
Received 28 November 2014

Accepted 9 January 2015

A MapReduce Approach to Address Big Data Classification Problems Based on
the Fusion of Linguistic Fuzzy Rules

Sara del Rı́o ∗, Victoria López , José Manuel Benı́tez , Francisco Herrera

Dept. of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and
Communications Technology), University of Granada, Granada, Spain †

Abstract

The big data term is used to describe the exponential data growth that has recently occurred and represents
an immense challenge for traditional learning techniques. To deal with big data classification problems
we propose the Chi-FRBCS-BigData algorithm, a linguistic fuzzy rule-based classification system that
uses the MapReduce framework to learn and fuse rule bases. It has been developed in two versions with
different fusion processes. An experimental study is carried out and the results obtained show that the
proposal is able to handle these problems providing competitive results.

Keywords: Fuzzy rule based classification systems; Big data; MapReduce; Hadoop; Rules fusion.

1. Introduction

Along the last years, one of the interesting trends

in the information technology industry is what is

known as “big data.” This popular term is used when

referring to massive amounts of data that are difficult

to handle and analyze using traditional data manage-

ment tools.1 These include structured and unstruc-

tured, data featuring from terabytes to zettabytes

and coming from diverse sources such as social net-

works, mobile devices, multimedia data, webpages

or sensor networks among others.2

More data should lead to more effective anal-

ysis and therefore, should enable the extraction of

more accurate and precise information. Neverthe-

less, the standard machine learning and data mining

techniques are not able to easily scale up to big data

problems. 3In this way, it is necessary to adapt and

redesign the standard learning algorithms consider-

ing the existing solutions to address these problems.
4,5,6

Fuzzy Rule Based Classification Systems (FR-

BCSs) are effective and popular tools for pattern

recognition and classification.7 These techniques are

able to obtain good accuracy results while providing

a descriptive model for the end user through the us-

age of linguistic labels. When dealing with big data,

one of the issues that hinders the extraction of in-

formation is the uncertainty that is associated to the

vagueness or the noise inherent to the available data.

Therefore, FRBCSs seem appropriate in this sce-

nario as they can handle uncertainty, ambiguity or

vagueness in a very effective manner. Another issue

that complicates the learning process is the high di-

mensionality and the large number of instances that

are present in big data, since the inductive learn-

∗Corresponding author. Tel:+34-958-240598; Fax: +34-958-243317.
†E-mail: srio@decsai.ugr.es (Sara del Rı́o), vlopez@decsai.ugr.es (Victoria López), J.M.Benitez@decsai.ugr.es (José Manuel Benı́tez),

herrera@decsai.ugr.es (Francisco Herrera).

International Journal of Computational Intelligence Systems, Vol. 8, No. 3 (2015) 422-437

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

422

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

ing capacity of FRBCSs is affected by the expo-

nential growth of the search space.8 To address this

problem, several approaches have appeared to build

parallel fuzzy systems 9,10; however, these models

aim to reduce the processing time while preserving

the accuracy and they are not designed to manage

huge amounts of data. In this way, it is necessary to

adapt and redesign the FRBCSs so that they are able

to provide an accurate classification in a reasonable

amount of time in big data problems.

One of the most popular paradigms nowadays

for addressing big data is MapReduce,11 a new dis-

tributed programming model that organizes the com-

putation into two key operations: the map func-

tion that is responsible for splitting the original

dataset and processing each sub-problem indepen-

dently, and the reduce function that collects and ag-

gregates the results from the map function.

In this paper, we present an FRBCS that can

deal with big data classification problems providing

an interpretable model and competitive accuracy re-

sults. We extend the conference contribution pre-

sented in 13. Our proposal, denoted as Chi-FRBCS-

BigData, is based on the Chi et al.’s approach,12 a

classical FRBCS learning method which has been

adapted to deal with big data following a MapRe-

duce scheme.

The fusion of linguistic fuzzy rules is a funda-

mental task in the approach due to the nature of the

MapReduce procedure, which divides the original

dataset into blocks. The Chi-FRBCS-BigData al-

gorithm can generate contradictory rules (rules with

the same antecedent, with or without the same con-

sequent and with different rule weights), so it is nec-

essary to address how the fusion of rules is per-

formed with specific procedures. To do this, two

different versions of Chi-FRBCS-BigData approach

have been developed: Chi-FRBCS-BigData-Max

and Chi-FRBCS-BigData-Ave. While both versions

share most of their operations, they differ in the re-
duce step of the approach, where the generated rule

bases are combined. Therefore, these variants of

Chi-FRBCS-BigData algorithm obtain different fi-

nal rule bases.

Furthermore, the choice of the Chi et al’s method

over any other FRBCS method is due to its intrinsic

characteristics that make it particularly suitable to

build a parallel approach:

• It is a simple approach that does not have strong

dependencies between parts of the algorithm.

• It generates rules that have the same structure

(rules with as many antecedents as attributes in

the dataset using only a fuzzy label). Having the

same structure for the rules greatly benefits both

the rule generation from a subset of the data and

the combination of rules, a process carried out in

the reduce phase of the proposed approach.

In order to evaluate the performance of the Chi-

FRBCS-BigData algorithm, we have designed and

carried out an experimental study based in six binary

big data problems. The classification is evaluated

using the accuracy obtained and the runtime spent

by the models, which will also help to understand

the strong points and limitations of both versions of

the proposal.

The rest of this paper is organized as follows.

Section 2 provides some background information

about big data. Section 3 introduces some general

concepts about FRBCSs and describes the Chi et al’s
algorithm. Section 4 describes the approaches pro-

posed in this work, the versions of the Chi-FRBCS-

BigData algorithm to deal with big data. Then, Sec-

tion 5 shows the configuration of the experimental

study, a first scalability study to show the inability of

the Chi et al’s algorithm to deal with big data classi-

fication problems and the study with the results and

their analysis over the six big data problems. Finally,

the conclusions achieved in this work are shown in

Section 6.

2. Big data and the MapReduce programming
model

In this section we present some background about

big data. Section 2.1 provides an introduction to

big data. Section 2.2 provides a detailed description

about the MapReduce programming model.

2.1. Introduction to big data

The big data term is related to the exponential

growth in data generation that has taken place in the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

423

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

last years and has raised considerable interest be-

cause of the possibilities in the improvement in the

data processing and knowledge extraction. Big data

is the popular term to encompass all the data so large

and complex that it becomes difficult to process or

analyze using traditional software tools or data pro-

cessing applications.6 Initially, this concept was de-

fined as a 3Vs model, namely volume, velocity and

variety 6:

• Volume: This characteristic refers to the huge

amounts of data that need to be processed to ob-

tain helpful information.

• Velocity: This property states that the data pro-

cessing applications must be able to obtain results

in a reasonable time.

• Variety: This feature indicates that the data can

be presented in multiple formats; structured and

unstructured, such as text, numerical data or mul-

timedia among others.

More recently, new dimensions have been pro-

posed 6 by different organizations to describe the

big data model being the veracity, validity, volatil-

ity, variability or value some of them.

Big data problems appear in a large number of

fields and sectors such as economic and business ac-

tivities, public administrations, national security or

researches, among others. For example, the New

York Stock Exchange can generate up to one Ter-

abyte per day of new trade data. Facebook servers

store one Petabyte of multimedia daily data (about

ten billion photos). Another example is the Inter-

net Archive, which can accumulate two Petabytes of

data per day.14

This situation tends to be a problem as the re-

searchers, governments or enterprises have had to

face the challenge to process huge amounts of data

quickly and efficiently, so that they can improve the

productivity (in business) or obtain new scientific

breakthroughs (in scientific disciplines).

