
jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers According to
the Standard for Fuzzy Control Programming

Pablo Cingolani 1, Jesús Alcalá-Fdez 2

1 School of Computer Science, McGill University,
McConnell Engineering Bldg, Room 318,

Montreal, Quebec, H3A-1A4, Canada
E-mail: pablo.cingolani@mcgill.ca

2 Department of Computer Science and Artificial Intelligence,
Research Center on Information and Communications Technology (CITIC-UGR),

University of Granada, Granada, 18071, Spain
E-mail: jalcala@decsai.ugr.es

Abstract

Fuzzy Logic Controllers are a specific model of Fuzzy Rule Based Systems suitable for engineering
applications for which classic control strategies do not achieve good results or for when it is too difficult
to obtain a mathematical model. Recently, the International Electrotechnical Commission has published
a standard for fuzzy control programming in part 7 of the IEC 61131 norm in order to offer a well defined
common understanding of the basic means with which to integrate fuzzy control applications in control
systems. In this paper, we introduce an open source Java library called jFuzzyLogic which offers a fully
functional and complete implementation of a fuzzy inference system according to this standard, providing
a programming interface and Eclipse plugin to easily write and test code for fuzzy control applications.
A case study is given to illustrate the use of jFuzzyLogic.

Keywords: Fuzzy Logic Control, Fuzzy Control Language, Fuzzy Logic, IEC 61131-7, Open Source
Software, Java Library

1. Introduction

Expert Control is a field of Artificial Intelligence
that has become a research topic in the domain of
system control.

Fuzzy Logic Control 1,2,3 is one of the topics
within Expert Control which allows us to enhance
the capabilities of industrial automation. It is suit-
able for engineering applications in which classi-
cal control strategies do not achieve good results
or when it is too difficult to obtain a mathematical

model. Fuzzy Logic Controllers (FLCs) are a spe-
cific model of Fuzzy Rule Based Systems (FRBSs)
that provide a tool which can convert the linguis-
tic control strategy based on expert knowledge into
an automatic control strategy. They usually have
two characteristics: the need for human operator
experience, and a strong non-linearity. Nowadays,
there are many real-world applications of FLCs
such as mobile robot navigation 4,5, air condition-
ing controllers 6,7, domotic control8,9, and industrial
applications10,11,12.

International Journal of Computational Intelligence Systems, Vol. 6, Supplement 1 (2013), 61-75

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 61

willieb
Typewritten Text
Accepted 1 March 2013

willieb
Typewritten Text
Received 13 December 2012

Pablo Cingolani, Jesús Alcalá-Fdez

FLCs are powerful when solving a wide range of
problems, but their implementation requires a cer-
tain programming expertise. In the last few years,
many fuzzy logic software tools have been devel-
oped to minimise this requirement. Although many
of them are commercially distributed, for example
MATLAB Fuzzy logic toolboxa, a few are available
as open source software. Open source tools can play
an important role as is pointed out in 13.

Recently, the International Electrotechnical
Commission published the 61131 norm (IEC
61131) 14, which has become well known for defin-
ing the Programmable Controller Languages (PLC)
and is commonly used in industrial applications. In
part 7 (IEC 61131-7) of this norm Fuzzy Control
Language (FCL) is defined, offering common un-
derstanding of the basic means with which to inte-
grate fuzzy control applications in control systems
and providing a common language with which to ex-
change portable fuzzy control programs among dif-
ferent platforms. This standard has a world-wide
diffusion and is independent of systems manufac-
tures, which has many advantages: easy migration to
and from several hardware platforms from different
manufacturers; protection of investment at both the
training and application-level; conformity with the
requirements of the Machinery Directive EN60204;
and reusability of the developed application.

In this paper, we present an open source Java
library called jFuzzyLogicb which allows us to de-
sign and to develop FLCs following the standard for
FCL. jFuzzyLogic offers a fully functional and com-
plete implementation of a fuzzy inference system
(FIS), and provides a programming interface (API)
and an Eclipse plugin in order to make it easier to
write and test FCL code. This library brings the ben-
efits of open source software and standardization to
the fuzzy systems community, which has several ad-
vantages:

• Standardization reduces programming work. This
library contains the basic programming elements
for the standard IEC 61131-7, removing the need
for developers to attend to boiler plate program-
ming tasks.

• This library extends the range of possible users
applying FLCs. This provides a complete imple-
mentation of FIS following the standard for FCL,
reducing the level of knowledge and experience
in fuzzy logic control required of researchers. As
a result researchers with less knowledge will be
able to successfully apply FLCs to their problems
when using this library.

• The strict object-oriented approach, together with
the modular design used for this library, allows
developers to extend it easily.

• jFuzzyLogic follows a platform-independent ap-
proach, which enables it to be developed and run
on any hardware and operating system configura-
tion that supports Java.

This paper is arranged as follows. The next sec-
tion introduces the basic definitions of the FLCs and
the published PLCs in the IEC 61131 norm. In Sec-
tion 3 we review some non-commercial fuzzy soft-
wares and the main benefits that the jFuzzyLogic
offers with respect to other softwares. Section 4
presents jFuzzyLogic: its main features and com-
ponents. In Section 5, a FLC is used in order to
illustrate how jFuzzyLogic can be used in a control
application. Finally, Section 6 draws some conclu-
sions and indicates future work.

2. Preliminaries

In this section, we first introduce the basic defini-
tions of the FLCs, and then we present the published
PLCs by the IEC 61131 norm.

2.1. Fuzzy logic controller

FLCs, as initiated by Mamdani and Assilian 15,16,
are currently considered to be one of the most im-
portant applications of the fuzzy set theory proposed
by Zadeh 17. This theory is based on the notion of
the fuzzy set as a generalization of the ordinary set
characterized by a membership function µ that takes
values from the interval [0, 1] representing degrees
of membership in the set. FLCs typically define a

ahttp://www.mathworks.com
bhttp://jfuzzylogic.sourceforge.net

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 62

jFuzzyLogic

non-linear mapping from the system’s state space to
the control space. Thus, it is possible to consider
the output of a FLC as a non-linear control surface
reflecting the process of the operator’s prior knowl-
edge.

A FLC is a kind of FRBS which is composed
of: A Knowledge Base (KB) that comprises the in-
formation used by the expert operator in the form
of linguistic control rules; a Fuzzification Interface,
which transforms the crisp values of the input vari-
ables into fuzzy sets that will be used in the fuzzy
inference process; an Inference System that uses the
fuzzy values from the Fuzzification Interface and the
information from the KB to perform the reasoning
process; and the Defuzzification Interface, which
takes the fuzzy action from the inference process
and translates it into crisp values for the control vari-
ables. Figure 1 shows the generic structure of a FLC.

Knowledge Base

Data Base Rule Base

Defuzzification
Interface

Inference
System

 Fuzzification
Interface

Inference System

State
Variables

Control
Variables

Controlled System

Fig. 1. Generic structure of a FLC.

