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ABSTRACT The Dempster-Shafer Theory (DST) or Evidence Theory has been commonly used to
deal with uncertainty. It is based on the basic probability assignment concept (BPA). The upper entropy
on the credal set associated with a BPA is the only uncertainty measure in DST that verifies all the
necessary mathematical properties and behaviors. Nonetheless, its computation is notably complex. For this
reason, many alternatives to this measure have been recently proposed, but they do not satisfy most of the
mathematical requirements and present some undesirable behaviors. Belief intervals have been frequently
employed to quantify uncertainty in DST in the last years, and they can represent the uncertainty-based-
information better than a BPA. In this research, we develop a new uncertainty measure that consists of the
maximum of entropy on the credal set corresponding to belief intervals for singletons. It verifies all the
crucial mathematical requirements and presents good behavior, solving most of the shortcomings found in
uncertainty measures proposed recently. Moreover, its calculation is notably easier than the upper entropy
on the credal set associated with the BPA. Therefore, our proposed uncertainty measure is more suitable to
be used in practical applications.

INDEX TERMS Dempster-Shafer Theory, belief intervals, uncertainty measures, maximum of entropy,
conflict, non-specificity

I. INTRODUCTION

The Dempster-Shafer Theory (DST), also known as Evidence
Theory [1], [2], has been commonly employed to deal with
uncertainty in practical applications such as statistical clas-
sification [3], target identification [4], medical diagnosis [5],
or face recognition [6]. DST generalizes classical Probability
Theory (PT); it is based on the concept of basic probability
assignment (BPA), an extension of the probability distribu-
tion concept in PT.

An important issue in DST is to quantify the uncertainty
or lack of information associated with a BPA. Many uncer-
tainty measures have been developed in DST so far. Most of
them start from the Shannon entropy [7], a well-established
uncertainty measure in PT that verifies desirable properties.

Since DST extends PT, in DST, more types of uncertainty
appear than in PT. According to Yager [8], in DST, we can
find two types of uncertainty. The first one of them is usually
called conflict. It corresponds to cases in which the informa-
tion is focused on disjunct sets. The second type is known as
non-specificity, which appears when the information resides

in non-singleton sets.
In [9], it was carried out a study about the set of mathemat-

ical properties that an uncertainty measure in DST that quan-
tifies both conflict and non-specificity should satisfy. Abellán
and Masegosa, in [10], extended that research. Furthermore,
they analyzed the behavioral requirements that an uncertainty
measure in DST has to verify. So far, the upper entropy on the
credal set1 associated with a BPA, proposed in [9], is the only
uncertainty measure in DST that satisfies all the essential
mathematical properties and behaviors [10].

Nonetheless, the algorithms proposed so far to calculate
the upper entropy on the credal set corresponding to a BPA
in [11]–[14] are considerably complex. For this reason, many
alternatives to this measure have been proposed in the last
years. For example, Shahpari and Seyedin, in [15], intro-
duced an uncertainty measure based on the pignistic trans-
formation of a BPA. However, in [16], it was demonstrated
that this measure does not satisfy some needed properties
and presents some undesirable behaviors. Afterwards, an

1A credal set is a convex and closed set of probability distributions.
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FIGURE 1. Uncertainty-based-information with belief intervals.

uncertainty measure, known as Deng entropy, was proposed
[17]–[20]. It considers that the uncertainty degree strongly
depends on the number of possible alternatives. Abellán, in
[21], showed that this function does not satisfy most of the
crucial mathematical properties, and its behavior in some
scenarios is questionable.

Two recent measures, proposed in [22], [23], utilize a
probability transformation based on the upper probabilities
for singletons. These functions do not satisfy the subadditiv-
ity requirement. In consequence, they present drawbacks for
BPAs defined over joint spaces. Moreover, the conflict part
of these measures might be greater than 0 when all the focal
elements share an element, which is not consistent.

Belief intervals associated with a BPA for each subset
constitute a tool that has been frequently used to quantify
uncertainty in DST in the last years. The belief function
of a set (subset) is considered as the minimum support of
information represented by that BPA on that set, and the
plausibility function is considered as the maximum support
of information represented by that BPA on the set [24]. As ex-
posed in [24], belief intervals can represent the uncertainty-
based-information better than a BPA. The reason is that, with
belief intervals, it is possible to know the uncertain area, as
shown in Figure 1. It does not happen directly using the BPA.
The set of probability distributions corresponding to belief
intervals extends the one associated directly with a BPA, but
the first one is easier to manage than the second one.

Recently, some uncertainty measures based on the concept
of belief intervals have been proposed, such as the one
proposed by Yand and Dezert in [25]. Abellán and Bossé, in
[26], demonstrated that this measure does not satisfy some
of the required mathematical properties and behaviors for
uncertainty measures in DST. Also, in [27], it was proposed
an uncertainty measure that combines the Deng entropy with
belief intervals. However, this measure does not verify most
of the required mathematical properties [27], and it is not
trivial how to extend it to more general theories than DST.

In this research, we propose a new uncertainty measure
that consists of the maximum of entropy on the credal
set corresponding to the belief intervals for singletons. We
demonstrate that our proposed measure verifies all the re-
quired mathematical properties. It is quite remarkable that
our proposal is consistent with a decrease or increase of
information in a BPA. In our case, the subadditivity and
additivity properties are controversial since they are based
on the projections of a BPA defined over a joint set on more
simple ones, and our measure is based on belief intervals. We
reconsider the definition of these properties for our measure

by considering the projections of the intervals, and we show
that our proposal verifies these properties with the recon-
sidered definitions. Also, the upper entropy on the credal
set associated with belief intervals for singletons presents
good behavior, solving most of the drawbacks found in recent
uncertainty measures based on Deng entropy, probability
transformations, and belief intervals.

Moreover, we show that the calculation of our proposal is
notably simpler than the upper entropy on the credal set cor-
responding to the BPA, and the conflict and non-specificity
parts are also easier to obtain. In consequence, our proposed
measure is more suitable to be used in practical applications
than the upper entropy on the credal set associated with
a BPA. We also demonstrate that our proposed measure is
always greater or equal than the maximum of entropy on the
credal set corresponding to a BPA.

The outline of this paper is as follows: Dempster-Shafer
Theory is described in Section II. Section III presents an
overview of the main uncertainty measures in DST proposed
in the literature, and the mathematical properties and behav-
iors that must be verified by an uncertainty measure in DST.
In Section IV, we expose our proposal. Conclusions are given
in Section V.

II. DEMPSTER-SHAFER THEORY
Let X = {x1, x2, . . . , xn} be a finite set considered as the
set of possible alternatives. Let us denote ℘(X) the power set
of X .

The basis of the Dempster-Shafer Theory, or Evidence
Theory [1], [2], is the concept of basic probability assign-
ment, which consists of a mapping m : ℘(X) → [0, 1] such
that

∑
A∈℘(X)m(A) = 1 and m(∅) = 0.

If A ⊆ X satisfies that m(A) > 0, it is said that A is a
focal element of m.

