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Abstract. By using differential geometry methods, we study the role of non-Abelian anomalies
in relativistic fluids. We obtain closed expressions for the covariant currents derived from the
Chern-Simons effective action. Our results are also applied to the Wess-Zumino-Witten action
that accounts for the interaction of Goldstone bosons with external electromagnetic fields. We
particularize these results to QCD with two light flavors.

1. Introduction

Quantum anomalies play an important role in the hydrodynamics of relativistic fluids. In the
presence of anomalous currents coupling to external electromagnetic fields, parity is broken
and new tensor structures appear in the constitutive relations associated with new transport
coefficients. This is the case of the chiral magnetic effect, which is responsible for the generation
of an electric current induced by an external magnetic field in the fluid [1], and the chiral vortical
effect, in which the electric current is induced by a vortex [2], i.e. (J*)anom = oBB*+opwh+---.
The corresponding susceptibilities, op and oy, don’t contribute to entropy production so that
they are related to non-dissipative phenomena. It is believed that these phenomena can
produce observable effects in heavy ion physics [3], as well as in condensed matter systems [4].
Preservation of the second law of thermodynamics leads to a number of constraints to be satisfied
by the corresponding anomalous coefficients [5]. Alternatively, these coefficients have been
computed with a wide variety of methods, including kinetic theory [6, 7], Kubo formulae [8, 9, 10],
diagrammatic methods [11] and fluid/gravity correspondence [12, 13, 14, 15].

Recently it has been proposed a new formalism convenient to obtain the non-dissipative part
of the anomalous constitutive relations. The underlying idea is the construction of an effective
action for the hydrodynamic sources on a generic stationary background [16, 17, 18, 19]. While
this effective action can be constructed by solving the anomaly equations by trial and error [20],
there are other strategies based on differential geometry methods. Differential geometry has
revealed itself as a very powerful tool in the analysis of anomalies in quantum field theories [21],
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and the reason is that anomalies are originated in the topological structure of the gauge bundle,
so that they are determined from topological invariant quantities. This is also the case of
systems with spontaneously symmetry breaking, where the dynamics of Goldstone bosons is
very much constrained by the anomalies [22, 23, 24]. A further advantage of the differential
geometry approach is that it exhausts all perturbative contributions to the anomaly, which in
the non-Abelian case include triangle, square and pentagon one-loop diagrams. Some recent
applications of these techniques to the physics of anomalous fluids in thermal equilibrium have
been presented in e.g. Refs. [25, 26, 27].

In this manuscript we will present a systematic construction of the equilibrium partition
function for fluids with non-Abelian chiral anomalies using differential geometry methods along
the lines of [27]. We also extend this analysis to study the hydrodynamics in presence of
spontaneous symmetry breaking.

2. Equilibrium partition function formalism

We will present in this section the main ingredients of this formalism relevant to compute
anomalous constitutive relations [16, 17]. Let us consider a relativistic invariant quantum field
theory with a gauge connection on the manifold

ds? = G drtde” = —e* @ (da® + a;(x)da’)? + gij(z)dz'da? (1)
A = Ag(x)dz® + Ai(x)da’ . (2)

We consider that all the fields {o(x),ai(x),gij(x), Au(x)} are independent of the time
coordinate z°. From the partition function of the system, one can compute the energy-
momentum tensor and charged currents by performing the appropriate time independent

variations, i.e.
1 1
dlogZ = — / Pz \/g3 (—QTwég“” + J“Mu) ; (3)
0

where g3 = det(g;;). We have considered in Eq. (3) the imaginary time prescription, in which the
Euclidean time direction is compactified to a circle of length g = 1/Ty. We will denote by Ty and
1o the temperature and chemical potential at equilibrium, respectively. The invariance of the
partition function under transformations of the time coordinate, z° — 1'% = 204 ¢(x), demands
that log Z depends only on the gauge fields through the following invariant combinations

AO = .A() > Al = .Al - CLi.AO . (4)

