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We systematically study the holographic phase transition of the radion field in a five-dimensional warped
model which includes a scalar potential with a powerlike behavior. We consider Kaluza-Klein (KK)
resonances with masses mKK at the TeV scale or beyond. The backreaction of the radion field on the
gravitational metric is taken into account by using the superpotential formalism. The confinement/
deconfinement first order phase transition leads to a gravitational wave stochastic background which
mainly depends on the scalemKK and the number of colors, N, in the dual theory. Its power spectrum peaks
at a frequency that depends on the amount of tuning required in the electroweak sector. It turns out that the
present and forthcoming gravitational wave observatories can probe scenarios where the KK resonances are
very heavy. Current aLIGO data already rule out vector boson KK resonances with masses in the interval
mKK ∼ ð1–10Þ × 105 TeV. Future gravitational experiments will be sensitive to resonances with masses
mKK ≲ 105 TeV (LISA), 108 TeV (aLIGO Design) and 109 TeV (ET). Finally, we also find that the big
bang nucleosynthesis bound in the frequency spectrum turns into a lower bound for the nucleation

temperature as Tn ≳ 10−4
ffiffiffiffi
N

p
mKK.

DOI: 10.1103/PhysRevD.102.055004

I. INTRODUCTION

The Standard Model is unable to explain some exper-
imental observations (e.g., dark matter, the baryon asym-
metry of the universe, …), and suffers from theoretical
drawbacks (e.g., strong sensitivity to high scale physics,
also known as the hierarchy problem, …). A warped extra
dimension is a way of solving the hierarchy problem and
relating the Planck scale MP to the low energy scale ρ,
which determines the spectrum of heavy resonances and is
usually considered at the TeV scale [1,2]. However, the
elusiveness of experimental data on the search of stable
narrow resonances [3,4] is perhaps suggesting us that
nature might not be as generous as we assumed it to be,
and is not solving the “whole” hierarchy problem but only
part of it, in which case ρ can be much heavier than the TeV
scale, worsening the little hierarchy problem.

But, had nature chosen that way, where could we find
sensitivity to such heavy physics, aside from future more
energetic colliders? The answer is based on the presence of
the only extra light field in the theory, the radion. This field
experiences a first order phase transition, the confinement/
deconfinement transition, which generates a stochastic
gravitational wave background (SGWB) detectable at the
present and future interferometers [5–7]. In this paper we
cover this issue for the minimal five-dimensional (5D) warp
model [1] with a stabilizing field with a bulk polynomial
potential. Studies of the holographic phase transition have
been performed with great detail in the literature [8–21].
Here we make a step forward in several aspects: (i) We take
into account the full backreaction of the scalar field on the
gravitational metric, using the superpotential mechanism
and methods proposed in Ref. [18]; (ii) We moreover go
beyond the common beliefs on what is allowed by the little
hierarchy problem, and thus explore parameter regions with
large ρ, while still solving the big hierarchy between MP
and ρ by means of the metric warped factor.
The outline of the paper is as follows. Section II

introduces the considered warped model, some conven-
tions, and the technique adopted to accurately treat the
backreaction on the metric. Section III deals with the radion
effective potential and shows how the backreaction and
detuning of the brane tensions impact it. Section IV

*emegias@ugr.es
†germano.nardini@uis.no
‡quiros@ifae.es

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 055004 (2020)

2470-0010=2020=102(5)=055004(11) 055004-1 Published by the American Physical Society

https://orcid.org/0000-0002-6735-9013
https://orcid.org/0000-0002-3523-0477
https://orcid.org/0000-0003-0380-4277
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.055004&domain=pdf&date_stamp=2020-09-08
https://doi.org/10.1103/PhysRevD.102.055004
https://doi.org/10.1103/PhysRevD.102.055004
https://doi.org/10.1103/PhysRevD.102.055004
https://doi.org/10.1103/PhysRevD.102.055004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


includes some key elements of the radion phenomenology.
Section V and Sec. VI, respectively, deal with the radion
phase transition and its gravitational wave signatures.
Finally, Sec. VII summarizes the main results and some
remarks.

II. THE MODEL

We consider a scalar-gravity system, with metric gMN
defined in proper coordinates by

ds2 ¼ gMNdxMdxN ≡ e−2AðrÞημνdxμdxν − dr2; ð1Þ

and two branes at r ¼ ra, where a ¼ 0, 1 for the ultraviolet
(UV) and infrared (IR) brane, respectively. We fix r0 ¼ 0
by convention, and our notation follows that in Ref. [18].
The five-dimensional action of the model reads as

S ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gMN j

p �
−

1

2κ2
Rþ 1

2
gMNð∂MϕÞð∂NϕÞ

− VðϕÞ
�
−
X
a

Z
Ba

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ḡμνj

q
ΛaðϕÞ þ SGHY;