2.2. MapReduce programming model

The MapReduce programming model was intro-

duced by Google in 2004.11,15 It is a distributed pro-

gramming model for writing massive, scalable and

fault tolerant data applications that was developed

for processing large datasets over a cluster of ma-

chines. The MapReduce model is based on two pri-

mary functions: the map function and the reduce
function, which must be designed by users. In gen-

eral terms, in the first phase the input data is pro-

cessed by the map function which produces some

intermediate results; afterwards, these intermediate

results will be fed to a second phase in a reduce
function which somehow combines the intermediate

results to produce a final output.

The MapReduce model is defined with respect

to an essential data structure known as <key,value>
pair. The processed data, the intermediate and final

results work in terms of <key,value> pairs. In this

way, the map and reduce functions that can be seen

in a MapReduce procedure are defined as follows:

• Map function: In the map function the mas-

ter node takes the input, divides it into several

sub-problems and transfers them to the worker

nodes. Next, each worker node processes its

sub-problem and generates a result that is trans-

mitted back to the master node. In terms of

<key,value> pairs, the map function receives a

<key,value> pair as input and emits a set of inter-

mediate <key,value> pairs as output. Then, these

intermediate <key,value> pairs are automatically

shuffled and ordered according to the intermediate

key and will be the input to the reduce function.

• Reduce function: In the reduce function, the

master node collects the answers of worker nodes

and combines them in some way to form the fi-

nal output of the method. Again, in terms of

<key,value> pairs, the reduce function obtains

the intermediate <key,value> pairs produced in

the previous phase and generates the correspond-

ing <key,value> pair as the final output of the al-

gorithm.

Figure 1 illustrates a typical MapReduce pro-

gram with its map and reduce steps. The terms k
and v refer to the original key and value pair respec-

tively; k′ and v′ are the intermediate <key,value>
pair that is created after the map step; and v′′ is the

final result of the algorithm.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

424

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

input input input input

map map map map

Shuffling: group values by keys

reduce reduce reduce

output output output

map (k, v) → list (k’, v’)
reduce (k’, list(v’)) → v’’

(k , v) (k , v) (k , v) (k , v)

(k’, v’) (k’, v’) (k’, v’) (k’, v’)

k’, list(v’)k’, list(v’)k’, list(v’)

v’’ v’’ v’’

Fig. 1. The MapReduce programming model

Nevertheless, the original MapReduce technol-

ogy is a proprietary system exploited by Google, and

therefore, it is not available for public use. Apache

Hadoop is the most relevant open source implemen-

tation of the Google’s MapReduce programming

model and the Google File System (GFS).14 It is a

project written in Java and supported by the Apache

Software Foundation for easily writing applications

that process vast amounts of data in parallel on clus-

ters of nodes. Hadoop provides a distributed file

system similar to GFS, designated as Hadoop Dis-

tributed File System, which is highly fault tolerant,

and is designed for work over large clusters of “com-

modity hardware.”

In this paper we consider the Hadoop MapRe-

duce implementation to develop our proposals be-

cause of its performance, open source nature, instal-

lation facilities and its associated distributed file sys-

tem (Hadoop Distributed File System).

Machine learning algorithms have also been

adapted using the MapReduce programming model

to manage big data in a straightforward way. The

Mahout project,16 also supported by the Apache

Software Foundation, aims to provide scalable ma-

chine learning applications for large-scale and in-

telligent data analysis techniques over Hadoop plat-

forms or other scalable systems. It is possibly the

most widely used tool that integrates scalable ma-

chine learning algorithms for clustering, recommen-

dation systems, classification problems, pattern min-

ing and regression, among others.

Furthermore, several MapReduce implementa-

tions have been proposed for different classification

algorithms such as cost-sensitive fuzzy rule based

systems for imbalanced classification,17 ensembles

of classifiers 18,19 or Support Vector Machines 20 to

mention a few.

3. Fuzzy Rule Based Classification Systems:
The Chi-FRBCS Approach

In this section, we first introduce in Section 3.1 some

concepts related to FRBCSs and then, in Section 3.2,

we describe the fuzzy learning algorithm that has

been adapted in this work, Chi-FRBCS.

3.1. Introduction to Fuzzy Rule Based
Classification Systems

Any classification problem is usually defined by

m training instances xp = (xp1, . . . ,xpn,Cp), p =
1,2, . . . ,m with n attributes and M classes where xpi
is the value of attribute i (i= 1,2, . . . ,n) and Cp is the

value of class label (C1, . . . ,CM) of the p-th training

sample.

An FRBCS is composed by two elements: the

Inference System and the Knowledge Base (KB). In

a linguistic FRBCS, the KB is formed of the Data

Base (DB), which contains the membership func-

tions of the fuzzy partitions associated to the input

attributes and the Rule Base (RB), which comprises

the fuzzy rules that describe the problem. A learn-

ing procedure is needed to construct the KB from

the available examples.

In this work, we use fuzzy rules of the following

form to build our FRBCS:

Rule R j : If x1 is A1
j and . . . and xn is An

j
then Class = Cj with RWj

(1)

where R j is the label of the j-th rule, x = (x1, . . . ,xn)
is a n-dimensional pattern vector, Ai

j is an antecedent

fuzzy set, Cj is a class label, and RWj is the rule

weight. We use triangular membership functions to

represent the linguistic labels.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

425

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

There are many alternatives that have been pro-

posed to compute the rule weight. Among them, a

good choice is to use the heuristic method known as

the Penalized Certainty Factor (PCF) 21:

RW j = PCF j =
∑xp∈Cj μA j(xp)−∑xp /∈Cj μA j(xp)

∑m
p=1 μA j(xp)

(2)

where μA j(xp) is the membership degree of the xp
p-th example of the training set with the antecedents

of the rule and Cj is the consequent class of rule j.
In order to provide the final class associated with

a new pattern xp = (xp1, . . . ,xpn), the winner rule Rw
is determined through the following equation:

μw(xp) ·RWw = max{μ j(xp) ·RWj; j = 1 . . .L} (3)

We use the fuzzy reasoning method of the win-

ing rule 22 when predicting a class using the built KB

for a given example. In this way, the class assigned

to the example xp, Cw, is the class indicated in the

consequent of the winner rule Rw.

In the event that multiple rules obtain the same

maximum value for equation 3 but with different

classes on the consequent, the classification of the

pattern xp will not be performed, that is, the pattern

would not have any associated class. In the same

way, if the pattern xp does not match any rule in the

RB, no class is associated to the example and the

classification is also not carried out.

3.2. The Chi et al.’s algorithm for Classification

To build the KB of a linguistic FRBCS, we need

to use a learning procedure that specifies how the

DB and RB are created. In this work, we use the

method proposed in 23, an extension of the well-

known Wang and Mendel method for classification
24, which we have called the Chi et al’s method, Chi-

FRBCS.

To generate the KB, this generation method tries

to find the relationship between the input attributes

and the classes space following the next steps:

1. Building the linguistic fuzzy partitions: This

step builds the DB from the domain associated

to each attribute Ai using equally distributed

triangular membership functions.

2. Generating a new fuzzy rule associated to
each example xp = (xp1, . . . ,xpn,Cp):

(a) Compute the matching degree μ(xp) of

the example with respect to the fuzzy la-

bels of each attribute using a conjunction

operator.