The KB encodes the expert knowledge by means
of a set of fuzzy control rules. A fuzzy control rule
is a conditional statement in which the antecedent is
a condition in its application domain, the consequent
is a control action to be applied in the controlled sys-
tem and both, antecedent and consequent, are asso-
ciated with fuzzy concepts; that is, linguistic terms.
The KB includes two components: the Data Base
(DB) and the Rule Base (RB). The DB contains the
definitions of the linguistic labels; that is, the mem-
bership functions for the fuzzy sets. The RB is a
collection of fuzzy control rules, comprised by the
linguistic labels, representing the expert knowledge
of the controlled system.

The Fuzzification Interface establishes a map-
ping between each crisp value of the input variable
and a fuzzy set defined in the universe of the corre-

sponding variable. This interface works as follows:

A′ = F(x0)

where x0 is a crisp value defined in the input universe
U , A′ is a fuzzy set defined in the same universe and
F is a fuzzifier operator.

The Inference System is based on the application
of the Generalized Modus Ponens, an extension of
the classical Modus Ponens, proposed by Zadeh in
which:

If X is A then Y is B
X is A′

Y is B′

where X and Y are linguistic variables, A and B are
fuzzy sets, and B′ is the output fuzzy set inferred.
To do this, the system firstly obtains the degree of
matching of each rule by applying a conjunctive op-
erator (called an aggregation operator in the IEC-
61131-7 norm), and then infers the output fuzzy sets
by means of a fuzzy implication operator (called ac-
tivation operator in the IEC-61131-7 norm). The In-
ference System produces the same amount of output
fuzzy sets as the number of rules collected in the KB.
These groups of fuzzy sets are aggregated by an ag-
gregation operator (called an accumulation operator
in the IEC-61131-7 norm), but they must be trans-
formed into crisp values for the control variables.
This is the purpose of the Defuzzification Interface.
There are two types of defuzzification methods 18,19

depending on the way in which the individual fuzzy
sets B′ are aggregated:

• Mode A: Aggregation First, Defuzzification After.
The Defuzzification Interface performs the aggre-
gation of the individual fuzzy sets inferred, B′, to
obtain the final output fuzzy set. Usually, the ag-
gregation operator is the minimum or the maxi-
mum.

• Mode B: Defuzzification First, Aggregation After.
This avoids the computation of the final fuzzy set
by considering the contribution of each rule output
individually, obtaining the final control action by
taking a calculation (an average, a weighted sum
or a selection of one of them) of a concrete crisp
characteristic value associated with each of them.

More complete information on FLCs can be found

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 63

Pablo Cingolani, Jesús Alcalá-Fdez

in 1,2,3.

2.2. IEC 61131 languages

The International Standard IEC 61131 14 applies to
programmable controllers and their associated pe-
ripherals such as programming and debugging tools,
Human-machine interfaces, etc, which have as their
intended use the control and command of machines
and industrial processes. In part 3 (IEC 61131-3)
of this standard, the syntax and semantics of a uni-
fied suite of five programming languages for pro-
grammable controllers is specified. The languages
consist of two textual programming languages: In-
struction List (IL) and Structured Text (ST); and
three graphical programming languages: Ladder di-
agram (LD), Function block diagram (FBD) and Se-
quential function chart (SFC).

IL is its low level component and it is similar
to assembly language: one instruction per line, low
level and low expression commands. ST, as the
name suggests, intends to be more structured and it
is very easy to learn and understand for anyone with
a modest experience in programming. LD was orig-
inated in the U.S. and it is based on graphical pre-
sentation of Relay Ladder Logic 20. FBD is widely
used in the process industry and it represents the sys-
tem as a group of interconnected graphical blocks,
as in the electronic circuit diagrams. SFC is based
on GRAFCET (itself based on binary petri nets 21).

All the languages are modular. The basic mod-
ule is called the Programmable Organization Unit
(POU) and includes Programs, Functions or Func-
tion Blocks (FBs). A system is usually composed
of many POUs, and each of these POUs can be pro-
grammed in a different language. For instance, in
a system consisting of two functions and one FB
(three POUs), one function may be programed in
LD, another function in IL and the FB may be pro-
grammed in ST. The norm defines all common data
types (e.g. BOOL, REAL, INT, ARRAY, STRUCT,
etc.) as well as ways to interconnect POUs, assign
process execution priorities, process timers, CPU re-
source assignment, etc.

The concepts of the Program and Functions are
quite intuitive. Programs are a simple set of state-
ments and variables. Functions are calculations that

can return only one value and are not supposed to
have state variables. An FB resembles a very prim-
itive object. It can have multiple input and multiple
output variables, can be enabled by an external sig-
nal, and can have local variables. Unlike an object,
an FB only has one execution block (i.e. there are no
methods). The underlying idea for these limitations
is that you should be able to implement programs
using either text-based or graphic-based languages.
Having only one execution block allows the execu-
tion to be easily controlled when using a graphic-
based language to interconnect POUs.

In part 7 of the standard IEC 61131 (IEC61131-
7), FCL is also defined in order to deal with fuzzy
control programming. The aim of this standard is
to offer the companies and the developers a well
defined common understanding of the basic means
with which to integrate fuzzy control applications
in control systems, as well as the possibility of ex-
changing portable fuzzy control programs across
different programming systems. jFuzzyLogic is fo-
cused on this language.

FCL has a similar syntax to ST but there are
some very important differences. FCL exclusively
uses a new POU type, FIS, which is a special type
of a FB. All fuzzy language definitions should be
within an FIS. Moreover, as there is no concept of
execution order concept there are no statements. For
instance, there is no way to create the typical “Hello
world” example since there is no printed statement.

An FIS is usually composed of one or more
FBs. Every FUNCTION BLOCK has the following sec-
tions: i) input and output variables are defined in
the VAR INPUT and VAR OUTPUT sections respec-
tively; ii) fuzzification and defuzzification mem-
bership functions are defined in the FUZZIFY and
DEFUZZIFY sections respectively; iii) fuzzy rules are
written in the RULEBLOCK section.

Variable definition sections are straightforward;
the variable name, type and possibly a default
value are specified. Membership functions either
in FUZZIFY or DEFUZZIFY are defined for each
linguistic term using the TERM statement followed
by a function definition. Functions are defined
as piece-wise linear functions using a series of
points (x0,y0)(x1,y1)...(xn,yn), for instance, TERM

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 64

jFuzzyLogic

average := (10,0) (15,1) (20,0) defines a
triangular membership function. Only two member-
ship functions are defined in the IEC standard: sin-
gleton and piece-wise linear. As shown in Section 4,
jFuzzyLogic significantly extends these concepts.