ð2Þ

where we have introduced a bulk scalar field with mass
dimension 3=2. There are three kind of contributions to
the action, corresponding to the bulk, the brane, and
the Gibbons-Hawking-York (GHY) term. VðϕÞ (with mass
dimension 5) and ΛαðϕÞ (with mass dimension 4) are the
bulk and brane potentials of the scalar field ϕ, while the
four-dimensional induced metric is ḡμν ¼ e−2AðrÞημν. For
concreteness we will consider the brane potentials ΛaðϕÞ as

ΛaðϕÞ ¼ Λa þ
1

2
γaðϕ − vaÞ2; ð3Þ

where Λa is a constant, hereafter considered as a free
parameter, and γa is a dimensionful parameter. We will also
work in the stiff potentials limit, where γa → ∞, such that
the values of the bulk field at the branes are ϕðraÞ ¼ va [2].
The background equations of motion (EoM) can be

expressed in terms of the superpotential WðϕÞ (with mass
dimension 4), as [22]

ϕ0ðrÞ ¼ 1

2
W0ðϕÞ; A0ðrÞ ¼ κ2

6
WðϕÞ;

VðϕÞ ¼ 1

8
½W0ðϕÞ�2 − κ2

6
W2ðϕÞ; ð4Þ

where the prime symbol ( 0) stands for the derivative of a
function with respect to its argument, and κ2 ≡ 1=ð2M3Þ,
M being the 5D Planck mass. W is expressed as the
expansion W ¼ P

n s
nWn [18,23–25] where the parameter

s is dimensionless, and we are choosing

W0ðϕÞ ¼
6

lκ2
þ u
l
ϕ2; ð5Þ

with l being anOðM−1Þ parameter, u being dimensionless,
and s playing the role of the (small) integration constant of
Eq. (4). We work to linear approximation in s and keep the
leading terms of the u ≪ 1 limit, for which one can solve
the hierarchy problem with Oð1Þ values for va in units
of κ−1.
To linear order, we have W ¼ W0 þ sW1 with the W1

component of the superpotential given by [18]

W1ðϕÞ ¼
1

lκ2

�
ϕ

v0

�
4=u

eκ
2ðϕ2−v2

0
Þ=3: ð6Þ

Similarly ϕ can be decomposed as ϕ ¼ ϕ0 þ sϕ1 with

ϕ̄0ðrÞ ¼ v̄0eur̄ ð7Þ

and

ϕ̄1ðrÞ ¼
1

2uv̄0
eur̄½eð4−2uÞr̄ev̄20=3ðe2ur̄−1Þ − 1�; ð8Þ

which fulfills the UV boundary condition ϕðr0Þ ¼ v0 [18].
The IR boundary condition ϕðr1Þ ¼ v1 instead requires

sðr̄1Þ ¼
2uv̄20e

−ur̄1ðeur̄01 − eur̄1Þ
eð4−2uÞr̄1ev̄

2
0
=3ðe2ur̄1−1Þ − 1

: ð9Þ

Likewise the expansion of the metric exponent, AðrÞ ¼
A0ðrÞ þ sA1ðrÞ, yields

A0ðrÞ ¼ r̄þ v̄20
12

ðe2ur̄ − 1Þ; ð10Þ

A1ðrÞ ¼
1

12
½e4A0ðr̄Þ − 1� þ 2þ u

24u

�
1 −

ϕ̄2
0

v̄20

�
: ð11Þ

For convenience, in the above expressions we have intro-
duced the dimensionless quantities v̄a ≡ κva, ϕ̄ðrÞ≡ κϕðrÞ,
r̄≡ r=l, r̄a ≡ ra=l.

III. THE EFFECTIVE POTENTIAL

The effective potential normalized to its value at r1 → ∞
is given, in the stiff limit for boundary potentials, by [18]

Ueffðr1Þ ¼ ½Λ1 þW0ðv1Þ�e−4A0ðr1Þ½1 − 4A1ðr1Þsðr1Þ�
þ sðr1Þ½e−4A0ðr1ÞW1ðv1Þ −W1ðv0Þ�; ð12Þ

whereΛ1 is the tension at the IR brane. From the expression
of the effective potential given in Eq. (12) we can see that,
even if the superpotential is very appropriate a tool to take
into account the backreaction on the metric, to zeroth order
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in the expansion parameter s it provides no fixing of the
brane distance, as its dependence on r1 through A0ðr1Þ
yields a runaway behavior. Therefore, in order for the
effective potential to fix the brane distance r1, we need to
go to, at least, first order in the expansion of the parameter
sðr1Þ. In what follows, the smallness of sðr1Þ in the
considered region of parameters indeed justifies truncating
the series expansion to first order.

