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A B S T R A C T

The objectives and requirements of computer science are constantly
changing. Nowadays, when developing an algorithm, it is not enough to
solve the problem itself since the energy-time performance or memory
usage should also be taken into account, especially in high-dimensional
problems such as FS. For some years, energy-aware computing has FS: Feature

Selectiongained importance as it allows data centers to save costs by reducing
energy consumption, and it is even today a topic of global interest due
to environmental reasons. The present trend in the development of
computer architectures that offer improvements in both performance
and energy efficiency has provided distributed platforms with inter-
connected nodes including multiple multi-core CPUs and accelerators. CPU: Central

Processing UnitIn these so-called heterogeneous systems, the applications can take
advantage of different parallelism levels according to the characteristics
of the devices in the platform. Precisely, these differences between
computing devices are what make heterogeneous computing, unlike
homogeneous, present other problems to deal with. However, this pro-
cess is not automatic and requires the intervention of the developer to
properly program the applications and thus achieve good results.

With this in mind, the objective of this thesis is the development of
parallel and energy-efficient codes for time-demanding problems that
frequently appear in bioinformatics and biomedical engineering appli-
cations. Specifically, this thesis tackles with unsupervised EEG classifi- EEG: Electroen-

cephalogramcation, which is one of the aforementioned high-dimensional problems
due to the characteristics of the EEG signals. To cope with the high
number of features that each EEG contains, the implemented proce-
dures are based on a multi-objective FS approach. The codes have
been designed to take advantage of the heterogeneous architectures by
exploiting the computing capabilities of their devices. In addition, they
have been developed in a procedural way due to their complexity. This
thesis also studies and compares the codes to identify the advantages
and drawbacks of each, as well as analyzes the performance behavior in
terms of energy consumption, execution times, and quality of the solu-
tions under different situations such as workload, available computing
resources, device clock frequency, and others that will be described
in the corresponding chapters. The results show the importance of
developing efficient methods to meet the energy-time requirements,
pointing out the methodology to be followed and demonstrating that
energy-aware computing is the way to continue on the right track.
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R E S U M E N

Los objetivos y requisitos de las ciencias de la computación cambian
constantemente. Hoy día, los algoritmos deben desarrollarse pensando
tanto en el problema a resolver como en factores relacionados con la
energía, el tiempo y el uso de memoria, especialmente en problemas
de alta dimensionalidad como la FS. Desde hace años, la computación FS: Del Inglés:

Feature Selectioneficiente ha ganado importancia ya que permite a los centros de datos
ahorrar costes al reducir el consumo energético, siendo actualmente
un tema de interés mundial por razones medioambientales. La ten-
dencia actual en arquitectura de computadores está proporcionando
mejoras de rendimiento a través de plataformas distribuidas y het-
erogéneas cuyos nodos interconectados incluyen CPUs multi-núcleo CPU: Del Inglés:

Central Processing

Unit

y aceleradores. En estos sistemas, las aplicaciones pueden aprovechar
diferentes niveles de paralelismo según las características de sus dis-
positivos. Sin embargo, las diferencias entre dispositivos hacen que
la computación heterogénea, a diferencia de la homogénea, presente
otros inconvenientes que también deben tratarse. Como este proceso
no es automático, la intervención del desarrollador para programar
adecuadamente las aplicaciones y lograr buenos resultados es necesaria.

Con esto en mente, el objetivo de esta tesis es desarrollar códigos par-
alelos y energéticamente eficientes para problemas costosos en tiempo
que aparecen con frecuencia en aplicaciones de bioinformática e inge-
niería biomédica. Específicamente, esta tesis trata con la clasificación no
supervisada de señales EEG ya que es uno de los problemas de alta di- EEG: Del Inglés:

Electroencephalo-
gram

mensionalidad mencionados anteriormente. Para hacer frente a la gran
cantidad de características que cada EEG contiene, los procedimien-
tos implementados hacen uso de la FS multi-objetivo y aprovechan
las capacidades computacionales de los dispositivos presentes en las
plataformas heterogéneas utilizadas. Además, han tenido que ser desar-
rollados de forma procedural debido a su gran complejidad. A lo largo
de esta tesis, todos los procedimientos son evaluados para identificar
sus ventajas e inconvenientes. El rendimiento de cada uno de ellos es
analizado en términos de consumo energético, tiempo de ejecución y
calidad de las soluciones bajo diferentes condiciones experimentales
tales como la carga de trabajo, recursos de cómputo disponibles, fre-
cuencia de operación del dispositivo y otras que se describirán en
el capítulo correspondiente. Los resultados muestran la importancia
de desarrollar métodos eficientes para cumplir con los requisitos de
tiempo y energía, señalando la metodología a seguir y demostrando
que la computación energéticamente eficiente es el camino a seguir.
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Present heterogeneous computer architectures allow different strate-
gies to accelerate the applications and optimize their energy

consumption according to specific power-performance trade-offs. The
needs of the market have caused that the computer systems are no
longer only formed by general purpose processors, i.e., CPUs, but also
include accelerators that act as coprocessors and whose purpose is to
address more specific tasks. Machine Learning tasks for classification,
clustering, FS, and optimization problems are present in many use-
ful applications in the field of bioengineering, which usually require
high-performance platforms whose cost in both economic and envi-
ronmental terms should be carefully taken into account. Indeed, the
energy-aware computing has emerged as one of the main issues of
research in computer systems, and efficiency today not only means
good speedups but also optimal energy consumption. Moreover, some
tasks present in Machine Learning also show different processing char-
acteristics and thus diverse profiles in energy consumption when they
are parallelized for heterogeneous systems.

Storage technology and distributed platforms, including networks,
sensors, and other data capture devices, make it possible to have
large datasets, from which applications of high socio-economic in-
terest are emerging. By integrating systems with increasing processing
and communication capabilities in a wide variety of everyday devices,
applications with different requirements in terms of speed, energy con-
sumption, or portability can be addressed, leading to paradigms such
as IoT, Cloud Computing, or Big Data. These paradigms imply important IoT: Internet of

Thingstransformations in the way in which they interact with the environment
and access to information and communication technologies.

3
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1.1 context and motivation

The rapid development of digitalization together with the adoption
of technology by people, is contributing to increase dramatically the
ever-growing amount of data created in the world. According to a study
of the Statista online portal [1], in the last decade the volume of data
generated per year has increased from 2 ZB to 41 ZB, as can be seen in
Figure 1.1. In addition, Statista also estimates 612 ZB and 2, 142 ZB for
2030 and 2035, respectively, which indicates an exponential growth of
generated data.

Currently, information and data are synonyms for knowledge in the
field of computer science, and it is well-known that knowledge is power.
Companies are investing a lot of effort in capturing and analyzing that
data to later sell them to third parties due to the economic interests
generated by the traffic and use of this information, leaving in the
background the methodology of their processing and therefore, the use
of hardware resources.

However, it is not possible to create applications capable of analyzing
large datasets or high-dimensional data without the efficient use, in
terms of performance and energy consumption, of parallel and hetero-
geneous computer architectures. The grouping of these computers as
a whole is called a cluster, and can include multiple accelerators, such
as GPUs and storage resources managed by distributed file systemsGPU: Graphic

Processing Unit that allow the processing of large amount of existing data. To all this
the problem of climate change is added, which together with the in-
crease in the world population, is creating the need to optimize the use
of resources, especially energy consumption, not only in smaller and
domestic devices but also in large supercomputers.

On the other hand, high-dimensional multi-objective optimization
opens promising approaches to Machine Learning applications once
efficient parallel procedures are available. Frequently, these kind of
applications require simultaneous optimization of several conflicting
objectives, and it is quite common to use EAs to solve the problem [2,EA: Evolutionary

Algorithm
3]. The goals of these applications deal with discovering useful mod-
els on large datasets, which include high-dimensional samples. Both
unsupervised and supervised EEG classification are good examples of
applications that deal with these issues.

EEG classification is motivated by the current importance of the study
of the brain. In fact, there are several projects worldwide created specif-
ically for this, such as the BRAIN Initiative, proposed by the United
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Figure 1.1: Volume of data worldwide since 2010. Data source: Statista
Digital Economy Compass 2019 [1].

States government in 2013, or the HBP, funded under the Horizon 2020 HBP: Human Brain

Projectframework1. An EEG is a multivariate signal whose classification has
to cope with difficult problems. The solution to these problems usually
implies the definition of high-dimensional feature vectors, despite the
fact that few EEG signals are available to determine the classifier pa-
rameters. This way, FS techniques should be applied to remove noisy,
irrelevant features, or to improve the learning accuracy and result com-
prehensibility of an EEG whenever its number of features is higher
than the number of available signals. However, as mentioned before,
none of this is possible without the development of efficient algorithms
that take advantage of existing heterogeneous computer architectures.

1.2 objectives

Taking into account the motivation shown in Section 1.1, a deep liter-
ature review will be carried out first to identify the fields of greatest
potential within the context of heterogeneous and distributed program-
ming, energy-aware computing, as well as the current progress of EAs
to cope with EEG classification. Therefore, in general the objective is
to make relevant contributions in parallel and energy-efficient multi-
objective optimization for applications related to neuroengineering,
since they are also potentially useful in rehabilitation technologies and
medical image processing. The specific objectives are detailed below.

1 Program that finances various research and innovation projects in the European context
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1.2.1 First Approach for Multi-objective Optimization

The first step is to create a first functional version. Although there are
already tools to carry it out, the best way to have full control over the
implementation for future optimizations is through a design that starts
from scratch. With that in mind, the following objectives are addressed:

1. Development of the first functional version, not yet parallel, on
which the following implementations will be based. This applica-
tion will be a multi-objective procedure that allows in general to
address the analysis of large volumes of data, although it will be
focused on the EEG classification problem. In addition, it will be
based on a wrapper approach where a GA (a kind of EA) performsGA: Genetic

Algorithm the FS technique to decrease the dimensionality of the dataset, i.e.,
an EEG dataset. Specifically, the well-known NSGA-II algorithmNSGA: Non-

dominated Sorting

Genetic Algorithm

[4] is considered to address the multi-objective problem since it
uses a GA as an optimization method.

2. Design an efficient learning method. K-means algorithm is pro-
posed as a clustering method for unsupervised classification.
Initially, a sequential version for CPU will be developed since it is
the primary component of a computer. After validating the imple-
mented procedure, a parallel version capable of taking advantage
of the multiple cores present in this kind of microprocessors will
be created. Moreover, as it is quite common today to find GPU
accelerators on high-performance heterogeneous systems, a third
version adapted to them will also be implemented. None of the
first parallel versions will alter the behavior of the sequential
program, so it is guaranteed that the quality of the solutions
obtained by the classifier is exactly the same in all of them.

3. Optimize the GPU implementation of the classifier. The character-
istics of the GPU architecture differ greatly from those of the CPU,
as well as being more complex. However, they allow a greater
degree of parallelism, which provides less execution time and
energy consumption. In this way, it is necessary to focus on this
type of architecture to take advantage of its full potential.

4. Experimental analysis to determine the performance of the de-
veloped algorithms. The analysis will be mainly focused on the
execution times, energy consumption, and quality of the solutions
obtained to identify possible improvements and optimizations.
To do that, a set of tests will be designed to evaluate the behavior
of the program under different experimental conditions.
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1.2.2 New Paradigms for Distributed Computing

Once the first approaches have been obtained, the following objec-
tives related to the optimization, expansion, and exploration of new
alternatives to the implemented algorithms are proposed:

1. Adapt the algorithms already implemented to the distributed
high-performance architectures. The objective is to take advan-
tage of the resources of these platforms by balancing the com-
puting cost and using asynchronous communication between
nodes. Again, the goal is to reduce execution times and energy
consumption without losing quality in the solutions obtained.

2. Creation of new procedures taking into account the connection
topology of the nodes provided by distributed clusters. Thus, it is
intended to create new alternatives to previously developed GAs
with the aim of improving the quality of the solutions obtained.
These procedures will be based on existing paradigms such as
the distributed multi-population approaches.

3. Design of workload distribution strategies for heterogeneous
platforms. This offers the possibility of full cooperation between
CPU and GPU to distribute the work. The new implementations
will be subjected to several experiments to evaluate their behavior,
both in ideal and adverse conditions: tasks with unbalanced
and/or low workload, or the disparity in computing capacity
between devices or nodes are some of the situations to deal with.

4. Build an energy-time model according to the elements present in
the platform and adjust the corresponding parameters by multi-
ple linear regression from the experimental measurements. The
purposes are: (i) predict the energy consumption and execution
times of a given workload distribution in the computing plat-
form at hand and (ii) understand the behavior of the program to
identify the situations to improve.

5. Use supervised classification as an alternative method to GA and
K-means algorithm. For this study, the use of neural networks is
proposed, and more specifically CNNs, since they are currently CNN: Convolu-

tional Neural

Network

gaining great importance in data analysis and implicitly perform
FS. This does not mean that the previous implementations are in
disuse, since the strategies of workload distribution are perfectly
applicable in this area.
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1.3 thesis structure

This section provides a brief description of each of the chapters that
make up this thesis with the objective of providing a global view of its
structure. The document is divided into three main parts depending
on their type of content. Each of these parts is made up of more than
one chapter, including appendices and bibliography. In this way, the
structure of the thesis is as follows:

Part i . preliminary & background

• Chapter 1. Introduction: this chapter introduces the problem
considered in this thesis, the objectives that it proposes and allows
to know what are the motivations to carry it out. An overview of
the structure of the document is also provided in Section 1.3.

• Chapter 2. Computer Architectures: this chapter presents the tech-
nological fundamentals that provide the basic hardware knowl-
edge for the study carried out in this thesis: the classification of
computer systems, code optimization, and parallel programming
languages are exposed as an introduction to computer architec-
tures. Nevertheless, it goes deeper into the part related to parallel
and heterogeneous systems and energy-aware computing due to
its importance for the development of the thesis.

• Chapter 3. Bioinspired Multi-objective Optimization: this chapter,
following the line of Chapter 2, presents the more relevant topics
related to software applications and algorithms used: the problem
of EEG classification, K-means algorithm, neural networks, or
the theory of evolutionary computing are some of the topics
addressed in this chapter.

Part ii . case study & discussion

• Chapter 4. Methodology: this chapter shows the methodology
applied, analysis methods, evaluation metrics, and experimental
conditions to which the experiments of Chapters 5 and 6 will
be subjected. The resources used for the evaluation of the algo-
rithms, such as the origin of the EEG dataset, programming tools,
or the energy measurement system are also described. The chap-
ter presents the different algorithms to be evaluated and their
particularities, as well as the characteristics of the platforms and
devices on which the codes will be executed, i.e., a desktop PC,PC: Personal

Computer the heterogeneous cluster, and the CPU and GPU devices.
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• Chapter 5. Development on Single-computer Systems: this chapter
is focused on the development of procedures for monocomputer
systems. A first version of the MOGA is created, which serves as a MOGA: Multi-

Objective Genetic

Algorithm

basis for the following implementations. The developed versions
are analyzed and compared in terms of execution times, energy
consumption, and quality of the solutions. Moreover, an energy-
time model is built to explain and predict the behavior of the
algorithms in a heterogeneous system.

• Chapter 6. Development on Distributed Systems: this chapter
deals with the development of new implementations adapted to
multi-computer systems, as well as to explore new solutions based
on CNNs. The advantages and limitations of each implementation
are also discussed, and the energy-time model of Chapter 5 is
modified for integration with distributed systems.

• Chapter 7. Conclusions: this chapter briefly presents the final
conclusions according to the results obtained and the objectives
proposed in this thesis. Possible future works are also exposed.

Part iii . appendices & bibliography

• Appendix A. Publications: this appendix lists the different publi-
cations obtained during the course of the thesis. Publications in
international journals with impact factor are included, as well as
publications in international and national conferences.

• Appendix B. Wattmeter for Energy Measurements: this appendix
describes in detail the wattmeter used to measure the energy
consumption of the developed algorithms.

• Appendix C. Getting Started Guide to HPMoon: this appendix
provides a user guide for those interested in using the software
developed in this thesis. Specifically, the best version of the al-
gorithms implemented. The explanations range from the com-
pilation process to its execution and operation, including some
tips to get the most out of the application since the program has
certain limitations, which will be explained in Chapter 6.

• Appendix D. Grants and Special Acknowledgements: this ap-
pendix lists the grants received for the development of the thesis
and thanks other researchers for their help and support.

• Bibliography: the bibliography lists the set of scientific publica-
tions and web links that support the content of this thesis.
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The word computer is derived from the word compute, which means
to calculate. The computer was originally defined as a super fast

calculator with the capacity to solve complex arithmetic and scientific
problems at very high speed. Nowadays, in addition to handling com-
plex arithmetic computations, computers perform many other tasks
like accepting, sorting, selecting, moving, and comparing information.
They also perform arithmetic-logical operations on alphabetic, numeric,
and other types of information, which are known as data and whose
growth is currently skyrocketing.

However, today almost all the people in the world make use of com-
puters in one way or another, being part of our lives and conditioning
the way we live. They are present everywhere, and are no longer lim-
ited to sophisticated areas such as science: cars, video games, vending
machines, washing machines, PCs, and in general those devices we use
daily. In addition, its use also is interesting for industry and companies
since they have interests for commercial purposes. All this has been
possible thanks to the constant evolution of computer architectures
from its origins, but like any technology, it has a limit and if there are
no new ways to move forward, that evolution slows down. In fact, it

11
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is already happening, since one of the laws that shows the evolution
in the number of transistors per microprocessor for almost 60 years, is
nearing its end. This law is known as the Moore's law [5], and states
the following:

The number of transistors on a microchip doubles about every
two years, though the cost of computers is halved.

The problem is that computing capacity currently evolves thanks to the
reduction of lithography in the manufacture of integrated circuits, and
the forecast is that this law will be valid for about 10 more years [6]. The
miniaturization of transistors is becoming increasingly difficult since
silicon, the main element of microprocessors, has physical limitations
[7]. Although much research is being done to move forward with new
forms of computing, such as quantum computing [8] or graphene [9]
to build new superconductors, they are not viable today.

For now, a more feasible solution could be to design processors with a
3D structure, similar to that already used in HBM memories, allowingHBM: High-

Bandwidth

Memory

the increase of storage capacity and speed without altering their physi-
cal size. However, unlike memory, processors are much more complex,
so the challenge is to create 3D-stacked layers of transistors that are
interconnected with each other. In any case, while these technologies
arrive, and since parallel data computing is also booming due to its
multiple scientific applications in bioinformatics, medicine, cosmology,
among others, the need to change the computing paradigm is created
in order to improve the performance of algorithms and applications.