An FIS can contain one or more RULEBLOCK,
in which fuzzy rules are defined. Since rules
are intrinsically parallel, no execution order is
implied or warranted by the specified order in
the program. Each rule is defined using stan-
dard “IF condition THEN conclusion [WITH

weight]” clauses. The optional WITH weight

statement allows weighting factors for each rule.
Conditions tested in each IF clause are of the form
“variable IS [NOT] linguistic term”. This tests the
membership of a variable to a linguistic term using
the membership function defined in the correspond-
ing FUZZIFY block. An optional NOT operand
negates the membership function (i.e. m(x) = 1−
m(x)). Obviously, several conditions can be com-
bined using AND and OR connectors.

A simple example of an FIS using FCL to cal-
culate the tip in a restaurant is shown below, where
Figure 2 shows the membership functions for this
example. More complete information on the IEC
61131 norm can be found in 14.

Fig. 2. Membership functions for tipper example.

FUNCTION BLOCK tipper

VAR INPUT

service, food : REAL;

END VAR

VAR OUTPUT

tip : REAL;

END VAR

FUZZIFY service

TERM poor := (0, 1) (4, 0) ;

TERM good := (1, 0) (4,1) (6,1) (9,0);

TERM excellent := (6, 0) (9, 1);

END FUZZIFY

FUZZIFY food

TERM rancid := (0, 1) (1, 1) (3,0);

TERM delicious := (7,0) (9,1);

END FUZZIFY

DEFUZZIFY tip

TERM cheap := (0,0) (5,1) (10,0);

TERM average := (10,0) (15,1) (20,0);

TERM generous := (20,0) (25,1) (30,0);

METHOD : COG; // Center of Gravity

END DEFUZZIFY

RULEBLOCK tipRules

Rule1: IF service IS poor OR food IS rancid

THEN tip IS cheap;

Rule2: IF service IS good THEN tip IS average;

Rule3: IF service IS excellent AND food IS delicious

THEN tip IS generous;

END RULEBLOCK

END FUNCTION BLOCK

3. Comparison of fuzzy logic software

In this section we present a comparison of non-
commercial fuzzy software (Table 1). We center our
interest on free software because of its important
role in the scientific research community 13. This
comparison is not intended to be comprehensive or
exhaustive. It shows the choices a researcher in the
field faces when trying to select a fuzzy logic soft-
ware package.

We analyze 26 packages (including jFuzzy-
Logic), mostly from SourceForge or Google-Code,
which are considered to be some of the most re-
spectable software repositories. The packages are
analyzed in the following categories:

• FCL support. Only four packages (∼ 17%) claim
to support IEC 61131-7 specification. Notably,
two of them are based on jFuzzyLogic. Only two
packages that support FCL are not based on our
software. Unfortunately, neither of them seem to
be maintained by their developers any longer. Fur-
thermore, one of them has some code taken from
jFuzzyLogic.

• Programming language. This is an indicator of
code portability. Their languages of choice were
mainly Java and C++/C (column Lang.). As Java
is platform independent it has the advantage of

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 65

Pablo Cingolani, Jesús Alcalá-Fdez

Table 1: Comparison of open fuzzy logic software packages. Columns describe: Project name (Name), IEC
61131-7 language support (IEC), latest release year (Rel.), main programming language (Lang.), short descrip-
tion from website (Description), number of membership functions supported (MF) and Functionality (notes).
Name∗ : package is maintained, compiles correctly, and has extensive functionality.

Name IEC Rel. Lang. Description MF Notes
Akira 22 No 2007 C++ Framework for complex AI agents. 4
AwiFuzz 23 Yes 2008 C++ Fuzzy logic expert system 2 Does not compile
DotFuzzy 24 No 2009 C# .NET library for fuzzy logic 1 Specific
FFLL 25 Yes 2003 C++ Optimized for speed critical applications. 4 Does not compile
Fispro∗ 26 No 2011 C++/Java Fuzzy inference design and optimization 6
FLUtE 27 No 2004 C# A generic Fuzzy Logic Engine 1 Beta version
FOOL 28 No 2002 C Fuzzy engine 5 Does not compile
FRBS citeFRBS2011 No 2011 C++ Fuzzy Rule-Based Systems 1 Specific
Funzy 29 No 2007 Java Fuzzy Logic reasoning 2∗ Specific
Fuzzy Logic Tools∗ 30 No 2011 C++ Framework fuzzy control systems, 12
FuzzyBlackBox 31 No 2011 - Implementing fuzzy logic - No files released
FuzzyClips 32 No 2004 C/Lisp Fuzzy logic extension of CLIPS 3+2∗ No longer maintained
FuzzyJ ToolKit 33 No 2006 Java Fuzzy logic extension of JESS 15 No longer maintained
FuzzyPLC∗ 34 Yes 2011 Java Fuzzy controller for PLC Siemens s226 11+14∗ Uses jFuzzyLogic
GUAJE∗ 35 No 2012 Java Development environment Uses FisPro
javafuzzylogicctrltool 36 No 2008 Java Framework for fuzzy rules - No files released
JFCM 37 No 2011 Java Fuzzy Cognitive Maps (FCM) - Specific
JFuzzinator 38 No 2010 Java Type-1 Fuzzy logic engine 2 Specific
jFuzzyLogic∗ Yes 2012 Java FCL and Fuzzy logic API 11+14∗ This paper
jFuzzyQt∗ 39 Yes 2011 C++ jFuzzyLogic clone 8
libai 40 No 2010 Java AI library, implements some fuzzy logic 3 Specific
libFuzzyEngine 41 No 2010 C++ Fuzzy Engine for Java 1 Specific
Nefclass 42 No 1999 C++/Java Neuro-Fuzzy Classification 1 Specific
nxtfuzzylogic 43 No 2010 Java For Lego Mindstorms NXT 1 Specific
Octave FLT∗ 44 No 2011 Octave Fuzzy logic for Toolkit 11
XFuzzy3∗ 45 No 2007 Java Development environment 6 Implements XFL3 specification language

portability. C++ has an advantage in speed and
also allows for easier integration in industrial con-
trollers.

• Functionality. Eight packages (∼ 29%) were
made for specific purposes, marked as ‘specific’
(column Notes, Table 1). Specific code usually
has limited functionality, but it is simpler and has
a faster learning curve for the user.

• Membership functions. This is an indicator of
how comprehensive and flexible the package is.
Specific packages include only one type of mem-
bership function (typically trapezoid) and/or one
defuzzification method (data not shown). In
some cases, arbitrary combinations of member-
ship functions are possible. These packages are
marked with an asterisk. For example, ‘M +N∗’
means that the software supports M membership
functions plus another N which can be arbitrarily
combined.

• Latest release. In nine cases (∼ 33%) there were
no released files for the last three years or more

(see Rel. column in the Table 1). This may in-
dicate that the package is no longer maintained,
and in some cases the web site explicitly mentions
this.