A. The tuned potential

We can tune to zero the first term of Eq. (12) by fixing

Λ1 ¼ −W0ðv1Þ: ð13Þ

Consequently the leading-order dimensionless effective
potential

Ū0
effðr1Þ≡ lκ2U0

effðr1Þ ð14Þ

is given by

Ū0
effðr̄1Þ ¼ 2uv̄20e

−ur̄1 ½eð4−2uÞr̄1ev̄20=3ðe2ur̄1−1Þ − 1�−1

× ½eur̄01 − eur̄1 �½e−4ðr̄1−r̄01Þev̄20=3ðe2ur̄
0
1−e2ur̄1 Þ − 1�;

ð15Þ

where r̄01 is defined by the condition

v1 ≡ v0eur̄
0
1 : ð16Þ

In fact, an excellent approximation for the tuned effective
potential is given by

Ū0
effðr̄1Þ ¼ 2u2v̄21ðr̄01 − r̄1Þ½e4A0ðr̄01Þ−4A0ðr̄1Þ − 1�e−4A0ðr̄1Þ:

ð17Þ

Notice that the expression of the effective potential in
Eqs. (15) and (17) vanishes when u ¼ 0, i.e., in the absence
of backreaction. Note also that A0ðr̄1Þ is a positive increasing
function for r̄1 > 0, and thus the factor ðr̄01 − r̄1Þ and the
term inside the bracket have the same sign for any r1. The
potential in Eq. (17) is therefore positive definite. Moreover,
one can see that Ū0

effðr̄1Þ has degenerate minima, at r̄1 ¼ r̄01
and r̄1 → ∞, where it vanishes. For the sake of comparison,
the Goldberger-Wise potential of Ref. [2] can be written in
our notation as

Ū0GW
eff ðr̄1Þ ¼ 4v̄20e

−4r̄1ðeur̄01 − e−ur̄1Þ2 þOðuÞ; ð18Þ

which is positive definite when ignoring the OðuÞ terms.
The left panel of Fig. 1 displays the plot of the effective

potential in Eq. (17) for parameter values leading to a
potential minimum at r̄01 ¼ 36. The expansion hierarchy
sðr̄1ÞW1ðr̄1Þ=W0ðr̄1Þ ∼Oð10−4Þ, so the s-expansion of the
superpotential converges fast. For the sake of comparison,
the left panel of Fig. 1 also shows the Goldberger-Wise
potential Ū0GW

eff , as well as the potential (17) with an
artificially neglected backreaction on the metric, Ū0NB

eff ,
i.e., considering A0ðrÞ ≃ r̄. We can see in the left panel of
Fig. 1 that both potentials, Ū0GW

eff and Ū0NB
eff , agree very

well, even if they have been computed using completely
different methods.

B. The detuned potential

Due to the above “tuning,” the potential minima at
r̄1 ¼ r̄01 and r̄1 ¼ þ∞ are degenerate. This prevents the
required transition from the deconfined to the confined
phase in the early universe. In order to allow such a phase
transition, we need to detune condition (13), which leads to
the potential in Eq. (15), and introduce a nonvanishing
parameter λ1 as
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FIG. 1. Left panel: the potential Ū0
eff in Eq. (17) (solid line), the same potential when neglecting the backreaction Ū0NB

eff (dashed
line), and the Goldberger-Wise potential Ū0GW

eff in Eq. (18) (dashed-dotted line) as functions of r̄1. Right panel: the potential Ūeff

in Eq. (20) for λ1 ¼ −1 (red solid line), -2 (blue dashed line) and -3 (green dashed-dotted line). In both panels we assume
v̄0 ¼ 1; v̄1 ¼ 2; u ¼ 0.0192.
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Λ1 þW0ðv1Þ ¼ Λ1 þ
6þ uv̄21
lκ2

≡ 6

lκ2
λ1 ≠ 0; ð19Þ

with λ1 a dimensionless parameter. In this case the
dimensionless effective potential is given by

Ūeffðr̄1Þ ≃ Ū0
effðr̄1Þ þ 6λ1e−4A0ðr̄1Þ; ð20Þ

where the term 4A1ðr̄1Þsðr̄1Þ has been omitted since it is
smaller than 10−3 in the parameter region we focus on. In
the right panel of Fig. 1 we plot the effective potential in
Eq. (20) for various values of λ1. For λ1 < 0 the global
minimum is at a finite value of r1. For positive values of
λ1 the minimum at finite values of r1 is not the global
minimum, or just disappears.
The position of the minimum of Ū0

effðr1Þ in Eq. (17), r̄01,
and the true minimum of Ūeffðr̄1Þ in Eq. (20) differ by a
small amount δ. By denoting the latter as r̄m1 and plugging
the difference

δ ¼ r̄m1 − r̄01 ð21Þ

into Eq. (20), one finds

δ ≃ −
1

4
W

�
−

6λ1
u2v̄21

�
: ð22Þ

Here W is the Lambert W function.1 The approximation
leading to Eq. (22) relies on the expansion u ≪ 1 and holds
within a few per mille.