(b) Select the fuzzy region that obtains the

maximum membership degree in rela-

tion with the example.

(c) Build a new fuzzy rule whose antecedent

is calculated according to the previous

fuzzy region and whose consequent is

the class label of the example Cp.

(d) Compute the rule weight.

When following the previous procedure, several

rules with the same antecedent can be built. If they

have the same class in the consequent, then, dupli-

cated rules are deleted. However, if the class in the

consequent is different, only the rule with the high-

est weight is maintained in the RB.

4. The Chi-FRBCS-BigData algorithm: A
MapReduce Design based on the Fusion of
Fuzzy Rules

In this section, we will present the Chi-FRBCS-

BigData algorithm that we have developed to deal

with big data classifications problems. To do so, this

method uses two different MapReduce processes:

• One MapReduce process is devoted to the build-

ing of the model from a big data training set, de-

tailed in Section 4.1.

• The other MapReduce process is used to estimate

the class of the examples belonging to big data

sample sets using the previous learned model, this

process is explained in Section 4.2.

Both parts follow the MapReduce design, dis-

tributing all the computations along several process-

ing units that manage different chunks of informa-

tion, aggregating the results obtained in an appropri-

ate manner.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

426

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

Furthermore, we have developed two versions of

the Chi-FRBCS-BigData algorithm, which we have

named Chi-FRBCS-BigData-Max and Chi-FRBCS-

BigData-Ave. These versions share most of their op-

erations, however, they behave differently in the re-
duce step of the approach, when the different RBs

generated by each map are fused. These versions

obtain different RBs and thus, different KBs.

4.1. Building the model with
Chi-FRBCS-BigData

The procedure to build the KB following a MapRe-

duce scheme in Chi-FRBCS-BigData is depicted in

Figure 2. This procedure is divided into the follow-

ing phases:

1. Initial: In this first phase, the method com-

putes the domain associated to each attribute

Ai using the whole training set. The DB is cre-

ated using equally distributed triangular mem-

bership functions as in Chi-FRBCS. Then, the

system automatically segments the original

training dataset into independent data blocks

which are automatically transferred to the dif-

ferent processing units together with the cre-

ated DB.

2. Map: In this second phase, each processing

unit works independently over its available

data to build its associated RB (called RBi in

Figure 2) following the original Chi-FRBCS

method.

Specifically, for each example in the data par-

tition, an associated fuzzy rule is created: first,

the membership degree of the fuzzy labels is

computed according to the example values;

then, the fuzzy region that obtains the great-

est value is selected to become the antecedent

of the rule; next, the class of the example is

assigned to the rule as the consequent; and fi-

nally, the rule weight is computed using the
set of examples that belong to the current map
process.

After the rules have been created and be-

fore finishing the map step, each map process

searches for rules with the same antecedent.

If the rules share the same consequent, only

one rule is preserved; if the rules have differ-

ent consequents, only the rule with the highest

weight is kept in the map RB.

3. Reduce: In this third phase, a processing unit

receives the results obtained by each map pro-

cess (RBi) and combines them to form the fi-

nal RB (called RBR in Figure 2). The com-

bination of the rules is straight-forward: the

rules created by each map RB1,RB2, . . . ,RBn
are all integrated in one RB, RBR. Spe-

cific procedures to fuse these rule bases are

defined. These procedures determine the

two variants of the Chi-FRBCS-BigData al-

gorithm:

(a) Chi-FRBCS-BigData-Max: In this ap-

proach, the method searches for the rules

with the same antecedent. Among these

rules, only the rule with the highest

weight is maintained in the final RB,

RBR. In this case it is not necessary

to check if the consequent is the same

or not, as we are only maintaining the

most powerful rules. Equivalent rules

(rules with the same antecedent and con-

sequent) can present different weights as

they are computed in different map pro-

cesses over different training sets.

For instance, if we have five rules with

the same antecedent and the following

consequents and rule weights (see Fig-

ure 3);

R1 of RB1: Class 1, RW1 = 0.8743;

R1 of RB2: Class 2, RW2 = 0.9254;

R2 of RB3: Class 1, RW3 = 0.7142;

R1 of RB4: Class 2, RW4 = 0.2143 and

R2 of RBn: Class 1, RW5 = 0.8215.

then, Chi-FRBCS-BigData-Max will

keep in RBR the rule R1 of RB2: Class

2, RW2 = 0.9254 because it is the rule

with the maximum weight.

(b) Chi-FRBCS-BigData-Ave: In this ap-

proach, the method also searches for the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

427

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

Train set map1�

Train set mapn�

…�

Train set map2�

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9875�
R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.9142�
R3: IF A1 = L2 AND A2 = L1 THEN C1; RW3 = 0.4215�

...�

RB1�

RB2�

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.7415�
R2: IF A1 = L1 AND A2 = L2 THEN C1; RW2 = 0.2419�
R3: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.4715�

…�

RBn�

…�

Maps RB generation�

Original train set�

DB generation�

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9875�
R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.9142�
R3: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534�

…�

RBR�

Final RB generation�

DB�

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9875�
R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.9142�
R3: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534�

…�

RBR�

DB�

Final KB�

INITIAL� MAP� REDUCE� FINAL�

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9654�
R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842�
R3: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534�

…�

Figure 2: A flowchart of how the building of the KB is organized in Chi-FRBCS-BigData

Train set map1

Train set mapn

…

Train set map2

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8743
R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142
...

RB1
R1: IF A1 = L1 AND A2 = L1 THEN C2; RW3 = 0.9254
R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842
…

RB2

R1: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784
R2: IF A1 = L1 AND A2 = L1 THEN C1; RW2 = 0.8215
…

RBn

…

Maps RB generation

Original train set

DB generation

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9254
R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142
R3: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842
R4: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534
R5: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715
R6: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

 …
RBRFinal RB generation

DB

RBR

DB

Final KB

INITIAL MAP REDUCE FINAL

Train set map3

R1: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534
R2: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.7142
…

RB3

Train set map4

R1: IF A1 = L1 AND A2 = L1 THEN C2; RW1 = 0.2143
R2: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715
…

RB4
RB1, R1, C1, RW = 0.8743
RB2, R1, C2, RW = 0.9254
RB3, R2, C1, RW = 0.7142
RB4, R1, C2, RW = 0.2143
RBn, R2, C1, RW = 0.8215

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9254
R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142
R3: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842
R4: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534
R5: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715
R6: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

 …

Figure 3: Example of building the KB with Chi-FRBCS-BigData-Max

rules with the same antecedent. Then,

the average weight of the rules that have

the same consequent is computed (this

step is needed because rules with the

same antecedent and consequent may

have different weights as they are built

over different training sets). Finally, the

rule with the greatest average weight is

kept in the final RB, RBR.

For instance, if we have five rules with

the same antecedent and the following

consequents and rule weights (see Fig-

ure 4);

R1 of RB1: Class 1, RW1 = 0.8743;

R1 of RB2: Class 2, RW2 = 0.9254;

R2 of RB3: Class 1, RW3 = 0.7142;

R1 of RB4: Class 2, RW4 = 0.2143 and

R2 of RBn: Class 1, RW5 = 0.8215.

then, Chi-FRBCS-BigData-Ave will

first compute the average weight for the

rules with the same consequent, namely,

RC1: Class 1, RWC1 = 0.8033 and RC2:

Class 2, RWC2 = 0.5699, and it will

keep in RBR the rule RC1: Class 1, RWC1

= 0.8033 because it is the rule with the

maximum average weight.