Given a BPA m, two functions are associated with it: a
belief function Belm, and a plausibility function Plm. They
are defined in the following way:

Belm(A) =
∑

B|B⊆A

m(B), P lm(A) =
∑

B|B∩A6=∅

m(B),

∀A ∈ ℘(X).
(1)

It is easy to check that Belm(A) ≤ Plm(A) ∀A ∈ ℘(X).
The interval [Belm(A), P lm(A)] is called the belief interval
of A. Furthermore,

Plm(A) = 1−Belm(A), ∀A ⊆ X, (2)

where A is the complementary of A.
For a BPAm, there exists a convex and closed set of proba-

bility distributions, also known as a credal set, corresponding
to it. It is defined as follows:

Pm = {p ∈ P(X) | Belm(A) ≤ p(A) ∀A ∈ ℘(X)} ,
(3)
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being P(X) the set of all probability distributions on X . We
can observe that the condition Belm(A) ≤ p(A) ∀A ⊆ X is
equivalent to Belm(A) ≤ p(A) ≤ Plm(A) ∀A ⊆ X , due to
the relation given in Equation (2).

Let X and Y be finite sets. Let us suppose that we have a
BPA m on the product space X × Y . The marginal BPA on
X , m↓X , is defined as follows:

m↓X(A) =
∑

R|A=RX

m(R), ∀A ∈ ℘(X), (4)

where RX denotes the projection of R on X . In the same
way, it is possible to define the marginal BPA on Y , m↓Y .

III. UNCERTAINTY MEASURES IN DST
It is known that, in classical possibility theory, uncertainty is
measured via the Hartley measure [28], defined as follows:

H(A) = log2(|A|), ∀A ⊆ X. (5)

The type of uncertainty captured by H is often called non-
specificity.

On the other hand, in classical Probability Theory (PT),
the Shannon entropy [7] is a well-established uncertainty
measure. It is defined as follows:

S(p) =
∑
x∈X

p(x) log2(p(x)), (6)

being p = (p(x))x∈X a probability distribution on X . The
type of conflict measured by the function S is known as
conflict, which is the only one present in PT. It satisfies
desirable properties [7], [9].

According to Yager [8], in DST, both types of uncertainty:
non-specificity and conflict coexist. In DST, non-specificity
appears when information is focused on non-singleton sets;
and conflict corresponds to cases in which the information
resides in sets with empty intersection.

Dubois and Prade, in [29], introduced a generalization of
the Hartley measure to DST, defined as follows:

GH(m) =
∑

A∈℘(X)

m(A) log2(|A|). (7)

The minimum value ofGH , which is equal to 0, is attained
when m is a probability distribution. When m(X) = 1, GH
obtains its maximum value, i.e log2 (n), where n = |X|. GH
was established as a suitable non-specificity measure in DST
that verifies desirable properties. In addition, it is possible to
extend it to more general theories than DST [30].

In the literature, several conflict measures were proposed
to extend the Shannon entropy to DST, but any of them
satisfies the required properties in DST for this type of
measure.

These unsuccessful attempts were replaced by a total un-
certainty measure in DST that captures both conflict and non-
specificity. That measure, developed by Harmanec and Klir in
[12], consists of the upper entropy on the credal set associated

with a BPA m, denoted by S∗ (Pm). This measure, in [9], was
established as appropriated to quantify the total uncertainty in
DST since it satisfied the required properties.

However, when S∗ (Pm) was proposed, it did not separate
conflict and non-specificity. Abellan, Klir, and Moral, in [31],
proposed a coherent disaggregation of S∗ between conflict
and non-specificity on more general theories than DST. This
separation also works for DST. It can be considered:

S∗ (Pm) = S∗ (Pm) + (S∗ − S∗) (Pm) , (8)

where S∗ (Pm) is the minimum of entropy on Pm. S∗ (Pm)
quantifies the conflict part and (S∗ − S∗) (Pm) the non-
specificity part. Algorithms to calculate S∗ can be found in
[11]–[14].

The algorithms for the calculation of S∗ (Pm) proposed
so far are notably complex. Hence, many alternatives to this
measure have been proposed in the last years.

For example, in [17], an uncertainty measure, called Deng
entropy, was introduced. It also separates conflict and non-
specificity, and it is defined as follows:

Ed(m) = −
∑

A∈℘(X)

m(A) log2

(
m(A)

2|A| − 1

)
=

∑
A∈℘(X)

m(A) log2

(
2|A| − 1

)
−

∑
A∈℘(X)

m(A) log2 (m(A)).

(9)
The first term of the previous expression quantifies the

non-specificity part, whereas the second one captures con-
flict. According to this measure, the amount of uncertainty
has to increase as there are more alternatives. Nonetheless,
this function does not satisfy most of the necessary properties
for an uncertainty measure in DST, and its behavior in many
situations is questionable [21].

Some recent measures are based on the plausibility trans-
formation [32], [33], which is defined as follows:

Pt(x) =
Plm ({x})∑

x∈X Plm ({x})
, ∀x ∈ X. (10)

Jirousek and Shenoy, in [22], proposed a new uncertainty
measure that consists of the sum of the entropy of the
plausibility transformation defined above and GH:

HJS(m) = −
∑
x∈X

Pt(x) log2 (Pt(x)) +GH(m). (11)

The first term of the previous expression corresponds to
conflict, whereas the second one captures non-specificity.

An uncertainty measure that also uses the plausibility
transformation was proposed in [23]. It is defined in the
following way:

HPQ(m) = −
∑
A⊆X

m(A) log2 (Pm(A)) +GH(m), (12)
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where Pm(A) =
∑

x∈A Pt(x) ∀A ⊆ X . The first term
captures conflict, and the second one is associated with non-
specificity.

As said in the Introduction, belief intervals may be more
appropriate than the BPA for representing uncertainty in
DST. Hence, some alternatives to S∗ (Pm) are based on
belief intervals. A very recent example is the uncertainty
measure proposed in [27], which combines belief intervals
with the Deng entropy. It is defined as follows:

Hinter(m) = −
∑
x∈X

Belm ({x}) + Plm ({x})
2

×

log2

[
Belm ({x}) + Plm ({x})

2
×

exp(−(Plm({x})−Belm({x})]−
∑

A⊆X||A|≥2

m(A)×

log2

[
m(A)

2|A| − 1
exp(−(Plm(A)−Belm(A)))

]
.

(13)

In the previous expression, the first term corresponds to
conflict, while the second one indicates non-specificity.

A. REQUIRED MATHEMATICAL PROPERTIES FOR
UNCERTAINTY MEASURES IN DST
In [9], Klir and Wierman exposed the following set of five
crucial mathematical requirements that have to be satisfied
by every total uncertainty measure (TU) in DST that jointly
quantifies conflict and non-specificity:
• (P1) Probabilistic consistency: If m is a BPA such that

all its focal elements are singletons, then a TU measure
must collapse to the Shannon entropy:

TU(m) =
∑
x∈X

m({x}) log2 (m({x}). (14)

• (P2) Set consistency: If A ⊆ X verifies that m(A) =
1, then a TU measure has to coincide with the Hartley
measure:

TU(m) = log2 |A| . (15)

• (P3) Range: A TU measure has to take values in the
interval [0, log2 |X|].