In this context, HPC systems are presented as one of the alternatives toHPC: High-
Performance

Computing

overcome the hardware limitations. They are highly demanded to per-
form heavy tasks in simulation and prediction, such as fluid dynamics,
aeronautics, thermodynamics, meteorology, or the proteins synthesis to
obtain new drugs, which is of vital importance for pharmaceutical com-
panies. For some years, the economic cost and time required to acquire
HPC systems has dropped dramatically, and the multiple hardware
architectures that arise allow to choose the right platform according to
the requirements of the problem to be solved. Also, they represent a
fast response to the continuous market demands.

Hereafter, some of the current alternatives to cope the problem de-
scribed above are shown, as well as a theoretical basis that helps to
address the studies in Chapters 5 and 6.
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2.1 classification of computer systems

Computer systems can be classified into four major categories using the
well-known Flynn's taxonomy [10]. The classification is done according
to the instruction and data streams that can be executed simultaneously
in the PEs, as can be seen in Figure 2.1. The different types of systems PE: Processing

Elementare described below:

• SISD: system with a uniprocessor machine capable of executing SISD: Single

Instruction Single

Data

a single instruction, operating on a single data stream. The result
of the execution is the same as if the instructions were executed
sequentially. However, it is known that sequential processors do
not exactly follow this model since it is usual to insert multiple
functional units or use the pipelining technique, introducing some
parallelism in the execution of the instructions.

• SIMD: system with a multiprocessor machine capable of execut- SIMD: Single

Instruction

Multiple Data

ing the same instruction for all PEs, but operating on different
data streams. Operations with vectors or matrices are very suit-
able for SIMD systems.

• MISD: system with a multiprocessor machine capable of exe- MISD: Multiple

Instruction Single

Data

cuting different instructions on different PEs, but all of them
operating on the same data stream. These systems are not com-
mercially available due to their practical limitations.

• MIMD: system with a multiprocessor machine capable of execut- MIMD: Multiple

Instruction

Multiple Data

ing different instructions on multiple data streams. Unlike the
SIMD and MISD systems, the PEs work asynchronously. Cur-
rently, most computers are MIMD systems because they allow to
run any type of application. In addition, they are divided into
two subtypes: shared memory systems and distributed memory
systems, depending on the way in which PEs access memory. In
later sections, this type of systems will be discussed.

2.2 code optimization

Compilers incorporate a code optimization stage, in which from the
original source code they generate an optimized intermediate code that
takes advantage of the processor architecture. Despite the advances in
compilers in recent years, the degree of optimization that a compiler
can reach is not comparable to what a programmer with knowledge
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Figure 2.1: Flynn's taxonomy [10]. Classification of computer systems.

of the processor architecture could achieve. There are mainly two
kind of optimizations to improve the performance of an application
depending on whether the architecture should be taken into account or
not. Table 2.1 summarizes the optimization possibilities described in
Sections 2.2.1 and 2.2.2.

2.2.1 Architecture-independent Optimizations

These types of optimizations are valid for any processor since they do
not depend on how the architecture is internally designed. Even some
of them are quite intuitive and easy to apply. The optimizations are
listed below:

• Code refactoring: useful to avoid data dependency, e.g., RAWRAW: Read-After-
Write dependencies. Basically it means that an operation cannot be com-

pleted until the previous one has finished, leaving an instruction
paused on the pipeline.

• Remove unused variables: some variables that are no longer
necessary remain in the code, consuming resources. This situation
is caused by the constant changes in the source code.

• Loop-invariant code motion: this occurs when some operations
are repeated throughout the iterations of a loop. The solution is
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Table 2.1: Independent and dependent-architecture optimizations.

# Independent Dependent

1 Code refactoring Use of registers

2 Remove unused variables Pipelining technique

3 Loop-invariant code motion Use of SIMD instructions

4 Strength reduction Multi-threaded programming

5 Minimize dynamic memory use -

6 Set an induction variable -

to move those operations outside the body of the loop since they
will not affect the semantics of the program.

• Strength reduction: some operations are replaced with equiva-
lent but less expensive operations. E.g., replacing an exponenti-
ation with an addition, a division with a multiplication plus an
addition, or some multiplications with bit level operations.

• Minimize dynamic memory use: the abuse of requests to the
operating system to reserve memory at runtime is very expensive
in terms of performance. Therefore, as far as possible, static
memory should be used so that the memory allocation is made
at compile time.

• Set an induction variable: An induction variable or recursive
strength reduction replaces a function of some systematically
changing variable with a simpler calculation using previous func-
tion's values.

2.2.2 Architecture-dependent Optimizations

When the code is modified to be more efficient on a particular machine,
an architecture-dependent optimization is being performed. For this
kind of optimization, it is required to know the features of the target
machine to produce code that runs faster. Currently, compilers are
becoming more sophisticated and allows part of these optimizations,
but as commented before, the intervention of the programmer usually
improves the optimization. Some of those optimizations are as follows:
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• Use of registers: registers are the most critical processor resources
since accessing them is much faster than memory access. In
addition, the number of instructions goes down since there is
no need for load and store instructions. However, the number of
available registers is very limited, so it is convenient to use the
registers to store variables that are used very frequently.

• Pipelining technique: pipelining, or pipeline concurrency, con-
sists on the possibility of organizing the hardware to execute
more than one instruction simultaneously, reducing the num-
ber of cycles per instruction by a factor equal to the depth of
the pipeline or number of stages that a CPU has. As with an
affordable cost the performance improvement is remarkable, all
current general purpose microprocessors incorporate this tech-
nique. However, increasing the number of stages too much can
reduce performance, since the amount of control logic needed to
manage intermediate buffers and dependencies between pipeline
stages also grows. E.g., the Ice Lake microarchitecture of the Intel
Corporation1 has pipelines with 14-19 stages.

• Use of SIMD instructions: instructions that allow operations
with multiple scalar or floating-point data simultaneously. The set
of available operations varies depending on the architecture used,
although for years the number of SIMD instructions and the size
of their records has been growing to accelerate certain operations.
The typical set of SIMD instructions includes arithmetic-logical
and load/store operations.

• Multi-threaded programming: multi-threaded programming is
becoming one of the most relevant fields since the current trend is
to integrate more processing cores in the same CPU chip. The ap-
pearance in recent years of multi-core processors allows, through
parallel programming techniques, the opportunity to take ad-
vantage of all cores to increase performance in applications that
require intensive calculation and have some degree of paralleliza-
tion. This will be discussed in more detail in later sections since
it is one of the main research focuses of this thesis.

The optimization process, contrary to what many people think, must
be done during the coding process, not at the end. As this thesis is in
line with the code optimization to obtain efficient parallel codes, the
optimizations mentioned above have been taken into account during
the development of the algorithms described in Chapters 5 and 6.

1 Semiconductor chip manufacturer that invented the x86 series of microprocessors
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2.3 parallel architectures

The need for parallel computing is caused by the limitations of sequen-
tial computers, which already left the race to increase the CPU clock
speed. By integrating several processors it is possible to solve problems
that require more memory or faster computing speed. There are also
economic reasons, since the price of sequential computers is not propor-
tional to their computational capacity. E.g., to acquire a machine four
times more powerful it is usually necessary to invest more than four
times its price. On the contrary, the acquisition of several computers
interconnected through the network allows to obtain performances
almost proportional to the number of processors but with a lower addi-
tional cost. Even so, CPU devices are not capable of performing some
tasks or at least not efficiently even by grouping several computers. In
addition, there is no expectation that they will improve significantly,
since the rate of increase in computing power has started to fall because
the R&D is more focused on energy efficiency to meet environmental R&D: Research and

Developmentrequirements, and less on increasing the brute power. Therefore, new
computing paradigms are necessary to address this issue. At this point,
the use of parallel architectures and accelerators, in combination with
heterogeneous platforms open alternatives for efficient computing. In
the following sections, concepts related to parallelism and the tools
for obtaining it are discussed. It is also emphasized the importance of
energy-aware computing and the use of heterogeneous platforms in
high-performance applications due to their relevance in the field.

2.3.1 Multi-core CPUs and Multiprocessors

The first response to poor performance of sequential microprocessors
was the emergence of multi-core processors. Although its use has
become popular in consumer computers in the early 21st century,
in the mid-1980s the Rockwell International company2 manufactured
versions of the 6502 microprocessor3 with two cores on a single chip.
In general, multi-core microprocessors allow a computing device to
provide parallelism through a TLP model without including multiple TLP: Thread-Level

Parallelismmicroprocessors in separate physical packages, or dies4. The instructions
are ordinary instructions, such as add, move data, and branch, but these
can be run on separate cores at the same time, increasing overall speed
for programs that support multi-threading or other parallel computing

2 Was a manufacturing conglomerate involved in electronics and aircraft, among others
3 8-bit microprocessor designed by MOS Technology, Inc. in 1975
4 Small block of semiconducting material on which a functional circuit is fabricated



18 2 computer architectures

techniques. This allows instructions to be executed following the SPMDSPMD: Single

Program Multiple

Data

model, which should not be confused with the SIMD model seen in
Section 2.1. The difference is that in SIMD each instruction processes
multiple data elements using vector registers. In contrast, SPMD, which
is a subtype of the MIMD model, splits the program across multiple
cores that operate on different data subsets.

The parallelization of code can be carried out in different ways depend-
ing on the memory model available. That is, depending on whether
the system has shared or distributed memory. Shared memory can be
found on systems where several processors and cores share a single
memory space, such as UMA multiprocessors. Therefore, the distribu-UMA: Uniform

Memory Access tion of the cores is local since they are physically close to each other
within the same motherboard. In this parallel programming model,
the main problem comes when the number of processors is high. This
seems contradictory to the idea that the more cores there are, the better
execution time. The right thing is to say that up to a point.

To explain this, the following case is considered: an algorithm does
something usual like accessing memory to store or read data. However,
access to RAM is slower than executing an instruction on a CPU coreRAM: Random

Access Memory and there are also limitations on the amount of simultaneous memory
accesses. Today, HPC systems have multi-channel memory architectures
that allow simultaneous access to RAM. The problem is that currently
the maximum number of channels does not usually exceed six, but the
number of cores in the processors that these machines usually equip is
around several tens. As a consequence, if an application requires many
memory accesses, and since not all cores can access at the same time,
arbitration policies are required to decide which one has permission to
access memory. It may be the case that by considerably increasing the
number of processors, the overhead imposed by this arbitration policy
penalizes enough to make the performance even worse.

In distributed memory systems, such as multicomputers and NUMANUMA: Non-
Uniform Memory

Access

multiprocessors (Figure 2.2), all processors have a local memory. The
communication between CPUs in this model takes place through the
interconnection network, which can be configured in several topologies
depending on the purpose of that machine. The shared memory sys-
tems are easier to program but are less tolerant to failures because a
simple failure affect the entire system, whereas this is not the case of
the distributed model since each CPU can be easily isolated. Moreover,
shared memory systems are less scalable because the addition of more
CPUs leads to memory contention, as discussed above. For these rea-
sons, multicomputer-based schemes are normally used for HPC since
they usually meet the requirements of the users.
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Figure 2.2: Scheme of distributed memory systems.

Although many multiprocessors and multicomputers are available,
if programming techniques are not used to extract parallelism, their
potential will not be exploited. To facilitate these tasks, there are parallel
programming tools that allow the programmer to design source code
based on the available architecture. Among others, OpenMP [11] and
MPI [12] enjoy the greatest popularity for their flexibility and potential. MPI: Message

Passing InterfaceOpenMP is based on the paradigm of shared variables and compiler
directives. Each of them has its advantages and disadvantages. OpenMP
is easier to program and debug than MPI, and is integrated into the
main compilers, so it is not necessary to install other libraries for its
use. In addition, the directives can be added incrementally and the
code can be executed as the sequential code would.

The main disadvantage is that the resulting code can only be executed
on a multiprocessor because multicomputers do not share RAM mem-
ory between nodes. MPI, meanwhile, works through message-passing.
The parallel code obtained can be executed on both multiprocessors
and multicomputers. This allows the MPI code to scale better than an
OpenMP code because a multicomputer is expanded more easily by
adding a new computer to the system if more memory or processors
are needed. Also, each process has its own variables, so consistency
problems cannot occur. However, depending on the application, perfor-
mance may be limited by network communication between nodes.
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2.3.2 Accelerators

The race to integrate more cores in the same integrated circuit did not
start in the field of CPUs, but is preceded by a similar one in that of
GPUs due to competition between manufacturers. These devices, or
accelerators, emerged at the end of the 1990s fuelled by the demands of
3D graphic applications. Although initially they were used exclusively
to execute shaders5, thanks to the GPGPU [13], it is now also possibleGPGPU: General-

Purpose computing

on Graphics

Processing Unit

to use them for other purposes. Therefore, they have evolved towards
parallel multi-threaded architectures with capabilities that could pro-
vide high performances, but with lower costs than CPUs since they
devote more resources for data processing.

For several years, the GPUs incorporate hundreds or thousands of
processing cores and large amounts of memory, offering unthinkable
power so far. Although the term core has been used by both CPUs
and GPUs manufacturers, it should be noted that it does not refer
to exactly the same concept. In a CPU, each core is equivalent to
a complete microprocessor, with its own registers, functional units,
and even memory, although it shares memory, buses, and I/O linesI/O: Input/Output

with the other cores. The GPU cores are much simpler, since they are
basically ALUs with the capacity to operate with floating-point dataALU: Arithmetic

Logic Unit and carry out some operations, but not to execute general purpose
code. However, recently GPUs incorporate cores for more advanced
purposes. E.g., the GPUs of the NVIDIA Corporation6 include cores to
accelerate operations related to real-time ray-tracing7, or the so-called
Tensor cores, which are dedicated to Deep Learning and AI tasks. In orderAI: Artificial

Intelligence to facilitate programming with GPUs, NVIDIA has also developed its
own libraries and the CUDA programming language, although theyCUDA: Compute

Unified Device

Architecture

are only compatible with their own devices. However, languages such
as OpenCL [14], which will be seen in more detail in Section 2.3.3, allow
to create parallel code regardless of the manufacturer.

When parallelizing source code, it is necessary to be clear about the
characteristics of the CPU and GPU devices to choose the one that best
suits the program requirements. GPUs are ideal for SIMD parallelism.
E.g., perform operations with vectors and matrices. To parallelize tasks
in which different streams of instructions are applied to datasets that
can be independent or not, it is convenient to resort to the CPU cores,
since each of them can execute a different program, i.e., following the
MIMD model. Table 2.2 shows the differences between the two devices.

5 Small programs that calculate rendering effects with a high degree of flexibility
6 Company specialized in the design of GPUs for workstations and consumer devices
7 Technique to calculate in real-time the reflection and refraction of light
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Table 2.2: Differences between CPU and GPU.

# CPU GPU

1 General purpose processor Graphics computing

2 Needs more memory than GPU Minor memory consumption

3 High core clock rate Moderate core clock rate

4 Has few powerful cores Contain more weak cores

5 Low bandwidth High bandwidth

6 Serial instruction processing Parallel instruction processing

7 Emphasis on low latency Emphasis on high throughput

8 Moderate energy consumption High energy consumption

The GPU plays the role of a coprocessor connected, through a bus, to
a CPU host that can share the RAM memory. During the execution of
programs, data have to be transferred between the host memory and
the GPU memory. The PEs are the basic computing elements of the
GPU, and several of them, along with one or more instruction units and
a register file comprise a SM. They do not contain instruction units and SM: Streaming

Multiprocessorare only able to execute scalar operations. A GPU can include multiple
SMs, which only has one program counter and allow the simultaneous
execution of the same program on different data according to the SPMD
model. This is done by multiple threads that are organized in blocks
in such a way that all threads in a block are assigned to a single SM.
Moreover, the blocks are also partitioned into warps containing threads
with consecutive and increasing identity numbers that start together
at the same program address. While the threads in a block are able to
cooperate and share the instruction unit and the register file, threads in
different blocks can only communicate through the off-chip memory.

Contrary to the paradigm seen so far, other accelerators such as FPGAs FPGA: Field-
Programmable Gate

Array

can be reprogrammed according to the requirements of the desired
application even after its manufacture. These semiconductor devices
are based on an array of configurable logic blocks connected through
programmable interconnections. This feature distinguishes them from
ASICs that are custom-made for specific tasks. In addition, these ac- ASIC: Application-

Specific Integrated

Circuit

celerators usually have lower energy consumption than those of CPUs
and GPUs, so they are being used in applications related to image pro-
cessing, speech recognition, signal processing, or hardware emulation.
Although FPGAs can be programmed in hardware description lan-
guages such as Verilog, the tendency is to use languages with syntaxes
already known as C++.
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2.3.3 OpenCL as a Multi-platform Language

Creating applications for heterogeneous platforms is difficult since
the traditional programming approaches for multi-core CPUs, GPUs,
and FPGAs are very different. Parallel programming in CPUs nor-
mally assumes the shared memory model and does not cover vector
operations. The GPU programming model addresses complex memory
hierarchies and vector operations with more specific hardware. FPGAs,
in this sense, are more similar to GPUs due to their large number of
configurable logic gates, which offer fine-grained parallelism since they
have more independent threads than CPUs. In short, the differences
in the hardware architecture of all these devices make it difficult for
the developer to exploit their full potential. Also, the programming lan-
guages used for each device usually differ, which further complicates
the work. At this point, it is clear that a common language is needed
for the different platforms. The OpenCL language [14] is presented as a
candidate to meet these requirements, which could be defined as:

OpenCL is an open standard for parallel programming of het-
erogeneous platforms, which allows to design applications that
run on a host and launch kernels on other devices.

This means that this language is multi-platform and therefore valid
for both CPUs, GPUs, and even some FPGAs. In addition, OpenCL is
compatible with a wide range of applications, from embedded software
to HPC solutions and supports both data and task parallelism. By cre-
ating an efficient programming interface, OpenCL forms an abstraction
layer on the hardware implementation while offering high performance.
As an additional feature, it is also suitable in new interactive graphic
applications that combine general parallel computation algorithms with
3D graphics rendering, since for example it offers interoperability with
graphic processing APIs such as OpenGL8. The model consists of aAPI: Application

Programming

Interface

central or host device connected to one or more OpenCL devices. An
OpenCL application runs on the host according to the native model of
the host platform, which sends commands to the devices. Based on
the capabilities of OpenCL, the code developed for the kernels should
be the same on all devices. However, this is far from reality since each
device has a different hardware architecture and therefore it is neces-
sary to make adjustments to the code to adapt and optimize it. Even
depending on the type of code, it may not work properly.