Please note that it is not needed for any Chi-

FRBCS-BigData version to recompute the

rule weights according to the data in the re-
duce stage, as we are calculating the new rule

weights from the previously rule weights pro-

vided by each map.

4. Final: In this last phase, the results computed

in the previous phases are provided as the out-

put of the computation process. Precisely, the

generated KB is composed by the DB built in

the “Initial” phase and the RB, RBR, is finally

obtained in the “reduce” phase. This KB will

be the model that will be used to predict the

class for new examples.

4.2. Classifying big data sample sets

As it was previously said, Chi-FRBCS-BigData uses

another MapReduce process to estimate the class of

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

428

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

…

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8743
R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142

 …

RB1
R1: IF A1 = L1 AND A2 = L1 THEN C2; RW3 = 0.9254
R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842

 …

RB2

R1: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784
R2: IF A1 = L1 AND A2 = L1 THEN C1; RW2 = 0.8215

 …
RBn

…

Maps RB generation

Original train set

DB generation

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8033
R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142
R3: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842
R4: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534
R5: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715
R6: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

 …
RBRFinal RB generation

DB

RBR

DB

Final KB

INITIAL MAP REDUCE FINAL

R1: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534
R2: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.7142

 …

RB3

R1: IF A1 = L1 AND A2 = L1 THEN C2; RW1 = 0.2143
R2: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715

 …

RB4 RB1, R1, C1, RW = 0.8743
RB2, R1, C2, RW = 0.9254
RB3, R2, C1, RW = 0.7142
RB4, R1, C2, RW = 0.2143
RBn, R2, C1, RW = 0.8215

RC1, C1, RWave = 0.8033
RC2, C2, RWave = 0.5699

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8033
R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142
R3: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842
R4: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534
R5: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715
R6: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

 …

Train set map1

Train set mapn

Train set map2

Train set map3

Train set map4

Figure 4: Example of building the KB with Chi-FRBCS-BigData-Ave

Classification set map1

Classification set mapn

…

Classification set map2

Predictions set1

Sample21: Actual class C1; Predicted class C1
Sample22: Actual class C2; Predicted class C2
Sample23: Actual class C2; Predicted class C2

 ...

Predictions set2

Samplen1: Actual class C2; Predicted class C1
Samplen2: Actual class C2; Predicted class C2
Samplen3: Actual class C1; Predicted class C2

 ...

Predictions setn

…

Maps classification sets prediction

Original classification set Final predictions file

INITIAL MAP FINAL

Sample11: Actual class C1; Predicted class C1
Sample12: Actual class C2; Predicted class C2
Sample13: Actual class C1; Predicted class C2

 ...
Sample21: Actual class C1; Predicted class C1
Sample22: Actual class C2; Predicted class C2
Sample23: Actual class C2; Predicted class C2

 ...
Samplen1: Actual class C2; Predicted class C1
Samplen2: Actual class C2; Predicted class C2
Samplen3: Actual class C1; Predicted class C2

 ...

Sample11: Actual class C1; Predicted class C1
Sample12: Actual class C2; Predicted class C2
Sample13: Actual class C1; Predicted class C2

 ...

Figure 5: A flowchart of how the classification of a big dataset is organized in Chi-FRBCS-BigData

the examples that belong to big data classification

sets using the KB built in the previous step. This

approach follows a similar scheme to the previous

step where the initial dataset is distributed along sev-

eral processing units that provide a result that will be

part of the final result. Specifically, this class estima-

tion process is depicted in Figure 5 and follows the

phases:

1. Initial: In this first phase, the method does not

need to perform a specific operation. The sys-

tem automatically segments the original big

data dataset that needs to be classified into

independent data blocks which are automat-

ically transferred to the different processing

units together with the previously created KB.

2. Map: In this second phase, each map task es-

timates the class for the examples that are in-

cluded in its data partition. To do so, each

processing unit goes through all the exam-

ples in its data chunk and predicts its out-

put class according to the given KB and us-

ing the fuzzy reasoning method of the wining

rule. Please note that Chi-FRBCS-BigData-

Max and Chi-FRBCS-BigData-Ave will pro-

duce different classification estimations be-

cause the input RBs are also different, how-

ever, the class estimation process followed is

exactly the same for both approaches.

3. Final: In this last phase, the results computed

in the previous phase are provided as the out-

put of the computation process. Precisely, the

estimated classes for the different examples

of the big data classification set are aggre-

gated just concatenating the results provided

by each map task.

It is important to note that this mechanism does

not include a reduce step as it is not necessary to per-

form a computation to combine the results obtained

in the map phase.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

429

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

5. Experimental study

In this section, we present the experimental study

carried out using the Chi-FRBCS-BigData algo-

rithm over big data problems. First, in Section 5.1,

we provide some details of the classification prob-

lems chosen for the experiments and the configu-

ration parameters for the methods analyzed. Next,

in Section 5.2 we study the behavior of the origi-

nal Chi-FRBCS serial version with respect to Chi-

FRBCS-BigData. Then, in Section 5.3, we provide

the accuracy performance results for the approaches

tested in the study with respect to the number of

maps considered. Finally, an analysis that evaluates

the runtime spent by the algorithms over the selected

data is shown in Section 5.4.

5.1. Experimental framework

This study aims to analyze the quality of the Chi-

FRBCS-BigData algorithm in the big data scenario.

For this, we will consider six problems from the

UCI dataset repository 25: the Record Linkage Com-

parison Patterns (RLCP) dataset, the KDD Cup

1999 dataset, the Poker Hand dataset, the Covertype

dataset, the Census-Income (KDD) dataset and the

Fatality Analysis Reporting System (FARS) dataset.

A summary of the datasets features is shown in Ta-

ble 1, where the number of examples (#Ex.), number

of attributes (#Atts.), selected classes and the num-

ber of examples per class are included. This table

is in descending order according to the number of

examples of each dataset.

Table 1. Summary of datasets

Datasets #Ex. #Atts. Selected classes #Samples per class
RLCP 5749132 2 (FALSE; TRUE) (5728201; 20931)

Kddcup DOS vs normal 4856151 41 (DOS; normal) (3883370; 972781)

Poker 0 vs 1 946799 10 (0; 1) (513702; 433097)

Covtype 2 vs 1 495141 54 (2; 1) (283301; 211840)

Census 141544 41 (- 50000.; 50000+.) (133430; 8114)

Fars Fatal Inj vs No Inj 62123 29 (Fatal Inj; No Inj) (42116; 20007)

Since several of the selected datasets contain

multiple classes, in this work we have decided to re-

duce multi-class problems to two classes. Despite

the ability of the Chi-FRBCS-BigData algorithm to

address with multi-class problems, we want to avoid

the imbalance in the data that arises in many real-

world problems.26 Moreover, the division approach

of the presented MapReduce scheme aggravates the

small sample size problem, which degrades the per-

formance of classifiers in the imbalanced scenario.

To develop the different experiments we use

a 10-fold stratified cross-validation partitioning

scheme, i.e., ten random partitions of data with a

10% of the samples with the combination of nine

of them (90%) as training set and the remaining one

as test set. The results obtained for each dataset are

the average results obtained by computing the mean

of all the partitions.

To demonstrate the inability of the original Chi-

FRBCS serial version to deal with big data clas-

sification problems, we have compared the results

obtained by the serial version with respect to Chi-

FRBCS-BigData for the selected datasets.

In order to verify the performance of the pro-

posed model, we have compared the results obtained

by Chi-FRBCS-BigData-Max with Chi-FRBCS-

BigData-Ave so that we can compare their behavior

with respect to the selected big data problems.