IV. THE RADION FIELD

Using the formalism of Ref. [18] we find, to leading
approximation in the parameter u, that the radion field
χ̄ðr1Þ≡ lχðr1Þ can be approximated by

χ̄ðr1Þ ≃ e−A0ðr1Þ; ð23Þ

an expression which can be inverted, and yields

r̄1ðχ̄Þ ¼ − log χ̄ þ v̄20
12

−
1

2u
W

�
uv̄20
6

euðv̄20=6−2 log χ̄Þ
�
: ð24Þ

We now introduce the physically relevant parameter ρ as

ρ≡ e−A0ðr̄m1 Þ=l: ð25Þ

Contour lines of ρ (in TeV) are exhibited in Fig. 2 in the
plane ðλ1; uÞ for the specified values of the parameters. We
see from Fig. 2 that ρ is mainly determined by u, with a
milder dependence on λ1. We find u ≃ 0.0192ð0.0219Þ for

ρ ¼ 1ð100Þ TeV as a set of benchmark values, although we
will use the precise functional dependence of u on λ1,
provided by Fig. 2, in the rest of our numerical analysis.
A convenient parametrization of the (dimensionful)

effective potential in units of the physically relevant
parameter ρ is then

Ueffðr̄1Þ ¼
N2ρ4

8π2
e4A0ðr̄m1 ÞŪeffðr̄1Þ; ð26Þ

where we are using the precise AdS=CFT relation on the
5D squared gravitational coupling constant ðMlÞ−3

1

N2
¼ ðMlÞ−3

16π2
; i:e: N2 ¼ 8π2l3=κ2; ð27Þ

N being the number of colors in the dual theory, as a
“definition” of N. Hence the radion potential, given by

VradðχÞ≡Ueff ½r̄1ðχ̄Þ�; ð28Þ

has a minimum at hχi ¼ ρ.
We now compute the radion mass using the mass

formula of Ref. [18]. In the stiff limit for brane potentials,
for which the radion mass is maximized, we can write

m2
rad ¼ ρ2=Πrad ð29Þ

and

Πrad ¼
1

l2

Z
rm
1

0

dre4ðr−rm1 Þ=le4ðΔAðrÞ−ΔAðrm1 Þ
�
W½ϕðrÞ�
W0½ϕðrÞ�

�
2

×

�
2

W½ϕðrm1 Þ�
þ
Z

rm
1

r
dr̄e−2ðAðr̄Þ−Aðrm1 ÞÞ

�
W0½ϕðr̄Þ�
W½ϕðr̄Þ�

�
2
�

ð30Þ

1
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1

u

FIG. 2. Contour plot for values of ρ in TeV units, for v̄0 ¼ 1,
v̄1 ¼ 2 and 1=l ¼ 1018 GeV.

1The Lambert function WðzÞ is defined as the principal
solution (upper branch) for the equation WeW ¼ z.
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withΔAðrÞ≡ AðrÞ − r̄. The observation that the integral in
Eq. (30) is dominated by the region r ≃ rm1 allows for an
analytical approximation of the integral. Under such an
approximation, in the limit u ≪ 1 we obtain

mrad=ρ ≃ e2½ΔAðr̄m1 Þ−ΔAðrÞ�fðr̄Þjr̄¼r̄m
1
−1=4;

fðr̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lW½ϕðrm1 Þ�

q W0½ϕðrÞ�
W½ϕðrÞ� : ð31Þ

We display in Fig. 3 the normalized radion mass as a
function of λ1 by using: (i) Dashed lines: the numerical
computation of the mass formula of Eq. (30); (ii) Dotted
lines: the analytical formula of Eq. (31); and (iii) Solid
lines: the numerical solution of the EoM of the scalar
perturbations along the lines of Ref. [26]. Note that the
three methods are in reasonable agreement. The result for
v̄0 ¼ 1, v̄1 ¼ 2 and ρ ¼ 1ð100Þ TeV is mrad=ρ ≃ 0.10
(0.12). For v̄0 ¼ 0.1, v̄1 ¼ 0.2, where the backreaction
on the metric is smaller, the radion is much lighter,
mrad=ρ ≃ 0.011 (0.013) with ρ ¼ 1ð100Þ TeV, as expected.
In summary, we find that the radion mass scales linearly
with the values of v̄0 and v̄1, while it is almost independent
of λ1.
Using similar approaches, we compute the mass of the

first KK resonance for gauge bosons,mgauge
KK , and gravitons,

mgrav
KK . We obtain mgauge

KK =ρ ≃ 2.46ð2.43Þ and mgrav
KK =ρ ≃

3.88ð3.83Þ for v̄0 ¼ 1; v̄1 ¼ 2 (v̄0 ¼ 0.1, v̄1 ¼ 0.2), values
almost independent of λ1 and ρ.

For concreteness, hereafter we will consider the case
v̄0 ¼ 1, v̄1 ¼ 2 and l nearby the Planck length lP,
namely 1=l ¼ 1018 GeV ≃ 0.4=lP.