8 Cross-platform API for rendering 2D and 3D vector graphics
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2.3.3.1 Execution Model

The execution of a program in OpenCL occurs in two parts: the kernels
that run on one or more OpenCL devices and a host program that
runs on the main machine. The host program defines the context for
the kernels and manages their execution. When a kernel is sent for
execution, an index space is defined, and an instance of the kernel is
assigned to a point in the space. This instance is called work-item and is
identified by its point in the index space, which provides a global ID ID: Identifier

for the work-item. Each work-item executes the same code, but could act
on different datasets and execution paths.

Work-items are organized into work-groups, which provide a coarse-
grained decomposition of the index space. These work-groups are iden-
tified by a unique work-group ID with the same dimensionality as the
index space used for work-items. A work-item is also assigned a unique
local ID within a work-group, and can be identified by both its global
ID and the combination of its local ID and the ID of the work-group it
belongs to. Finally, an OpenCL device is divided into one or more CUs, CU: Compute Unit

which can contain one or more work-groups.

At this point, this way of structuring a computing device should be
familiar. Indeed, this has been seen before when the CPU and GPU
structures was discussed. Using the GPU case as a basis, the equivalence
is as follows: the OpenCL device would be the GPU, a CU, an SM, and
a work-item, a PE. A work-group, would be the grouping of several PEs
that run concurrently within a SM. Figure 2.3 shows the relationship
between the GPU architecture and the OpenCL device model.

2.3.3.2 Memory Model

OpenCL offers four different regions of memory that can be accessed
by work-items when running a kernel:

• Global: this memory region allows read and write access to all
work-items of all work-groups. Work-items can read and write on
any element of a memory object. Readings and writes to global
memory can be cached depending on the capabilities of the
OpenCL device.

• Constant: it is a region of global memory that remains constant
during the kernel execution. The host reserves and initializes
memory objects located in this memory.
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Figure 2.3: Relationship between the OpenCL device model and GPU.

• Local: memory that is local to a work-group. This memory region
can be used to store variables that can be shared by all work-
items of that work-group. Depending on the OpenCL device, local
memory can be implemented as a logical abstraction of global
memory or as on-chip memory. E.g., GPUs usually offer very fast
local memory, but also very limited due to its high cost.

• Private: private for each work-item, so the variables defined here
are not visible by any other work-item.

Figure 2.3a represents the different memory regions and their rela-
tionship with the OpenCL device model. On the other hand, Table 2.3
describes the scope of the kernel and the host over the different mem-
ory regions, such as the type of memory allocation (static or dynamic)
or the access allowed (read or write).

The application that runs on the host uses OpenCL API functions to
create the necessary memory objects for the kernel and the command
queues to operate with them. The host and the memory model of the
OpenCL device are, in most cases, independent. This is necessary con-
sidering that the host is defined outside the OpenCL domains. However,
sometimes they need to interact with each other, for which OpenCL
offers two alternatives: explicitly copying the data or mapping and
unmapping regions of a memory object, allowing the host to access
the memory object from its address space. When the read or write
operation is completed, the host unmaps the region.
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Table 2.3: Kernel and host scope over the different OpenCL memory
regions. R: Read; W: Write.

Code Scope Global Constant Local Private

Allocation Dynamic Dynamic Dynamic 7
Host

Access R/W R/W 7 7

Allocation 7 Static Static Static
Kernel

Access R/W R R/W R/W

OpenCL uses a relaxed memory consistency model, i.e., it is not guar-
anteed that the status of the memory visible to a work-item is consistent
across all work-items at all times. In the private memory of a work-item
there is consistency in the readings and writings. Local memory is
consistent through work-items belonging to a particular work-group if
synchronization barriers are used. The consistency of the global mem-
ory is similar to that of the local memory, but there is no guarantee
of consistency between the different work-groups that run the kernel.
Nor is consistency guaranteed for memory objects shared between
commands already entered in the command queue.

2.3.3.3 Programming Model

The OpenCL programming model supports both data and task paral-
lelism, and a hybridization between both models. However, the main
model that OpenCL drives is data parallelism. The index space associ-
ated with the OpenCL execution model defines the work-items and how
they are mapped onto the data. In a strictly data parallelism model,
there is a one-to-one correlation between work-items and the data to be
processed. OpenCL implements a relaxed and hierarchical version of
the data parallelism model, so a strict one-to-one correlation is not a
requirement. There are two ways to specify hierarchical subdivision. In
the explicit model, the programmer defines the total number of work-
items to execute in parallel and also how the work-items are divided
into work-groups. In the implicit model, the programmer only specifies
the total number of work-items to execute in parallel, and the division
into work-groups is handled by the OpenCL implementation. In the task
parallelism model, only one instance of the kernel is executed. This
is equivalent to executing a kernel on a CU with only one work-group
and one work-item, so the programmer must express the parallelism in
another way. E.g., vectorizing the kernel following the SIMD model or
entering the queue multiple kernels.
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2.3.4 Energy-aware Heterogeneous Computing

The boom in data analysis, along with other paradigms such as IoT,
Deep Learning, or the creation of advanced AIs, has shown that multi-
core processors and accelerators are no longer sufficient on their own
for highly complex tasks. As discussed earlier in this chapter, HPC sys-
tems are presented as one of the alternatives to overcome the hardware
limitations and address this problem. If in addition to CPU devices,
other accelerators such as GPUs or FPGAs are incorporated to the
equation, a heterogeneous platform is obtained. This type of platforms
constitute the present mainstream approach to take advantage of tech-
nology improvements that these devices can offer [15]. In fact, many of
the world's most powerful supercomputers, collected on the TOP500
list [16], have heterogeneous configurations.

Besides offering opportunities to execute efficient parallel codes, the
heterogeneous architectures including CPU and GPU devices could
also constitute an efficient approach for energy-saving, and papers such
as [17] consider the efficient cooperation between both devices as an
important concern to reach exascale performances. This objective is very
close to being fulfilled since there is also an incessant competitiveness
among organizations to see who has the most powerful supercomputer.
Figure 2.4 shows the performance evolution of supercomputers from
1993 to the present. Extrapolating the data, it seems that the coveted
exaflop could arrive by 2020-2022.

Although this sounds good, it presents some difficulties. The devel-
opment of energy-performance efficient codes for heterogeneous plat-
forms needs to address hardware and software issues related with the
cooperation among the CPU-GPU nodes, along with the challenges of
the heterogeneous computing. Among those, the difference between the
size of the CPU and GPU memories, the CPU-GPU memory bandwidth
limitations, the workload balancing among both devices, the overlap-
ping in data transfers between CPU and GPU, and the parallelism
profile of the application considered.

The problem does not end there. The need to control energy con-
sumption and reduce the emission of greenhouse gases is imposing
performance limitations in all computer systems. The motivations are
multiple: while mobile devices need to do more calculations with a
fixed battery capacity, in embedded systems, such as consumer elec-
tronics, customers demand responsiveness as the main feature. Other
technologies, such as Bluetooth or Zigbee [18], even require more aggres-
sive power profiles to maximize the battery life of their devices. But,
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Figure 2.4: Evolution of Rmax in supercomputers since 1993. Data source:
TOP500 list [16].

when the topic is scaled to the scope of HPC, this changes. Here, what
is mainly sought is the highest possible performance. The increase in
computation is not difficult, since this could be achieved by grouping a
multitude of computers to create huge heterogeneous platforms. The
concern, therefore, lies in the energy consumption of these machines.
To get an idea, the supercomputer that occupies the top position of the
TOP500 list, called Summit, has a consumption of 10, 096 kW, which
is equivalent to the average consumption of 12, 000 homes with three
inhabitants. For all this, it is not surprising that the agency in charge of
the TOP500 list also contemplates another list, called Green500 [19], with
the 500 systems that provide the best performance per watt consumed.

The information and communication technology sector faces
two challenges to grow in a sustainable way: increasing energy
efficiency while still offering increased performance.

This goal is not a novelty, but it becomes more compelling with the
passing of the years. The question then is how to solve this problem.
A reasonable response would be to provide new efficient computing
models and paradigms, which would allow significant energy-saving.
One of the first bottlenecks lies in software design, which tends to
focus on abstraction layers, wasting energy and performance potential
that could be exploited with the optimization of the entire coordinated
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system. Although CPU and GPU devices have specific mechanisms
to control energy consumption, such as DVS, most are not used dueDVS: Dynamic

Voltage Scaling to the difficulties they present to the programmer. Thus, instead of
including these mechanisms in the architecture of the device, where
the greatest energy-saving can be achieved, the optimization of energy
consumption is relegated to the software that will be executed on the
platform, which is often left in background. Although it requires a
little effort, to achieve the next level of energy efficiency the interaction
of hardware and software must be optimized through an iterative
co-design process.

This thesis aims to address just the problem mentioned above, but ap-
plied to the EEG classification problem through bioinspired algorithms
in order to minimize both execution time and energy consumption. For
this, aspects related to the optimization process, workload distribution
among heterogeneous devices, and the creation of energy-time models
that explain and predict the behavior of the application will be taken
into account.

2.4 related works

Many works in the literature have reported high speedups on both
CPU and GPU devices with lower energy consumption [20]. Precisely,
as GPUs offer the opportunity to take advantage of massive parallelism,
their energy efficiency has been previously analyzed in several papers
[21–23]. Nevertheless, as it is pointed out in [24], there is a controversy
about whether real applications can benefit from GPUs, since the data
location and the overhead when moving data between CPU and GPU
have to be taken into account to achieve an efficient code. To understand
the behavior of this applications, some models relevant to performance
optimization on GPUs have been proposed in [25–27]. Indeed, the
availability of accurate performance models constitutes an important
topic to distribute the workload optimally.

The use of heterogeneous architectures has been discussed in some
papers. Paper [28] proposes approaches to cope with the difficulties
that appear in the parallelization of frequent algorithms in data mining
applications. It also analyzes the effect of factors such as the communica-
tion patterns and the data partition on application performance. In [29],
some strategies fuelling the trend towards heterogeneous processors
are considered. Among others, strategies for memory optimizations,
overhead reduction between the host (CPU) and the accelerators, or
mechanisms to migrate tasks to the available CPU cores.
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With respect to energy efficiency of hybrid CPU-GPU platforms, recent
workload balancing approaches have been proposed, demonstrating
that suitable workload distributions among CPU and GPU devices
allow reductions in energy consumption [30]. E.g., [31] provides an-
alytical models to get an insight into performance gains and energy
consumption of different heterogeneous platforms, concluding that
greater parallelism allows opportunities for energy-saving. In [32], inte-
grated CPU-GPU platforms and iterative algorithms based on OpenCL
are analyzed, while paper [33] considers a set of regular and irregular
applications with problem sizes high enough to justify the workload
distribution among both devices.

In addition, [34] proposes two alternatives for energy efficiency: (i) de-
termine a workload distribution so that both CPU and GPU finish at the
same time, and (ii) coordinately throttle the CPU or GPU frequencies
according to their utilization. In both cases, the target is to minimize
execution time and reduce energy consumption. The paper also points
out the need to take into account the architecture of the devices, since
although GPUs are more efficient than CPUs, allocating all workload in
the GPU is surely not the most efficient alternative. Other approaches,
however, investigate the effect in energy consumption of different im-
plementations of a specific application and try to derive energy-aware
strategies and power models by applying a multiple linear regression
to the experimental data [35].

An important research issue is the development of energy-efficient
codes that take into account both execution time and energy consump-
tion [36]. Paper [37] distinguishes between SPM approaches, which are SPM: Static Power

Managementbased on the use of low-power components, and techniques that use
software approaches and power-scalable components, called DPM. In DPM: Dynamic

Power Managementturn, DPM techniques are also classified into two alternatives:

• Based on the dynamic adjustment of energy consumption: by
taking advantage of power-scalable components, this enables the
user to control the frequency and voltage of the devices in the plat-
form [38, 39]. These approaches are based on DVFS, a technique DVFS: Dynamic

Voltage and

Frequency Scaling

similar to DVS but also allowing dynamic scaling of the CPU
frequency. This way, the time spent by lighter tasks waiting for
heavy tasks to finish can be reduced and the required levels of per-
formance could be still satisfied. The algorithm described in [38]
considers DVFS to provide a procedure capable of determining
the best CPU core with its corresponding voltage and frequency
values to optimize energy consumption. In general, the paper
shows relevant improvements in energy consumption. However,
it is difficult to provide some fair comparisons to conclude which
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strategy is the best since the performance improvements of an
approach depend on the characteristics of the application. Even
in some cases, the experimental results are obtained from tasks
with randomly generated workloads where the computational
cost is already known.

For this reason, other papers such as [40] are exclusively focused
on performing energy analysis to study the impact of parallel
programming models on HPC systems. Also in [41] the energy
efficiency of computer systems is analyzed when their frequency
is modified by DVFS techniques. In addition, the paper proposes
a new DVFS policy, named PAFS, that aims to optimize energyPAFS: Productivity-

Aware Frequency

Scaling

consumption while still satisfying performance requirements of a
given application. On the other hand, [39] provides an approach
to handle multi-core heterogeneous platforms that includes the
makespan9 and the minimization of energy consumption. It uses
the computing capacity and the TDP information provided byTDP: Thermal

Design Power vendors and supposes that the tasks to be distributed among the
CPU cores have neither deadlines nor precedence constraints.

• Based on energy-aware workload balancing strategies: current
microprocessors usually implement power management policies
that usually change between microprocessors and are not visible
to the user. In this case, it is necessary to devise a black-box ap-
proach [42] that models the main characteristics of the applied
power management policy. In this line, paper [37] also comments
that an effective energy-aware online scheduler requires an accu-
rate prediction of the effects of different voltage and frequency
levels in different phases of the application, whose computational
costs are difficult to know in advance. Papers [43, 44] deal with
the determination of power and energy consumption models
either by running micro-benchmarks [43] or through the energy
consumption evaluation of the platform components [44]. Finally,
[45] shows an energy consumption model in codes for sparse
linear systems and analyzes different CPU power-saving modes
to define energy-aware strategies.

Other approaches present hybrid alternatives. Paper [46] describes a
first phase performing a priority based task ordering and scheduling,
followed by a second phase where integer programming is used to opti-
mize voltage scaling. A procedure that combines DVS and the efficient
DPS algorithm [47] is provided in [48] to minimize both execution timeDPS: Decisive Path

Scheduling and energy consumption. In that procedure, DPS is firstly applied to
the corresponding task graph to obtain low execution times. After that,

9 Total time needed to fully process a set of jobs
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DVS is applied during idle times to reduce energy consumption while
the computing time achieved by the scheduler algorithm is maintained.
The results obtained by simulation show average energy consumption
reduction of about 40% over DPS.

Paper [49] proposes two cost functions based on different approxi-
mations for energy measurement to tackle scheduling on processors
with DVS. It aims to reach a trade-off between execution time and
energy consumption in precedence-constrained parallel applications.
The simulation results provided show that schedules generated by non
energy-aware procedures consume between 16 and 51% more energy
than their alternatives. In [50], it is described a two-level method to
schedule large workloads of a data center. The results obtained after
generating more than 100, 000 workflows with the tool described in
[51], show that the best schedulers achieve improvements up to 46.8%
in makespan, and up to 29.0% in energy consumption with respect to
a typical round-robin strategy.

Nevertheless, it is not always possible to handle the runtime power
management, and some rules or principles should be taken into ac-
count to develop efficient procedures for a given platform. To do that,
other kind of models are required to estimate the time and energy
used by a program. Among others, the inherent parallelism, required
synchronizations, or memory and I/O requirements. In this context,
paper [52] provides a complete survey of energy models with the cor-
responding set of references. These models are classified according to
their parameters, abstraction level, and instantaneous or average power.
The paper also gives information about the accuracy in predicting
energy consumption and instantaneous power, portability to different
architectures, and complexity of the model.

Other approaches go further. As energy consumption and execution
time are competing objectives, a multi-objective (more specifically a
bi-objective) approach is required to tackle the development of an
energy-aware scheduling problem. To this end, [50] proposes as future
work the use of multi-objective optimization to find a trade-off between
execution time and energy consumption. Nevertheless, a scheduling
algorithm based on that scheme would require a large computing
time to choose the best alternative among those evaluated. Depending
on the application, multi-objective optimization could be a solution
to the problem. But for others, such as real-time applications, this
approach would not be possible since they demands speed and rapid
response. For these situations, another type of energy-aware scheduling
is mandatory, as [53] indicates. However, a previous study would
determine the most appropriate option for each case.
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Hardware is not everything, since finally software applications are
responsible for providing usefulness to platforms. The evolution

of hardware is motivated by the needs of real-world applications, and as
discussed in Section 1.1, huge amounts of data are created worldwide
that must be processed. Paradigms such as Cloud Computing, AI, or Deep
Learning are responsible for dealing with these issues, and techniques
such as optimization, FS, statistical classification, clustering, or EAs
help filter such data. In fact, today approximately 73% of Machine
Learning problems correspond to classification and clustering tasks [54].

Machine Learning is an area of research that allows the theoretical and
practical advancement of solutions in multiple disciplines. Today, vari-
ous AI algorithms based on statistical or mathematical methods have
been successfully applied to solve optimization and classification prob-
lems. However, nature has been one of the main sources of inspiration
for the development of AI algorithms. Bioinspired algorithms [55] are
based on the analogy between the problems to be solved and the nat-
ural or social systems. Simulating the behavior of those systems, the
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objective is to design non-deterministic heuristic methods of search and
learning. E.g., the theory of evolution has supported the design of EAs,
such as GAs or ESs. These algorithms are mainly defined by biologicalES: Evolution

Strategy processes and strategies to decide who is part of the next generation,
similar to what happens in real life. On the other hand, imitating the
behavior of animals such as birds, bats, bees, ants, and fireflies, has
served as a guide to design efficient algorithms. But in addition, inspi-
ration not only comes from biological processes and social behaviors,
since there are also algorithms based on physical phenomena such as
SA, used in metallurgy with steel and ceramics.SA: Simulated

Annealing

While Chapter 2 presented the technological fundamentals in computer
architecture, this chapter discusses the problems of optimization and
classification, and how metaheuristics, especially bioinspired algorithms
based on EAs or neural networks, can address these problems.

3.1 the optimization problem

Optimization is a process present everywhere and almost daily. Using
the shortest path or arriving as quickly as possible to go somewhere
is a way to optimize. In general, people's lives are conditioned by two
optimization problems: maximization and minimization. Depending
on the context, the objective will be one or the other, and the same
happens in the field of computing. After all, computing is often used
to solve everyday life problems. Over the years, many algorithms have
been developed to address optimization problems. Currently, there are
two types of methods to address it: exact and approximate methods.