Regarding the parameters used in the experi-

ments, these algorithms use:

• Three fuzzy labels for each attribute.

• The product T-norm to compute the matching de-

gree of the antecedent of the rule with the exam-

ple.

• The PCF to compute the rule weight.

• The winning rule is used as fuzzy reasoning

method.

Additionally, another parameter is used in the

MapReduce procedure, which is the number of maps

associated to the computation. This value has been

set to 8, 16, 32, 64 and 128 maps and represents

the number of subsets of the original dataset that are

created and are provided to the map processes.

The measures of the quality of classification are

built from a confusion matrix (Table 2), which orga-

nizes the examples of each class in accordance with

their correct or incorrect identification.

Table 2. Confusion matrix for a two-class problem

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

The effectiveness in classification for the pro-

posed approach will be evaluated using the most fre-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

430

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

quently used empirical measure, accuracy, which is

defined as follows:

accuracy =
T P+T N

T P+T N +FP+FN
(4)

With respect to the infrastructure used to perform

the experiments, we have used the research group’s

cluster with 16 nodes connected with a 40Gb/s In-

finiband. Each node is equipped with two Intel E5-

2620 microprocessors (at 2 GHz, 15MB cache) and

64GB of main memory running under Linux Cen-

tOS 6.5. The head node of the cluster is equipped

with two Intel E5645 microprocessors (at 2.4 GHz,

12MB cache) and 96GB of main memory. Further-

more, the cluster works with Hadoop 2.0.0 (Cloud-

era CDH4.5.0), where the head node is configured

as name-node and job-tracker, and the rest are data-

nodes and task-trackers.

5.2. Analysis of the Chi-FRBCS serial version
with respect to Chi-FRBCS-BigData

In this section, we present a set of experiments to

illustrate the behavior of the original Chi-FRBCS

serial version with respect to Chi-FRBCS-BigData.

The experiments have been designed to contrast the

results of the serial version in relation to the big data

versions of the algorithm for the selected datasets.

Table 3 presents the average results in training and

test for the Chi-FRBCS versions and is divided by

columns into two parts: the first part corresponds to

the results of the sequential variant while the second

part is related to the big data variants of the Chi-

FRBCS algorithm using 8 maps. The bold values

highlight the best performing algorithm.

Firstly, we can observe that the table does not

present the results for the “RLCP” and “Kdd-

cup DOS vs normal” datasets. This means that the

sequential version of Chi-FRBCS was not able to

complete the associated experiments.

Table 3. Average Accuracy results for the Chi-FRBCS versions

Datasets 8 maps
Chi-FRBCS Chi-BigData-Max Chi-BigData-Ave

Acctr Acctst Acctr Acctst Acctr Acctst
Poker 0 vs 1 63.72 61.77 62.93 60.74 63.12 60.91

Covtype 2 vs 1 74.65 74.57 74.69 74.63 74.66 74.61

Census 96.52 86.06 97.12 93.89 97.12 93.86

Fars Fatal Inj vs No Inj 99.66 89.26 97.01 95.07 97.18 95.25
Average 83.64 77.92 82.94 81.08 83.02 81.16

In terms of the accuracy achieved by the algo-

rithms considered in the study we can see that, in

general, the Chi-FRBCS-BigData versions are able

to provide better classification results than the serial

version. The unique exception to this tendency can

be observed in the “Poker 0 vs 1” dataset, for which

the serial variant obtains better results.

In addition, we can also observe that the re-

sults in training indicate that there is some over-

fitting in the serial version as there are any dif-

ferences between the training and test results,

mainly on the results for the “Census” and

“Fars Fatal Inj vs No Inj” datasets.

Moreover, Table 4 shows the time elapsed in sec-

onds for the serial version and the big data alterna-

tives. This table is also divided by columns into two

parts: the first part corresponds to the results of the

sequential variant while the second part is related to

the big data variants of Chi-FRBCS for 8 maps. The

bold values highlight the quickest algorithm.

Table 4. Average runtime elapsed in seconds for the Chi-
FRBCS versions

Datasets 8 maps
Chi-FRBCS Chi-BigData-Max Chi-BigData-Ave

Runtime (s) Runtime (s) Runtime (s)

Census 38655.60 1102.45 1343.92

Covtype 2 vs 1 86247.70 2482.09 2512.16

Fars Fatal Inj vs No Inj 8056.60 241.96 311.95

Poker 0 vs 1 114355.80 5672.80 7682.19

Average 61828.93 2374.82 2962.56

Considering these results, we can see that the se-

quential version is notably slower than the MapRe-

duce alternatives. Furthermore, the results obtained

show that the runtime spent is directly related to

the operations that need to be performed by the big

data approaches. In this way, we can observe that

the Chi-BigData-Ave method is slower than the Chi-

BigData-Max algorithm, since it performs fewer op-

erations.

Furthermore, in Table 5 we compare the runtime

spent by the big data versions with respect to the run-

time for the sequential version divided by the num-

ber of parallel processes considered or maps (8 in

this analysis). This table follows the same structure

as Table 4. Even in this case we can see that the

big data alternatives are significantly faster than the

sequential version.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

431

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

Table 5. Average runtime elapsed in seconds for the Chi-
FRBCS versions supposing that the sequential version was ex-
ecuted in parallel

Datasets 8 maps
Chi-FRBCS Chi-BigData-Max Chi-BigData-Ave

Runtime (s) / 8 maps Runtime (s) Runtime (s)

Census 4831.95 1102.45 1343.92

Covtype 2 vs 1 10780.96 2482.09 2512.16

Fars Fatal Inj vs No Inj 1007.08 241.96 311.95

Poker 0 vs 1 14294.48 5672.80 7682.19

Average 7728.62 2374.82 2962.56

Finally, Table 6 shows the average number of

rules generated for the sequential version and the

big data alternatives. This table is also divided by

columns into two parts: the first part corresponds

to the average number of rules generated for the se-

quential variant while the second part is related to

the average number of rules generated by the big

data variants of Chi-FRBCS for 8 maps. The val-

ues in boldface highlight the lowest numbers of rules

obtained for a specific dataset.

Table 6. Average number of rules generated for the Chi-FRBCS
versions
Datasets 8 maps

Chi-FRBCS Chi-BigData-Max Chi-BigData-Ave

Average NumRules Average NumRules Average NumRules

Census 31518.3 34278.0 34278.0

Covtype 2 vs 1 6962.7 7079.1 7079.1

Fars Fatal Inj vs No Inj 16843.3 17114.9 17114.9

Poker 0 vs 1 51265.4 52798.1 52798.1

We can see that the numbers of rules generated

by the serial version are slightly lower than the ones

obtained by the big data variants. However, the Chi-

FRBCS-BigData versions are able to obtain better

classification results as we can observed in Table 3.

5.3. Analysis of the Chi-FRBCS-BigData
accuracy

In this section, we will compare the two versions of

the proposed approach, Chi-FRBCS-BigData-Max

and Chi-FRBCS-BigData-Ave, to see if there are

differences between them. For the sake of space,

these algorithms are named Chi-BigData-Max and

Chi-BigData-Ave respectively in the result tables.

In this way, in Table 7, we present the aver-

age results in training and test for the Chi-FRBCS-

BigData algorithms using 8, 16, 32, 64 and 128

maps over the selected datasets and considering the

accuracy performance measure. This table is divided

into five horizontal parts that correspond to the per-

formance results obtained with the different number

of maps. The bold values highlight the most effec-

tive method in test related to the number of maps

considered and the underlined values indicate which

is the best performing algorithm in test for all the

experiments.