V. THE CONFINEMENT/DECONFINEMENT
PHASE TRANSITION

It is the phase transition from the radion symmetric
(deconfined) phase, at χ ¼ 0, to its broken (confined)
phase, at χ ¼ hχi ≠ 0. At finite temperature the warped
model admits an additional gravitational solution with a
black hole (BH) singularity located at the event horizon
r ¼ rh [8,27],

ds2BH ¼ −hðrÞ−1dr2 þ e−2AðrÞðhðrÞdt2 − dx⃗2Þ: ð32Þ
Here hðrÞ is the blackening factor satisfying the boundary
and regularity conditions hð0Þ ¼ 1 and hðrhÞ ¼ 0.
A solution of the EoM [18] provides the function hðrÞ, in

the u ≪ 1 limit, as

hðrÞ ≃ 1 − e4½A0ðrÞ−A0ðrhÞ�; ð33Þ
which translates into lh0ðrhÞ≃−4 since A0

0ðrÞ¼1þOðuÞ.
Thus the Hawking temperature, Th, and the minimum of
the free energy in the BH solution, at Th ¼ T, FBHðThÞ,
read as

lTh ≡ T̄h ≃
1

π
e−A0ðrhÞ; FBH

minðTÞ ≃ −
π4l3

κ2
T4: ð34Þ

In fact the free energy in the deconfined, FdðTÞ, and
confined, FcðTÞ, phases at high temperature are given by

FdðTÞ ¼ E0 þ FBH
minðTÞ −

π2

90
geffd T4;

FcðTÞ ¼ −
π2

90
geffc T4; ð35Þ

where geffd=c is the number of relativistic degrees of freedom
in the deconfined/confined phase, and E0 ¼ Vradð0Þ −
VradðρÞ is the potential gap between the two phases in
the T ¼ 0 limit.
Below the critical temperature Tc, defined by

FcðTcÞ ¼ FdðTcÞ; ð36Þ

the phase transition can start. We will assume geffd ðTcÞ≃
geffc ðTcÞ,2 and thus the critical temperature can be
estimated as

–10 –8 –6 –4 –2 0
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m
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FIG. 3. The normalized radion mass as a function of λ1 for
v̄0 ¼ 1; v̄1 ¼ 2 (main plot), and for v̄0 ¼ 0.1; v̄1 ¼ 0.2 (inserted
figure). The red (blue) lines correspond to the cases ρ ¼ 1 TeV
(100 TeV). Solid lines are the radion mass from an exact
numerical solution of the EoM. The results of the mass formula
in Eq. (30), evaluated numerically are the dashed lines, and that
from the approximation in Eq. (31), the dotted lines.

2This approximation holds e.g., in setups with the right-handed
top and Higgs localized on the IR brane and the remaining
Standard Model fermions being elementary. Indeed in the energy
budget the difference between geffd ðTcÞ ¼ 97.5 and geffc ðTcÞ ¼
106.75 is negligible as compared to 45N2=4.
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πTc=ρ ≃ eA0ðr̄m1 ÞjŪeffðr̄m1 Þj1=4: ð37Þ

We find that Tc=ρ is mostly insensitive to the particular
value of u in the parameter region considered in this work.
The (first order) phase transition proceeds through

bubble nucleation of the confined phase in the deconfined
sea. The onset of the transition occurs at the nucleation
temperature Tn, where Tn < Tc. To compute Tn we
compute the Euclidean actions and compare them with
the expansion rate of the universe at the corresponding
temperature.
In particular, at high temperature, the Euclidean action

S3=T, with symmetry Oð3Þ, is given by

S3 ¼ 4π

Z
dσσ2

3N2

4π2

�
1

2

�∂χ
∂σ

�
2

þ Vðχ; TÞ
�
; ð38Þ

where σ ≡ ffiffiffiffiffi
x⃗2

p
is the space radial coordinate, with

potential

Vðχ; TÞ ¼ 4π2

3N2
ðVradðχÞ þ jFBH

minðTÞjÞ; ð39Þ

bounce equation for χ ¼ χðσÞ

∂2χ

∂σ2 þ
2

σ

∂χ
∂σ ¼ ∂V

∂σ ; ð40Þ

initial condition χ0 ≡ χð0Þ, as well as boundary conditions

3N2

8π2

�∂χ
∂σ

�
2

χ¼0

¼ jFBH
minðTÞj;

dχ
dσ

����
σ¼0

¼ 0: ð41Þ

At low temperature there is also the Oð4Þ symmetric
solution with action S4 given by

S4 ¼ 2π2
Z

dσσ3
3N2

4π2

�
1

2

�∂χ
∂σ

�
2

þ Vðχ; TÞ
�
; ð42Þ

where σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x⃗2 þ τ2

p
(τ is the Euclidean time), and with

bounce equation

∂2χ

∂σ2 þ
3

σ

∂χ
∂σ ¼ ∂V

∂σ ; ð43Þ

and boundary conditions given in Eq. (41).
Although we expect, on general grounds, the bubble

formation to be dominated by thick wall approximation, at
least for Tn ≪ Tc [9,13], we find that this approximation
often mismatches the fully numerical result. We thus
compute S3=T and S4 via the numerical methods intro-
duced in [11,18], and subsequently obtain Tn from the
condition