3.1.1 Exact and Approximate Methods

Exact methods achieve optimal solutions and guarantee their optimal-
ity whereas approximate methods, also known as heuristics, obtain
plausible solutions in reasonable times but without guaranteeing their
optimality. Exact methods can be divided into four subtypes: based
on dynamic programming, B&B, constrained programming, and thoseB&B: Branch-and-

Bound based on A* familiy techniques [56]. Briefly they can be described as:

• Dynamic programming: it aims to recursively divide the problem
into simpler subproblems. This process is based on Bellman's
optimality principle [57], that says:
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Any subpolicy of an optimum policy from any given state
must itself be an optimum policy from that state to the
terminal state.

This method of optimization by stages is the result of a sequence
of partial decisions. The process avoids fully enumerating the
search space by pruning sequences of decisions that do not lead
to optimal solutions.

• B&B and A*: implicitly list all possible solutions to the problem.
The search space is explored through the dynamic construction of
a tree whose root node represents the problem to be solved, the
leaf nodes represent potential solutions, and the internal nodes
possible subproblems. A branch of the tree is pruned when the
boundary functions decide that the branch cannot contain any
optimal solution to the problem.

• Constrained programming: language built around concepts such
as search trees and logical implications. The optimization problem
is done through the definition of a set of variables that, in turn,
are linked to a set of restrictions. Variables take their values from
a finite value domain while restrictions can be represented by
mathematical symbols or expressions.

With regard to approximate methods, heuristics are able to find good
solutions in large instances and allow to obtain good performance with
an acceptable cost in many problems. They can be organized into two
subtypes: specific heuristics and metaheuristics. Specific heuristics are those
tailored to solve a specific problem. On the contrary, metaheuristics
are general purpose algorithms that can be used to solve almost any
optimization problem. In a way, they can be seen as high-level templates
used as a guide to design specific heuristics. In addition, they have
demonstrated in different applications their effectiveness in solving
complex problems, which has given them popularity in the last 20 years
[58]. When designing metaheuristics, two completely opposite criteria
must be taken into account: the exploration of the search space and the
exploitation of the best solutions found. This is known as diversification
and intensification, respectively. In diversification, unexplored regions
must be visited to address all possible regions of the search space
and ensure diversity in the search for solutions. On the contrary, in
intensification, promising regions are explored in depth with the hope
of finding better solutions. These regions are determined based on the
quality of the solutions found.
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3.1.2 Single and Multi-objective Optimization

Single-objective optimization problems are focused on improving the
quality of a single solution. The metaheuristics used for these problems
follow a certain path through the search space. This path is generated
by iterative processes that move the current solution to another search
space, and apply generation and replacement procedures on the current
solution. In the generation phase, a set of solutions is generated from
the current solution. This set is usually obtained by local transforma-
tions of the solution. In the replacement phase, one of them is selected
from the set of candidate solutions as the current new solution. The
process is repeated until the stop criterion is met.

The generation and replacement phases may not use memory during
the process, so they only use the current solution. If memory is used,
information related to searches can be stored and then used to generate
new lists of candidate solutions or to select new solutions. An example
of this type of metaheuristics is found in the SA algorithm, which is
inspired by the annealing process of steel and ceramics. The annealing
technique consists of heating and then slowly cooling a material to
vary its physical properties. The heat causes the atoms to increase
their energy, allowing them to move from their initial positions (a local
minimum of energy). On the other hand, slow cooling gives them a
greater chance of recrystallizing in configurations with less energy than
the initial one (global minimum).

On the other hand, unlike single-objective optimization problems, multi-
objective optimization is characterized by a set of objective functions,
generally of a conflicting nature, which must also be optimized. This
problem can be stated as follows:

Minimize
f (x)

( f1(x), f2(x), . . . , fM(x))

s.t. x ∈ X → Rk ∧ k ≥ 2
(3.1)

where M is the number of objective functions and X is the set of
feasible solutions. X represents the decision space of the multi-objective
problem, while the space to which the objective vector f belongs is
called the objective space. Vector f can be defined as the cost functions
of the decision space in the objective space that evaluate the quality
of each solution (x1, . . . , xn). Multi-objective problems do not usually
have an optimal solution, but their solutions consist of all those that
are feasible. This means that the components of the objective function
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Figure 3.1: Multi-objective problem representation where f1, f2, and f3
are the objective functions.

f (x) cannot be strictly improved by any other feasible solution. E.g.,
Figure 3.1a shows a non-dominance situation between points A and
B, while point C is dominated by both A and B. These solutions are
called Pareto-optimal solutions, and can be formally described as:

Definition 3.1 Pareto optimality. A solution x∗ ∈ X is Pareto-optimal
if @x ∈ X such that fi(x) ≤ fi(x∗) ∧ f j(x) < f j(x∗); ∀i, j ∈ {1, . . . , M}.
This is denoted as f (x) ⊀ f (x∗).
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The definition of Pareto optimality comes directly from the concept of
dominance. With that in mind, the main purpose of multi-objective
optimization is to find the Pareto front, which is composed of the set of
solutions that are not dominated by anyone:

PF = {F(x); x ∈ X}
s.t. @x∗ ∈ X such that f (x) ⊀ f (x∗)

(3.2)

Figures 3.1b and 3.1c show Pareto fronts in 2D and 3D spaces, respec-
tively. Depending on the space considered (objective or decision), the
number of Pareto-optimal solutions may differ. Whatever the case, the
ideal is to obtain a solution that optimizes all objectives, but this does
not usually occur in real applications. However, some decision-making
methods set thresholds for each objective function. In this way, the
method can specify levels of aspiration that indicate the degree of
acceptance in the objective space. A Pareto-optimal solution that satisfy
all levels of aspiration is called a satisfactory solution [59].

3.2 statistical classification

A classification system tries to classify into different classes or categories
a series of samples that represent part of the information of a problem.
In the field of Machine Learning, the objective of these systems is to
predict which class the new unlabeled samples belong to. There are
two types of classification depending on whether the classes are known
in advance or not:

• Supervised [60]: the classes to which the instances of the training
dataset belong are known in advance. From these instances, the
system learns and establishes certain parameters that will be
used to classify new instances. Now, depending on the number of
classes, the supervised classification can be binary or multi-class.
In the first one, only two different classes can be assigned. An
example is given in cancer detection systems. One of the classes
will be used for cases where the diagnosis is positive and the other
for the opposite case. In the multi-class classification, multiple
classes can be assigned to observations. A typical example is
given in handwritten text recognition applications. In the case of
numbers, 10 classes are needed to represent each digit (0 to 9).
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• Unsupervised [61]: the classes to which the instances of the train-
ing dataset belong are unknown. In this case, the system apart
from classifying has to establish the classes through clustering
algorithms and use some metric to evaluate the quality of the
classification. Due to the great diversity of existing clustering algo-
rithms, these are classified according to different aspects such as
the way they process the data, how the obtained clusters are orga-
nized, the membership of data to the clusters, or the mechanism
used to group.

Supervised classification facilitates the task. However, it is not always
applicable and therefore leaves the user with the remaining possibility:
the unsupervised classification. This is very useful when the instances
do not have class labels, when the cost of labeling them by an expert
is high, or when instances may vary over time. However, this implies
extra computing time to process the data before classification.

3.2.1 K-means Clustering

K-means clustering, also referred as K-means algorithm, is an NP-hard
problem that aims to partition a set of points into clusters, in which
each observation belongs to the cluster with the nearest mean. Its
computational complexity when finding the global optimum in multi-
dimensional spaces is O(nd·K+1 · log(n)), where n is the number of
d-dimensional points and K is the number of clusters. Therefore, in
practice, a stop criterion is applied when the method meets a specific
condition, e.g., reaching a certain number of iterations or stopping
when minimal changes in the position of the centroids are detected.

The iterative variant is known as Lloyd's algorithm [62], and is focused
on converging towards local optimum. This allows to reduce the algo-
rithmic complexity to O(i · n · d · K), where i is the number of iterations
needed until convergence. Even so, this version is not the fastest, be-
cause according to the purpose there are other implementations of
K-means in the literature [63]. An example of how this algorithm works
can be seen in Figure 3.2. The main steps are described below:

1. Initialize centroids: set the iteration counter to i = 1 and generate
the K initial centroids, ki

j; ∀j = 1, . . . , K, by randomly selecting
them from the n points, pt; ∀t = 1, . . . , n. This random selection
is known as the Forgy's method [64].
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(a) Points before clustering

Cluster 1

Cluster 2

Cluster 3

Centroid

(b) Clustering result after applying K-means

Figure 3.2: Example of K-means algorithm in 2D space with K = 3.

2. Clustering: assign each point pt to the cluster corresponding to
its nearest centroid. Each cluster Ci

j is built as follows:

Ci
j =

{
pt :

∥∥∥pt − ki
j

∥∥∥2
≤
∥∥∥pt − ki

l

∥∥∥2
; ∀j, l = 1, . . . , K

}
(3.3)

3. Update centroids: calculate the new centroids, ki+1
j , using all

points belonging to cluster Ci
j:

ki+1
j =

1∣∣∣Ci
j

∣∣∣ · ∑
pt∈Ci

j

pt (3.4)

4. Check the stop criterion: if the condition is not met, increase the
iteration counter to i = i + 1 and repeat Steps 2 and 3. Among the
existing stop criteria, some common ones are reaching a certain
error threshold or number of iterations.

Since Lloyd's variant of K-means is a heuristic algorithm, there is no
guarantee that it converges to the global optimum. In addition, the
result of the clustering depends not only on the points but also on the
initial centroids, so it is common to run the algorithm several times
with different starting conditions. However, in the worst case, K-means
can be very slow to converge. It has been demonstrated that there are
certain point sets that, even in 2D spaces, make the algorithm converge
in exponential time, that is, 2Ω(n) [65].
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3.2.2 EEG Classification

Understanding the brain of living beings is the current challenge of
society, especially when it comes to the human brain. One of its appli-
cations is related to EEG classification in the context of BCI tasks [66] BCI: Brain-

Computer

Interface

due to its great socio-economic interest. Its study is becoming possible
thanks to the advancement of computer technology, and a global career
has begun to find out how it works. However, the brain is tremendously
complex since it is made up of millions of neurons, where each one has
about 1, 000 connections. Although today it is not possible to sequence
it in a similar way to DNA, recent advances in its study allow other DNA: Deoxyribonu-

cleic Acidtypes of applications. E.g., analyzing brain activity allows detecting
diseases, as well as relating the EEG of a thought to a limb movement
using classification algorithms and Machine Learning techniques. The
latter is known as MI [67]. MI: Motor Imagery

EEG classification, applied to MI-based BCI tasks, is one of the most
interesting research areas due to its potential application in different
fields, such as games [68] or in health care, where some patients have
suffered amputations or paralysis in a limb [69]. But its applications
go further: in the same way that there are already visual, tactile, and
voice methods for handling devices, more and more companies and
users are demanding to control the systems with the brain. However,
BCI tasks usually have to deal with EEG signals defined by a large
number of features, and thus require FS techniques to remove redun-
dant, noisy-dominated, and irrelevant inputs from signals. Therefore,
high-dimensional EEG classification often has to be addressed with a
number of training signals much lower than the number of features,
which is known as the curse of dimensionality problem [70, 71].

This phenomenon may be caused by the following reasons, among
others: (i) the presence of noise or outliers since EEG signals have a
low signal-to-noise ratio; (ii) the need to represent time information
in the features because brain signal patterns are related to changes in
time, and (iii) the non-stationary character of EEG signals, which may
change quickly over time or between experiments even for the same
subject. The problem is that the MI-based BCI paradigm uses series
of attenuations and amplifications of short duration conditioned by
limb movement imagination [72]. ERD is the short-lasting attenuation ERD: Event-Related

Synchronizationwithin the alpha1 and beta2 bands and is found before and during the
visual stimulation. In contrast, ERS represents an amplitude increase ERS: Event-Related

Desynchronizationof rhythmic activity. ERD and ERS analysis is complex because the

1 Brainwaves in the frequency range of 8-12 Hz that arise from the electrical activity
2 Brainwaves similar to alpha waves but in the frequency range of 12.5-30 Hz
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Figure 3.3: EEG classification process in MI-based BCI tasks.

signals are weak and noisy, occur at different locations of the cortex,
at different instants within a trial, and in different frequency bands.
With this scenario, a good FS method is mandatory to reduce the
dimensionality of the input signals. In addition to reducing execution
time, FS can provide an improvement in the accuracy of the classifiers
when reducing the dimensionality.

Generally, applications related to BCI need a portable, moderate-cost,
and real-time system. For these reasons, the methods that obtain EEGs
are the most commonly used. These systems are connected between the
brain and the environment without using peripheral nerves or muscles,
directly transforming brain events into actions. Normally, the EEGs of
an individual are obtained in a non-invasive way, placing electrodes
on the scalp, outside the skull. Other methods, such as ECoG, useECoG: Electrocor-

ticography electrodes placed directly on the exposed surface of the brain to record
the electrical activity. Whatever the method, once the EEG signal is
obtained through the electrodes it is digitized for subsequent treatment,
which usually includes FS and classification techniques. Figure 3.3
shows the EEG classification process in BCI tasks.

3.3 evolutionary algorithms

EAs are heuristic search and optimization techniques based on natural
evolution and genetics. What mostly distinguishes them from classic
optimization techniques is that EAs process in each iteration more than
one potential solution to the problem. This feature gives them a great
advantage in problems where it is difficult to use classical methods.
E.g., solving multi-objective optimization problems, where they have
also proven to be very effective in approaching a solution to a large
number of problems.
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Figure 3.4: Main steps of a GA with parent selection by tournament.

3.3.1 Genetic Algorithms

GAs [73] are algorithms that mimic the natural selection process. The
objective of these algorithms is to find a solution for optimization and
search problems using the individuals of a population as candidates for
the solution. Each of them is a chromosome composed by genes that
encode the parameters of the problem to be solved. They evolve and in
each generation the candidates that best adapt survive, that is, those
that are closest to the best solution according to the objective functions.
Each individual is evaluated, obtaining a score related to the quality
of that solution. The better the score, the greater the probability of
reproduction for that individual, and when two individuals recombine,
the offspring generated share the genes of both parents. In this way, the
idea is that after each generation better solutions to the given problem
are obtained. The basic steps of a GA can be seen in Figure 3.4.

3.3.1.1 Representation and Evaluation Function

The structure of a GA is usually similar for most of the problems in
which it is used. However, when solving a specific problem, other
aspects must also be taken into account. The first thing to decide is the
number of chromosome genes and their representation. The number
of genes is usually defined by the decision space of the problem to
be solved, while to represent the genes both real and integer coding
are currently accepted. An example of integer representation can be
found in TSP: as many genes as possible destinations and an integer TSP: Travelling

Salesman Problemthat identifies each destination. A subtype of integer representation is
the binary representation, or binary-coded, widely used in problems
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related to feature and instance selection. In FS, each gene (0 or 1)
represents the decision to select or discard one of the dimensions
(feature) of the dataset when classifying. In instance selection, the
decision corresponds to selecting a sample (instance) from the dataset.

Another aspect to consider is the evaluation function, or cost function,
which is used to calculate the quality of each individual in the popula-
tion. The value returned by this function is called fitness and represents
the cost of that solution to the problem. If the problem is maximization,
the greater the fitness the better the individual, and if it is minimization,
the opposite. Taking the case of the TSP problem again, the evaluation
function should calculate the sum of the distances between the pairs
of destinations visited. As the goal is to visit all destinations in the
shortest possible way, this is a minimization problem.

However, as discussed in Section 3.1.2, many problems are related
to multi-objective optimization. In such cases, each objective has its
own cost function that must be maximized or minimized according
to the problem characteristics, which adds complexity and increased
execution time to the algorithm. Although it seems unimportant, the
greater the complexity, the greater the number of generations needed
to find a satisfactory solution to the problem, so the stop criterion of
the GA must be chosen carefully to ensure that the algorithm con-
verges towards an acceptable solution. A typical stop criterion is to
fix the number of generations, but other conditions such as reaching
a threshold for solution quality are also common. On the other hand,
genetic operators are responsible for creating the new population of
individuals, which will be different from the current one if the GA
has not yet converged. These operators are designed to increase the
average fitness of the population, and although there are others such
as regrouping or migration, the three main ones of a GA are crossover,
mutation, and selection:

3.3.1.2 Crossover Operator

Also called recombination, and is responsible for conducting the search in
the solutions space. Although there are several crossover operators, they
all share the same purpose: generate offspring from the individuals of
the current population. For this, some of the individuals are selected,
acting as parents. Although children have different chromosomes, their
genes are composed of the genetic information of both parents. The
crossover operators may differ depending on the representation of the
chromosome. Some common for binary-coded chromosomes are:
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• Single-point [74]: a random point is chosen and the chromosomes
of the parents are divided by that point. The first child will be
composed of the left part of the first parent followed by the right
part of the second. The second child will be composed of the left
part of the second parent followed by the right part of the first.
An illustration can be seen in Figure 3.5a.

• Two-point: similar to the previous one but using two cut-off
points, dividing the chromosome into three parts. The first child
will be composed of the left and right part of the first parent
followed by the central part of the second. The second child will
consist of the left and right part of the second parent followed by
the central part of the first. This is depicted in Figure 3.5b.

• Uniform: the chromosome genes of both parents are compared
individually. Those that differ are marked to exchange with a
fixed probability (usually 0.5). Each child will have the same
genes as one of their parents except those that have been marked,
which will be obtained from the other parent. This behavior can
be seen in Figure 3.5c, where the genes highlighted in black are
those that will be exchanged.

Regarding the crossovers used for real-coded chromosomes, one of them
is the SBX crossover [75], which is applied gene to gene. A spread factor, SBX: Simulated

Binary Crossoverβ, is defined as the ratio of the absolute difference in offspring values
to that of the parents:

β =

∣∣∣∣C1 − C2

P1 − P2

∣∣∣∣ (3.5)

where C1 and C2 are the children, and P1 and P2 the parents. The
operator also involves a distribution index, η, which is kept fixed to
a non-negative value. If a large value of η is chosen, the resulting
offspring solutions are close to the parent solutions. For a small value
of η, solutions away from parents are likely to be created. Thus, this
parameter has a direct effect in controlling the spread of offspring
solutions. Taking that into account, the probability distribution of β can
be calculated as:

P(β) =

{
0.5 · (η + 1) · βη , if β ≤ 1

0.5 · (η + 1) · 1
βη+2 , if β > 1 (3.6)

Thus, children C1 and C2 are defined by the following equations:
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Figure 3.5: Traditional binary crossover operators in GAs to generate
two (C)hildren from the genetic information of the (P)arents.