Table 7. Average Accuracy results for the Chi-FRBCS-BigData
versions using 8, 16, 32, 64 and 128 maps

Datasets 8 maps
Chi-BigData-Max Chi-BigData-Ave

Acctr Acctst Acctr Acctst
RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.93 99.93 99.93 99.93
Poker 0 vs 1 62.93 60.74 63.12 60.91
Covtype 2 vs 1 74.69 74.63 74.66 74.61

Census 97.12 93.89 97.12 93.86

Fars Fatal Inj vs No Inj 97.01 95.07 97.18 95.25
Average 88.55 87.31 88.61 87.37

16 maps
Chi-BigData-Max Chi-BigData-Ave

Acctr Acctst Acctr Acctst
RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.93 99.93 99.93 99.93
Poker 0 vs 1 62.18 59.88 62.58 60.35
Covtype 2 vs 1 74.77 74.72 74.77 74.69

Census 97.14 93.75 97.15 93.52

Fars Fatal Inj vs No Inj 96.69 94.75 97.06 95.01
Average 88.39 87.11 88.52 87.19

32 maps
Chi-BigData-Max Chi-BigData-Ave

Acctr Acctst Acctr Acctst
RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.92 99.92 99.92 99.92
Poker 0 vs 1 61.27 58.93 61.82 59.30
Covtype 2 vs 1 74.69 74.62 74.88 74.85
Census 97.11 93.48 97.12 93.32

Fars Fatal Inj vs No Inj 96.49 94.26 96.87 94.63
Average 88.19 86.81 88.37 86.94

64 maps
Chi-BigData-Max Chi-BigData-Ave

Acctr Acctst Acctr Acctst
RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.92 99.92 99.93 99.93
Poker 0 vs 1 60.45 57.95 60.88 58.12
Covtype 2 vs 1 74.67 74.52 75.05 74.96
Census 97.07 93.30 97.13 93.11

Fars Fatal Inj vs No Inj 96.27 93.98 96.76 94.56
Average 88.00 86.55 88.23 86.72

128 maps
Chi-BigData-Max Chi-BigData-Ave

Acctr Acctst Acctr Acctst
RLCP 99.63 99.63 99.63 99.63
Kddcup DOS vs normal 99.93 99.93 99.93 99.93
Poker 0 vs 1 59.59 56.96 60.09 57.12
Covtype 2 vs 1 74.12 74.01 75.04 74.99
Census 96.95 92.97 97.05 92.91

Fars Fatal Inj vs No Inj 96.07 93.82 96.67 94.20
Average 87.71 86.22 88.07 86.46

In a first glance, we can see that the best per-

forming algorithm in average is the Chi-FRBCS-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

432

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

BigData-Ave method for any number of maps con-

sidered. In this way, obtaining the average rule

weight of all the partial RBs obtained shows a

positive impact in the classification results since

we aim to make the rules as general as possible.

However, we can find an exception in the “Cen-

sus” dataset, which does not follow the same ten-

dency as the other datasets. In this case, the Chi-

FRBCS-BigData-Max variant gets slightly better re-

sults. This behavior may be related to the results in

training and a possible overfitting, since it seems that

this particular dataset presents a huge gap between

training and test results.

On the other hand, we can observe a reduction in

classification accuracy when using a larger number

of maps in both Chi-FRBCS-BigData versions and

for both training and test results. This is an expected

behavior of the MapReduce design used, since the

rule weights are calculated from smaller data par-

titions when the number of maps is incremented.

However, this trend is not observed in the case of the

“Covtype 2 vs 1” dataset, where the Chi-FRBCS-

BigData-Ave alternative provides better accuracy re-

sults when the number of maps is increased.

In Figure 6 we represent the average results

for the Chi-FRBCS-BigData versions and for all

the datasets considered: the “RLCP” dataset (Fig-

ure 6a), the “Kddcup DOS vs normal” dataset (Fig-

ure 6b), the “Poker 0 vs 1” dataset (Figure 6c), the

“Covtype 2 vs 1” dataset (Figure 6d), the “Census”

dataset (Figure 6e) and “Fars Fatal Inj vs No Inj”

dataset (Figure 6f). This figure shows the evolution

of the accuracy measure when the number of maps

is varied.

99.40

99.50

99.60

99.70

99.80

99.90

100.00

8 maps 16 maps 32 maps 64 maps 128 maps

A
cc

ur
ac

y
(te

st
)

Chi-FRBCS-BigData-Max Chi-FRBCS-BigData-Ave

(a) RLCP dataset

99.91
99.92
99.92
99.92
99.92
99.92
99.93
99.93
99.93
99.93

8 maps 16 maps 32 maps 64 maps 128 maps

A
cc

ur
ac

y
(te

st
)

Chi-FRBCS-BigData-Max Chi-FRBCS-BigData-Ave

(b) Kddcup DOS vs normal dataset

56.00

57.00

58.00

59.00

60.00

61.00

62.00

8 maps 16 maps 32 maps 64 maps 128 maps

A
cc

ur
ac

y
(te

st
)

Chi-FRBCS-BigData-Max Chi-FRBCS-BigData-Ave

(c) Poker 0 vs 1 dataset

73.80

74.00

74.20

74.40

74.60

74.80

75.00

75.20

8 maps 16 maps 32 maps 64 maps 128 maps

A
cc

ur
ac

y
(te

st
)

Chi-FRBCS-BigData-Max Chi-FRBCS-BigData-Ave

(d) Covtype 2 vs 1 dataset

92.80

93.00

93.20

93.40

93.60

93.80

94.00

8 maps 16 maps 32 maps 64 maps 128 maps

A
cc

ur
ac

y
(te

st
)

Chi-FRBCS-BigData-Max Chi-FRBCS-BigData-Ave

(e) Census dataset

93.00

93.50

94.00

94.50

95.00

95.50

8 maps 16 maps 32 maps 64 maps 128 maps

A
cc

ur
ac

y
(te

st
)

Chi-FRBCS-BigData-Max Chi-FRBCS-BigData-Ave

(f) Fars Fatal Inj vs No Inj dataset

Fig. 6. Average results for Chi-FRBCS-BigData versions

using the accuracy measure

In order to illustrate how the Chi-FRBCS-BigData

proposal is able to reduce the complexity of the

model by decreasing the number of final rules, we

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

433

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

present in Table 8 the number of rules created by

each map process and the number of final rules,

when the distinct RBs generated by each map are

fused. To do this, we have selected the “Kdd-

cup DOS vs normal” dataset with 41 attributes and

4856151 instances. More concretely, we have cho-

sen the 1th partition of the 10-fcv that uses 4369790

instances for training and 486361 instances for test.

The number of maps considered in this analysis is 8.

In this table we can observe that the number of rules

has dramatically decreased from the 1708 rules that

were created by all the maps to the 301 rules that

finally compose the rule base (RBR).
Table 8. Example of number of rules generated by map and
number of final rules for the Chi-FRBCS-BigData-Max version
with 8 maps

Kddcup DOS vs normal dataset

NumRules by map Final numRules

RB1 size: 211 RBR size: 301

RB2 size: 212

RB3 size: 221

RB4 size: 216

RB5 size: 213

RB6 size: 210

RB7 size: 211

RB8 size: 214

Finally, in Table 9, we present the average number

of rules generated for the Chi-FRBCS-BigData al-

gorithms using 8, 16, 32, 64 and 128 maps over the

selected datasets. This table is also divided into five

horizontal parts that correspond to the average num-

ber of rules obtained with the different number of

maps. The values in boldface correspond to the low-

est numbers of rules obtained for a specific dataset.