• (P4) Subadditivity: Let m be a BPA defined on a
product space X × Y . Let us denote m↓X and m↓Y

its respective marginal BPAs on X and Y . Then, the
following inequality must be satisfied by every TU
measure:

TU(m↓X) + TU(m↓Y ) ≥ TU(m). (16)

• (P5) Additivity: Let m be a BPA defined on a product
space X × Y and let m↓X and m↓Y be its respective
marginal BPAs on X and Y . Let us suppose that the
marginal BPAs are not-interactive, i.e m(A × B) =
m↓X(A)m↓Y (B) ∀A ⊆ X , B ⊆ Y , and m(C) = 0

if C 6= A × B. Then, every TU measure has to satisfy
that:

TU(m↓X) + TU(m↓Y ) = TU(m). (17)

In DST, it can appear scenarios that never occur in PT
because DST is a more general theory. A probability distribu-
tion is never contained in another one. Nevertheless, in DST,
the information associated with a BPA can be contained in the
information corresponding to another one [10], [21]. Every
uncertainty measure in DST has to take into consideration
this point. For this reason, the following property is essential
[10]:
• (P6) Monotonicity: Every TU measure in DST must

take into consideration coherently an increase or de-
crease of information.
More formally, let us suppose that m1 and m2 are two
BPAs on X such that Pm1 ⊆ Pm2 . Then, it must be
satisfied that:

TU(m1) ≤ TU(m2). (18)

The Deng entropy only verifies the probabilistic consis-
tency [21]. Both HJS and HPQ satisfy probabilistic con-
sistency, additivity, and monotonicity, but not range, nor set
consistency, nor subadditivity [22], [23]. The combination of
the Deng entropy with belief intervals (Hinter), only satisfies
the probabilistic consistency and monotonicity properties
[27].2 A summary of the mathematical properties satisfied by
the Ed, HJS , HPQ, and Hinter can be seen in Table 1. So
far, the only uncertainty measure in DST that verifies the six
required mathematical properties is the upper entropy on the
credal set associated with a BPA m, S∗ (Pm) [10].

Property Ed HJS HPQ Hinter

Probabilistic consistency yes yes yes yes
Set consistency no no no no

Range no no no no
Subadditivity no no no no

Additivity no yes yes no
Monotonicity no yes yes yes

TABLE 1. Summary of the essential mathematical properties verified by some
recent uncertainty measures in DST.

B. REQUERIMENTS OF BEHAVIOR FOR UNCERTAINTY
MEASURES IN DST
In [34], it was concluded that S∗ (Pm) has some shortcom-
ings. Klir and collaborators presented these drawbacks in the
literature. They can be expressed as follows:
• Computing complexity.
• No separation into the two types of uncertainty coexist-

ing in DST: conflict and non-specificity.
• Insensitivity to changes in evidence.

2In [27], it was not given a formal proof about the monotonicity of
Hinter , but it was shown with illustrative numerical examples that Hinter

satisfies this requirement.
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Abellán and Masegosa, in [10], analyzed these consider-
ations. They showed that, sometimes, an increase in non-
specificity might produce a decrease in conflict and vice-
versa. In this way, we can have similar values of TU with
different values of the conflict and non-specificity parts.
Hence, they exposed the set of behavioral requirements that
must be satisfied by every TU measure in DST as follows:
• (RB1): The computation of a TU measure must not be

too complex.
• (RB2): It must be possible to decompose a TU measure

as an aggregate one that jointly quantifies conflict and
non-specificity.

• (RB3): A TU measure has to be sensitive to changes of
evidence, directly or via its parts of conflict and non-
specificity.

Based on the "Generalized Information Theory" [9], in
some situations, it is more appropriate to mathematically
quantify the available information with more general theo-
ries than DST. In these cases, the principle of uncertainty
invariance must be taken into account, which establishes that
“when a representation of uncertainty in one mathematical
theory is transformed into its counterpart in another theory,
the amount of information must be preserved". Thus, every
TU measure in DST must satisfy the following behavioral
requirement:
• (RB4): It must be possible to extend a TU measure to

more general theories than DST.
Both HJS and HPQ have an easy calculation and separate

conflict and non-specificity. Furthermore, it is possible to
extend them to more general theories than DST because GH
is generalizable to these theories, and in all the theories that
extend DST the information can be described via an upper
probability function [35]. In [10], it was shown that the upper
entropy satisfies RB2, RB3, and RB4, although its calculation
is complex. The Deng entropy and Hinter are much easier
to compute than S∗ (Pm), and coherently separate conflict
and non-specificity. However, the generalization of the Deng
entropy and Hinter is still an open question.

IV. MAXIMUM OF ENTROPY ON BELIEF INTERVALS
Let X = {x1, x2, . . . , xn} be a finite set and let m be a BPA
onX . Let us denoteBelm and Plm the belief and plausibility
functions corresponding to m, respectively.

Let us consider the set of belief intervals for singletons:

Im = {[Belm ({xi}) , P lm ({xi})] ∀i = 1, 2, . . . , n} .
(19)

This set of belief intervals is associated with the following
credal set [36]:

P (Im) = {p ∈ P(X) | Belm ({xi}) ≤ p ({xi})
≤ Plm ({xi}) , ∀i = 1, 2, . . . , n} ,

(20)

being P(X) the set of all probability distributions on X .

Our proposed uncertainty measure consists of the maxi-
mum of entropy on this credal set:

S∗ (P (Im)) = max
p∈P(Im)

S(p). (21)

It is consistent with the principle of minimum information
[37]. According to it, “the probability distribution that pro-
duces the maximum of entropy, compatible with the available
restrictions, should be chosen".

For the calculation of S∗ (P (Im)), we first need to com-
pute the belief intervals for singletons. We know that:

Belm ({xi}) = m ({xi}) ,

P lm ({xi}) =
∑

A⊆X|xi∈A

m(A), ∀i = 1, 2, . . . , n.

Thus, the computation of Belm ({xi}) is direct. For the
calculation of Plm ({xi}), i = 1, 2, . . . , n, the following
procedure can be carried out:

for i = 1 to n do
Plm ({xi})← Belm ({xi})

end for
for A ⊆ X do

if |A| ≥ 2 then
for xi ∈ A do

Plm ({xi})← Plm ({xi}) +m(A)
end for

end if
end for
We show below an example of the computation of the

belief intervals for singletons.
Example 1: Let us consider the following BPA on the finite
set X = {x1, x2, x3}:

m ({x1}) = 0.3, m ({x3}) = 0.2, m ({x1, x2}) = 0.2,

m ({x1, x2, x3}) = 0.3.

Taking into account thatBelm ({xi}) = m ({xi}), for i =
1, 2, 3, we have the following belief values for singletons:

Belm ({x1}) = 0.3, Belm ({x2}) = 0,

Belm ({x3}) = 0.2.

For the plausibilities of singletons, we initially have their
corresponding belief values. After considering {x1, x2} in
the previous algorithm, we have the following plausibility
values for singletons:

Plm ({x1}) = Belm ({x1}) +m ({x1, x2}) = 0.5,

P lm ({x2}) = Belm ({x2}) +m ({x1, x2}) = 0.3,

P lm ({x3}) = Belm ({x3}) = 0.2.