This is the so-called Kaluza-Klein (KK) invariance. In particular, for a general dependence
log Z = W(e?, Ay, a;, Ai, g%, To, o), one gets the consistent currents and energy-momentum
tensor

o Ty oW _ Tpe* oW
<J >cons - méAZ ) <J0>cons - _méAO ) (5)
oW Ty (W W  Tpe¥ W

and a similar expression for (T%). This result illustrates the fact that W plays the role of a
generating functional for the hydrodynamic constitutive relations. In the rest of this manuscript
we will use differential geometry methods to compute the anomalous partition function, and
obtain from it the currents by performing the appropriate functional derivatives. Moreover, we
will show that in situations with spontaneous symmetry breaking, the covariant currents can be
computed directly from the Bardeen-Zumino (BZ) term needed to renormalize the anomalous
action.
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3. Non-Abelian anomalies

In this section we will study the partition function and currents for non-Abelian theories by
considering very general prescriptions within the differential geometry approach. We refer to [28]
for full details in the computation.

3.1. The chiral anomaly
Let us consider a theory of a chiral fermion coupled to an exterrnal gauge field A7, with
Lagrangian

Lo = 7" (B — ita L), (7)

where t, = tIL are the Hermitian generators of the Lie algebra satisfying the commutation
relations [tq, ty] = i fapete. Let us introduce the Lie algebra valued one-form for the gauge fields,
and the associated field strength two-forms, which are defined by

A= —iAjt dat = —iA,dx" F=dA+A*= —%]:de“dx”, (8)

respectively, where F,, = 0JuA, — Oy A, — i[A,, A)].  Finite gauge transformations are
implemented by the Lie group elements g = e~#"te = ¢*, thus leading to

Ag=g ' Ag+g-ldg,  Fy=¢'Fg. (9)
The corresponding infinitesimal transformations are given by 6,4 = du + [A,u] = Du and
0uF = [F,ul], where we have introduced the adjoint covariant derivative Du.

To study gauge anomalies it is convenient to work with the fermion effective action functional
obtained by integrating out the fermion field

Al — / DG ISl Ab Y] (10)
Under a general shift Af, — Aj + 6.Af, the first order variation of I'lA] can be expressed as
ST A] = / 4P A (%) T2 (%)cons - (11)

The axial anomaly is given by the failure of the effective action to be invariant under axial gauge
transformations, which are defined as 6. A5 = (Dyua)?. Plugging this into Eq. (11), one gets
after integrating by parts

6u,T[A] = — / dPzul(z) GolA(@)]eons  with  Ga[A(@)]cons = DpJt ()cons,  (12)

so that the consistent anomaly, G,[A(Z)]cons, iS responsible for the non-conservation of the
currents. This well known result leads to important consequences for the hydrodynamics of
fluids affected by gauge anomalies, as we will show below.

3.2. The Chern-Simons effective action and the Bardeen form of the anomaly
In the following we will consider a general theory with chiral fermions, 17, and ¥ g, coupled to
two external gauge fields described by the Lagrangian

Lot = i7" (O — itaS,, ) br + Wry™ (O — itaARy, ) (13)
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The starting point to compute the functional I'[Ag, Ar] is the anomaly polynomial, which is
given by

Pu(Fr, Fr) = cn (Trfg Ty f‘g) , (14)

where ¢, = i"/(n!(27)"!) is the normalization found for a Dirac operator in 2n = D + 2
dimensions. Since the field strengths satisfy the Bianchi identity dFg = [Fr,L,Ar,L], the
anomaly polynomial is closed, i.e. dP,(Fr,Fr) =0, and thus we can write

Tr Fp— Te FJ = dw9, (AR, AL), (15)

where w3, _; is the Chern-Simons form. The fermion effective action is constructed as the integral
of the Chern-Simons form in a (2n — 1)-dimensional manifold