First, we can see that in general we obtain a smaller

number of rules for a lower number of maps. On

the other hand, we can see that the number of gen-

erated rules is higher when the number of maps is

increased.

Table 9. Average number of rules generated for the Chi-
FRBCS-BigData versions using 8, 16, 32, 64 and 128 maps

Datasets 8 maps – Average NumRules

Chi-BigData-Max Chi-BigData-Ave

RLCP 6.0 6.0
kddcup DOS vs normal 298.9 298.9
Poker 0 vs 1 52798.1 52798.1
Covtype 2 vs 1 7079.1 7079.1
Census 34278.0 34278.0
Fars Fatal Inj vs No Inj 17114.9 17114.9

16 maps – Average NumRules

Chi-BigData-Max Chi-BigData-Ave

RLCP 6.0 6.0
kddcup DOS vs normal 299.9 299.9

Poker 0 vs 1 53168.9 53168.9

Covtype 2 vs 1 7134.3 7134.3

Census 34341.4 34341.4

Fars Fatal Inj vs No Inj 17158.1 17158.1

32 maps – Average NumRules

Chi-BigData-Max Chi-BigData-Ave

RLCP 6.0 6.0
kddcup DOS vs normal 300.5 300.5

Poker 0 vs 1 53403.7 53403.7

Covtype 2 vs 1 7210.2 7210.2

Census 34376.5 34376.5

Fars Fatal Inj vs No Inj 17182.0 17182.0

64 maps – Average NumRules

Chi-BigData-Max Chi-BigData-Ave

RLCP 6.0 6.0
kddcup DOS vs normal 300.5 300.5

Poker 0 vs 1 53503.4 53503.4

Covtype 2 vs 1 7278.9 7278.9

Census 34392.5 34392.5

Fars Fatal Inj vs No Inj 17196.4 17196.4

128 maps – Average NumRules

Chi-BigData-Max Chi-BigData-Ave

RLCP 6.0 6.0
kddcup DOS vs normal 300.5 300.5

Poker 0 vs 1 53541.0 53541.0

Covtype 2 vs 1 7343.3 7343.3

Census 34397.3 34397.3

Fars Fatal Inj vs No Inj 17202.1 17202.1

5.4. Analysis of the Chi-FRBCS-BigData
runtime

In this section we compare the runtime of the two

versions of the Chi-FRBCS-BigData proposal for

the different problems selected and the diverse num-

ber of maps used in the experiments.

We present the average results for the runtime in a

similar way to the analysis of the accuracy given

in the previous Section. Table 10 shows the av-

erage time elapsed in seconds by the Chi-FRBCS-

BigData-Max and Chi-FRBCS-BigData-Ave algo-

rithms for the selected datasets with 8, 16, 32, 64

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

434

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

and 128 maps, respectively. This table is divided

into five horizontal parts, which show the results for

each dataset with respect to the different number of

maps. The bold values correspond to the fastest al-

gorithm for the same number of maps and the un-

derlined values highlight the quickest algorithm for

a specific dataset.

The results obtained show that, in average, the

quickest method is the Chi-FRBCS-BigData-Max

algorithm for all the values of the number of maps

considered. This behavior is directly related to the

operations performed by each variant, since the Chi-

FRBCS-BigData-Max algorithm executes fewer op-

erations than the Chi-FRBCS-BigData-Ave alterna-

tive.

Moreover, there are some cases where the Chi-

FRBCS-BigData-Ave version is slightly faster, al-

though this improvement is not able to compen-

sate the slowness of the algorithm in other cases.

For example, this alternative obtains better runtimes

when 16 maps are used, however, such improvement

does not compensate the case of the “Poker 0 vs 1”

dataset, where the algorithm is much slower. We can

also observe this behavior when 32 and 128 maps

are considered.

Furthermore, we can see a reduction on the runtime

for both versions of Chi-FRBCS-BigData when the

number of maps is increased. However, this de-

crease in the runtime does not follow a linear re-

lationship. For example, it can be seen that when

we double the number of processing units, the speed

gain obtained is much higher than reducing the pro-

cessing time by half.

We can also see that this decrement in the run-

time is not uniform over the different datasets,

since the smaller datasets are not able to improve

their runtime performance in the same proportion as

the largest datasets. In addition, the Chi-FRBCS-

BigData-Max method is able to scale up better than

the Chi-FRBCS-BigData-Ave alternative.

Table 10. Average runtime elapsed in seconds for the Chi-
FRBCS-BigData versions using 8, 16, 32, 64 and 128 maps

Datasets Chi-BigData-Max Chi-BigData-Ave

8 maps – Runtime (s)

RLCP 31942.38 32027.37

Kddcup DOS vs normal 115839.09 116218.26

Poker 0 vs 1 5672.80 7682.19

Covtype 2 vs 1 2482.09 2512.16

Census 1102.45 1343.92

Fars Fatal Inj vs No Inj 241.96 311.95

Average 26213.46 26682.64

16 maps – Runtime (s)

RLCP 9023.82 8868.84
Kddcup DOS vs normal 30120.03 29820.01
Poker 0 vs 1 3075.50 6582.32

Covtype 2 vs 1 1477.67 924.65
Census 939.32 884.30
Fars Fatal Inj vs No Inj 363.05 236.40
Average 7499.90 7886.09

32 maps – Runtime (s)

RLCP 2460.89 2303.02
Kddcup DOS vs normal 7890.87 7708.96
Poker 0 vs 1 2210.13 6331.09

Covtype 2 vs 1 391.40 493.00

Census 388.64 771.04

Fars Fatal Inj vs No Inj 141.92 228.96

Average 2247.31 2972.68

64 maps – Runtime (s)

RLCP 701.31 714.41

Kddcup DOS vs normal 2079.93 2096.34

Poker 0 vs 1 1635.98 8373.40

Covtype 2 vs 1 252.19 348.86

Census 325.24 764.94

Fars Fatal Inj vs No Inj 136.24 241.75

Average 855.15 2089.95

128 maps – Runtime (s)

RLCP 288,52 284,41
Kddcup DOS vs normal 1669,02 1579,77
Poker 0 vs 1 1022,08 6492,28

Covtype 2 vs 1 189,24 259,20

Census 208,05 431,71

Fars Fatal Inj vs No Inj 92,74 165,51

Average 578,28 1535,48

In summary, in this study we have tested two differ-

ent approaches developed in this work over a set of

datasets that have helped us to have an insight into

classifications big data problems:

• The Chi-FRBCS-BigData-Ave version obtains

more accurate classification results than the Chi-

FRBCS-BigData-Max approach, however, it pro-

vides slower models.

• The Chi-FRBCS-BigData-Max alternative does

not have a strong degradation in the accuracy

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

435

A MapReduce Approach to Address Big Data Problems Based on the Fusion of Linguistic Fuzzy Rules

performance with respect to the Chi-FRBCS-

BigData-Ave version and provides better response

times.

• Both the Chi-FRBCS-BigData-Ave version and

the Chi-FRBCS-BigData-Max alternative, the ac-

curacy of the model is decreased by the increasing

number of maps, although, the speed gain is sig-

nificant in this cases.

In this way, it is necessary to establish a trade-off

for each occasion to select the most appropriate Chi-

FRBCS-bigdata version.