The final plausibility values for singletons are the follow-
ing ones:

Plm ({x1}) = Belm ({x1})+
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m ({x1, x2}) +m ({x1, x2, x3}) = 0.8,

P lm ({x2}) = Belm ({x2})+

m ({x1, x2}) +m ({x1, x2, x3}) = 0.6,

P lm ({x3}) = Belm ({x3}) +m ({x1, x2, x3}) = 0.5.

Once we have the belief intervals for singletons, we must
check that they satisfy the reachability condition [36]:
Definition 1: “A given set of probability intervals
on a finite set X = {x1, x2, . . . , xn}, I =
{[l ({xi}) , u ({xi})] , ∀i = 1, 2, . . . , n}, is said to be
reachable if, and only if, for each i = 1, 2, . . . , n and
each v(xi) ∈ {l ({xi}) , u ({xi})}, there exists a probability
distribution p ∈ P(I) such that p ({xi}) = v(xi), being
P(I) the credal set associated with I".

The following definition of reachability of a given set of
probability intervals is equivalent to the one shown above
[36]:
Definition 2: A given set of probability intervals
I = {[l ({xi}) , u ({xi})] ,∀i = 1, 2, . . . , n} is reachable iif
it satisfies that:

n∑
j=1,j 6=i

l ({xj}) + u ({xi}) ≤ 1, ∀i = 1, 2, . . . , n

n∑
j=1,j 6=i

u ({xj}) + l ({xi}) ≥ 1, ∀i = 1, 2, . . . , n

The following result shows that the set of belief intervals
on singletons is reachable:
Proposition 1: The set of belief intervals on singletons
IBelm = {[Belm ({xi}) , P lm ({xi})] i = 1, . . . , n} is
reachable.

Proof:
For each A ⊆ X , let us define αi(A) = |A| − 1 if xi ∈ A

and αi(A) = |A| else, ∀i = 1, 2, . . . , n. Thus,

Belm ({xi}) +
n∑

j=1,j 6=i

Plm ({xj}) =

m ({xi}) +
n∑

j=1,j 6=i

∑
A⊆X|xj∈A

m (A) =

n∑
i=1

m(xi) +
∑

A⊆X,|A|≥2

αi(A)m(A) ≥

∑
A⊆X

m (A) = 1, ∀i = 1, 2, . . . , n

since m (A) ≥ 0 ∀A ⊆ X and αi(A) ≥ 1 ∀A such that
|A| ≥ 2.

Plm ({xi}) +
n∑

j=1,j 6=i

Belm ({xj}) =

∑
A⊆X|xi∈A

m(A) +
n∑

j=1,j 6=i

m ({xj}) =

n∑
j=1

m ({xj})) +
∑

A⊆X|xi∈A∧|A|≥2

m (A) ≤

∑
A⊆X

m (A) = 1, ∀i = 1, 2, . . . , n.

�
Now, we can utilize the algorithm presented in [38] to ob-

tain the maximum of entropy on the credal set corresponding
to a reachable set of probability intervals. We introduce the
following notation:
• Min(p, Inx) indicates the minimum value of the distri-

bution p among the components whose index belongs to
the index set Inx.

• Sig(p, Inx) denotes the second minor value of the dis-
tribution p among the components whose index belongs
to the index set Inx. If that second minor value does not
exist, then Sig(p, Inx) = −1.

• Nmin(p, Inx) indicates the number of indices in the
index set Inx that attain the minimum value of the dis-
tribution p among the components whose index belongs
to Inx.

• Min(a, b, c) denotes the minimum value of {a, b, c},
real numbers.

Then, the following procedure can be used to obtain the
probability distribution that attains the maximum of entropy
on P (Im), which we denote p̂:
index_set← {1, 2 . . . , n}
for i = 1 to n do

p̂ ({xi})← Belm ({xi})
end for
mass← 1−

∑n
i=1Belm ({xi})

while mass > 0 do
for i ∈ index_set do

if p̂ ({xi}) = Plm ({xi}) then
index_set← index_set \ {i}

end if
end for
min←Min(p̂, index_set)
second← Sig(p̂, index_set)
m← Nmin(p̂, index_set)
for i ∈ index_set do

if p̂ ({xi}) = min then
if second = −1 then

p̂ ({xi})← p̂ ({xi})+
Min

(
Pl ({xi})− p̂ ({xi}) , mass

m , 1
)

mass← mass−
Min

(
Pl ({xi})− p̂ ({xi}) , mass

m , 1
)

else
p̂ ({xi})← p̂ ({xi})+
Min (Pl({xi})− p̂({xi}),
second− p̂({xi}), mass

m

)
mass← mass−
Min (Pl({xi})− p̂({xi}),
second− p̂({xi}), mass

m

)
end if
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end if
end for

end while
We separate S∗ (P (Im)) into two measures that capture

conflict and non-specificity in a similar way as the maximum
of entropy on the credal set associated with the BPA:

S∗ (P (Im)) = S∗ (P (Im)) + (S∗ − S∗) (P (Im)) , (22)

being S∗ (P (Im)) the minimum of entropy on P (Im). The
first term indicates conflict, whereas the second one quanti-
fies the non-specificity part.

The term of conflict, S∗ (P (Im)), is equal to 0 if, and only
if, P (Im) contains a degenerate probability distribution.
This only happens if ∃p ∈ P (Im) such that p ({xj}) = 1
and p ({xi}) = 0 ∀i 6= j. There exists such probability
distribution iif Plm ({xj}) = 1, i.e iif xj belongs to all
the focal sets. Therefore, there is no conflict only when all
the focal sets have a non-empty intersection. The maximum
value of S∗ (P (Im)), log2 (n), is obtained when P (Im)
only contains the uniform probability distribution, which is
quite logical. For these reasons, we can say that our conflict
measure makes sense, and it does not present problems
when all the focal sets are not disjunct, unlike the Deng
entropy [21]. In such situations, the conflict value of HJS

and HPD might be greater than 0. Indeed, in these cases, the
plausibility transformation for many elements may be lower
than 1, as well as the sum of the plausibility transformations
of the elements belonging to many subsets. Consequently,
both HJS and HPD have an undesirable behavior when all
the focal sets share an element.

For calculating S∗ (P (Im)), we utilize the following
Lemma, proved by Wasserman and Kadane in [39]:
Lemma 1:

“Let X be a discrete variable that takes values in
{x1, x2, . . . , xn}. Let p and q be two probability distribu-
tions on X . We denote p ({xi}) as pi and q ({xi}) as qi
∀i = 1, 2, . . . , n, in such a way that p = (p1, p2, . . . , pn)
and q = (q1, q2, . . . , qn). Let p∗ (respectively, q∗) be the
array p, (respectively, q) ordered decreasingly. If

∑j
i=1 p

∗
i ≤∑j

i=1 q
∗
i , ∀j = 1, 2 . . . , n then S(p) ≥ S(q)".