• Code availability and usability. Five of the pack-
ages (∼ 21%) had no files available, either be-
cause the project was no longer maintained or be-
cause the project never released any files at all.
Whenever the original sites were down, we tried
to retrieve the projects from alternative mirrors. In
three cases (∼ 13%) the packages did not compile.
We performed minimal testing by simply follow-
ing the instructions, where available, and made no
effort to correct any compilation problems.

To summarise, only eight of the software packages
(∼ 33%) seemed to be maintained, compiled cor-
rectly, and had extensive functionality. Only two
of them (FuzzyPLC and jFuzzyQt) are capable of
parsing FCL (IEC 61131-7) files and both are based
on jFuzzyLogic. From our point of view users need
an open source software which provides the basic

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 66

jFuzzyLogic

programming elements of the standard IEC 61131-
7 and is maintained in order to take advantage of
the benefits of open source software and standard-
ization. In the next section we will describe jFuzzy-
Logic in detail.

4. JFuzzyLogic

JFuzzyLogic’s main goal is to facilitate and acceler-
ate the development of fuzzy systems. We achieve
this goal by: i) using standard programming lan-
guage (FCL) that reduces learning curves; ii) provid-
ing a fully functional and complete implementation
of FIS; iii) creating API that developers can use or
extend; iv) implementing an Eclipse plugin to eas-
ily write and test FCL code; v) making the software
platform independent; and vi) distributing the soft-
ware as open source. This allows us to significantly
accelerate the development and testing of fuzzy sys-
tems in both industrial and academic environments.

In these sections we show how these design and
implementation goals were achieved. This should
be particularly useful for developers and researchers
looking to extend the functionality or use the avail-
able API.

4.1. jFuzzyLogic implementation

jFuzzyLogic is fully implemented in Java, thus the
package is platform independent. ANTLR46 was
used to generate Java code for a lexer and parser
based on our FCL grammar definition. This gen-
erated parser uses a left to right leftmost derivation
recursive strategy, formally know as “LL(*)”.

Using the lexer and parser created by ANTLR
we are able to parse FCL files by creating an Ab-
stract Syntax Tree (AST), a well known structure
in compiler design. The AST is converted into
an Interpreter Syntax Tree (IST), which is capa-
ble of performing the required computations. This
means that the IST can represent the grammar, like
and AST, but is also capable of performing calcu-
lations. The parsed FIS can be evaluated by recur-
sively transversing the IST.

4.2. Membership functions

Only two membership functions are defined in
the IEC standard: singleton and piece-wise linear.
jFuzzyLogic also implements other commonly used
membership functions:

• Cosine : f (x|α,β) = cos[π

α
(x−β)],∀x ∈ [−α,α]

• Difference of sigmoidals: f (x|α1,β1,α2,β2) =
s(x,α1,β1) − s(x,α2,β2), where s(x,α,β) =
1/[1+ e−β (x−α)]

• Gaussian : f (x|µ,σ) = e(x−µ)2/2σ2

• Gaussian double : f (x|µ1,σ1,µ2,σ2) =
e(x−µ1)

2/2σ2
1 x < µ1

1 µ1 6 x 6 µ2

e(x−µ2)
2/2σ2

2 x > µ2

• Generalized bell : f (x|µ1,a,b) = 1
1+|(x−µ)/a|2b

• Sigmoidal : f (x|β , t0) = 1
1+eβ (x−t0)

• Trapezoidal : f (x|min, low,high,max) =

0 x < min
x−min

low−min
min 6 x < low

1 low 6 x 6 high
x−high

max−high
high < x 6 max

0 x > max

• Triangular: f (x|min,mid ,max) =
0 x < min

x−mid
low−mid

min 6 x 6 mid
x−mid

max−mid
mid < x 6 max

0 x > max

• Piece-wise linear : Defined as the union of con-
secutive points by an affine function.

Furthermore, jFuzzyLogic enables arbitrary
membership functions to be built by combining
mathematical expressions. This is implemented by
parsing an Interpreter Syntax Tree (IST) of math-
ematical expressions. IST is evaluated at running
time, thus enabling the inclusion of variables into
the expressions. Current implementation allows the
use of the following functions:Abs, Cos, Exp, Ln,
Log, Modulus, Nop, Pow, Sin, Tan, as well as addi-
tion, subtraction, multiplication and division.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 67

Pablo Cingolani, Jesús Alcalá-Fdez

It should be noted that, as mentioned in section
2.2, IEC standard does not define or address the con-
cept of fuzzy partition of a variable. For this rea-
son, fuzzy partitions are not directly implemented in
jFuzzyLogic. In order to produce a complete par-
tition, we should indicate the membership function
for each linguistic term.

4.3. Aggregation, activation & accumulation

As mentioned in section 2.2, rules are defined inside
the RULEBLOCK statement in an FIS. Each rule block
also specifies aggregation, activation and accumula-
tion methods. All methods defined in the norm are
implemented in jFuzzyLogic. It should be noted that
we adhere to the definitions of Aggregation, Acti-
vation and Accumulation as defined by IEC 61131-
7, which may differ from the naming conventions
found in other references.

Aggregation methods (sometimes be called
“combination” or “rule connection methods”) define
the t-norms and t-conorms playing the role of AND
& OR operators. Needless to say, each set of op-
erators must satisfy De Morgan’s laws. These are
shown in Table 2.

Table 2. Aggregation methods.
Name x AND y x OR y
Min/Max min(x,y) max(x,y)
Bdiff/Bsum max(0,x+ y−1) min(1,x+ y)
Prod/PobOr x y x+ y− x y
Drastic if(x == 1)→ y if(x == 0)→ y

if(y == 1)→ x if(y == 0)→ x
otherwise→ 0 otherwise→ 1

Nil potent if(x+ y > 1)→ min(x,y) if(x+ y < 1)→ max(x,y)
otherwise→ 0 otherwise→ 1

Activation method define how rule antecedents
modify rule consequents; i.e., once the IF part has
been evaluated, how this result is applied to the
THEN part of the rule. The most common activation
operators are Minimum and Product (see Figure 3).
Both methods are implemented in jFuzzyLogic.

Fig. 3. Activation methods: Min (left) and Prod (right).

Finally, the accumulation method defines how

the consequents from multiple rules are combined
within a Rule Block (see Figure 4). Accumulation
methods implemented by jFuzzyLogic defined in the
norm include:

• Maximum : αcc = max(αcc,δ)

• Bound sum: αcc = min(1,αcc +δ)

• Normalized sum: αcc =
αcc+δ

max(1,αcc+δ)

• Probabilistic OR : αcc = αcc +δ −αcc δ

where αcc is the accumulated value (at point x)
and δ = m(x) is the membership function for de-
fuzzification (also at x).

Fig. 4. Accumulation method: Combining consequents
from multiple rules using Max accumulation method.