L[ Ag, Arlcs = Cn/ w3, 1(Ar, AL) . (16)
Mon_1

One can easily check that the anomaly polynomial is gauge invariant, 6, P, (Fgr, Fr) = 0. As a
consequence, the gauge variation of w9, ; is, locally, a total differential, i.e. 6,09 ;(Agr, AL) =
dwl  o(u, Ar,Ar), so that the gauge variation of the CS action turns out to be !

du L[AR, AL]cs = Cn/

w%n—2(uA7AR7-AL) = _/
OMapn—1

o TT(UAG[AR,.AL}COHS) . (17)

where the Stokes theorem has been used. Using the generalized transgression formula derived
in [29] (see also [28]), the Chern-Simons form can be written as

1
1 (Ar, Frp) = n / at T (A7), (18)
0

where A; is a one-parameter family of connections interpolating between Ay = Ay, and A; = Ag,
and the dot stands for derivative with respect to t. There are different choices for the family of
connections, and this ambiguity amounts to adding an exact differential in

Wy 1 (AR, AL) = w3, _1(AR) — w3, 1 (AL) + dSan—2(Ar, AL) (19)

where w9, | (Ag,) is the Cherm-Simons form for a single chirality. In the following we will
consider the interpolating curve A; = (1 — t) A + tAgr which leads to the so-called Bardeen
counterterm preserving vector gauge transformations. Other choices lead to Chern-Simons
effective actions that do not remain invariant under vector transformations.

For completeness, we will present here some explicit formulas in the four-dimensional case
(n = 3). The Chern-Simons form preserving the vector Ward identity is

1 4 8
w(A, Fv, Fa) = 6 Tr (Afa + g AFL - A + 15A5> : (20)
and the Bardeen expression for the consistent anomaly [30] is obtained from
1 4 8
wh(ua, A, Fy,Fa) =6Tr {uA [f& + gfi -3 (Az}'v + AFv A+ fVA2) + 3,44] } . (21)

! We define the vector-axial gauge fields (V, .A) in terms of (Ar, Ar) by Ar =V + Aand A, =V — A, and
similarly for the vector-axial gauge transformation parameters, i.e. ur = uy + ua and ur = uy — ua.
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3.8. Currents and anomaly inflow

The currents induced by I'[Ag, Ar]cs are obtained by performing a general variation of the
gauge field 6.4 = B, where B is an infinitesimal Lie-algebra valued one-form. > The variation
Spw3, 1 (A) can be efficiently computed with the help of the generalized transgression formula
by considering a family of connections A; = A + tB interpolating between A4 and A + B. The
results obtained can be expressed in the form

ST Ales = /

Moan—1

Tr (BJbuix) — /M Tr (BJBz) , (22)

where Jpuk = ne, F* 1 is the dual form of the bulk current, while Jgz is the dual form of the
Bardeen-Zumino current. Let us consider now a gauge variation of the gauge field, i.e. B = §,A.
Then, after integrating by parts in the rhs of Eq. (22) and using the Stokes theorem, one finds

5urbﬂcszzjf

o Tr [U(jbulk + DJBz)} = /M2n Tr (UG[A]cons> 7 (23)

where we have used Eq. (17). Finally, this implies

Four|, == (ClAleons + DIsz) = ~GlAlcov (24)

2n—2

where G[A]coy is the covariant anomaly. This identification of the bulk current with (minus)
the covariant anomaly is in agreement with the anomaly inflow mechanism [27]. In the four-
dimensional case the dual forms of the bulk and BZ currents read
\%4
jbulk

F4+F), o= FvFa+FaFv), (25)

242< 242<

and

[ (FrA+AFy) —4A], Ty = (fAA +AF), (26)

1%
Jez = 1272 1272

respectively. Let us mention at this point that the invariant polynomial is unique and so are
the bulk currents and the covariant anomalies, i.e. they are not affected by renormalization
ambiguities.