C1 = 0.5 · [(1 + β) · P1 + (1− β) · P2] (3.7)

C2 = 0.5 · [(1− β) · P1 + (1 + β) · P2] (3.8)

There are several ways to select parents. E.g., directly choose individuals
that belong to the elite, or the roulette-wheel method. This method
consists in giving all individuals a probability of selection proportional
to their fitness, so that the sum of probabilities pi of all N individuals is
1. In more formal terms:

N

∑
i=1

ρi = 1 (3.9)

This means that the best individuals have a higher value than the worst
and therefore are more likely to procreate. However, low quality indi-
viduals may also be used to ensure genetic diversity. They can be used
within the genetic pool of the parents and in the subsequent generation
of children. Another method to select parents is by tournament. In this
case, some individuals are chosen randomly and the best of them is
selected. The situation in which two individuals are selected is called
a binary tournament and is the most common way to select parents.
There is a probabilistic variant of this method, where a random number
is generated in the interval [0, 1] that according to its relation to a
prefixed threshold, the best or worst individual is chosen. Given the
number of existing methods, choosing the most appropriate one will
depend on the characteristics of the problem to be solved.
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3.3.1.3 Mutation and Selection Operators

The mutation is the modification of some of the genes of a chromosome.
For each gene the mutation is performed with a fixed probability, al-
though it is usually too low to not alter the natural course of evolution
in excess. However, its use provides diversity in the search space and
serves as a measure to avoid falling into local optimum quickly. For
binary-coded chromosomes (0 or 1), the mutation consists in assigning
the opposite value, which is known as bit-flip mutation. In the case of
real-coded chromosomes, one option is to alter the value of the gene
with a constant. Another option is to use some probability function
similar to that of the SBX crossover that allows a random variation
within previously established ranges.

The selection operator is responsible for deciding which individuals
will be part of the next generation. This operator is based on providing
solutions with a score, which for single-objective problems can be
directly the value of the cost function (fitness). However, in multi-
objective problems, it is very unlikely to obtain a solution that totally
dominates the rest. The probability decreases further when the number
of individuals in the population increases since each of them represents
a solution to the problem. In addition, as discussed in Section 3.1.2, the
more objective functions the greater the likelihood of conflict between
them. Therefore, since a total order cannot be defined on the set of
solutions, other selection operators are needed. NSGA-II algorithm,
which is described in Section 3.3.2, incorporates a selection operator
based on rankings and non-dominance levels to address the issue.

3.3.2 Non-dominated Sorting Genetic Algorithm

NSGA algorithm was proposed in 1994 [76] as a kind of EA that, in
addition to performing the usual steps of a GA, also includes the
so-called NDS to rank the individuals into different levels of non- NDS: Non-

Dominated

Sorting

dominance. These individuals are classified according to their rank,
their fitness, and the result obtained by a distribution parameter. Once
this group of individuals is classified, the process is repeated but with
the remaining individuals, and so on until the entire population is
classified. Since individuals with better rank have higher quality, they
will be more likely to create offspring, allowing a deeper search in
non-dominated regions. Although the algorithm achieved good results,
it was strongly criticized mainly for three reasons: (i) its non-elitist
behavior; (ii) the need to specify the distribution parameter, and (iii)
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Algorithm 3.1: Pseudocode of NSGA-II algorithm.

1 Function NSGA-II(N, M, G)

Input : Number of individuals in the population, N
Input : Number of objectives, M
Input : Number of genes, G
Output : The final population of individuals, I

2 I ← initPopulation(N, G)
3 I ← evaluation(I, N, G)

4 repeat
5 for i← 1 to N do
6 Parents← parentSelection(I, N)
7 Child← crossover(Parents, G)
8 Child← mutation(Child, G)
9 O← O ∪ Child

10 end

11 O← evaluation(O, N, G)
12 R← I ∪O
13 R← nonDominatedSorting(R, 2 · N, M)

// Replacement process

14 for i← 1 to N do
15 Ii ← Ri
16 end
17 until the stop criterion is not reached;

18 return I
19 End

the high computational complexity, O(M ·N3), where M is the number
of objectives and N the size of the population.

Later, the same authors proposed NSGA-II [4], an improved version
of its predecessor that solves the previous limitations (Algorithm 3.1).
This is achieved through a NDS mechanism of complexity O(M ·
N2), a selection operator to combine parents and offspring, and the
choice of the best N individuals according to their fitness quality and
distribution in the Pareto front. Thanks to the good results achieved in
many multi-objective applications, it has become a standard algorithm
for optimization problems. However, there is a third version, NSGA-III
[77], which is an extension of NSGA-II that works well with problems
where M ≥ 3. The main difference between both algorithms is that
NSGA-III uses a set of reference points to maintain the diversity of the
Pareto's points during the search.
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3.3.3 Multi-population Approaches

The GAs mentioned in Sections 3.3.1 and 3.3.2 evolve a single popu-
lation of individuals, but there are also multi-population models that
allow the evolution of several of them simultaneously. The basic idea is
to divide the total population into several subpopulations, or islands,
where each one evolves independently. This scheme allows some GAs
the possibility of exchanging information between subpopulations ev-
ery certain number of generations. The process is known as migration,
and it is considered as an exclusive genetic operator of multi-population
models. The introduction of migration gives the algorithm the ability to
exploit the differences between subpopulations, thus allowing genetic
diversity. The determination of the migration rate is a sensitive matter
since an inappropriate value can cause premature convergence. Differ-
ent multi-population models can be devised depending on the type of
communication and topology between subpopulations [78]. Some of
them are depicted in Figure 3.6 and described as follows:

• Star: one subpopulation is selected as master and the rest are
considered slaves. The master subpopulation can be chosen either
randomly or by identifying the subpopulation with the best value
of its objective functions. In any case, all slave subpopulations pe-
riodically send their best individuals to the master subpopulation
and receive as many others from it.

• Fully-connected: there is no hierarchy between subpopulations
and each of them has direct communication with the rest of
subpopulations. This model allows greater genetic diversity by
sharing more information, but entails much higher communica-
tion costs.

• Ring: each subpopulation is connected to two more. Normally the
communication flow is carried out in a single direction, so that a
subpopulation can only send individuals to one of its neighboring
subpopulations and receive from the other.

In general, EAs are easily parallelizable [79]. The reason is that each
individual in the population can be evaluated independently. The
multi-population paradigm allows another level of parallelism since
following the same philosophy, subpopulations evolve independently
of each other. However, at more levels, more complexity. This can cause
other problems that must also be addressed. Among them, the cost
of communications, since according to the topology used the number
of communications and the size of the messages varies considerably.
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Figure 3.6: Connection topologies in multi-population EAs.

Another problem is workload balancing. Depending on the parallel
approach, workload imbalances and consequent loss of performance
can occur. Assuming that the time needed to evaluate an individual
is the same in all subpopulations, an example of workload imbalance
appears when the size of the subpopulations differs. Another imbalance
situation is present in heterogeneous computing because the devices
responsible for evaluating individuals probably have different compu-
tational capabilities. Also the granularity of parallelism must be taken
into account, since depending on its type the cost of communications
and workload imbalance can be less or greater, so finding a trade-off
between the two is important. In fact, as in this thesis approximately
half of the algorithms developed are based on multi-population GAs,
these topics and some more will be analyzed in depth.

There are two main parallel models for a multi-population GA: (i)
take advantage of a master-worker approach to evaluate in parallel the
individuals of the subpopulations, or (ii) parallelize the whole evolution
of each subpopulation [80]. While the first alternative has the same
behavior than the sequential algorithm, the second one does not. The
parallel evaluation of the individuals could be implemented in GPU
while the CPU executes the rest of the EA steps, so the GPU would
be used as a coprocessor. A drawback of this scheme is the number of
data transfers between both devices, since a copy of the individuals in
both directions is needed for each generation.

The GPU bus (usually a PCIe bus), has worse bandwidth and latencyPCIe: Peripheral

Component

Interconnect

Express

than those provided by the CPU memory bus. In addition, the copy of
the dataset from main memory to the GPU memory could also require
a significant amount of time. Although this transfer only has to be done
once, the size of the dataset to be processed is usually large. On the
other hand, since CPUs have incorporated multiple cores for a long
time, this method wastes part of their computing capacity because if
only one core is used for the master, the rest of them remain idle.
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In the second model, the whole algorithm can be parallelized on CPU
or GPU. In the CPU case, all evolutionary steps, including the fitness
evaluation, can be done in the cores. However, in the GPU case, each
subpopulation could be assigned to a thread block and each individ-
ual to a thread. In this way, the application of crossover, mutation, and
selection operators to the individuals requires the use of barriers to
synchronize the threads. Although this approach could reduce the data
transfers between CPU and GPU, the synchronization requirements
have to be taken into account. Moreover, the GPU memory hierarchy
should be carefully managed because this memory is not cached and its
accesses mean many additional cycles. For this reason, global memory
should be used for the communication among subpopulations accord-
ing to the devised migration policy, while shared memory should store
the data structures of the individuals. If there is no space to store all
the data, tiling3 strategies should be defined. Examples of parallel EAs
can be found in [81]. It includes many details regarding the migration
and selection criterion, a topology to exchange individuals between
subpopulations, and the synchronization between threads required by
a synchronous multi-population model.

3.4 artificial neural networks

ANNs, or simply neural networks, are mathematical models defined ANN: Artificial

Neural Networkprimarily by computational units that emulate neurons, the communi-
cation links that define synaptic connections between network neurons,
and the type of messages that the networks handle. Although there
are different types of ANNs, such as CNNs or DBNs, they all share DBN: Deep Belief

Networkthe same basic principle: try to mimic the functioning of the brain. It
is known that the human brain is one of the most complex natural
learning mechanisms that exist, and hence the desire to replicate its
functioning. These bioinspired models can be used to solve classifica-
tion problems, image reconstruction, meteorological prediction based
on the historical records of a region, autonomous movement of robots
and vehicles, or even intelligent voice assistants. In [82], the inventor of
one of the first neurocomputers defines an ANN as:

A computing system made up of a number of simple, highly
interconnected processing elements, which process information
by their dynamic state response to external inputs.

3 GPU technique to increase performance through caching and data reuse
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The simple processing elements are the neurons, which basically trans-
mit electrical impulses to other neurons through the network. They
provide the ability to remember, think, and learn from previous expe-
riences. However, the ability to learn is the one that interests in the
field of computing. The question is how to implement an ANN in
computer systems. The first thing is to create the artificial neuron, also
called perceptron. The perceptron takes several inputs, (x1, x2, . . . , xn),
and produces only one output, y. To calculate the output value, each
entry is assigned a real number, called weight, (ω1, ω2, . . . , ωn), which
expresses the degree of importance that an entry has in the calculation
of the output. Weights are crucial because the training process of an
ANN basically consists in adjusting the values of the weights to obtain
the desired results. The training process has two steps: (i) perform ϑ
as the weighted sum of the input variables taking into account their
weights, and then (ii) calculate the output of the neuron, y, by applying
an activation function ϕ on the result of ϑ. This is defined as:

ϑ =
n

∑
i=1

xi ·ωi (3.10)

y = ϕ (ϑ) (3.11)

The activation function is what determines the output value, so choos-
ing carefully an appropriate activation function is essential in Deep
Learning. There are many activation functions, such as the threshold
function, whose output is binary because it returns 0 or 1 depending
on whether the value obtained in ϑ is greater than or less than a thresh-
old. Other more complex functions like tanH or ReLU allow outputsReLU: Rectifier

Linear Unit with real values. Currently, most Deep Learning models are composed
of several layers of neurons, creating a multi-layer perceptron where the
output of all neurons in layer j can be connected to the input of all
neurons in layer j + 1. Depending on the number of layers, concepts
such as input, hidden, and output layers appear. This allows to improve
the model although the calculation of the weights is more complicated.
However, if the number of layers is increased excessively, the result of
the model could get worse. Figure 3.7 shows the training process of a
neural network.

Neural networks are able to learn and relate the data they process to
later know how to identify the similarity between a new sample and
the data learned. For this, the networks must be adjusted iteratively,
through epochs. At the end of each epoch, the model compares its
prediction of y with its real value through a loss function. This function
estimates the margin of error in the network, so the objective is to
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Figure 3.7: Training process of a neural network. ϕ can use the ReLU,
threshold, or tanH activation functions to calculate the output, y.

minimize it. The lower its value, the more accurate the model is because
there is less difference between prediction and error. The adjustment
of the weights minimizes the loss function, which propagates the
error backwards in the network. This is known as backpropagation [83],
and thanks to this technique, multi-layer networks can be trained
in a supervised manner. When calculating the error obtained and
propagating it to the previous layers, small adjustments are made to
make the network learn and classify the inputs correctly. Although this
sounds good, problems such as overfitting appear during training. This
occurs when the neural network has a close relationship with training
data and subsequently is not able to correctly classify new samples. To
solve this, techniques such as dropout4 or cross-validation5 are used.

One type of multi-layer network is CNN [84], which takes its inspiration
from the visual cortex of animals and therefore is focused on image
processing. Its architecture consists of several layers whose objective
is the feature extraction and classification. The first step is to use a
convolution layer to divide the input image into receptive fields and
thus extract features from the image, such as edges or vertices. The next
step is called pooling, a technique that can reduce the dimensionality of
the features extracted but maintaining the most important information.
In general, the convolution and pooling processes are repeated until
the final output of the network is obtained. The output is formed
by a group of units that classify the result (usually as many units as
number of classes). Although CNNs are primarily designed for image
processing, they can also be applied to EEG classification or natural
language processing. Due to their versatility, some experiments will be
performed in Chapter 6 to analyze them during EEG classification.

4 Layers that randomly remove certain features by setting them to zero
5 Technique that evaluates whether a model will be generalized to an independent dataset
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3.5 related works

The benefits of FS in data mining applications for both supervised
and unsupervised classification have been previously surveyed in [85–
89], showing that FS in unsupervised problems is inherently a multi-
objective problem [90]. Nevertheless, as the number of features involved
in that applications is huge, an optimal FS becomes an NP-hard problem
[91, 92], for which efficient metaheuristics are required. Even for a
modest number of features, FS procedures based on B&B, SA, EAs, or
combinations of them have been previously proposed. For that reason,
[93, 94] consider parallel processing as an interesting approach for FS,
and papers such as [95] have used OpenCL for its parallelization. In
addition, [96] describes parallel approaches to address the presence of
irregular samples and the dimension reduction problem, illustrating
the effect of that approaches in algorithms like KNN6 or K-means.KNN: K-Nearest

Neighbors

EAs can be applied to many different optimization problems as they
do not require thorough knowledge of the problem at hand [97–99].
Indeed, in [100] a parallel multi-objective FS procedure is parallelized
through different evolutionary strategies, but they do not parallelize
the fitness evaluation of the individuals in the population. A similar
situation occurs in [101], where the authors focus more on energy
consumption analysis in different platforms for a sequential EA. A
relatively high number of contributions on parallel implementations of
EAs considering CPU-GPU can be found in the literature. Nevertheless,
most of them do not completely exploit the energy-saving capabilities in
HPC systems because they do not consider CPU and GPU as resources
that can be equally used to distribute the workload. Instead, they
usually tend to use the GPU and only one or few CPU threads to
control the GPU activity. As examples, in [102] a parallel EA using MPI
on only one platform is described. Paper [103] proposes a methodology
to solve optimization problems in heterogeneous systems, and points
out the usefulness of further researching on this approach.

The use of GPUs in evolutionary computation has been described in
many previous papers [104]. In [105], an overview on parallelization of
EAs is provided, and states that the most direct option to use the GPU
is performing the evaluation step taking advantage of data parallelism
present in the fitness function. An alternative in which the entire imple-
mentation falls to GPU could alleviate these problems [106]. Even so,
these approaches have to take into account the memory requirements
of the application, since the individuals and the dataset necessary to
compute the fitness should be allocated in the GPU memory. E.g., paper

6 Classification method based on the most repeated class among the nearest K neighbors
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[107] describes a CUDA implementation of a multi-population GA.
It provides efficient implementations of genetic operators especially
designed for GPU, and uses global memory for the migration process
between subpopulations according to a unidirectional ring topology.

On the other hand, the algorithm proposed in [108] corresponds to
an alternative implementation to NSGA-II. It also includes a selection
strategy and a parallel implementation of the evaluation step. With a
population of 10, 000 individuals, the results show speedups of about
5, 000 with respect to a CPU implementation of NSGA-II when using
the ZDT3, ZDT4, and ZDT5 benchmarks7 with two objectives. In [109], ZDT: Zitzler, Deb,

and Thielean efficient implementation of the NDS step of NSGA-II is evaluated
with the DTLZ test suite8, while paper [110] implements a MOGA for DTLZ: Deb, Thiele,

Laumanns, and

Zitzler

a data mining application on marketing. The approach executes all
steps of NSGA-II in GPU except the non-dominated selection since there
are some inconveniences such as the cost of the NDS function or the
synchronizations between threads.

The K-means parallelization has been considered and compared to CPU
versions in [111–115]. E.g., in [113] a speedup of up to 68 is reported
using a dataset with one million points and 4, 000 centroids. The use of
large datasets is considered in [114], where the clustering is applied to
1, 000 two-dimensional centroids and one billion samples, achieving a
speedup of more than 11 with respect to an optimized octa-core CPU.
Moreover, paper [115] uses datasets with 500, 000 samples and 2, 20,
and 200 dimensions, showing speedups of up to 43 with respect to a
sequential version, and speedups of 1.5-14 with respect to an optimized
version that uses the SIMD instructions of the CPU.

EEG classification, like other high-dimensional applications, requires
the processing of a huge amount of data and therefore it is a time-
demanding problem. In this way, parallel processing and FS techniques
are commonly applied to decrease the execution time and improve the
quality of the solutions [116]. In paper [117], a MOGA is applied to solve
an optimization problem in a MI-based BCI application. It implements
a wrapper procedure for FS together with an unsupervised procedure
whose performance is used to evaluate the fitness of each individual.
The individuals of the population correspond to different chromosomes
that define the features of the EEG signals to be classified. Moreover,
with the recent boom in Deep Learning due to new processing algorithms
and the performance growth of GPUs, some neural networks such as
CNNs or DBNs are being used for EEG classification since they present
good performances [118, 119].

7 Test suite for two-objective problems whose name comes from its authors
8 Test suite similar to ZDT but its tests problems are scalable in any number of objectives
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This chapter aims to detail the methodology used. This includes a
brief description of each algorithm developed, the platforms on

which they are executed, as well as the statistical methods, performance
metrics, and dataset used for their analysis. Since this thesis has been
developed over several years, the methodology applied to analyze the
algorithms has been subject to the available resources and needs at
the moment. In order not to confuse the reader, for each experiment
the setup and the resources for its realization are described. In any
case, the same experimental conditions are set in those cases in which
the results of different implementations are compared, so that a fair
comparison between experiments is guaranteed.