4.4. Defuzzification

The last step when evaluating an FIS is defuzzifica-
tion. The value for each variable is calculated using
the selected defuzzification method, which can be:

• Center of gravity :
∫

xµ(x)dx∫
µ(x)dx

• Center of gravity singleton : ∑i xiµi
∑i µi

• Center of area : u |
∫ u
−∞

µ(x)dx =
∫

∞

u µ(x)dx
• Rightmost Max : argmaxx [µ(x) = max(µ(x))]
• Leftmost Max : argminx [µ(x) = max(µ(x))]
• Mean max : mean(x) | µ(x) = max(µ(x))

When dealing with simple membership func-
tions, such as trapezoidal and piece-wise linear, de-
fuzzicication can be computed easily by applying
known mathematical equations. Although it can be
carried out very efficiently, it unfortunately cannot
be applyed to arbitrary expressions.

Due to the flexibility in defining membership
functions, we use a more general method. We dis-
cretize membership functions at a number of points
and use a more computational intensive, numerical

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 68

jFuzzyLogic

integration method. The default number of points
used for discretization, one thousand, can be ad-
justed according to the precision-speed trade-off re-
quired for a particular application. Inference is per-
formed by evaluating membership functions at these
discretization points. In order to perform a dis-
cretization, the “universe” for each variable, has to
be estimated. The universe is defined as the range
in which the variable has a non-neglectable value.
Each membership function and each term is taken
into account when calculating a universe for each
variable. Once all the rules have been analyzed, the
accumulation for each variable is complete.

4.5. API extensions

Some of the extensions and benefits provided by
jFuzzyLogic are described in this section.

Modularity. The modular design allows us to ex-
tend the language and the API easily. It is possible
to add custom aggregation, activation or accumula-
tion methods, defuzzifiers, or membership functions
by extending the provided object tree (see Figure 5).

Fig. 5. Part of jFuzzyLogic’s object tree. Used to provide
API extension points.

Dynamic changes. We have defined an API
which supports dynamic changes made to an FIS: i)

variables can be used as membership function pa-
rameters; ii) rules can be added or deleted from
rule blocks, iii) rule weights can be modified; iv)
membership functions can use combinations of pre-
defined functions.

Data Types. Due to the nature of fuzzy systems
and in order to reduce complexity, jFuzzyLogic con-
siders each variable as a REAL variable which is
mapped to a double Java type.

Execution order. By default it is assumed that an
FIS is composed of only one FB, so evaluating the
FIS means evaluating the default FB. If an FIS has
more than one FB, they are evaluated in alphabetical
order by FB name. Other execution orders can be
implemented by the user, which allows us to define
hierarchical controllers easily.

4.6. Optimization API

An optimization API was developed in order to au-
tomatically fine tune FIS parameters. Our goal was
to define a very lightweight and easy to learn API,
which was flexible enough to be extended for gen-
eral purpose usage.

The most common parameters to be optimized
are membership functions and rule weights. For
instance, if a variable has a fuzzifier term “TERM
rancid := trian 0 1 3”, there are three pa-
rameters that can be optimized in this mem-
bership function (whose initial values are 0, 1
and 3 respectively). Using the API, we can
choose to optimize any subset of them. Similarly,
in the rule “IF service IS good THEN tip IS

average” we can optimize the weight of this rule
(implicit “WITH 1.0” statement). This API consists
of the following objects:

• ErrorFunction: An object that evaluates a Rule
Block and calculates the error. Extending Error-
Function is the bare minimum required to imple-
ment an optimization using one of the available
optimization methods.

• OptimizationMethod: An optimization method
object is an abstraction of an algorithm. It changes
Parameter based on the performance measured
using an ErrorFunction.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 69

Pablo Cingolani, Jesús Alcalá-Fdez

• Parameter: This class represents a parameter to
be optimized. Any change to a parameter, will
make the corresponding change to the FIS, thus
changing the outcome. There are two basic pa-
rameters: ParameterMembershipFunction and Pa-
rameterRuleWeight, which allow for changes to
membership functions and rule weights respec-
tively. Other parameters could be created in order
to, for instance, completely rewrite rules. We plan
to extend them in future versions. Most users will
not need to extend Parameter objects.

For most optimization applications, extending
only one or two objects is enough (i.e. ErrorFunc-
tion, and sometimes OptimizationMethod). We pro-
vide template and demo objects to show how this
can be done, all of which are included in our freely
available source code.

A few optimization algorithms are implemented,
such as gradient descent, partial derivative, and delta
algorithm 47. As noted above, other algorithms can
be easily implemented based on these templates or
by directly extending them. In the examples pro-
vided it is assumed that error functions can be eval-
uated anywhere in the input space. This is not a lim-
itation in the API, since we can always develop an
optimization algorithm and the corresponding error
function that evaluates the FIS on a learning set.

4.7. Eclipse plugin

Eclipse is one of the most commonly used software
development platforms. It allows us to use a specific
language development tool by using the Eclipse-
plugin framework. We developed a jFuzzyLogic
plugin that allows developers to easily and rapidly
write FCL code, and test it. Our plugin was devel-
oped using Xtext, a well known framework for do-
main specific languages based on ANTLR.

The plugin supports several features, such as
syntax coloring, content assist, validation, program
outlines and hyperlinks for variables and linguistic
terms, etc. Figure 6 shows an example of the plugin
being used to edit FCL code, where the left panel
shows an editor providing syntax coloring while
adding content assist at cursor position, and the right

panel shows the corresponding code outline.

Fig. 6. FCL code edited in the Eclipse plugin.

When an FCL program is running, this plugin
shows membership functions for all input and out-
put variables. Moreover, the output console shows
the FCL code parsed by jFuzzyLogic (Figure 7) .

Fig. 7. Eclipse plugin when an FCL program is running.

5. A case study

In this section we present an example of the creation
of a FLC controllers with jFuzzyLogic. This case
study is focused on the development of the wall-
following robot as explained in 48. Wall-following
behavior is well known in mobile robotics. It is fre-
quently used for the exploration of unknown indoor
environments and for the navigation between two
points in a map.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 70

jFuzzyLogic

The main requirement of a good wall-following
controller is to maintain a suitable distance from
the wall that is being followed. The robot should
also move as fast as possible, while avoiding sharp
movements, making smooth and progressive turns
and changes in velocity.

5.1. Robot fuzzy control system

In our fuzzy control system, the input variables are:
i) normalized distances from the robot to the right
(RD) and left walls (DQ); ii) orientation with respect
to the wall (O); and iii) linear velocity (V).

The output variables in this controller are the
normalized linear acceleration (LA) and the angular
velocity (AV). The linguistic partitions are shown in
Figure 8, which are comprised by linguistic terms
with uniformly distributed triangular membership
functions giving meaning to them.

Fig. 8. Membership functions for a wall-following robot.