3.4. Dimensional reduction

Using the previous results, we can compute the partition function of anomalous hydrodynamics.
To this end, one should take all the fields to be time-independent, compactify the Euclidean time
direction to a circle, and finally perform a dimensional reduction of the Chern-Simons action.
In the language of differential forms, the one-form of the gauge field, A(z) = A, (z)dz*, can be
decomposed into KK-invariant quantities

A(x) = Ag(x)0(x) + A(x), where O(x) = dz’ + a(x) and a(x) = a;(x)dz’, (27)

while A(z) = A;(z)dx’. Taking into account that §? = 0, it turns out that the only terms
relevant for the anomalous partition function are those which are linear in §. We will skip here
the technical details and just discuss the result. The Chern-Simons effective action I'[.Ag, A]cs
naturally splits into two terms [27]

Z.FLAO, A]CS = W[A07 A]inv + W[-A07 A]anom 5 (28)

2 TIn the following, it is understood that an expression is valid either for (Agr, Fr) or (Ar, F1) where the chirality
of the fields has not been explicitly indicated.
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where W[Ap, Alinv is non-local from the viewpoint of a (2n — 2)-dim Euclidean manifold, and
it is manifestly invariant under time-independent gauge transformations, so that it does not
contribute to the gauge anomaly. Consequently, the second piece W[Ap, Alanom completely
accounts for the gauge non-invariance of the partition function, and its gauge variation
reproduces the consistent anomaly. Using Eq. (22), this means that the summation of the
boundary currents induced by these terms 3

6BW[A0,A}inv = /52 ;I‘I‘(BX) +-- 5BW[“407A]anom = /S2 ;I‘T<B\7cons) + e (29)
should be equal to (minus) the BZ current, i.e. X + Jeons = —Jpz. Consequently, the
physical current induced by WAy, Aliny is precisely (minus) the covariant current, i.e. X =
—(Jeons + IBz) = —Jcov- This result implies that one can compute the covariant currents
directly from the invariant part of the action, bypassing the need to compute the anomalous
partition function, W[Ag, Alanom. Using this procedure, the anomalous covariant current in a
stationary background reads (cf. [27, 28])

)
jO,cov =0, Jeov = TDEW[AmFu da]inv- (30)

The results for the covariant currents in four-dimensional spacetime are

JV,cov = —42? [V()FA + FyVy + AoFy + Fy Ay + da(Vvo + A()Vo)} ,
| (31)
2

J A, cov = T2 [VOFV + FyVo + AoF4 + FaAo + da(V§ + A(Q))} .

The fact that the covariant currents are obtained from Wj,, implies that they are the same
independently of the counterterm of the theory.

3.5. Currents in QCD with 2 flavors

While these results are valid for a non-Abelian theory with symmetry group U(Ny) x U(Ny), it
would be interesting to illustrate these techniques by considering the case of QCD with Ny = 2.
The maximal number of chemical potentials to be consistently introduced corresponds to the
dimension of the Cartan subalgebra. Then, we consider the background given by a combination
of tg = %12><2 and t3 = %03, where o; are the Pauli matrices, i.e.

V(m) = Vo(m) to + Vg(a}) ts, A= Ayty, A((L‘) =0. (32)

V and A are one-forms, so that V, = Vg, dz°? + Vi, dz* where a = 0,3 are flavor group indices
(and similarly for A). Since all external fields lie on the Cartan subalgebra, their field strengths
are particularly simple: Fy = dVptg + dVsts and Fy4 = 0. In addition to the equilibrium
velocity field u, = —e?(1, a;), we can define the equilibrium baryonic, isospin and axial chemical
potentials, as

po =VYooe 7, pz =VYoze 7, ps = Aogoe 7, (33)

where s controls the chiral imbalance of the system [31, 32]. We assume that ps is constant, so
that we are just interested in the one-derivative terms from the vectorial part of the background.
Let us define the charge matrix for two light flavors with electric charges +%e and —%e, as

3

2
Q- (8 °1> = Sto+ 3. (34)

3 In these expressions the dots stand for bulk contributions.
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Then the electromagnetic current writes

— e
ng,cov - €¢7“Q¢ = §J6L7 cov + eJiﬁ: cov >’ where Jllll, cov — w’y“taw : (35)