Let us denote p the distribution of minimum of entropy
in P (Im) and ((Belm)1 , (Belm)2 , . . . , (Belm)n) (respec-
tively, ((Plm)1 , (Plm)2 , . . . , (Plm)n)) the array of beliefs
(respectively, plausibilities) for singletons. Let Pl∗m be the
array of plausibilities for singletons ordered decreasingly.
Let Bel′m be the array of beliefs for singletons ordered in
the same way as Pl∗m. Let p∗ be the array of p ordered
decreasingly. Then, p can be obtained via the following
procedure:

for i = 1 to n do
pi ← (Belm)i

end for
mass← 1−

∑n
i=1 (Belm)i

r ← 1

first_step← false
while first_step = false do

if (Pl∗m)r − (Bel′m)r < mass then
p∗r ← (Pl∗m)r
mass← mass− (Pl∗m)r + (Bel′m)r
r ← r + 1

else
first_step← true

end if
end while
k ← argmaxl≥r {(Bel′m)l +mass}
p∗r ← (Bel′m)k +mass

We may note that, at the end of the while loop of the
algorithm, r ≤ n because the belief intervals of singletons
are reachable, as shown in Proposition 1. The following result
shows that the probability distribution obtained in the previ-
ous procedure attains the minimum of entropy in P (Im).
Theorem 1: The probability distribution p obtained in the
previous algorithm verifies that S∗ (P (Im)) = S (p).

Proof: With the same notation as in the previous algorithm,
we have that
p∗ =

(
(Pl∗m)1 , . . . , (Pl

∗
m)r−1 , αk,(

Bel
′′

m

)
r+1

, . . . ,
(
Bel

′′

m

)
n

)
, where(

Bel
′′

m

)
i
∈ {(Belm)1 , . . . , (Belm)n} ∀i = r + 1, . . . , n,(

Bel
′′

m

)
i
≥
(
Bel

′′

m

)
j
∀i, j ∈ {r + 1, . . . , n} with j ≤ i,

and αk ∈ [(Bel′m)k , (Pl
∗
m)k].

Let us suppose now that q ∈ P (Im) and let q∗ be its
corresponding array ordered decreasingly.

For 1 ≤ j ≤ r − 1 clearly:

j∑
i=1

p∗i =

j∑
i=1

(Pl∗m)i ≥
j∑

i=1

q∗i .

For j ∈ [r, n]:

j∑
i=1

p∗i = 1−
n∑

i=j+1

(
Bel

′′

m

)
i
≥ 1−

n∑
i=j+1

q∗i =

j∑
i=1

q∗i .

In consequence,
∑j

i=1 p
∗
i ≥

∑j
i=1 q

∗
i , ∀j = 1, . . . , n.

Due to Lemma 1, S (p) ≤ S(q) . Thus, we can conclude
that p is the distribution with the minimum entropy on
P (Im).

�
We show below an example about the procedure to obtain

S∗ (P (Im)).
Example 2:

Let be the finite set X = {x1, x2, x3, x4} and let us
consider the following BPA on X:

m ({x1}) = 0.1, m ({x2, x3}) = 0.6,

m ({x1, x4}) = 0.3.

We have the following belief intervals for singletons:
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x1 → [0.1, 0.4],

x2 → [0, 0.6],

x3 → [0, 0.6],

x4 → [0, 0.3].

If we carry out the steps of the previous algo-
rithm, we obtain the following values for p =
(p ({x1}) , p ({x2}) , p ({x3}) , p ({x4})), the distribution of
minimum entropy on the credal set corresponding to these
belief intervals:

p = (0.1, 0, 0, 0)

p = (0.1, 0, 0.6, 0)

p = (0.4, 0, 0.6, 0)

Regarding the non-specificity part of S∗ (P (Im)),
(S∗ − S∗) (P (Im)), it is equal to 0 (its minimum value)
when P (Im) contains a single probability distribution, i.e
when Belm ({xi}) = Plm ({xi}) ∀i = 1, 2, . . . , n, and
it happens if, and only if, m is a probability distribution.
The maximum value of (S∗ − S∗) (P (Im)), which is equal
to log2 (n), is obtained when P (Im) contains the uniform
probability distribution and a degenerate one. Hence, we can
say that (S∗ − S∗) (P (Im)) makes a lot of sense as a non-
specificity measure.

A. MATHEMATICAL PROPERTIES OF OUR NEW
UNCERTAINTY MEASURE
We analyze which of the necessary mathematical properties
for an uncertainty measure in DST, described in Section
III-A, are satisfied by our proposed measure S∗ (P (Im)).
• Probabilistic consistency: If all the focal elements of
m are singletons, then Belm ({xi}) = m ({xi}) =
Plm ({xi}) ∀i = 1, . . . , n. In this situation, P (Im)
only contains a probability distribution p, given by
p ({xi}) = m ({xi}) , ∀i = 1, . . . , n, and it is obvious
that S∗ (P (Im)) coincides with the Shannon entropy.

• Set consistency: If ∃A ⊆ X such that m(A) = 1, then
Belm ({xi}) = Plm ({xi}) = 0 ∀xi /∈ A. In addition,
Belm ({xi}) = 0, and Plm ({xi}) = 1 ∀xi ∈ A.
It can be easily deduced that, in this case, the probability
distribution that attains that maximum of entropy on
P (Im) is the one given by:

p̂ ({xi}) =


1
|A| if xi ∈ A

0 if xi /∈ A

Thus,

S∗ (P (Im)) = S(p̂) = −
∑
xi∈A

1

|A|
log2

(
1

|A|

)
=

− |A| ×
[

1

|A|
log2

(
1

|A|

)]
= log2 (|A|),

and S∗ (P (Im)) collapse to the Hartley measure.
• Range: The minimum value of S∗ (P (Im)) is equal to

0. It is obtained when P (Im) just contains a degenerate
probability distribution p, i.e p ({xi}) = 1 for some i ∈
{1, . . . , n} and p ({xj}) = 0, ∀j 6= i.
S∗ (P (Im)) attains its maximum value when the uni-
form probability distribution belongs to P (Im). That
maximum value is equal to log2 (n).
Therefore, S∗ (P (Im)) verifies the range property.

• Subadditivity: This property is based on the projections
of a BPA defined over a joint space X × Y on its
respective marginal sets X and Y , and our presented
uncertainty measure considers the belief intervals for
singletons and its corresponding credal sets. Hence,
the subadditivity property for our uncertainty measure
is controversial because it might make more sense to
consider the projections of the belief intervals than the
projections of the BPA. For this reason, we reconsider
the definition of this property for our proposed un-
certainty measure. We need some concepts related to
probability intervals and credal sets.
Firstly, we define the projections of the belief intervals
for singletons of a BPA defined on a product space
on the marginal sets. This definition is based on the
one given in [36] for the marginalization of probability
intervals.
Definition 3: Let X = {x1, . . . , xn} and Y =
{y1, . . . , yn′} be finite sets. Let m be a BPA defined on
X × Y , and Belm and Plm the belief and plausibility
functions corresponding to m, respectively. Let us sup-
pose that Im = {[lij , uij ] | lij = Belm ({xi, yj}) ,
uij = Plm ({xi, yj})} is the set of belief intervals for
singletons. Let us denote P∗ (Im) and P ∗ (Im) the
lower and upper probabilities associated with Im, re-
spectively. The marginal set of belief intervals on X is
defined as follows:

I↓Xm = {[li, ui] | li = P∗ (Im) (xi × Y ) ,

ui = P ∗ (Im) (xi × Y ) , ∀i = 1, 2, . . . , n} .