In order to implement the controller, the first step
is to declare the input and output variables and to
define the fuzzy sets. Variables are defined in the
VAR INPUT and VAR OUTPUT sections. Fuzzy
sets are defined in FUZZIFY blocks for input vari-
ables and DEFUZZIFY blocks for output variables.

One FUZZIFY block is used for each input vari-
able. Each TERM line within a FUZZIFY block de-
fines a linguistic term and its corresponding mem-
bership function. In this example all membership
functions are triangular, so they are defined using
the ’trian’ keyword, followed by three parameters
defining the left, center and right points.

Output variables define their membership func-
tions within DEFUZZIFY blocks. Linguistic terms
and membership functions are defined using the
TERM keyword as previously described for input
variables. In this case we also add parameters to
select the defuzzification method. The statement
’METHOD : COG’ indicates that we are using ’Cen-
ter of gravity’. The corresponding FCL code gener-
ated for the first step is as follows:

VAR INPUT

rd : REAL; // Right distance

dq : REAL; // Distance quotient

o : REAL; // Orientation. Note: ’or’ is a reserved word

v : REAL; // Velocity

END VAR

VAR OUTPUT

la : REAL; // Linear acceleration

av : REAL; // Angular velocity

END VAR

FUZZIFY rd

TERM L := trian 0 0 1;

TERM M := trian 0 1 2;

TERM H := trian 1 2 3;

TERM VH := trian 2 3 3;

END FUZZIFY

FUZZIFY dq

TERM L := trian 0 0 2;

TERM H := trian 0 2 2;

END FUZZIFY

FUZZIFY o

TERM HL := trian -45 -45 -22.5;

TERM LL := trian -45 -22.5 0;

TERM Z := trian -22.5 0 22.5;

TERM LR := trian 0 22.5 45;

TERM HR := trian 22.5 45 45;

END FUZZIFY

FUZZIFY v

TERM L := trian 0 0 1;

TERM H := trian 0 1 1;

END FUZZIFY

DEFUZZIFY la

TERM VHB := trian -1 -1 -0.75;

TERM HB := trian -1 -0.75 -0.5;

TERM MB := trian -0.75 -0.5 -0.25;

TERM SB := trian -0.5 -0.25 0;

TERM Z := trian -0.25 0 0.25;

TERM SA := trian 0 0.25 0.5;

TERM MA := trian 0.25 0.5 0.75;

TERM HA := trian 0.5 0.75 1;

TERM VHA := trian 0.75 1 1;

METHOD : COG; // Center of Gravity

DEFAULT := 0;

END DEFUZZIFY

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 71

Pablo Cingolani, Jesús Alcalá-Fdez

DEFUZZIFY av

TERM VHR := trian -1 -1 -0.75;

TERM HR := trian -1 -0.75 -0.5;

TERM MR := trian -0.75 -0.5 -0.25;

TERM SR := trian -0.5 -0.25 0;

TERM Z := trian -0.25 0 0.25;

TERM SL := trian 0 0.25 0.5;

TERM ML := trian 0.25 0.5 0.75;

TERM HL := trian 0.5 0.75 1;

TERM VHL := trian 0.75 1 1;

METHOD : COG;

DEFAULT := 0;

END DEFUZZIFY

These membership functions can be plotted by
running jFuzzyLogic with the FCL file generated
as argument (e.g. java -jar jFuzzyLogic.jar

robotWCOR.fcl).
The second step is to define the rules used for

inference. They are defined in RULEBLOCK state-
ments. For the wall-following robot controller, we
used ’minimum’ connection method (AND : MIN),
minimum activation method (ACT : MIN), and max-
imum accumulation method (ACCU : MAX). We im-
plemented the RB generated in 48 by the algorithm
WCOR 49. Each entry in the RB was converted to
a single FCL rule. Within each rule, the antecedent
(i.e. the IF part) is composed of the input variables
connected by ‘AND’ operators. Since there is more
than one output variable, we can specify multiple
consequents (i.e. THEN part) separated by semi-
colons. Finally, we add the desired weight using the
‘with’ keyword followed by the weight. This com-
pletes the implementation of a controller for a wall-
following robot using FCL and jFuzzyLogic. The
FLC code generated for the second step is as fol-
lows:
RULEBLOCK rules

AND : MIN; // Use ’min’ for ’and’ (also implicit use

//’max’ for ’or’ to fulfill DeMorgan’s Law)

ACT : MIN; // Use ’min’ activation method

ACCU : MAX; // Use ’max’ accumulation method

RULE 01: IF rd is L and dq is L and o is LL

and v is L THEN la is VHB , av is VHR with 0.4610;

RULE 02: IF rd is L and dq is L and o is LL

and v is H THEN la is VHB , av is VHR with 0.4896;

RULE 03: IF rd is L and dq is L and o is Z

and v is L THEN la is Z , av is MR with 0.6664;

RULE 04: IF rd is L and dq is L and o is Z

and v is H THEN la is HB , av is SR with 0.5435;

RULE 05: IF rd is L and dq is H and o is LL

and v is L THEN la is MA , av is HR with 0.7276;

etc;

END RULEBLOCK

The corresponding whole FCL file for this case
study is available for download as one of the exam-
ples provided in the jFuzzyLogic packagec. The cor-
responding Java code that uses jFuzzyLogic to run
the FCL generated for WCOR is:

public class TestRobotWCOR {
public static void main(String[] args)

throws Exception {
FIS fis = FIS.load("fcl/robot.fcl", true);

FunctionBlock fb = fis.getFunctionBlock(null);

// Set inputs

fb.setVariable("dp", 1.25);

fb.setVariable("o", 2.5);

fb.setVariable("rd", 0.3);

fb.setVariable("v", 0.6);

// Evaluate

fb.evaluate();

// Get output

double la = fb.getVariable("la").getValue());

double av = fb.getVariable("av").getValue());

}
}

This can also be done using the command line
option “-e”, which assigns values in the command
line to input variables alphabetically (in this case:
“dp”, “o”, “rd” and “v”) and then evaluates the FIS.
Here we show the command, as well as part of the
output:
java -jar jFuzzyLogic.jar -e robot.fcl 1.2 2.5 0.3 0.6

FUNCITON_BLOCK robot

VAR_INPUT dq = 1.200000

VAR_INPUT o = 2.500000

VAR_INPUT rd = 0.300000

VAR_INPUT v = 0.600000

VAR_OUTPUT av = 0.061952

VAR_OUTPUT la = -0.108399

...(rule activations omitted)

Moreover, this utility also produces plots of
membership functions for all variables, as well as
the defuzzification areas for the output of all vari-
ables. Figure 9 shows the defuzzification areas for
“av” and “la” in light grey.