SEðTnÞ ≃ 4 log
Mp=ρ

Tn=ρ
ð44Þ

with

SE ≡min

�
S3ðTnÞ
Tn

; S4ðTnÞ
�
: ð45Þ

The Euclidean actions scale asN2 so that they blow up in
the limit N → ∞, where there is no phase transition, so that
we focus on reasonable large values of N.3 We find that Tn,
in units of ρ, has a very mild dependence on u, and thus on
ρ itself, whereas it is very sensitive to N and λ1. This is
manifest in Fig. 4 (upper left panel) which shows Tn=ρ as a
function of λ1 for N ¼ 10, 15, 25, ρ ¼ 1, 100 TeV, v̄0 ¼ 1,
v̄1 ¼ 2 and 1=l ¼ 1018 GeV (for each value of λ1, u is
adjusted to provide ρ ¼ 1, 100 TeV). The small shift
between the dashed and solid curves precisely comes from
varying ρ. For all inputs but N fixed, Tn=ρ decreases with
increasing N until reaching a critical value of N above
which the phase transition does not happen. A similar upper
bound on λ1 arises when all inputs but λ1 are unchanged.
We stress thatOð4Þ is a good symmetry only for bubbles

with critical radius Rc < 1=Tn. This condition is satisfied
whenever the Oð4Þ solution dominates, for which we
find RcTn ≲ 0.5. Moreover, for the SGWB profiles dis-
cussed in the next section, the big bang nucleosynthesis
(BBN) bound [7,28] turns out to require in practice
Tn=ρ≳ 3 × 10−4

ffiffiffiffi
N

p
. This lower bound for Tn=ρ is dis-

played as a shadowed (green) region in Fig. 4 (upper
left panel).
The degree of supercooling for nucleation temperatures

Tn ≪ Tc may trigger a brief period of cosmological
inflation. We compute the temperature at which inflation
starts, Ti, by imposing the condition that the energy density
in the deconfined phase,

ρdðTÞ ¼ E0 þ 3π4l3T4=κ2 þ π2geffd T4=30 ð46Þ

be dominated by the vacuum energy E0. This gives

Ti ≃ Tc½3þ 4geffd ðTnÞ=15N2�−1=4: ð47Þ

The number of e-folds of inflation produced in the
deconfined phase before the transition amounts to Ne ¼
logðTi=TnÞ provided that Ti > Tn. In Fig. 4 (upper
left panel) we plot Ti=ρ only for N ¼ 25, while the
N-dependence of Ti=ρ is tiny. In most of the considered

3From the AdS=CFT correspondence, the loop expansion on
the 5D gravity side corresponds to a large number of colors
(N large) in the gauge theory. In fact from Eq. (27) the condition
for classical gravity to be a good description Ml≳ 1 translates
into the condition N ≳ 4π.
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parameter space the supercooling triggers a few e-folds of
inflation at most.
After the phase transition, the energy density in the

deconfined phase ρd is converted into radiation density
in the confined phase, and the temperature goes up to
the reheat temperature TR. The requirement ρcðTRÞ ¼
π2geffc T4=30 ≃ ρdðTnÞ implies

4

15N2
geffc T4

R ¼ T4
c þ

�
3þ 4

15N2
geffd

�
T4
n; ð48Þ

and the reheating is not huge as Fig. 4 (upper right panel),
which shows TR=ρ as a function of λ1 for various values of
ρ and N, highlights. We also show in the upper right panel
of Fig. 4 the plot of Tc=ρ as a function of λ1, from its

value defined in Eq. (37), where we see that the condition
TR > Tc is always satisfied.

VI. GRAVITATIONAL WAVES

A cosmological first order phase transition produces a
SGWB whose power spectrum ΩGWðfÞ depends on the
dynamics of the bubbles and their interactions with the
plasma [5,29,30]. When the plasma effects are negligible,
the power spectrum ΩGWðfÞ behaves as [31,32]

Ωenv
GWðfÞ ≃

3.8x2.8

1þ 2.8x3.8
Ω̄env

GW; ð49Þ

whereas in the opposite regime it behaves as [33–35]

FIG. 4. Upper panels: Tn=ρ (left panel, solid and dashed curves) and Ti=ρ (left panel, dashed-dotted black curve), TR=ρ (right panel,
solid and dashed curves) and Tc=ρ (right panel, dotted black curve) as a function of λ1 for different values ofN and ρ ¼ 1ð100Þ TeV and
the other parameters chosen as described in the text. Solid-red (dashed-blue) lines correspond to the case ρ ¼ 1 TeV (100 TeV). Lower
panels: α (left panel) and β=H� (right panel) as a function of TR=ρ along the curves displayed in the upper panels with the same color and
mark. Shadowed (green) region on the bottom on the upper left panel is excluded by BBN as Tn=ρ≳ 3 × 10−4

ffiffiffiffi
N

p
. The circles

correspond to the parameter configurations on the border of the BBN bound displayed in Fig. 6.
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Ωsw
GWðfÞ ≃ x3

�
7

4þ 3x2

�
7=2

Ω̄sw
GW: ð50Þ

(Here Ω̄env;sw
GW , f, and fp stand for the amplitude, frequency,

and peak frequency of the power spectrum, and x ¼ f=fp.)
The plasma effects are unknown for a supercooled radion
phase transition (see discussions in [35]), hence we use
Ωenv

GWðfÞ and Ωsw
GWðfÞ to set the theoretical error on our

SGWB prediction.4

For Ω̄env
GW, Ω̄sw

GW, and fp, we use the expressions provided
in Refs. [5,35]. They depend on: the normalized gap
between the free energies in the two phases,

