptions in Eq. (1). Right plot: 95% C.L. allowed
region in the ξ − c+

5 plane with gρ = 1.5

derivative level, the nonlinear Lagrangian is determined by
a single parameter f , the Goldstone decay constant. In the
low-energy regime, f needs to be taken as an input from the
experimental data. Traditionally this is done by relating f to
the signal strength of HVV couplings assuming the observed
events arise entirely from O(p2) operators in the nonlinear
Higgs Lagrangian. This is obviously an over-simplification
as O(p4) operators introduce several new anomalous tensor
structures to HVV couplings.
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In order to disentangle effects of O(p2) operators from
those of O(p4) operators, it is crucial to include shape infor-
mation, as different tensor structures lead to different shapes
in the fully differential spectra. In this regard, the H → 4L
“golden channel” decay is the ideal probe of these nonlin-
ear Higgs dynamics. In this work we have performed, for
the first time, experimental fits to the Wilson coefficients of
O(p4) operators. In addition, we demonstrated the limitation
of using only the signal strength to constrain the nonlinear
parameter ξ at leading order in derivative expansions. We
showed that it is important to include both the rate infor-
mation in the signal strength measurements and the shape
information in the fully differential spectra, in order to con-
strain the nonlinear parameter ξ and the Wilson coefficients
Ch
i . The fitting procedures we adopted are less than ideal and

limited by the methods employed in current LHC analyses.
We found that in rate measurements ξ is preferred to be

negative, pointing to a non-compact coset structure in the
UV [17,18]. Moreover, using the shape measurements we
identified scenarios where ξ could be as large as + 0.5 or
− 0.5, corresponding to turning on AZγ

4 and AZZ
4 , respec-

tively. Such a large ξ could be further constrained in a specific
UV model, either by precision electroweak measurements or
direct searches in the fermionic sector. It would be an interest-
ing model-building challenge to devise a concrete UV model
realizing such a large ξ while avoiding other experimental
constraints.

Our work points to a new experimental frontier in using
precision Higgs measurements to probe nonlinear dynamics
of a composite Higgs boson, beyond the conventional signal
strength measurements. Given that the Higgs boson remains
a top priority in current and future experimental programs in
high-energy colliders, it is desirable to introduce new tools
and techniques to further the experimental analysis in mea-
surements of Higgs properties. We leave this direction for
future works.
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