The definition of the marginal set of belief intervals on
Y , I↓Ym , is analogous.
Now, we define the projections of the credal set cor-
responding to belief intervals for singletons associated
with a BPA defined on a product space on the corre-
sponding marginal sets.
Definition 4: Let X = {x1, . . . , xn} and Y =
{y1, . . . , yn′} be finite sets. Let m be a BPA defined
on X × Y and P (Im) the credal set associated with
belief intervals for singletons. The marginal credal set
of P (Im) on X is defined as follows:

P (Im)
↓X

= {pX | ∃p ∈ P (Im) : pX(xi) =

n′∑
j=1

p(xi, yj), ∀i = 1, . . . , n}.
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Analogously, it is possible to define the marginal credal
set of P (Im) on Y , which we denote P (Im)

↓Y .
We have the following proposition:
Proposition 2: If m is a BPA defined over a product
space X × Y , Im is the set of belief intervals for
singletons, and P (Im) is its corresponding credal set,
it is satisfied that:

P (Im)
↓X

= P
(
I↓Xm

)
, P (Im)

↓Y
= P

(
I↓Ym

)
.

Proof:
We use the same notation as in the previous definitions.
Let pX ∈ P (Im)

↓X . Then, ∃p ∈ P (Im) such that
pX ({xi}) =

∑n′

j=1 p ({xi, yj}) ∀i = 1, 2, . . . , n.
Since p ∈ P (Im) we have that

lij ≤ p ({xi, yj}) ≤ uij ,

∀i = 1, . . . , n, j = 1, . . . , n′ ⇒
n′∑
j=1

lij ≤
n′∑
j=1

p ({xi, yj}) = pX ({xi}) ≤

n′∑
j=1

uij ∀i = 1, . . . , n,

which implies that pX ∈ P
(
I↓Xm

)
.

Let us suppose that pX ∈ P
(
I↓Xm

)
. Then:

n′∑
j=1

lij ≤ pX ({xi}) ≤
n′∑
j=1

uij , ∀i = 1, . . . , n.

For each i = 1, . . . , n, there are 3 possibilities:
1) pX ({xi}) =

∑n′

j=1 lij

2) pX ({xi}) =
∑n′

j=1 uij

3) pX ({xi}) = λi, where
∑n′

j=1 lij < λi <∑n′

j=1 uij .
We consider:

p ({xi, yj}) =


lij if pX ({xi}) =

∑n′

j=1 lij ,

uij if pX ({xi}) =
∑n′

j=1 uij ,

αij if pX ({xi}) = λi


with

∑n′

j=1 lij < λi <
∑n′

j=1 uij , lij ≤ αij ≤ uij , in

such a way that
∑n′

j=1 αij = λi ∀i ∈ {1, . . . , n} such

that
∑n′

j=1 lij < pX ({xi}) <
∑n′

j=1 uij .

Clearly, p ∈ P (Im) and pX ({xi}) =
∑n′

j=1 p ({xi, yj})
∀i = 1, . . . , n. Consequently, pX ∈ P (Im)

↓X .
The proof of P (Im)

↓Y
= P

(
I↓Ym

)
is analogous.

�
Thus, when a BPA is defined on a joint set, marginaliz-
ing over the belief intervals for singletons is equivalent
to marginalizing over the corresponding credal set for
our proposed uncertainty measure.
Concerning subadditivity, we have the following propo-
sition:

Proposition 3: Let X = {x1, . . . , xn} and Y =
{y1, . . . , yn′} be two finite sets. Letm be a BPA defined
on X × Y , Im the set of belief intervals for singletons,
and P (Im) its corresponding credal set. It is satisfied
that:

S∗ (P (Im)) ≤ S∗
(
P
(
I↓Xm

))
+ S∗

(
P
(
I↓Ym

))
.

Taking into account Proposition 2, the proof of this
result is identical to the one given in [38] for the
subadditivity property for the extension of S∗ (Pm) to
general credal sets. Therefore, when the belief inter-
vals corresponding to a BPA defined over a product
space are projected on the marginal sets, the amount
of information according to our proposed uncertainty
measure is not increased. In that sense, we could say
that S∗ (P (Im)) is subadditive.
The following example shows that the belief intervals
of the projected BPAs does not coincide with the pro-
jections of the belief intervals.
Example 3: Let us consider the finite sets X =
{x1, x2, x3}, and Y = {y1, y2}. Let m be the BPA on
X × Y given by:

m ({z11, z12, z21}) = 0.7, m ({z31, z32}) = 0.1,

m ({z11, z12, z21, z22, z31, z32}) = 0.2,

where we denote zij = (xi, yj), for i = 1, 2, 3, j = 1, 2.
For singletons, we have the following belief intervals:

z11 → [Belm ({z11}) , P lm ({z11})] = [0, 0.9]

z12 → [Belm ({z12}) , P lm ({z12})] = [0, 0.9]

z21 → [Belm ({z21}) , P lm ({z21})] = [0, 0.9]

z22 → [Belm ({z22}) , P lm ({z22})] = [0, 0.2]

z31 → [Belm ({z31}) , P lm ({z31})] = [0, 0.3]

z32 → [Belm ({z32}) , P lm ({z32})] = [0, 0.3]

Let mX be the marginal BPA of m on X . We have that:

mX ({x1, x2}) = 0.7,

mX ({x3}) = 0.1, mX(X) = 0.2.

The belief intervals for singletons associated with mX

are the following ones:

x1 → [0, 0.9]

x2 → [0, 0.9]

x3 → [0.1, 0.3]

Nevertheless, the result of the projection of the belief
intervals for singletons associated with m on X is the
following one:

x1 → [0, 1]
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x2 → [0, 1]

x3 → [0, 0.6]

For these reasons, we consider that, with the maximum
of entropy on the credal set associated with the belief in-
tervals for singletons, the subadditivity property should
be utilized with the projections of the belief intervals,
instead of the projections of the BPA, as the definition
of subadditivity exposed in Section III-A. Our proposed
measure is subadditive with this adapted definition of
the property.

• Additivity: With this property, as with subadditivity, for
our proposed measure, it makes more sense to consider
the projections of the intervals instead of the marginals
BPAs. Thus, we need a definition of independence that
is applied to credal sets instead of BPAs. For this pur-
pose, we use the concept of strong independence [40].
Definition 5: “Let X and Y be finite sets. Let m
be a BPA on the product space X × Y . Let us
consider P (Im) the credal set associated with the
belief intervals for singletons. Let P (Im)

↓X and
P (Im)

↓Y be the corresponding marginal credal sets
on X and Y , respectively. It is said that there is
strong independence under P (Im) iff P (Im) =

CH
(
P (Im)

↓X × P (Im)
↓Y
)

."3

Now, we have the following result:
Proposition 4: Let X and Y be finite sets. Let us
consider a BPA m on X × Y . Let P (Im) be the credal
set associated with the belief intervals for singletons. Let
su suppose that P (Im)

↓X and P (Im)
↓Y are the corre-

sponding marginal credal sets onX and Y , respectively.
If there is strong independence under P (Im), then

S∗ (P (Im)) = S∗
(
P
(
I↓Xm

))
+ S∗

(
P
(
I↓Ym

))
.