4.1 proposed approach

The thesis proposes different parallel MOGA implementations to cope
with the EEG classification problem in a MI-based BCI application,
which can take advantage of parallelism at multiple levels. The evolu-
tionary procedures are based on a wrapper approach where an NSGA-II
algorithm evolves one or multiple populations of individuals that cod-
ify different FSs. This application, as discussed in previous chapters,
is computationally heavy as it addresses a high-dimensional problem.
For that reason, the proposed procedures described in Section 4.1.2
are designed to parallelize the task and/or distribute the work among
the devices coupled to the heterogeneous processing systems. The
characteristics of these platforms are described in Section 4.2.

59
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4.1.1 Basic Scheme

As the implementations are based on the NSGA-II algorithm, their
structure is similar to that shown in Algorithm 3.1. In summary, they
include the initialization of the individuals with a maximum of 10
features (genes) initially set to 1, their evaluation, binary crossover, muta-
tion, selection, and migration in the case of multi-population procedures.
The difference lies in the parameters used for these procedures and
the method to evaluate individuals. The multi-objective optimization
either performs uniform crossover with a probability of 0.75 or bit-flip
mutation with a probability of 0.25. In case of crossover, the parents
are selected by binary tournament and the probability of exchanging a
matching gene in both parents is 0.5. In case of mutation, each bit is
flipped with a probability of 0.1. The algorithms developed use the un-
supervised learning method K-means to evaluate the individuals. All of
them perform one execution of K-means in each generation to compute
their cost functions, f1 and f2, which are defined by two CVIs [120]CVI: Cluster

Validity Index (see Figure 4.1). The individuals are evaluated through a bi-objective
fitness where f1 and f2 must be minimized and maximized, respectively.
Specifically, f1 correspond to the WCSS minimization, whose value canWCSS: Within-

Cluster Sum of

Squares

be calculated as the sum of the distances between each point Pt and
the centroid ki

j of the cluster to which it belongs:

f1 =
K

∑
j=1

∑
Pt∈Ci

j

∥∥∥Pt − ki
j

∥∥∥2
(4.1)

where K is the number of clusters, Ci
j the cluster j in the iteration

i, and
∥∥∥Pt − ki

j

∥∥∥2
the Euclidean distance between point Pt and the

centroid Ki
j. On the other hand, the cost function f2 corresponds to the

BCSS maximization, whose value can be calculated as the sum of theBCSS: Between-
Cluster Sum of

Squares

distances between each centroid:

f2 =
K−1

∑
j=1

K

∑
l=j+1

∥∥∥ki
l − ki

j

∥∥∥2
(4.2)

being
∥∥∥ki

l − ki
j

∥∥∥2
the Euclidean distance between the centroids ki

l and ki
j.

Once the evaluation of the N individuals is finished, the fitness of each
of them is normalized in the interval (0, 1) according to the softmax
function, which fulfills that the sum of all the normalized values is 1.
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Figure 4.1: The proposed MOGAs implement a wrapper approach for
FS where the performance of K-means clustering is used to evaluate the
fitness of the individuals.

Therefore, The new value of the cost function fm for a given individual
i can be calculated as:

f i
m =

e f i
m

∑N
j=1 e f j

m
(4.3)

4.1.2 Description of the Algorithms

Throughout this thesis a total of 10 procedures have been developed
with C++, of which nine are different versions of the MOGA described
in Section 4.1.1. Each of them can be seen as an evolution of the previ-
ous one that allows adding new functionalities, parallelism levels, or
degrees of optimization with the aim of reducing execution time, energy
consumption, and sometimes improving the readability of the code.
Also, they do not have a graphical interface and can only be executed
using the command line interpreter. The tenth procedure corresponds
to a Python1-C++ hybrid approach of an ANN as an alternative method
to MOGA. A brief description of each procedure is provided below,
whose main characteristics are summarized in Table 4.1:

• Sequential Genetic Algorithm (SGA): naive implementation that
can only be executed sequentially on a single CPU core. This
version is an adaptation of an equivalent MATLAB2 code that,
although executed sequentially, offers much better performance.

1 High-level interpreted language designed to create clear and logical code
2 Numerical computing environment and programming language developed by MathWorks
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• Parallel Genetic Algorithm (PGA): this version exploits the po-
tential of OpenCL to parallelize the evaluation of individuals by
distributing each individual among CPU cores or GPU CUs. The
rest of the MOGA steps are executed sequentially since, according
to previous analysis, most of the execution time corresponds to
the calculation of the fitness of the individuals.

• Optimized Parallel Genetic Algorithm (OPGA): similar to the
previous one but it adds optimizations in both CPU and GPU ker-
nels mainly related to memory management. This allows shorter
execution times due to the reduction in memory consumption
and coalescing access to data by transforming the original dataset
into another stored in column-major order.

• Multi-Device Genetic Algorithm (MDGA): the host code is mod-
ified to add a scheduler designed with OpenMP that dynamically
distributes the work between the CPU and GPU devices present
on the platform through a master-worker scheme. In this way,
the evaluation of individuals is carried out simultaneously on
all available devices until each individual in the population is
evaluated. The CPU and GPU kernel code do not present changes.

• Multi-Population Genetic Algorithm (MPGA): the evolutionary
procedure is transformed into a multi-population MOGA where
individuals can migrate every certain number of generations.
The scheduler of the MDGA procedure is modified to distribute
to each device either complete subpopulations or individuals if
there is only one population. This allows up to three levels of
parallelism without modifying the CPU and GPU kernels.

• Distributed Genetic Algorithm (DGA): a fourth level of paral-
lelism is implemented by providing the application with multi-
computer processing capacity through a master-worker procedure
designed with MPI that dynamically distributes subpopulations
among the cluster nodes. Each node acts following the MPGA
model but also adds another level of migration that allows indi-
viduals to migrate between nodes.

• Distributed Genetic Algorithm II (DGA-II): this version is very
similar to DGA but the OpenCL kernel for CPU is replaced by
OpenMP code, so the evaluation of individuals is also part of
the host code. In addition to simplifying the source code, the
application's performance could increase depending on the host
compiler and optimization flags chosen since the compiler can
now manage all the CPU code.
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Table 4.1: Characteristics of the procedures implemented in this thesis.

Version

Feature Type

SG
A

PG
A

O
PG

A

M
D

G
A

M
PG

A

D
G

A

D
G

A
-I

I

O
D

G
A

G
A

A
M

D
N

N

Sequential Only CPU X

CPU or GPU X X X X X X X X X
Parallel

CPU + GPU X X X X X X

Scheduling X X X X X X
OpenMP

CPU compute X X X

Coalescence X X X X X X X
Optimized

MPI messages X X X

Synchronous X X X XMulti-

population Asynchronous X

MOGA X X X X
MPI

CNN X

• Optimized Distributed Genetic Algorithm (ODGA): the com-
munication process between nodes is optimized by reducing the
number of messages and modifying the distribution scheme so
that the master node has direct communication with the comput-
ing devices of a worker node. The objective is to reduce execution
time and energy consumption by minimizing workload imbalance
situations caused by the different parallelism levels.

• Genetic Algorithm with Asynchronous Migrations (GAAM):
the approach based on a master-worker scheme is replaced by an
multi-population MOGA that eliminates the idle states created
by the migration processes between nodes. All nodes implement a
hierarchy of I/O buffers and a handler that allows receiving or
sending migration requests to other nodes asynchronously.

• Distribution of Neural Network (DNN): this ANN-based ap-
proach is presented as an alternative method to MOGA. The pro-
cedure reuses the master-worker skeleton of ODGA to evaluate
multiple CNNs by distributing combinations of hyperparameters
among the cluster nodes. The objective is to compare its energy-
time behavior with respect to the MOGA versions and check if
the MPI code can be easily adapted to other applications.
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Table 4.2: CPU characteristics of the platforms used in the experiments.

Platform Model Cores/Threads
Core

(MHz)

RAM

(GB)

TDP

(W)

Node 1

Node 2

2x Intel Xeon

E5-2620 v2
12/24 80

Node 3
1x Intel Xeon

E5-2620 v4
8/16 2, 100 32

Node 4
2x Intel Xeon

E5-2620 v4
16/32

85

PC 1x Intel i7 4770K 4/8 3, 500 16 84

4.2 experimental setup

To perform the experimental work two different platforms are used: a
desktop PC that runs Ubuntu (v18.04) and a heterogeneous four-node
cluster with CentOS (v7.4.1708) and a Gigabit Ethernet switch to connect
the NUMA nodes. The characteristics of the CPU and GPU devices of
these platforms can be found in Tables 4.2 and 4.3, respectively.

The neural networks of DNN procedure are executed with the Python
interpreter (v3.6.5) and developed with Keras (v2.2.4) and TensorFlow
(v1.12). All C++ source codes are compiled with GCC compiler (v4.8.5),GCC: GNU

Compiler

Collection

optimization flags -O2 -funroll-loops, and use the OpenMPI library
(v1.10.7). The kernels are compiled with OpenCL (v1.2). Since the clus-
ter contains heterogeneous CPUs, compiling with -O3 implies a risk
of incompatibility during execution. The mpirun command allows to
specify a binary file for each MPI process that runs the program, but
this can be cumbersome depending on how the application is executed,
so the use of -O2 instead of -O3 is for simplicity. Even so, for some
experiments the optimization flag -O3 and ICC compiler are also used.ICC: Intel C++

Compiler

Cluster and PC energy measurements are obtained by two wattmeters
based on the Arduino Mega board and developed specifically for the
experiments. Every second they provide two different values: the in-
stantaneous power, P (W), and the energy consumption, E (W · h). In
the case of the cluster, the meters include both measurements for each
node and the switch, although the energy values of the switch are much
lower than those of the devices (below 5 W). Appendix B provides more
detailed information on the operation of the wattmeter.
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Table 4.3: GPU characteristics of the platforms used in the experiments.
The two GPUs TITAN Xp of Nodes 3 and 4 are the same as those of the
PC, so they rotate according to the experiment.

Platform Model CUs/Cores
Core/Memory

(MHz)

RAM

(GB)

TDP

(W)

Node 1 1x Quadro

K2000
2/384 954/4, 000 2 51

Node 2
1x Tesla K20c 13/2, 496 706/5, 200 5 225

Node 3 1x Tesla K40m

1x TITAN Xp

15/2, 880

30/3, 840

745/6, 008

1, 582/11, 408 12 250Node 4

PC 2x TITAN Xp 30/3, 840 1, 582/11, 408

4.3 evaluation metrics

It is necessary to use a comparative metric to identify when one pop-
ulation is better than another. Although there are other measures in
the literature to evaluate the quality of solutions, the difference in hy-
pervolume between populations is considered here. The hypervolume
consists in calculating the volume covered by the hypercube formed
by the vectors of the Pareto front, PF, with respect to a reference point,
r (see Figure 4.2). This point may be arbitrary, but it must be weakly
dominated by all points belonging to PF. The hypervolume metric is
calculated using the Fonseca and Zitzler [121–123] algorithms with the
origin as reference point. However, to calculate it, all objective func-
tions should be minimization or maximization. As this is not usual,
minimization functions must be transformed into maximization or vice
versa. The process is simple since maximizing a number is equiva-
lent to minimizing its opposite value. Precisely, the cost functions f1
and f2 defined in Section 4.1.1 do not comply with the conditions to
calculate the hypervolume, so f1 is transformed to create a purely max-
imization problem. In this way, the objective is to obtain populations
with the greatest possible hypervolume, and as the cost functions are
normalized, the maximum hypervolume value is hv = 1.0.

The energy-time performance of the aforementioned approaches is
compared by using execution time, instantaneous power, energy con-
sumption, and speedup. The execution time, t (s), is obtained by in-
serting a call to the OpenMP function omp_get_wtime at the beginning
and end of the code and then compute the difference between both
calls. Similarly, energy values are obtained by calling the measurement
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Figure 4.2: Hypervolume metric illustration. The shaded area define
the portion of the objective space dominated by the Pareto points with
respect to a reference point.

function just before and after executing the binary file of the procedure
to be evaluated. The speedup, S, is calculated in Equation (4.4) as the
quotient of dividing the execution time obtained after a sequential
execution, tS, by the execution time of its corresponding parallel exe-
cution, tP. Although these measures are usually sufficient to compare
the procedures, Equation (4.5) defines the energy-time product, Et,
as another performance measure for those cases in which it is more
difficult to identify the procedure that obtains the best results:

S =
tS
tP

(4.4)

Et = E · t (4.5)

All experiments are only repeated 20 times due to the complexity of
the algorithms evaluated and the number of experiments. To obtain a
comparison between procedures as reliable as possible, the final value
of each metric, including that of the hypervolume, is calculated as the
average of all values. Also, for some experiments, the Kolmogorov-
Smirnov test [124] is applied to determine whether the data follow a
standard normal distribution or not. Depending on the result, either the
ANOVA test [125] is applied if the data follow a normal distribution orANOVA: ANalysis

Of VAriance the Kruskal-Wallis test [126] otherwise.
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4.4 eeg dataset

For the experiments, a datasets from the BCI Laboratory of the Univer-
sity of Essex is used, which correspond to a human subject coded as
110. The dataset contains EEG signals that can belong to three differ-
ent cognitive tasks, or classes. Specifically, three types of movements:
left hand, right hand, and feet. The process for recording the EEGs,
described in [127], follows the typical protocol of a cue-based approach.
The subject is sitting on a chair approximately 1.5 m away from the
screen. For each trial, the subject experiences the following sequence
shown on the screen:

1. Blank screen: the subject has between 2.5-3.5 s to relax and pre-
pare for the next trial.

2. Fixation cross: at instant t = 0 and for 2 s, a fixation cross appears
on the screen indicating the subject that the trial is about to start.

3. Visual cue: in addition to the fixation cross, a visual cue is dis-
played at t = 2 s for 6 s indicating the start of the trial, so a trial
has a total duration of t = 8 s: An auditory cue is also emitted at
t = 2 s. The relative position of the visual cue with respect to the
fixation cross indicates the type of MI that the subject must per-
form: below for the feet movements and left and right positions
for the corresponding movements of the hand.

Each recording session is divided into four runs, providing a total of 357
samples of which the first 178 are used for training and 179 for testing.
Nevertheless, for the experiments only the training dataset is used since
K-means is an unsupervised algorithm. EEG signals are acquired from
32 electrodes at 256 Hz with the BioSemi system [128] and processed
using the MRA method, although finally only 15 of the 32 electrodes MRA: MultiResolu-

tion Analysisare useful. As a trial is recorded from the fixation cross to the end of the
cue, an EEG contains 256 · 8 = 2, 048 samples per channel. The resulting
signal is composed by several segments, which are characterized by
a set of details and approximation coefficients belonging to different
levels of wavelets [129]. Generalizing, the dataset is defined by 15
electrodes, 20 segments, 6 wavelet levels, and 2 detail/coefficient. In
total, there are 15 · 20 · 6 · 2 = 3, 600 sets of coefficients whose sizes
range from 4 to 128. In addition, as shown in [127], the number of
coefficients is reduced to only 3, 600 by computing the second moment
of the coefficient distribution (variance) for each set, and normalizing
the obtained value in the interval (0, 1). To summarize, the dataset used
in this thesis contains 178 EEG signals composed of 3, 600 features.
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In this chapter, eight sets of experiments are carried out to analyze the
procedures designed for single-computer systems. Specifically, ver-

sions SGA, PGA, OPGA, MDGA, and MPGA, which are tested in both
performance and quality of the solutions under different experimental
conditions. The chapter is organized as follows: Section 5.1 presents
a first sequential and parallel versions. In Section 5.2, two parallel
versions that take advantage of the devices are detailed and analyzed,
while in Section 5.3 a multi-population version of the MOGA is ex-
posed. In Section 5.4, an energy-time model is developed to predict and
explain the behavior of the best version implemented so far, and finally
Section 5.5 shows the conclusions after finish the experimentation.
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5.1 the first implementations

Prior to the development of this thesis, a MATLAB implementation
of NSGA-II algorithm that can be found in [130] was used to address
the EEG classification problem. This implementation was modified to
use the MATLAB kmeans function for the evaluation of individuals.
Although MATLAB works well and incorporates improvements and
new functionalities over time, its performance is far from that offered by
conventional programming languages such as C++ or Fortran1. As EEG
classification has a high computational cost, a low-level programming
language could accelerate the application. In this way, C++ is the ideal
candidate to create more efficient implementations since it is also
compatible with the main existing parallelism libraries.

5.1.1 Porting a MATLAB Source Code to C++

The portability from MATLAB to C++ results in the first version: SGA.
As stated in Chapter 4, this version is only capable of running on a
single CPU core, just like the MATLAB implementation. Despite this,
it has been proven that under the same experimental conditions and
using the desktop PC, the execution time of SGA is better by a factor of
177 compared to that of MATLAB, confirming that the choice of C++
was a wise decision. The operation of the program is simple: using the
command line interpreter, the binary file is executed with the necessary
parameters, which can be obtained from the command line or an
XML configuration file (see Appendix C2 for more information). AfterXML: eXtensible

Markup Language reading the parameters and checking that they are correct, the dataset
is loaded into RAM, the initial centroids for K-means are randomly
chosen, and NSGA-II starts. Once completed, the program returns the
hypervolume of the final population and ends.

Experiment 5.1: Evaluate the execution time and hypervolume of
SGA when increasing the number of individuals and generations. The
experimental conditions are described in Table 5.1.

Using the profiling tool gprof [131], it has been observed that the
evaluation function of Algorithm 3.1, defined by K-means algorithm, is

1 High-level compiled language specially designed for numerical computation
2 The appendix describes another version but the information of the parameters is valid
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Table 5.1: Experimental setup to analyze SGA.