Similarly, the baryonic and isospin currents write

[ _ g JM
bar,cov ~ 3

iso, cov

Jo,

,Ccov

(36)

= Jét, cov
respectively. Notice that these currents fulfill the Gell-Mann-Nishijima (GMN) relation J&, =
%Jgar + eJi‘SLO. The expectation values of the currents (Jé‘ cov) are given by the first equation
in (31) after making the replacements (Voo, Vio) = §(Vo, Vi) and (Vo3, Viz) = e(Vo, Vi). 4 Then,
we find the following expressions for the currents, written in terms of the chemical potential

o 5¢2N,

eN,
em, cov> = - 3672 /J’SGHV)\pul/a)\y/pa <Ju > = _JMSGHV/\puya)\qj/p, (37)

iso, cov 871'2

where NV, is the number of colors. To arrive at these out-of-equilibrium results we have performed
a Lorentz covariantization of the equilibrium currents. The baryonic current is obtained from
the GMN relation. Note that we find contributions from the chiral magnetic effect, and from
the first equation in (37) we can read the chiral magnetic conductivity

5¢2N,

Wﬂ5 . (38)

og =
These results for the covariant currents are in agreement with the alternative method consisting
in computing the consistent currents from the functional derivative of the anomalous partition
function and adding the BZ currents, cf. Refs. [20, 33].

4. Partition function in presence of spontaneous symmetry breaking

In this section we will consider physical situations in which the symmetries are spontaneously
broken, either total or partially. This is the case of chiral flavor symmetry in QCD, which is
broken down to its vector subgroup, or the U(1) global phase in superfluids. A consequence of
the spontaneous symmetry breaking is the appearance of Goldstone bosons that can couple to
external gauge fields and contribute to the anomaly.

4.1. The Wess-Zumino- Witten partition function

The Wess-Zumino-Witten (WZW) partition function is used to describe the effects of the
anomaly when the symmetry is spontaneously broken. It accounts for the anomaly-induced
interactions between the external gauge fields A and the Goldstone bosons £% [34, 35, 36, 37].
An immediate application of the non-Abelian case is the study of QCD in the confined phase,
leading to the prediction of relevant properties of hadronic fluids interacting with external
electromagnetic fields. The WZW action admits a very simple expression in terms of the CS
action of Eq. (16) [21, 22, 23, 24, 38]

I'[A, glwzw = ['[Alcs — T'[Aglcs (39)

where A, is the gauge transformed field with the group element g = exp(—i£“t,), cf. Eq. (9).
The dimensional reduction of the WZW action can be performed by following the same procedure

4 We denote the physical electromagnetic potential by 7., and its KK invariant form by V,, i.e. Vo = % and
Vi = % — a;%. The physical magnetic field is then B* = ¢'7%9;%;..
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explained in Sec. 3.4. The result is that the invariant part cancels and it is written only in terms
of the local anomalous part. It is easy to check that A, is gauge invariant, and thus the gauge
variation of the WZW action gives precisely the consistent anomaly

0uI'[A, glwzw = 0, [Alcs = —/

T (1 GA@ons) (40)

Unlike the Chern-Simons action, the WZW effective action does not induce any bulk current.
Instead, under a general variation §.4 = B the WZW action induces a local consistent current
on the boundary Mo,_o given by

SllAglwaw = | Te{BlgT(Aezg™ ~ T (A} (41)

The first term can be identified with the covariant current, and we conclude
j(.A, g)cov =g j(-Ag)BZ g_l = j(.A + dgg_l)BZ . (42)

This connection between the covariant current and the BZ current provides the most eflicient
computational method in the presence of spontaneous symmetry breaking, bypassing the need
to use the WZW action.