The proof of this proposition is identical to the one
provided in [38] for the additivity requirement for the
maximum of entropy on credal sets if we take into
consideration Proposition 2.
Therefore, our proposed measure verifies the additivity
requirement with this adapted definition of the property.

• Monotonicity:
Let m1 and m2 be two BPAs on a finite set X =
{x1, x2, . . . , xn}. Let Belm1

and Belm2
be the belief

functions associated with m1 and m2, respectively. Let
P (Im1

) and P (Im2
) be the credal sets corresponding

to the belief intervals for singletons associated with m1

and m2, respectively. Let us consider the credal sets
associated with mj , for j = 1, 2:

Pmj
=
{
p ∈ P (X) | p(A) ≥ Belmj

(A) ∀A ⊆ X
}
.

Let us suppose that Pm1 ⊆ Pm2 . In such case, it is
easy to check that Belm1

(A) ≥ Belm2
(A) ∀A ⊆ X .

3CH indicates the convex hull of a set.

In particular, Belm1
({xi}) ≥ Belm2

({xi}) ∀i =
1, 2, . . . , n.
Let Plmj be the plausibility function corresponding to
Belmj

, for j = 1, 2. We have that:

Belm1 (X \ {xi}) ≥ Belm2 (X \ {xi})

⇒ 1− Plm1
({xi}) ≥ 1− Plm2

({xi})

⇒ Plm2 ({xi}) ≥ Plm1 ({xi}) , ∀i = 1, . . . , n.

Consequently, if p ∈ P (Im1
), then:

Belm2 ({xi}) ≤ Belm1 ({xi}) ≤ p(xi) ≤

Plm1
({xi}) ≤ Plm2

({xi})∀i = 1, . . . , n,

which implies that p ∈ P (Im2
).

Hence, if Pm1
⊆ Pm2

, then P (Im1
) ⊆ P (Im2

).
Therefore, S∗ (P (Im1

)) ≤ S∗ (P (Im2
)), and we

conclude that S∗ (P (Im)) satisfies the monotonicity
property.
For uncertainty measures based on belief intervals, it
might make more sense to apply an adapted definition
of the monotonicity property that considers the inclu-
sion among the belief intervals [41], instead of the
inclusion among the credal sets corresponding to the
BPAs. However, as shown above, S∗ (P (Im)) verifies
the monotonicity requirement under both inclusions.

Summarizing, unlike other alternatives to S∗ (Pm) such
as the Deng entropy, HJS , HPQ, or Hinter (see Table 1),
S∗ (P (Im)) verifies the six essential mathematical proper-
ties for a TU measure in DST, although the subadditivity and
additivity properties for our proposed measure are contro-
versial. Remark that the monotonicity requirement is crucial
since a total uncertainty measure in DST must be consistent
with an increase or decrease of information.

B. BEHAVIORS OF OUR PROPOSAL
Now, we analyze the behavioral requirements described in
Section III-B for our proposed measure S∗ (P (Im)).
• (RB1): S∗ (P (Im)) is not as direct to obtain as some

recent measures such as the Deng entropy. Nonetheless,
its calculation is considerably easier than the calculation
of S∗ (Pm) because the algorithms proposed in Section
IV to compute the belief intervals and, after, calculate
the maximum of entropy on the corresponding credal
set, are much simpler than the algorithms to calculate
S∗ (Pm) proposed in [11]–[14]. It is since, for the
calculation of S∗ (P (Im)), only the extreme values of
the belief intervals for singletons are taken into account,
while it is necessary to consider the power set to obtain
S∗ (Pm).

• (RB2): As we have shown, S∗ (P (Im)) can be co-
herently disaggregated in two measures that quantify
conflict and non-specificity. This separation is done
similarly as the maximum of entropy on the credal
set associated with m, S∗ (P (Im)) = S∗ (P (Im)) +

10 VOLUME 4, 2016
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(S∗ − S∗) (P (Im)). We have provided an algorithm
to calculate S∗ (P (Im)). Nevertheless, the only algo-
rithm developed in the literature for the computation of
S∗ (Pm) is the one proposed in [42], whose complexity
is notably high.

• (RB3): For analyzing the sensitivity to changes in the
evidence of m, consistently with the studies carried out
in [34] and [10], we use the following example:
Example 4: Let be the finite X = {x1, x2} and let us
suppose that we have the BPA on X given by:

m ({x1}) = m1, m ({x1}) = m2,

m ({x1, x2}) = m12 = 1−m1 −m2.

where 0 ≤ mi ≤ 1 for i = 1, 2, and m1 +m2 ≤ 1. For
singletons, we have the following belief intervals:

x1 → [m1, 1−m2],

x2 → [m2, 1−m1].

It is known that the conflict part of m depends on the
interaction of m1 and m2, whereas the non-specificity
part is quantified by m ({x1, x2}) = m12 = 1 −m1 −
m2.
Without losing generality, we assume that the value of
m1 is known. We distinguish two cases:

-- Case 1: m1 ≥ 0.5. We have that m2 ≤ 0.5 ≤
m1 ⇒
S∗ (P (Im)) = S(m1, 1−m1), S∗ (P (Im)) =
S(m2, 1−m2),
(S∗ − S∗) (P (Im)) = S(m1, 1−m1)−S(m2, 1−
m2).4

The amount of total uncertainty keeps constant.
The conflict part increases as m2 increases, which
is logical if we take into consideration that m2 ≤
0.5 ≤ m1. The non-specificity part increases when
m2 decreases, i.e whenm12 increases. Remark that
the non-specificity part of m is indicated by m12.
Thus, we can say that the variations of the conflict
and non-specificity parts of S∗ (P (Im)) as m2

changes are pretty coherent.
-- Case 2: m1 < 0.5. In this case:
S∗ (P (Im)) = S(α2, 1 − α2), where α2 =
max{m2, 0.5}, and
S∗ (P (Im)) = S(α, 1 − α), being α =
min{m1,m2}.
Consequently, the conflict part depends on the min-
imum value of m1 and m2, which is very logical.
For the non-specificity part, we distinguish three
cases:
1) m2 ≤ m1 < 0.5. In such case:

S∗ (P (Im)) = S(0.5, 0.5), S∗ (P (Im)) =
S(m2, 1 − m2), and (S∗ − S∗) (P (Im)) =

4Within this example, S(a, 1− a) with a ∈ [0, 1] denotes S(pa), where
pa ({x1}) = a and pa ({x2}) = 1− a.

S(0.5, 0.5) − S(m2, 1 − m2). The total un-
certainty keeps constant, and the conflict part
increases as m2 increases. Hence, the non-
specificity part decreases as m2 increases
(m ({x1, x2}) decreases), which makes a lot of
sense.