6. Concluding remarks

In this work we have presented a linguistic fuzzy

rule-based classification algorithm for big data prob-

lems called Chi-FRBCS-BigData. This algorithm

obtains an interpretable model that is able to han-

dle big collections of data providing a good accu-

racy and with fast response times. To do so, our

method uses the MapReduce programming model

on the Hadoop platform, one of the most popular

solutions to effectively deal with big data nowadays.

In this way, our model distributes the computation

using the map function and then, combines the out-

puts through the reduce function.

The Chi-FRBCS-BigData algorithm has been de-

veloped in two different versions: Chi-FRBCS-

BigData-Max and Chi-FRBCS-BigData-Ave.

The performance of the Chi-FRBCS-BigData alter-

natives is supported by an experimental study that

is carried out over six classification big data prob-

lems. The results obtained show that the proposal

is able to handle these problems providing compet-

itive results. However, it is not possible to identify

a best approach and is necessary to select the model

that best meets our needs according to the speed-

accuracy trade-off:

• The Chi-FRBCS-BigData-Ave method with low

values for the number of maps seems to be the

most appropriate choice when our goal is to

achieve the best precision results without caring

too much about the lower response times.

• The Chi-FRBCS-BigData-Max alternative with a

large number of maps seems to be the best option

if we are interested in getting faster results with-

out deeply degrading the performance.

As future work we will study the combination of a

FRBCS learning method with bagging 27 in order

to deal with big data classification problems. In this

way we can analyze the behavior of the use of a bag-

ging approach together with data mapping for us-

ing a FRBCS as a base classifier in a MapReduce

scheme.

Acknowledgments

This work was partially supported by the Spanish

Ministry of Science and Technology under project

TIN2011-28488 and the Andalusian Research Plans

P12-TIC-2958, P11-TIC-7765 and P10-TIC-6858.

References

1. P. Zikopoulos, C. Eaton, D. DeRoos, T. Deutsch and
G. Lapis, “Understanding Big Data: Analytics for En-
terprise Class Hadoop and Streaming Data,” McGraw-
Hill, (2011).

2. S. Madden, “From Databases to Big Data,” IEEE In-
ternet Computing, vol. 16, no. 3, 4–6, (2012).

3. A. Sathi, “Big Data Analytics: Disruptive Technolo-
gies for Changing the Game,” MC Press, (2012).

4. C.L. Philip Chen and C.Y. Zhang, “Data-intensive ap-
plications, challenges, techniques and technologies: A
survey on Big Data,” Information Sciences, vol. 275,
314–347, (2014)

5. X. Wu and X. Zhu and G.Q. Wu and W. Ding, “Data
Mining with Big Data,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 26, no. 1, 97–107,
(2014)

6. A. Fernández, S. Rı́o, V. López, A. Bawakid, M.J. del
Jesus, J.M. Benı́tez and F. Herrera, “Big Data with
Cloud Computing: An Insight on the Computing Envi-
ronment, MapReduce and Programming Framework,”
WIREs Data Mining and Knowledge Discovery, vol.
4, no. 5, 380–409, (2014).

7. H. Ishibuchi, T. Nakashima and M. Nii, “Classifica-
tion and modeling with linguistic information gran-
ules: Advanced approaches to linguistic Data Min-
ing,” SpringerVerlag, (2004).

8. Y. Jin, “Fuzzy modeling of high-dimensional systems:
complexity reduction and interpretability improve-
ment,” IEEE Transactions on Fuzzy Systems, vol. 8,
no. 2, 212–221, (2000).

9. T.P. Hong, Y.C. Lee and M.T. Wu, “An effective par-
allel approach for genetic-fuzzy data mining,” Expert

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

436

S. del Rı́o, V. López, J. M. Benı́tez, F. Herrera

Systems with Applications, vol. 41, no. 2, 655–662,
(2014).

10. H. Ishibuchi, S. Mihara and Y. Nojima, “Parallel dis-
tributed hybrid fuzzy GBML models with rule set mi-
gration and training data rotation,” IEEE Transactions
on Fuzzy Systems, vol. 21, no. 2, 355–368, (2013).

11. J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” Communications of
the ACM, vol. 51, no. 1, 107–113, (2008).

12. Z. Chi, H. Yan and T. Pham, “Fuzzy algorithms with
applications to image processing and pattern recogni-
tion,” World Scientific, (1996).

13. V. López, S. Rı́o, J.M. Benı́tez and F. Herrera, “On
the use of MapReduce to build Linguistic Fuzzy Rule
Based Classification Systems for Big Data,” IEEE
International Conference on Fuzzy Systems (FUZZ-
IEEE 2014), Beijing (China), 1905–1912, 6–11 July,
(2014).

14. T. White, “Hadoop, The Definitive Guide,” OReilly
Media, Inc., (2012).

15. J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters,” OSDI’04: Proceed-
ings of the 6th Symposium on Operating System De-
sign and Implementation, San Francisco, California,
USA. USENIX Association, 137–150, (2004).

16. S. Owen, R. Anil, T. Dunning and E. Friedman, “Ma-
hout in Action,” Manning Publications Co., (2011).

17. V. López, S. del Rı́o, J.M. Benı́tez and F. Herrera,
“Cost-sensitive linguistic fuzzy rule based classifica-
tion systems under the mapreduce framework for im-
balanced big data,” Fuzzy Sets and Systems, vol. 258,
5–38, (2015).

18. S. Rı́o, V. López, J.M. Benı́tez and F. Herrera, “On
the use of MapReduce for Imbalanced Big Data us-
ing Random Forest,” Information Sciences, vol. 285,
112–137, (2014).

19. I. Palit and C.K. Reddy, “Scalable and parallel boost-
ing with mapreduce,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 24, no. 10, 1904–
1916, (2012).

20. Q. He, C. Du, Q. Wang, F. Zhuang and Z. Shi, “A par-
allel incremental extreme SVM classifier,” Neurocom-
puting, vol. 74, no. 16, 2532–2540, (2011).

21. H. Ishibuchi and T. Yamamoto, “Rule Weight Speci-
fication in Fuzzy Rule-Based Classification Systems,”
IEEE Transactions on Fuzzy Systems, vol. 13, no. 4,
428–435, (2005).

22. O. Cordón, M.J. del Jesus and F. Herrera, “A proposal
on Reasoning Methods in Fuzzy Rule-Based Classifi-
cation Systems,”International Journal of Approximate
Reasoning, vol. 20, no. 1, 21–45, (1999).

23. Z. Chi, H. Yan and T. Pham, “Fuzzy algorithms with
applications to image processing and pattern recogni-
tion,” World Scientific, (1996).

24. L.X. Wang and J.M. Mendel, “Generating fuzzy rules
by learning from examples,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 22, no. 6, 1414–
1427, (1992).

25. K. Bache and M. Lichman, “UCI Machine Learn-
ing Repository,” [Online; accessed November 2014]
(http://archive.ics.uci.edu/ml), (2014).

26. V. López, A. Fernández, S. Garcı́a, V. Palade and
Francisco Herrera, “An insight into classification with
imbalanced data: Empirical results and current trends
on using data intrinsic characteristics,” Information
Sciences, vol. 250, 113–141, (2013).

27. K. Trawinski, O. Cordón, A. Quirin, “On designing
fuzzy multiclassifier systems by combining FURIA
with bagging and feature selection,” International
Journal of Uncertainty, Fuzziness, and Knowledge-
based Systems, vol. 19, no. 4, 589–633, (2011).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

437

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