α ¼ jFdðTnÞ − FcðTnÞj
ρ�dðTnÞ

; ð51Þ

where ρ�dðTnÞ ¼ ρdðTnÞ − E0 is the radiation energy den-
sity, cf. Eq. (46); the normalized inverse time duration

β

H�
¼ T

dSE
dT

����
T¼Tn

; ð52Þ

and the wall velocity vw. The smaller β=H� and larger α, the
stronger the phase transition and the SGWB signal. For
very strong phase transitions one expects vw much larger
than the sound speed. Figure 4 (lower panels) shows α
(lower left panel) and β=H� (lower right panel) as functions
of TR=ρ for the aforementioned input values. The stepwise
behavior shown in the lower right panel of Fig. 4 (see also

Fig. 5), is a consequence of the change of regime fromOð4Þ
to Oð3Þ bubbles when increasing the absolute value of the
IR brane parameter λ1, and correspondingly when increas-
ing the value of TR=ρ, cf. Eqs. (45) and (52).5 From these
numerical findings we estimate the SGWB signals con-
stituting the theoretical predictions onΩGWðfÞ in our setup.
The predicted values of ΩGW at the peak frequency, and

the peak frequency fp as functions of TR are shown,
respectively, in the left and right panels of Fig. 5 for
ρ ¼ 1 TeV (red strips) and ρ ¼ 100 TeV (blue strips), and
for different values of N. The borders of the strips marked
in solid are evaluated by means of Eq. (49) for vw ¼ 0.99
and the values of other phase transition parameters dis-
played in Fig. 4. The borders marked in dashed are
evaluated in the same way but by means of Eq. (50).
The strips can thus be interpreted as the model predictions
and their uncertainties. In the parameter space fΩ̄GW; fpg,
such strips translate to those reported in Fig. 6. They are cut
in their lower part when TR ≲ 2ρ which also yields
jδj=r̄m1 ≲ 0.1. This prevents the (large) detuning from
jeopardizing our perturbative expansions and suppresses
the heavy Kaluza-Klein resonances to be in thermal
equilibrium in the relativistic plasma. We remark that the
strips are displayed for vw ¼ 0.99 but no significant change
would be visible for, e.g., vw ≃ 0.7.

TR

h

TR

f p

FIG. 5. Plots of h2Ω̄GW (left panel) and fp (right panel) as functions of TR=ρ for different values of N and ρ. The strips are for
ρ ¼ 1 TeV (red) and ρ ¼ 100 TeV (blue). Solid and dashed lines on the edge of the strips correspond to the regime Ω̄GW ≃ Ω̄env

GW and
Ω̄sw

GW, respectively. Shadowed (green) region on the top of the left panel is excluded by BBN. In the right panel the filled circles and the
empty circles correspond to the parameter configurations on the border of the BBN bound for a SGWB profile following Eq. (49) and
Eq. (50), respectively. We have considered vω ≃ 0.99.

4The turbulence contribution [36,37] and the different high-f
behavior inferred in [38] fall within this theoretical uncertainty.

5The breaks in the lines of β=H� vs TR=ρ for N ¼ 25 happen
at TR=ρ ≃ 2.5, and so they fall outside the range of Fig. 4 (lower
right panel). Notice that similar stepwise behaviors in the
parameters h2Ω̄GW and fp appear as well, inherited from the
corresponding behavior of β=H�. Consequently, some breaks
also appear in the lines of Figs. 5–6, which fall outside the range
of these figures for N ¼ 25.
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Figure 6 includes the sensitivity prospects to the param-
eter space fΩ̄GW; fpg in the Ωenv

GW and Ωsw
GW approximations

(shadowed areas within dotted and dashed borders, respec-
tively). It forecasts the situation expected toward the end of
the next decade when LISA, ET, and aLIGO will have run
for several years. For concreteness, the sensitivity regions
assume 3, 7, and 8 years of usable data for LISA, ET, and
aLIGO Design, respectively [39–41]. The exclusion
bounds from BBN [7,28] and present searches in aLIGO
O2 [42] are also recast. The former varies very little in
one or the other SGWB approximation, namely h2Ω̄env

GW <
5.6 × 10−7 and h2Ω̄sw

GW < 7.7 × 10−7. The aLIGO O2
bound comes from null searches for signals with signal-
to-noise ratio SNR ≥ 2.6 Thus, we also forecast the future
sensitivity regions by adopting the same criterion,
SNR ≥ 2, and implementing the noise curves provided
in the official documents [39–41] (see Refs. [5,43–47] for
shortcuts and other approaches).
The forecast shows that by the late 2040s the planned

interferometer network will be sensitive to a huge param-
eter region, probing ρ up to the 109-TeV scale. Thanks to
the complementary of the network, the theoretical uncer-
tainty on the plasma effects during the transition only

marginally affects the parameter reach of the whole net-
work. The uncertainty is instead relevant in the next years
when only aLIGO operates, e.g., aLIGO Design reaches
scenarios with ρ ∼ 100 TeV only in the Ωenv