When evaluation of multiple input values is re-
quired, values can be provided as a tab-separated
input file using the command line option -txt

file.txt. This approach can be easily extended
for other data sources, such as databases, online ac-
quisition, etc.

chttp://jfuzzylogic.sourceforge.net/html/example_java.html

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 72

jFuzzyLogic

Fig. 9. Membership functions and defuzzification areas
(light grey) for robots.fcl example.

Finally, we can use the jFuzzyLogic Eclipse
pluging to see membership functions for all input
and output variables and the FCL code parsed by
jFuzzyLogic (Figure 10).

Fig. 10. jFuzzyLogic Eclipse pluging with robots.fcl ex-
ample.

5.2. Parameter optimization

Continuing our case study, we show an applica-
tion of the optimization API shown in section 4.6.
We apply a parameter optimization algorithm to our
FLC for a wall-following robot.

To provide an example, we optimize the mem-
bership functions of input variables “dg” and “v”.
Each variable has two TRIAN membership functions,
and each triangular membership function has three
parameters. Thus, the total number of parameters to
optimize is 12. The following code is used to per-
form the optimization:
// Load FIS form FCL

FIS fis = FIS.load("robot.fcl");

RuleBlock ruleBlock = fis.getFunctionBlock(null)

.getFuzzyRuleBlock(null);

// Get variables

Variable dg = ruleBlock.getVariable("dq");

Variable v = ruleBlock.getVariable("v");

// Add variables to be optimized to parameter list

ArrayList<Parameter> parameterList = new

ArrayList<Parameter>();

parameterList.addAll(Parameter

.parametersMembershipFunction(dq));

parameterList.addAll(Parameter

.parametersMembershipFunction(v));

// Create optimizaion object and run it

ErrorFunction errFun = new ErrorFunctionRobot

("training.txt");

optimization = new OptimizationDeltaJump(ruleBlock

, errFun, parameterList);

optimization.optimize();

An appropriate error function was defined in ob-
ject ErrorFunctionRobot, which is referenced in the
previously shown code. The error function evaluates
the controller on a predefined learning set, which
consists of 5070 input and output values.

The resulting membership functions from this
optimization are shown in Figure 11. It is easy to
see that the optimized membership functions differ
significantly from the originally defined ones.

Fig. 11. Membership functions after optimization.

The implemented algorithm performs a global
optimization. Accordingly, the improvements to the
overall RMS error was reduced from 15% in the first
iteration, to 3% on the second iteration and only
0.5%. on the third one. Further improvements could
be obtained by allowing more parameters in the op-
timization process, at the expense of computational
time.

6. Conclusions

In this paper, we have described an open source
Java library called jFuzzyLogic that allows us to

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 73

Pablo Cingolani, Jesús Alcalá-Fdez

design and to develop FLCs according to the stan-
dard IEC 61131-7. jFuzzyLogic offers a fully func-
tional and complete implementation of an FIS and
provides an API and Eclipse plugin to easily write
and test FCL code. Moreover, this library relieves
researchers of much technical work and enables re-
searchers with little knowledge of fuzzy logic con-
trol to apply FLCs to their control applications.

We have shown a case study to illustrate the use
of jFuzzyLogic. In this case, we developed a FLC
for wall-following behavior in a robot. The example
shows how jFuzzyLogic can be used to easily imple-
ment and to run a FLC. Moreover, we have shown
how we can use jFuzzyLogic to tune a FLC.

The jFuzzyLogic software package is continu-
ously being updated and improved. Future work in-
cludes: i) using defuzzifier analytic solutions wher-
ever possible (e.g. FIS consisting exclusively of
trapezoidal and triangular sets), as it would consider-
ably speed-up processing; ii) adding FIS constraints
and developing ways to include them as part of the
language extensions; and iii) at the moment, we are
developing an implementation of an FCL to C/C++
compiler, allowing easy implementation of embed-
ded control systems.

Acknowledgments

jFuzzyLogic was designed and developed by P. Cin-
golani. He is supported in part by McGill Uninver-
sity, Genome Quebec. J. Alcala-Fdez is supported
by the Spanish Ministry of Education and Science
under Grant TIN2011-28488 and the Andalusian
Government under Grant P10-TIC-6858. We would
like to thank R. Sladek and M. Blanchette for their
comments. Special thanks to P.J. Leonard for his
contributions to the project.

References

1. C.C. Lee, “Fuzzy logic in control systems: Fuzzy
logic controller parts i and ii,” IEEE Transactions on
Systems, Man, and Cybernetics, 20, 404–435 (1990).

2. H. Hellendoorn D. Driankov and M. Reinfrank, “An
Introduction to Fuzzy Control,” Springer-Verlag
(1993).

3. P.P. Bonissone, “Fuzzy logic controllers: An indus-
trial reality,” In Computational Intelligence: Imitating
Life, IEEE Press, 316–327 (1994).

4. B.E. Eskridge and D.F. Hougen, “Extending adaptive
fuzzy behavior hierarchies to multiple levels of com-
posite behaviors,” Robotics And Autonomous Systems,
58:9, 1076–1084 (2010).

5. Ch.-F. Juang and Y.-Ch. Chang, “Evolutionary-group-
based particle-swarm-optimized fuzzy controller with
application to mobile-robot navigation in unknown
environments,” IEEE Transactions on Fuzzy Systems,
19:2, 379–392 (2011).

6. R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, and F. Her-
rera, “Improving fuzzy logic controllers obtained by
experts: a case study in HVAC systems,” Applied In-
telligence, 31:1, 15–30 (2009).

7. E. Cho, M. Ha, S. Chang, and Y. Hwang, “Variable
fuzzy control for heat pump operation,” Journal of
Mechanical Science and Technology, 25:1, 201–208
(2011).

8. F. Chávez, F. Fernández, R. Alcalá, J. Alcalá-Fdez,
G. Olague, and F. Herrera, “Hybrid laser pointer
detection algorithm based on template matching and
fuzzy rule-based systems for domotic control in real
home enviroments,” Applied Intelligence, 36:2, 407–
423 (2012).

9. G. Acampora and V. Loia, “Fuzzy control interop-
erability and scalability for adaptive domotic frame-
work,” IEEE Transactions on Industrial Informatics,
1:2, 97 – 111 (2005).

10. J. Otero, L. Sánchez, and J. Alcalá-Fdez, “Fuzzy-
genetic optimization of the parameters of a low cost
system for the optical measurement of several dimen-
sions of vehicles,” Soft Computing, 12:8, 751–764
(2008).

11. O. Demir, I. Keskin, and S. Cetin, “Modeling and
control of a nonlinear half-vehicle suspension system:
A hybrid fuzzy logic approach,” Nonlinear Dynamics,
67:3, 2139–2151 (2012).

12. Y. Zhao and H. Gao, “Fuzzy-model-based control of
an overhead crane with input delay and actuator sat-
uration,” IEEE Transactions on Fuzzy Systems, 20:1,
181 –186 (2012).