2) m1 ≤ m2 < 0.5. Then, S∗ (P (Im)) =
S(m1, 1−m1), which implies that the conflict
part does not vary. In addition,
S∗ (P (Im)) = S(0.5, 0.5). Therefore, the to-
tal uncertainty, conflict and non-specificity val-
ues keep constant. It could be considered such
an undesirable behavior. Nevertheless, in this
case, since 1 −mi > 0.5 for i = 1, 2, it might
make sense to consider a total uncertainty value
because the plausibility of each singleton is
greater than 0.5.

3) m1 < 0.5 ≤ m2. In this case, S∗ (P (Im)) =
S(m2, 1−m2), S∗ (P (Im)) = S(m1, 1−m1),
and (S∗ − S∗) (P (Im)) = S(m2, 1 −m2) −
S(m1, 1 − m1). The conflict part keeps con-
stant, and the non-specificity value decreases
asm2 increases, i.e, asm ({x1, x2}) decreases,
which is quite coherent.

From the previous example, we can conclude that, as
happens with S∗ (Pm) (See [10] for more details),
S∗ (P (Im)) is sensitive to changes of evidence, directly
or via its parts of conflict and non-specificity. Using
the same example, it is easy to check the sensitivity to
changes in the evidence of that the Deng entropy, HJS ,
HPQ, and Hinter.

• (RB4): In all the generalizations of the Probability The-
ory, the information can be expressed by a lower prob-
ability function, which always hasassociated an upper
probability function [35]. Therefore, it is immediate to
conclude that S∗ (P (Im)) can be easily extended to
more general theories than DST because, in them, it is
possible to consider the lower and upper probabilities
for singletons.

Hence, our proposed measure verifies all the requirements
of behavior for uncertainty measures in DST. Table 2 shows
a summary of the behavioral requirements satisfied by Deng
entropy, Hinter, S∗ (Pm), and S∗ (P (Im)).

Requirement Ed Hinter S∗ (Pm) S∗ (P (Im))
Complexity low low high medium

RB2 yes yes yes yes
RB3 yes yes yes yes
RB4 no no yes yes

TABLE 2. Summary of the crucial behavioral requirements verified by some
recent uncertainty measures in DST.

Indeed, HJS and HPD satisfy all the behavioral require-
ments for uncertainty measures in DST. Nonetheless, we
must remark that, as said before, these measures present an
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undesirable behavior when all the focal sets share an element,
unlike our proposal.

Let us analyze the relation between S∗ (P (Im)) and
S∗ (Pm). As the following result shows, the credal set cor-
responding to a BPA is always contained in the credal set as-
sociated with the belief intervals for singletons corresponding
to that BPA:
Proposition 5: If m is a BPA on a finite set X =
{x1, x2, . . . , xn}, then

Pm ⊆ P (Im) .

Proof:
Let p ∈ Pm. Then, for each A ⊆ X , we have

that Bel(A) ≤ p(A). In particular, Belm ({xi}) ≤
p ({xi}) ∀i = 1, 2, . . . , n. Besides,

Belm (X \ {xi}) ≤ p (X \ {xi})⇒

1− Plm ({xi}) ≤ 1− p ({xi})⇒

p ({xi}) ≤ Plm ({xi}) , ∀i = 1, 2, . . . , n.

Consequently,

Belm ({xi}) ≤ p ({xi}) ≤ Plm ({xi}) , ∀i = 1, 2, . . . , n,

which implies that p ∈ P (Im).
�

From the previous result, it is immediate that
S∗ (P (Im)) ≥ S∗ (Pm). Thus, our proposed measure
provides an upper bound of the maximum of entropy on the
credal set associated with a BPA. Moreover, S∗ (P (Im)) ≤
S∗ (Pm). In this way, the conflict value provided by our
uncertainty measure is always lower or equal than the conflict
value captured by S∗ (Pm). Nonetheless, the non-specificity
value of S∗ (P (Im)) is always greater or equal than the non-
specificity value corresponding to S∗ (Pm). It makes sense
since the main difference between uncertainty in DST and PT
resides in the non-specificity part, and our proposed measure
enhances this idea.

V. CONCLUSIONS AND FUTURE WORK
In this work, we have considered the belief intervals to
quantify the uncertainty-based information in Evidence The-
ory. As said in the introduction, belief intervals are more
suitable than a basic probability assignment to represent the
uncertainty since they allow knowing the uncertain area for
each subset. More specifically, we have proposed a new un-
certainty measure that consists of the maximum of entropy on
the credal set corresponding to belief intervals for singletons.
It has been presented as an alternative to the maximum of
entropy on the credal set associated with a BPA, which is
the only uncertainty measure proposed so far that verifies all
the mathematical properties and requirements of behavior for
uncertainty measures in DST.

Our proposed measure satisfies the probabilistic consis-
tency, set consistency, range, and monotonicity properties.
Remark that the last one is essential because an uncertainty

measure must be consistent with an increase or decrease of
information. The additivity and subadditivity properties are
controversial for the maximum of entropy on the credal set
corresponding to belief intervals for singletons since these
properties consider the projections of a BPA defined on a
product space on the corresponding marginal sets, which
might not be very coherent for our proposal. Thus, we have
reconsidered the concepts of subadditivity and additivity for
our proposed measure by considering the projections of the
belief intervals, and we have shown that our proposal verifies
these properties with the reconsidered definitions.

Furthermore, we have shown that our new uncertainty
measure satisfies the behavioral requirements for an uncer-
tainty measure in DST: it coherently separates conflict and
non-specificity, it is sensitive to changes in evidence (directly
or via its parts of conflict and nonspecificity), and it is
possible to extend it to more general theories than DST.
In this way, our proposed measure overcomes most of the
drawbacks of some measures recently proposed.

We have provided an algorithm for the calculation of the
maximum of entropy on the credal set corresponding to belief
intervals for singletons, which is considerably simpler than
the ones proposed in the literature for the computation of
the maximum of entropy on the credal set corresponding to a
BPA. The reason is that, for the calculation of our proposed
measure, it is just necessary to consider the extreme values
of the belief intervals and not the power set, unlike the upper
entropy on the credal set associated with a BPA. Also, for the
same reason, the conflict and non-specificity parts are easier
to obtain with the maximum of entropy on the credal set
corresponding to belief intervals for singletons. Therefore,
our proposed uncertainty measure is more suitable to be
employed in practical applications than the upper entropy on
the credal set corresponding to a BPA.

In addition, we have demonstrated that the maximum of
entropy on the credal set associated with belief intervals
for singletons provides an upper bound of the maximum of
entropy on the credal set associated with the BPA. More
specifically, the conflict part of our proposed measure is
always lower or equal than conflict part of the upper entropy
on the credal set corresponding to the BPA, whereas the non-
specificity part is always greater or equal. In consequence,
our proposed uncertainty measure enhances the idea that
the difference between uncertainty in DST and Probability
Theory resides in the non-specificity part.

As future work, firstly, the algorithm to calculate the
uncertainty measure presented here could be simplified. We
consider that reducing the complexity of the algorithm to
calculate the maximum entropy for BPAs, in general, is also
possible and can be another interesting task for us. Secondly,
we want to apply our new measure to specific cases where
the theory of evidence is used to represent the available
information. The most immediate applications may be in
the case of information fusion in the field of the sensors, as
applied in [4].
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