GWðfÞ regime.
The broad parameter reach emerging from the forecast is

promising not only in terms of detection but also of
reconstruction. In fact, most of the benchmark scenarios
fall well inside the sensitivity regions shown in Fig. 6.
These scenarios hence exhibit SGWBs with a large SNR,7

and a sizable SNR typically implies small uncertainties on
the signal reconstruction [45]. Of course, this SNR argu-
ment relies on the size of the SGWB signal relatively to
the instrumental noise, but in general fails if the phase
transition signal coexists with other powerful SGWBs
sources. Among the feasible SGWBs, those of astrophysi-
cal origin [42,48–51] are dominant only at the margins of
the forecast sensitivity regions. In addition, in the late
2040s it will be possible to dig out signals much weaker
than these astrophysical backgrounds if their templates are
accurate enough [52]. Instead, SGWBs of cosmological
origin can potentially be problematic. For instance, in some
extreme setups, SGWBs sourced by inflationary phenom-
ena or cosmic strings can be as powerful as the strongest
signals predicted in our model, however the plausibility of
such extreme setups is doubtful. It then seems likely that
the reconstruction, and the subsequent parameter estima-
tion, of (most of) the signals predicted in the considered
warped model will be accurate.
We finally remark that at the qualitative level our findings

should apply to any warped setups with radion stabilization
mechanism. Such setups are indeed expected to have a
SGWB phenomenology similar to that here studied. In this
sense, our findings show that aLIGOO2 data already corners
vanilla warped scenarios with ρ ∼ 105 TeV and extremely
strong phase transitions.

VII. CONCLUSIONS

We have analyzed warped models with the radion
stabilized by a polynomial potential, in the regimes of
small and sizable backreaction. As the backreaction is an
important ingredient to generate an effective potential with
a stable minimum, we have conveniently used the super-
potential method to analytically tackle with it. However, to
zeroth order in the superpotential s-expansion, the super-
potential method is not a good tool to generate an effective
potential, an observation already done in Ref. [18], as it
simply yields a runaway behavior. We have then worked
out to first order in the s-expansion, using techniques
previously introduced in Ref. [11], a self consistent method
if working in a region of the parameter space where the
s-expansion converges fast, as we have proved throughout

–6 –4 –2 0 2

–14

–12

–10

–8

–6

Log10 ( fp Hz)

L
og
10
(h
2

G
W
)

BBN

LISA

ET

aLIGO
Des.

aLIGO
O2

FIG. 6. Parameter reach in the fh2Ω̄GW; fpg plane for SGWBs
in the regimes Ωenv

GW (regions inside dotted borders) and Ωsw
GW

(regions inside dashed borders). Diagonal strips are for N ¼ 10
(red) and 25 (blue) for ρ ¼ 1 TeV (left set) and ρ ¼ 100 TeV
(right set). Solid and dashed lines on the edge of the strips
correspond to the regime Ω̄GW ≃ Ω̄env

GW and Ω̄sw
GW, respectively.

Regions inside the areas labeled aLIGO O2 and BBN are in
tension with current data.

6Technically, the aLIGO analysis only excludes scenarios with
a power law SGWB. The analysis is however not blind to slightly
more powerful SGWBs with a less-trivial frequency shape,
although the confidence level of the exclusion remains to be
quantified.

7Parameter points on the borders of the sensitivity regions have
SNR ¼ 2 by construction, and the SNR scales with Ω̄GW at a
given fp.
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this paper. In the region of small backreaction we have
found good agreement with previous results in the liter-
ature, as the original Goldberger-Wise potential from
Ref. [2]. Moreover, as the presence of new physics has
been elusive up to now, we have considered the possibility
of heavy Kaluza-Klein resonance masses, thus leaving
open the door that nature has chosen to provide our particle
physics model with a severe little hierarchy problem and
the corresponding level of fine-tuning.
Using the radion zero-temperature effective potential

shaped by the backreaction, and standard techniques of 5D
warped theory at finite temperature, we have studied the
radion (confinement/deconfinement) first order phase tran-
sition and the stochastic gravitational wave background that
such a phase transition generates. We have then compared
the obtained gravitational wave signatures with the corre-
sponding detection capabilities of present (aLIGO) and
future (ET, LISA) gravitational wave interferometers. We
have found that in the next decade the gravitational wave
detectors will broadly probe warped models.
We expect our results to be rather generic. Indeed the

radion phase transition of the considered model is similar
to the one of many other warped setups of the literature.
This implies that in all these models the region with KK
resonances at mKK ∼Oð105Þ–Oð106Þ TeV is being cor-
nered by current aLIGO O2 data. Moreover, the forth-
coming interferometers will broadly test these models by
being capable to probe resonances of massmKK ≲ 105 TeV

(LISA), 102 TeV≲mKK ≲ 108 TeV (aLIGO Design) and
mKK ≲ 109 TeV (ET). In this sense, the future gravitational
wave detectors have the great potential to shed light on the
little hierarchy problem and the amount of tuning that is
acceptable in nature.
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