13. S. Sonnenburg, M.L. Braun, Ch.S. Ong, S. Ben-
gio, L. Bottou, G. Holmes, Y. LeCun, K.-R. Muller,
F. Pereira, C.E. Rasmussen, G. Ratsch, B. Scholkopf,
A. Smola, P. Vincent, J. Weston, and R. Williamson,
“The need for open source software in machine learn-
ing,” Journal of Machine Learning Research, 8, 2443–
2466 (2007).

14. “International Electrotechnical Commission technical
committee industrial process measurement and con-
trol. IEC 61131 - Programmable Controllers,” IEC
(2000).

15. E.H. Mamdani, “Applications of fuzzy algorithms
for control a simple dynamic plant,” Proceedings of
the Institution of Electrical Engineers, 121:12, 1585–
1588 (1974).

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 74

jFuzzyLogic

16. E.H. Mamdani and S. Assilian, “An experiment in
linguistic synthesis with a fuzzy logic controller,” In-
ternational Journal of Man-Machine Studies, 7, 1–13
(1975).

17. L.A. Zadeh, “Fuzzy sets,” Information and Control,
8, 338–353 (1965).

18. L.X. Wang, “Adaptive Fuzzy Systems and Control.
Design and Stability Analysis,” Prentice-Hall (1994).

19. O. Cordón, F. Herrera, and A. Peregrı́n, “Applicability
of the fuzzy operators in the design of fuzzy logic con-
trollers,” Fuzzy Sets and Systems, 86, 15–41 (1997).

20. E.W. Kamen, “Ladder logic diagrams and plc imple-
mentations,” In Industrial Controls and Manufactur-
ing, Academic Press, 141–164 (1999).

21. W. Reisig, “Petri nets and algebraic specifications,”
Theoretical Computer Science, 80:1, 1–34 (1991).

22. G. Pezzulo and G. Calvi, “Designing and imple-
menting mabs in akira,” In P. Davidsson, B. Logan,
and K. Takadama, editors, Multi-Agent and Multi-
Agent-Based Simulation, Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 3415, 49–64
(2005), http://www.akira-project.org/.

23. “Awifuzz - fuzzy logic control system,” http://
awifuzz.sourceforge.net/ (2006).

24. “Dotfuzzy,” http://www.havana7.com/
dotfuzzy/ (2009).

25. M. Zarozinski, “An open source fuzzy logic library,”
In AI Game Programming Wisdom, Charles River Me-
dia, 90–103 (2002), http://ffll.sourceforge.
net/.

26. Serge Guillaume and Brigitte Charnomordic, “Learn-
ing interpretable fuzzy inference systems with fis-
pro,” International Journal of Information Sciences,
181:20, 4409–4427 (2011), http://www.inra.fr/
mia/M/fispro/.

27. “Flute: Fuzzy logic ultimate engine,” http://
flute.sourceforge.net/ (2004).

28. Ronald Hartwig, Carsten Labinsky, Sven Nordhoff,
Bernd Landorff, Peter Jensch, and Joerg Schwanke,
“Free fuzzy logic system design tool: Fool,” In 4th
European congress on intelligent techniques and soft
computing (EUFIT), 3, 2274–2277 (1996), http://
rhaug.de/fool/.

29. “Funzy,” http://code.google.com/p/funzy/
(2007).

30. A. Barragán and J.M. Andújar, “Fuzzy
Logic Tools. Reference Manual v1.0,” Uni-
versidad de Huelva publicaciones (2011),
http://uhu.es/antonio.barragan/category/
temas/fuzzy-logic-tools.

31. “Fuzzyblackbox,” http://fuzzyblackbox.
sourceforge.net/ (2011).

32. Togai InfraLogic, “Fuzzyclips,” http://www.
ortech-engr.com/fuzzy/fzyclips.html
(2004).

33. R.A. Orchard, “Fuzzy reasoning in jess: The fuzzyj
toolkit and fuzzyjess,” 3rd International Conference
on Enterprise Information Systems (ICEIS), 2, 533–
542 (2001), http://ai.iit.nrc.ca/IR_public/
fuzzy/fuzzyJDocs/index.html.

34. “Fuzzyplc,” http://fuzzyplc.sourceforge.
net/ (2011).

35. J.M. Alonso and L. Magdalena, “Generating un-
derstandable and accurate fuzzy rule-based systems
in a java environment,” 9th International Work-
shop on Fuzzy Logic and Applications (WILF), Lec-
ture Notes in Artificial Intelligence, Springer-Verlag,
6857, 212–219 (2011), http://sourceforge.net/
p/guajefuzzy/wiki/Home/.

36. “javafuzzylogicctrltool,” http://code.google.
com/p/javafuzzylogicctrltool/ (2008).

37. “Java fuzzy cognitive maps,” http://jfcm.
megadix.it/ (2011).

38. “Jfuzzinator,” http://jfuzzinator.
sourceforge.net/ (2010).

39. “jfuzzyqt - C++ fuzzy logic library,” http://
jfuzzyqt.sourceforge.net/ (2011).

40. “libai,” http://libai.sourceforge.net/ (2010).
41. “libfuzzyengine,” http://libfuzzyengine.git.

sourceforge.net/git/gitweb-index.cgi
(2010).

42. Detlef Nauck and Rudolf Kruse, “Nefclass -
a neuro-fuzzy approach for the classification of
data,” ACM Symposium on Applied Computing, 461–
465 (1995), http://fuzzy.cs.uni-magdeburg.
de/nefclass/.

43. “nxtfuzzylogic,” http://code.google.com/p/
nxtfuzzylogic/ (2010).

44. “Fuzzy logic toolkit for octave,” http:
//pdb.finkproject.org/pdb/package.php/
fuzzy-logic-toolkit-oct324 (2011).

45. I. Baturone, F.J. Moreno-Velo, S. Sánchez-Solano,
A. Barriga, P. Brox, A. Gersnoviez, and M. Brox, “Us-
ing xfuzzy environment for the whole design of fuzzy
systems,” IEEE International Conference on Fuzzy
Systems, 1–6 (2007), http://www2.imse-cnm.
csic.es/Xfuzzy/Xfuzzy_3.0/index.html.

46. T. Parr, “The definitive ANTLR reference: building
domain-specific languages” (2007).

47. R.O. Duda, P.E. Hart, and D.G. Stork, “Pattern classi-
fication,” John Willey & Sons (2001).

48. M. Mucientes, J. Alcalá-Fdez, R. Alcalá, and J. Casil-
las, “A case study for learning behaviors in mobile
robotics by evolutionary fuzzy systems,” Expert Sys-
tems with Applications, 37:2, 1471–1493 (2010).

49. R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón,
and F. Herrera, “Hybrid learning models to get
the interpretability-accuracy trade-off in fuzzy mod-
elling,” Soft Computing, 10:9, 717–734 (2006).

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 75