For applications to hadronic fluids, we are interested in the case G x G — G, where the
symmetry is broken down to the diagonal subgroup of vector gauge transformation. One just
have to make the replacements A — (Ag, Ar) and g — (e, U) in the previous relations, where e
is the identity element and U = exp (2i{%t,). In that case the WZW action takes the form

T[Ar, AL, Ulwzw = T[Ar, Ar]cs — T[Ar, AY]cs, (43)

where AY = U~YALU + U~'dU and T'[Ag, AL]cs is given by Eq. (16). Using Eq. (42), the

covariant currents can be obtained as
T AR, AL, U)oy = T (AR, AY Bz, TH (AR, AL, Ueov =U T (AR, A )z U1, (44)

These relations, and their particularization to stationary backgrounds, can be used to obtain the
covariant currents for the hydrodynamics of hadronic fluids without computing the anomalous
WZW action. We have explicitly checked that the result for the covariant currents of hadronic
fluids are the same by using either the direct method of Eq. (44), or the anomalous WZW action.
We will present some partial results in the next subsection.

4.2. Hadronic fluids

Let us particularize some of the previous results to QCD with Ny = 2. We will consider the
spontaneous breaking of the axial symmetry U(2)r, x U(2)g — U(2)y. The matrix of Goldstone
bosons

3 1 -0 at
U(e) =exp(iX(§))  with  X() :—2Z§ata—f<¢g W) (45)
a=1 4

V2

includes three Goldstone bosons from the broken SU(2)4 symmetry. {7° 7%} are the
conventionally normalized Goldstone boson fields, and f; ~ 92 MeV is the pion decay constant.
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We will assume that the fourth Goldstone boson £ is absent, as the U(1) 4 symmetry is violated
by non-perturbative effects. Then, the WZW effective action writes

2 .
3 e“N, omi  ltetsN, _ _ N ; 3
ToW = /d x |:127T2}7rVOai7T B — 127r2f72t (7 0m" — 7t omT — 2ien wtV;) B + O(w )] ,
(46)

where B! = ¢ kaij is the KK-invariant magnetic field. To obtain this result we have expanded
the action in powers of the pion fields. The first term on the right-hand side of Eq. (46), linear
in the pion field, is responsible for the electromagnetic decay of the neutral pion, 70 — 27,

% 62NC 0 _uvip gy  or 47

eﬂ?Dm7r € Gy Np 5 (47)
where %, = 0,7, — 0,7, is the electromagnetic field strength. The quadratic term in Eq. (46)
also agrees with the known form of the parity-odd couplings obtained from the WZW action
in the presence of chiral imbalance (see e.g. Ref. [32]). Finally, the expectation values of the
covariant currents can be obtained either from the WZW effective action or from the BZ current
by using Eq. (44). We will leave this analysis for Ref. [33].

5. Conclusions

In this work we have used differential geometry methods to carry out a systematic construction
of partition functions and currents for non-dissipative effects in relativistic fluids in presence of
non-Abelian anomalies. In particular, our analysis can be applied to study transport phenomena
induced by external magnetic fields and vortices. We have studied in detail the covariant currents
induced by the chiral anomaly, and we have shown that they can be determined solely from the
gauge invariant piece of the Chern-Simons effective action. As a consequence, the covariant
currents are not affected by renormalization ambiguities, as these only appear in the anomalous
part of the action due to the local counterterms.

We have extended our study to theories with spontaneous symmetry breaking, as this
can lead to relevant information about the hydrodynamics of the corresponding Goldstone
bosons interacting with external fields. We have found that the Bardeen-Zumino current
fully determines the covariant currents, so that in this case it is not demanding to compute
the anomalous partition function to obtain the hydrodynamical constitutive relations. These
techniques have been illustrated by considering the case of QCD with two light flavors and,
in particular, we have obtained results for the chiral magnetic effect. Our findings are also in
agreement with previous results in the literature in the presence of chiral imbalance.

Finally, let us stress that the techniques presented in this work can be applied to a wide
variety of physical situations, ranging from the study of other sectors of the Standard Model
of particle physics, to superfluids [39, 40] and condensed matter systems affected by triangle
anomalies [41, 42].
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