Feature Description

Platforms Desktop PC: CPU

Compiler GCC with -O2 -funroll-loops

Dataset Only the first 480 features used

Individuals
{15, 30, 60, 120, 240, 480, 960

2500, 5000, 10000, 15000, 20000, 25000, 30000}
Generations {1, . . . , 50}

the part of the code that needs more time. Table 5.2 shows the distribu-
tion of execution time in SGA when increasing the population size. As
can be seen, for moderate sizes the execution time of the evaluation

function exceeds 99% and is linearly proportional to parameter N. Nev-
ertheless, for larger sizes, the NDS step of NSGA-II gains importance
due to its quadratic time complexity in the number of individuals.
Therefore, from the perspective of execution speed, it might be better
to increase the number of generations rather than the number of in-
dividuals. The time required by K-means for an iteration is defined as
the sum of the time for the clustering step plus the time to update the
centroids. However, as the process is repeated for i iterations, and the
cost of computing f1 and f2 must also be added, the execution time is
finally calculated as:

tK = i · (tD · K · NP + tk) + tW +
K2 − K

2
· tD (5.1)

being tk the time to obtain the new K centroids, tW the time to calculate
the WCSS value, and tD the time required to compute the Euclidean
distance between two points. The expression tD · K · NP corresponds to
the clustering step, which depends on the number of points, NP. On
the other hand, K2−K

2 · tD defines the cost of computing the BCSS value
as the sum of the distances between each pair of centroids. Thus, in
general terms, the execution time of SGA to evaluate N individuals
along g generations can be estimated as:

tS = g · (tN + N · tK + N · tO) (5.2)

where tN correspond to the NDS step and tO is the time required to
perform the mutation, crossover, and selection operators.
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Table 5.2: Distribution of execution time in SGA when increasing the
population size, N.

Evaluation NDS Others Total
N

t(s) % t(s) % t(s) % t(s)

120 119.19 99.93 0.01 0.01 0.07 0.06 119.27

240 236.38 99.92 0.07 0.03 0.12 0.05 236.57

480 477.00 99.90 0.14 0.03 0.32 0.07 477.46

960 954.85 99.87 0.70 0.07 0.60 0.06 956.15

2, 500 2, 492.26 99.72 5.21 0.21 1.87 0.07 2, 499.34

5, 000 4, 973.70 99.48 21.74 0.43 4.69 0.09 5, 000.13

10, 000 9, 984.37 99.05 85.22 0.85 10.11 0.10 10, 079.70

15, 000 14, 946.12 98.60 196.61 1.30 15.40 0.10 15, 158.13

20, 000 19, 518.64 98.00 377.64 1.90 22.53 0.10 19, 918.81

25, 000 24, 961.48 97.78 539.68 2.11 27.40 0.11 25, 528.56

30, 000 29, 959.06 97.36 778.95 2.53 33.00 0.11 30, 771.01

Regarding the quality of the solutions, Figure 5.1 shows the hyper-
volume and Pareto front obtained along 50 generations for different
population sizes, N. It can be seen that, in general, increasing the num-
ber of individuals also causes an increase in the hypervolume value.
The maximum value, hv = 0.82, is reached for N = 960 and seems
to be high enough to produce a stagnation in its value, since it has
been proven that above that number the value hardly increases even
increasing the number of generations.

The figure also clarifies which of the two parameters has most impact
on the hypervolume. Although for small number of individuals the
hypervolume grows quickly with the number of generations, the value
of N has a higher impact on the final value. In addition, as Table 5.2
shows that most of execution time corresponds to the step of evaluation
of individuals, the time required to evaluate N individuals for two
generations is approximately the same as evaluating 2 · N individuals
for a single iteration. Taking this into account, it means that to reach
a certain hypervolume value, less time is needed if the number of
individuals is increased instead of the number of generations. In fact,
for some values of N the hypervolume obtained after generation #1 is
equal to or greater than that achieved by lower values of N after 50
generations. A more detailed study could find out the optimal value for
N and the number of generations to reach a trade-off between them.
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Figure 5.1: Hypervolume and Pareto front obtained in SGA when in-
creasing the number of individuals and generations.

5.1.2 A Parallel Implementation for CPU and GPU

Although SGA is faster than the MATLAB-based implementation, its
execution time remains very high. GAs, in addition to efficiently ad-
dressing the problem, have the advantage that each individual can be
assessed independently. Taking into account that almost all execution
time is consumed in the evaluation function, the parallel algorithm
should focus on that part. Thus, PGA version is born, which is com-
posed of a host code and two OpenCL kernels that can be launched
by the host to CPU or GPU depending on how it was specified in the
XML file. Before starting NSGA-II, in addition to the preprocessing
step performed by SGA, the host code must also carry out other tasks
related to the device that will execute K-means.

First, the device must be initialized by creating an execution context, a
command queue, and the memory objects used by the kernel, which are
copied to the device asynchronously. Although this kernel is compiled
online, the OpenCL API also allows to use a previously compiled binary
file. Before the first call to the evaluation function, a barrier is set to
guarantee that the copy of previous memory objects has finished. For
successive calls, only the individuals of the new population are copied
since the rest of data, such as the dataset, does not change during
the entire execution. Finally, within the function the host launches the
kernel once its arguments are properly set.
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5.1.2.1 CPU and GPU Kernels

The kernels are launched with as many work-groups as specified CUs.
In case of GPU, a work-group is composed of several work-items, but
in CPU, a work-group includes a single work-item since the number of
CUs matches the number of logical cores. The input parameters of
the kernel include the individuals, initial centroids, and dataset. The
individuals are stored into global memory so that they can be accessed
by all work-groups. The initial centroids and the dataset are also accessed
by all work-groups, but they are stored into constant memory because
they do not change during program execution. Although in GPU local
memory is faster than the global one, its size is very limited, so there is
no room for the dataset. In fact, during device initialization, the host
must check possible memory overflows and leave a margin of 1 KB for
internal operations of the OpenCL runtime (CPU local memory is RAM,
so that there is no difference in performance).

The population is evaluated in parallel by assigning to each work-group
the evaluation of one individual, which implies a full execution of
K-means by using the dataset and the FS codified by the individual's
chromosome. Moreover, in the GPU kernel, as each work-group includes
several work-items, the evaluation of the individual is also parallelized
taking advantage of data parallelism present in the Euclidean distances,
providing two levels of parallelism.

Both kernels use two auxiliary buffers stored into local memory to
keep information about the changes in the centroids. One of the buffers
stores information of K-means iteration i and the other one the results
of iteration i− 1. Once a iteration is over, the content of the buffers is
exchanged. Data transfers between buffers requires 3 · NF operations,
where NF is the number of features of the dataset. To increase GPU
performance, both centroids and the individual's chromosome are
cached to local memory because the on-chip memory is faster. Finally,
when K-means converges or a maximum number of iterations is reached,
WCSS and BCSS values are obtained for the individual.

5.1.2.2 SGA and PGA Evaluation

Experiment 5.2: Compare the execution time and speedup of SGA
and PGA when increasing the number of generations and CUs. The
experimental conditions are described in Table 5.3.



5 .1 the first implementations 75

Table 5.3: Experimental setup to compare SGA and PGA.

Feature Description

Platforms Node 2: CPU and GPU Tesla K20c

CPU: {4, 8, 12, 24} / 1 eachCUs /

work-items GPU: {4, 8, 12, 13} / 192 each

Compiler GCC with -O2 -funroll-loops

Dataset Only the first 480 features used

Individuals 1, 000

Generations {20, 50, 100}
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Figure 5.2: Execution time of SGA and PGA when increasing the num-
ber of CUs and generations.

Figure 5.2 compares SGA and PGA along several generations, showing
that the execution time increases proportionally when the number of
generations increases. This behavior is as expected since the compu-
tational cost between generations is approximately the same. Smaller
values are also appreciated for PGA when using any of the parallel
devices. For similar numbers of CUs, i.e., 4, 8, 12, and 13, CPU gets
better results. The difference in performance between both devices is
even greater when CPU uses its 24 CUs due to GPU only has 13. Similar
to execution time of Figure 5.2, Figure 5.3 shows the corresponding
speedup achieved by PGA with respect to SGA. The speedup allows
to identify behaviors that are more difficult to observe with the exe-
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Figure 5.3: Speedup achieved by PGA with respect to SGA when in-
creasing the number of CUs and generations.

cution times, e.g., the speed gain factor with respect to a sequential
execution. In CPU, for 4 CUs the speedup stays close to 4, whose value
is the maximum possible for problems that scale linearly. For 8 CUs,
the speedup grows but not in the same proportion, a situation that is
further aggravated for 12 CUs. This is due to limitations in memory
accesses where several CUs compete for RAM access. On the contrary,
GPU does not have this problem since it is designed to be very efficient
in memory operations and the handling of many work-items (threads).
In fact, Figure 5.3b shows how the speedup with 8 CUs doubles that
achieved with 4, and the ratio of going from 8 to 13 is respected. This
means that distributing individuals among CUs is a good approach.

Finally, the case of 24 CUs is special since it seems that the program
does not scale correctly. However, the explanation for its behavior is
that, in addition to the problem of the memory accesses, it is also
necessary to consider that CPU really has 12 physical cores with Hyper-
Threading3, so the performance of CUs 13 to 24 is not the same as the
first 12. Regarding GPU, although appreciable speedups are provided,
the performance is a bit poor. A possible explanation for this could
be: (i) the 3 · NF operations of the auxiliary buffers in each K-means
iteration; (ii) the synchronization barriers, and (iii) the irregularity in
the SIMD parallelism due to FS, since the fact that some characteristics
are selected and others do not make the performance worse.

3 Each CPU core include two logical cores that share hardware resources when possible
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5.2 device-level improvements

PGA has allowed to accelerate the application in several orders of
magnitude. Nonetheless, as it is the first parallel version, it has room
for improvement. Thus, Section 5.2.1 exposes some optimizations for
the GPU kernel and performs a memory management analysis, while
Section 5.2.2 deals with the cooperation capacity between CPU and
GPU by introducing a scheduler capable of dynamically distributing
the evaluation of individuals among both devices.

5.2.1 Optimizing the CPU and GPU Kernels

Although GPUs currently include several thousand PEs, one of its best
assets is the SIMD processing capacity and memory frequencies higher
than those of the CPU RAM. As its performance depends mostly on
memory, the management of the different types of memory available
and the way in which they are accessed are the key to achieving good
results. Thus, this section details the operation of the next developed
version, OPGA, which is focused on improving the GPU kernel. How-
ever, as CPU can benefit from certain optimizations, some of them are
also applied to the CPU kernel.

The design of the CPU and GPU kernels is maintained for the rest of
the versions developed in this thesis, so that their final pseudocodes
can be seen in Algorithms 5.1 and 5.2, respectively. In the algorithms,
expression << CUs, work-items >> defines which CUs and work-items
will execute the following code block. E.g., in the CPU kernel, the
expression in Line 2 indicates that the loop in Line 3 is executed by
all CUs and their work-items #0. This means that each loop iteration is
executed by the CU in charge of individual Ii (Line 4).

5.2.1.1 Memory Management and Coalescing

The memory optimizations carried out can be grouped into three types:
(i) coalesced access to global and local memory; (ii) the proper use of
the GPU memory hierarchy taking into account its weaknesses and
strengths, and (iii) the reduction of memory consumption, which is
important due to local memory scarcity. Table 5.4 compares the memory
requirements of PGA and OPGA. The optimizations and aspects related
to kernel components are listed below:
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Algorithm 5.1: OpenCL K-means pseudocode defined in OPGA
to evaluate a chunk of individuals in CPU.

1 Kernel KmeansCPU(I, NI , DS, k)

Input : Individuals, I
Input : Chunk of individuals to be evaluated, NI
Input : Dataset DS: NP points (samples) with NF features
Input : Set k of K centroids randomly chosen from DS
Output : Individuals already evaluated, I

2 << All CUs, Work-item #0 >>
3 for i← 1 to NI individuals do

4 << CU in charge of Ii , Work-item #0 >>
5 kC ← Create a copy of the centroids
6 Initialization of the mapping table, MT ← 0

7 repeat

8 for j← 1 to NP points do
9 MTj ← Point pj in DS is assigned to a cluster

10 NDj ← Store the distance for point pj

11 end

12 kC ← Update centroids using dataset DS

13 until stop criterion is not reached;

14 f1(Ii)← wcss(kC, ND) according to Equation (4.1)
15 f2(Ii)← bcss(kC) according to Equation (4.2)

16 end

17 return I
18 End

1. In both PGA and OPGA, the N individuals of array I are stored
into global memory and cached individually to local memory
during the evaluation step. An individual Ii is a one-dimensional
array of contiguous NF 1's and 0's according to the selection or
not of the corresponding feature. Thus, the amount of global
memory used by I is NF · N bytes and the local memory for
each Ii, NF bytes, being NF is the chromosome size. In the GPU
kernel of OPGA, in addition to dataset DS, a transposed version
of DS called DST is also used to perform the centroid update step
more efficiently. In DS, the points are organized in row-major
order while column-major order is used in DST . Both datasets
include NP points with NF features and are also stored into global
memory in another one-dimensional array of NP · NF elements.
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Algorithm 5.2: OpenCL K-means pseudocode defined in OPGA
to evaluate a chunk of individuals in GPU.

1 Kernel KmeansGPU(I, NI , DS, k, DST)

Input : Individuals, I
Input : Chunk of individuals to be evaluated, NI
Input : Dataset DS: NP points (samples) with NF features
Input : Set k of K centroids randomly chosen from DS
Input : Dataset DST is DS in column-major order
Output : Individuals already evaluated, I

2 << All CUs, All their work-items >>
3 for i← 1 to NI individuals do

4 << CU in charge of Ii , All its work-items >>
5 kC ← Copy the centroids from global to local memory
6 IC ← Copy individual Ii from global to local memory
7 Initialization of the mapping table, MT ← 0

8 repeat

9 << CU in charge of Ii , 1 work-item >>
10 for j← 1 to NP points do
11 MTj ← Point Pj in DST is assigned to a cluster
12 NDj ← Store the distance for point Pj

13 end

14 << CU in charge of Ii , All its work-items >>
15 kC ← Update centroids using dataset DS

16 until stop criterion is not reached;

17 << CU in charge of Ii , Work-item #0 >>
18 f1(Ii)← wcss(kC, ND) according to Equation (4.1)
19 f2(Ii)← bcss(kC) according to Equation (4.2)

20 end

21 return I
22 End

Taking into account that a floating-point data has a size of 4
bytes, each dataset requires 4 · NF · NP bytes of global memory.
Although OPGA doubles the PGA memory requirement to store
both datasets, this is not a problem since the amount of global
memory available in current GPUs is generally much greater
than that required by EEG datasets. To be more specific, each
database requires approximately a total of 2.44 MB, while the
global memory of the GPUs used is around several GB.
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Table 5.4: Memory (in bytes) used by the GPU kernels of PGA and
OPGA. NI , K, NF, and NP are, in this order, the number of individuals,
centroids, features, and points.

Memory Global Constant Local

Array I DS/DST k KC Ii MT ND

PGA
NF N

4NF NP 4NFK
4NFK NF

3NPK 4NPK
Size

OPGA 8NF NP 4K NP 4NP

PGA NF N + 4NF NP 4NFK 4NFK + 7NPK + NFTotal

size OPGA NF N + 8NF NP 4K 4NFK + 5NP + NF

2. In OPGA, instead of copying the K centroids as in PGA, only the
indices of these centroids are copied from host memory to GPU
constant memory, reducing memory usage from 4 · NF · K to 4 · K
bytes. This is possible because the centroids are randomly selected
from the dataset, which is already available in global memory.
On the other hand, as the positions of the centroids are modified
along the K-means iterations, it is necessary to create a copy of the
centroids into local memory whenever a new individual is going
to be evaluated (Line 5). In OPGA, the copy is executed in parallel
by all work-items of its corresponding CU through coalescing, a
technique where consecutive PEs request data stored into global
memory, in consecutive logical addresses. This technique aims
to minimize the number of transaction segments requested from
global memory by taking advantage of the memory bus width to
get multiple data in a single transaction. The kernels are able to
use coalescing because consecutive work-items request data stored
into consecutive logical addresses of global memory. As Figure 5.4
shows, the memory bank conflicts in local memory are minimized.
When the work-items process the first chunk of data, the next
chunk is requested and processed, and so on until the whole
dataset is processed. In the CPU kernel, the unique work-item of
the CU sequentially performs the copy of centroids. In both PGA
and OPGA the centroids require 4 · NF · K bytes of local memory.

3. The mapping table MT contains an unsigned char datatype rep-
resenting the centroid assigned to each point along the K-means
iterations. Its initialization in Line 7 is carried out by all work-items
in the same way as the previous initialization of centroids and
individuals. This table replaces the two auxiliary buffers included
in the PGA kernels. In MT, each point only stores the index of its
corresponding centroid, while in PGA a binary coding similar to
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Figure 5.4: Coalescing technique illustration. A group of 32 work-items
(warp) copy data from global to local memory providing coalesced
access to global memory and minimizing memory bank conflicts.

that of chromosomes is used indicating whether a centroid is as-
signed to point Pj (1) or not (0). Therefore, the use of MT allows
to reduce the local memory consumption from 3 · NP · K to NP
bytes. Also, through this table it is easier to check the algorithm
convergence since the number of operations is reduced.

4. Each work-item has to find the nearest centroid for a specific point
by using the Euclidean distance between its point and the cen-
troids (Line 11). As dataset DST is stored in column-major order,
the first NP memory addresses contain the values of the first
feature for all points, while the following NP addresses contain
the values of the second feature, and so on. Therefore, as each
work-item handles a different point in a given time, consecutive
work-items will request consecutive memory addresses, allowing
fully coalesced access to global memory. Moreover, when the
nearest centroid to a given point and the corresponding distance
are obtained, they can be written into MT and ND, respectively,
with the minimum number of memory bank conflicts. Array ND
is stored into local memory and includes the Euclidean distances
between each point and its closest centroid. As its representation
is analogous to that of MT, its memory requirement is reduced
in OPGA from 4 · NP · K to 4 · NP bytes. Finally, concerning to the
CPU kernel, DST is not necessary since the work-item that calcu-
lates the distances access to DS memory addresses consecutively.

5. The most complex K-means step in terms of data parallelism is
the centroids update (Line 15). Indeed, some approaches [132,
133] directly propose to perform this step sequentially in the
host, although the cost per iteration associated with transferring
the centroids to the host, processing them, and returning them
could be too high, specially in applications with high-dimensional
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Figure 5.5: Scheme that shows how the work-items of the GPU kernel
defined in OPGA access to DS and DST during K-means execution.

points. To avoid that, in the GPU kernel each work-item adds the
same feature of all points belonging to the centroid to update.
To perform this step, dataset DST is not adequate as consecu-
tive work-items compute consecutive features. Now, DS is used
because its first NF memory addresses contain all features of
the first point, the following NF addresses contain the features
of the second point, and so on. Thus, coalesced memory access
can be achieved and the memory bank conflicts are minimized.
Figure 5.5 shows the relation between work-items and datasets DS
and DST during K-means execution.

5.2.1.2 Speedup Analysis

Experiment 5.3: Compare the GPU performance in PGA and OPGA
and analyze their behaviors when the number of work-items per CU
is increased above the maximum that the device can execute simulta-
neously. CPU-GPU comparisons in both versions are also made. The
experimental conditions are described in Table 5.5.



5 .2 device-level improvements 83

Table 5.5: Experimental setup to compare PGA and OPGA.

Feature Description

Platforms Node 2: CPU and GPU Tesla K20c

CPU: {4, 8, 12, 24} / 1 eachCUs /

work-items GPU: {4, 8, 12, 13} / {192, 256, 512, 1024} each

Compiler GCC with -O2 -funroll-loops

Dataset Only the first 480 features used

Individuals 1, 000

Generations 50
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Figure 5.6: GPU speedup achieved by OPGA with respect to PGA when
increasing the number of CUs and work-items.

Figure 5.6 shows the speedup achieved by the GPU kernels of OPGA
and PGA when increasing the number of CUs and work-items. As can
be seen, for any combination of CUs and work-items the speedup of the
new GPU kernel exceeds that of PGA. The differences in all speedups
are statistically significant after applying the Kolmogorov-Smirnov and
Kruskal-Wallis tests, with p-values4 lower than 0.009. The figure also
reveals a surprise: using more work-items than the maximum that GPU
can handle simultaneously gives better results in both versions. When
SGA was compared to PGA, 192 work-items per CU were used because
GPU has a total of 2, 496 PEs divided into 13 CUs, that is, 2,496

13 = 192
work-items. The explanation for the observed behavior is that GPU has

4 A p-value lower than 0.05 is statistically significant
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Figure 5.7: CPU-GPU speedup achieved by PGA and OPGA when
increasing the number of CUs.

the ability to hide latencies by enqueuing the leftover work-items that
are waiting for their turn. However, the number of work-items per CU is
not infinite since OpenCL sets a maximum of 1, 024 per dimension5. The
appropriate value will depend on the specific application and the size
of the problem. Another conclusion can also be drawn from the figure:
when more than 256 work-items are used, the gap between both versions
is greater due to the effects of the coalescing technique. Even for the
specific case of 1, 024 work-items, version PGA gets worse performance
than using 512. The opposite effect occurs in OPGA.

In both versions, the speedup obtained again is proportional to the
number of CUs. On the contrary, when increasing the number of work-
items the proportion is much smaller. Although more work-items are
being used than the maximum that the device can handle simultane-
ously, it has been proven that with values lower than 192 (32, 64, and
128), the rate of increase is not completely proportional. This means that
the parallelism level corresponding to the distribution of individuals
among CUs is more efficient than the second parallelism level, which
takes advantage of data parallelism available in K-means. It has to be
taken into account that in the application, the amount of parallelism
available changes according to the number of features selected in each
individual. Given that the GPU kernel of PGA gets its best performance
with 512 work-items per CU, the question is whether in Experiment 5.2

5 OpenCL can organize work-items up to three dimensions, which are known as Ranges
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the GPU kernel would have exceeded that of CPU when using that
amount of work-items. Figure 5.7a answers that question. What is ob-
served is that the difference between both kernels is reduced, but it is
not enough to reach the CPU kernel. Figure 5.7b compares the CPU and
GPU kernels of OPGA. When CPU uses its 24 CUs, the performance
is clearly higher to that of GPU, but with the same number of CUs,
the optimized GPU kernel is better. Although CPU does not obtain the
same benefit from coalescing as GPU nor from the use of the memory
hierarchy because they are all the same, its speedup is increased by
5.5% thanks to optimizations related to memory reductions. E.g., it
avoids the copies of the auxiliary buffers required in each iteration and
reduces the number of operations to initialize array ND to 0.

5.2.2 Dynamic Distribution of Individuals

While OPGA optimizes the kernels, version MDGA developed in this
section focuses on the host code. Instead performing optimizations,
MDGA adds the ability to dynamically distribute the evaluation of
individuals to CPU and GPU through a scheduler whose pseudocode
can be seen in Algorithm 5.3, providing up to three parallelism levels
in GPU. Its operation is as follows: through the OpenMP pragma of
Line 3, the host forks a thread for each available device to manage
everything related to the kernel (copy individuals, launch the kernel,
and store results). The NI individuals to be evaluated are distributed
among the threads in chunks of size CS using the OpenMP pragma of
Line 11. These threads share the pointer that iterates over the array
of individuals, so that when one of them picks up its next chunk, it
increases atomically the value of the pointer (Line 13). The value of
CS is conditioned to the number of existing devices (Lines 6 and 8). If
there is only one, CS = NI since there is no need for distribution (as in
OPGA). On the contrary, if there are several devices, as the individuals
within the kernel are distributed among CUs, CS will be equal to the
number of CUs of the device to avoid workload imbalance.

5.2.2.1 Scheduler Overhead

Experiment 5.4: Measure the overhead time caused by the scheduler
of MDGA on different devices when evaluating individuals in multiple
chunk sizes. The experimental conditions are described in Table 5.6.
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Algorithm 5.3: Pseudocode of the scheduler defined in MDGA to
distribute the evaluation of individuals among CPU and GPU.

1 Function scheduler(I, NI , D, ND)

Input : Individuals, I
Input : Number of individuals to be evaluated, NI
Input : Object D containing the OpenCL devices
Input : Number of devices, ND
Output : Individuals already evaluated, I

// Shared pointer between all OpenMP threads

2 Ptr ← 0

3 #pragma omp parallel num_threads(ND)

4 Dj ← Copy I to device j // ∀j = 1, . . . , ND

5 if ND > 1 then
6 CS ← Number of CUs of device Dj

7 else
8 CS ← NI
9 end

10 repeat
11 #pragma omp atomic capture
12 Priv_Ptr ← Ptr
13 Ptr ← Ptr + CS
14 end

// Datasets and k were previously copied to Dj

15 if Dj is CPU then
16 IPriv_Ptr ← kmeansCPU(I, CS, DS, k)
17 else
18 IPriv_Ptr ← kmeansGPU(I, CS, DS, k, DST)
19 end
20 until Ptr ≥ NI ;
21 end

22 I ← normalizeFitness(I)
23 return I
24 End

The smaller the value of CS, the greater the number of times the kernel
must be launched to evaluate all individuals. As each device uses a
different CS value, its overhead percentage Ov can be calculated as:

Ov (%) =
tCPY + tCL

t
· 100 (5.3)
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Table 5.6: Experimental setup to analyze MDGA.

Feature Description

Platforms Node 2: all devices

CPU: {1, . . . , 24} / 1 eachCUs /

work-items GPU: all / 1, 024 each

Compiler GCC with -O2 -funroll-loops

Dataset All features used

Individuals {120, 240, 480, 960}
Generations 50

Table 5.7: Time overhead caused by the scheduler defined in MDGA
when 120 individuals are evaluated in NC chunks.

Device NC
Kernel

(ms)

tCPY

(ms)

Bandwidth

(GB/s)

tCL

(ms)

t

(ms)

Ov

(%)

2 587.09 0.33 2.44 47.91 635.33 7.60Quadro

K2000 120 575.89 0.21 6.24 3.05 579.15 0.56

13 263.70 0.23 4.85 11.29 275.22 4.18Tesla

K20c 120 257.37 0.21 6.26 3.07 260.65 1.26

24 230.75
- -

7.95 238.70 3.33Xeon

E5-2620 v2 120 229.05 1.64 230.68 0.71

Sequential 120 2, 546.60 - - - 2, 546.60 0.00

where tCPY is the time to transfer the individuals from host to the
corresponding device, tCL the time required to setup and finish the
kernel, and t the total execution time. As the measurements for tCPY
and bandwidth are provided by the NVIDIA profiler, the equivalent
values for CPU could not be obtained. Table 5.7 shows the overhead
percentage for each device when CS changes. The table demonstrates
that the overhead percentage is higher whenever CS is lower than the
population size (120 in this case). It also reveals that the overhead is
higher in GPU Quadro than in GPU Tesla when the scheduler assigns as
many individuals as CUs have the devices (hereinafter, only Quadro,
Tesla, and Xeon will be written to simplify reading). The reason is that
the kernel time is much higher in Quadro than in Tesla. However, to
compute all individuals, Quadro offers more overhead than Tesla since
it needs 60 kernel executions but Tesla only 5.
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Indeed, the overhead generated by the multiple calls to the CPU and
GPU kernels is quite high. It would be interesting to explore other
implementations to reduce such overhead. E.g., a benchmark could be
run at the beginning of the program to study the relative performance
between devices and apply a static distribution of individuals. However,
although in MDGA all parameters are known a priori, a static strategy
based on the performance of the CPU and GPU CUs could be difficult
to apply to huge heterogeneous platforms. Moreover, other applications
may have dynamic parameters at runtime where static partitioning
is not adequate or cannot be performed. Even in MDGA, the stop
criterion of K-means could be replaced by another where a certain error
threshold is reached. For that reason, the dynamic distribution scheme
of the scheduler defined in MDGA should generally provide better
performance in problems with more irregular workloads.

5.2.2.2 Speedup and Scalability

Experiment 5.5: Evaluate the speedup of MDGA when different
combinations of devices and number of individuals are used. The
experimental conditions are also described in Table 5.6.

Figure 5.8a shows the speedup achieved by four platform configura-
tions when increasing the number of CUs in CPU and using all CUs
in GPU. Starting with the CPU case, the speedup grows when more
CUs are used except from 13 to 16 because in that interval the paral-
lelism obtained does not compensate for the cost of multiplexing some
physical cores between two CUs. From 16 CUs, the speedup is greater
than using only 12 and reaches a peak of 13.63 when CPU uses all
its 24 CUs. The figure also depicts the speedup improvement when
the GPUs are cooperating with CPU. The best speedup is obtained
when all devices are used simultaneously regardless of the number of
CPU CUs involved. Quadro provides a small speedup improvement
when collaborating with CPU since it only has 2 CUs. If Tesla is used
instead Quadro, the opposite occurs because the computing capabilities
of Tesla and CPU are more balanced, as was verified in Experiment 5.3.
As in the CPU case, for any CPU-GPU combination there are also
slight speedup reductions for CUs near to 13. In those situations, the
reductions are less pronounced than that of the CPU case. Nevertheless,
the overhead in configurations involving GPUs is greater. This can
be checked by observing that the highest speedups are achieved with
23 CUs in configurations with two devices (CPU + Tesla and CPU +
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Figure 5.8: Speedup of MDGA for different platform configurations.

Quadro), and with 22 CUs when using all devices. In the latter case,
as the scheduler creates two OpenMP threads to manage the GPUs, if
CPU also uses its 24 CUs to evaluate individuals a total of 26 threads
are being executed simultaneously. As this number exceeds the maxi-
mum CPU capacity (24), obtaining the best speedup with 22 CUs is the
expected behavior. Therefore, in a hypothetical heterogeneous platform
in which the scheduler must manage a large number of devices, an
approximate value of CS for a given CPU could be:

CS = max (1, λC − ND) (5.4)

where λC is the number of CPU CUs. On the other hand. Figure 5.8b
summarizes the highest speedups attained by all possible platform
configurations using different population sizes. It clearly shows the
improvement achieved when more devices are used to distribute the
evaluation of the individuals. In addition, it has been checked that
the values for all population sizes and platform configurations are
statistically significant. Undoubtedly, the introduction of the scheduler
in MDGA has caused a greater impact on application performance
than that caused by the memory optimizations of OPGA. In addition,
the difficulty of the scheduler is low since it is implemented with
only seven source code lines and some slight changes to the existing
code. Despite the good results, it is quite difficult to reach the floating-
point peak performance of CPU and GPU. E.g., the GPU performance
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is greatly impaired by the conditional branches in the kernel code
(if-then-else statements), which cause the work-items of the same
warp to be branched between both statements. As the SIMD model only
allows the execution of one instruction for all work-items, those which
execute the if statement must wait for those which execute the else

and vice versa. Moreover, synchronizations between work-items and the
copy of the individual to be evaluated into local memory also decrease
performance. Although almost all of those drawbacks are not present
in CPU, the achieved speedups are similar in both devices.

5.3 a master-worker multi-population approach

While Section 5.2 presented some optimizations to increase perfor-
mance, this section extends the existing MOGA to a multi-population
model where the subpopulations are distributed among the available
devices. This results in the fifth version developed in this thesis: MPGA.

First, the GA scheme is modified so that each subpopulation has its own
evolutionary process. This can be implemented similar to the MDGA
scheduler, that is, creating as many CPU threads as available devices
through the corresponding OpenMP pragma to parallelize the loop that
iterates over all subpopulations. In this way, each subpopulation Spi is
assigned to one of these CPU threads, which execute the evolutionary
operators for their corresponding subpopulation and performs a call to
the evaluation function. Within the function, as the scheduler defined
in MDGA always distributes individuals among the detected devices,
its behavior must be modified to adapt it to the new circumstances.
Basically, to evaluate the subpopulation received, the scheduler first
checks the total number of subpopulations in the application and the
number of devices: if only one subpopulation is evolving, the MDGA
behavior is applied, but if there are several subpopulations, the device
managed by the CPU thread that called the function will evaluate all
individuals. Thus, MPGA offers two dynamic scheduling alternatives
to evaluate individuals, which it is baptized as DSSI (Figure 5.9).DSSI: Dynamic

Scheduling of

Subpopulations or

Individuals

Concerning to the migration process, a migration implies to build a
new set of subpopulations from individuals of other subpopulations
after a certain number of generations. The process is performed by the
master CPU thread and each subpopulation contributes with the half of
individuals present in its Pareto front at most. When all generations have
been completed, the master CPU thread merges all subpopulations into
a single array of size NSp · N and applies the NDS step. Once the array
is sorted, the final subpopulation is obtained by picking up the first N
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Figure 5.9: Scheme defined in MPGA that allows two dynamic schedul-
ing alternatives to evaluate individuals. It distributes individuals if
only one subpopulation is detected, or subpopulations otherwise.

individuals regardless of whether the size of the resulting Pareto front
is larger than N or not. Although that situation is possible, it did not
occur in any of the experiments carried out.

5.3.1 CPU-GPU Performance

Experiment 5.6: Compare the performance of MDGA and MPGA
when MPGA increases the number of migrations and the total number
of individuals is divided into multiple subpopulations. The experimen-
tal conditions are described in Table 5.8.

Figure 5.10 provides the speedup obtained in MPGA when the to-
tal number of individuals is divided into multiple subpopulations.
Specifically, N = 480 individuals are divided into 1, 2, 4, 8, and 16
subpopulations which contain 480, 240, 120, 60, and 30 individuals,
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Table 5.8: Experimental setup to compare MDGA and MPGA.

Feature Description

Platforms Node 4: CPU and GPU Tesla K40m

CPU: all / 1 eachCUs /

work-items GPU: all / 1, 024 each

Compiler GCC with -O2 -funroll-loops

Dataset All features used

Individuals 480

Subpopulations {1, . . . , 32}
Generations 60

Migrations {1, . . . , 5}

respectively. Figure 5.10a shows results from NM = 1 to 5 migrations
and, as all executions are run along g = 60 generations, a migration
is performed every g

NM
generations. When increasing the number of

migrations, the speedups remain approximately constant. A migration
implies the exchange of individuals between subpopulations and there-
fore a cost in execution time. If increasing the number of migrations has
no impact on performance, it means that the evaluation of individuals
remains the dominant step in terms of computational cost.

In addition, according to the statistical analysis the differences between
executions are not significant and therefore would only be fluctuations
caused by the workload of the operating system at that time. Thus, the
main speedups changes shown in the figure seem to be determined by
the number of subpopulations and their size, where the highest value
is always reached for NSp = 2 subpopulations and the lowest for 8 or
16, depending on the case. Why this happens is easy to understand:
increasing the number of subpopulations also reduces the number
of individuals per subpopulation, a situation that was already ana-
lyzed in Figure 5.8b of experiment Experiment 5.5. This figure showed
the speedup changes for the same population sizes as in the current
experiment, which match.

Figure 5.10b evaluates the speedup for different platform configurations
without performing migrations. The performance of each device (CPU
or GPU) is similar to that seen in version MDGA, although a bit higher
since in this experiment Node 4 of the cluster is being used and it is
slightly more powerful than Node 2. Therefore, the interesting thing
here is to compare the case of 1 subpopulation with the rest using CPU



5 .3 a master-worker multi-population approach 93

1 2 3 4 5

Number of migrations

0

3

6

9

12

15

18

21

24

S
p

e
e

d
u

p

2 subpopulations

4 subpopulations

8 subpopulations

16 subpopulations

(a) Increasing the number of migrations

1 2 4 8 16

Number of subpopulations

0

3

6

9

12

15

18

21

24

S
p

e
e

d
u

p

CPU + GPU

CPU

GPU

(b) Using different platform configurations
without performing migrations

Figure 5.10: Speedup obtained in MPGA when the total number of
individuals is divided into multiple subpopulations.

and GPU simultaneously. When MPGA only evolves 1 subpopulation
and does not perform migrations, it behaves like MDGA. With this in
mind, the performance of both versions can be compared. Simplifying,
what can be observed is that the speedup for 1 subpopulation is always
lower because the scheduling of individuals is applied, and as each
device calls its kernel into chunks of CS individuals, greater overhead
is produced, as it was analyzed in Table 5.7.

On the other hand, Figure 5.11 shows some energy measures of ex-
ecutions seen in Figure 5.10b. It is a common mistake to think that
using more resources to compute leads to more energy consumption,
although it could be true if the application is not parallelized in the
right way, of course. This is demonstrated in Figure 5.11a, which shows
that sequential execution is the one that causes the highest energy
consumption and implicitly also the longest execution time, as shown
in Figure 5.11b. Certainly, although using more resources increases
the instantaneous power (Figure 5.11b), it is remembered that energy
consumption depends not only on instantaneous power but also on
execution time, and hence why the best result is obtained for the con-
figurations that allow to reduce computation time. Finally, using CPU
and GPU simultaneously produces the lowest energy consumption
except in the case of 1 subpopulation. The reason is the same as the one
mentioned above: the overload caused by the scheduling of individuals
that keeps the devices involved in idle state for longer.
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Figure 5.11: Energy measures of MPGA for different platform configu-
rations without performing migrations.

5.3.2 Hypervolume Comparison

Since several parallel and efficient versions are already available at
this point, it is time to evaluate the quality of the solutions obtained
from the best of them. The reason why hypervolume has not been
compared between previous parallel versions6 is because PGA, OPGA,
and MDGA obtain the same hypervolume as in SGA since they are
based on a master-worker approach that does not alter the behavior of
the GA but simply distribute the workload in several ways. However, in
MPGA, the introduction of the migration process and the independent
evolution of each subpopulation cause a change in the evolutionary
behavior that should have an impact on the hypervolume. Figure 5.12

shows the hypervolume obtained after using multiple subpopulations
with and without migrations.

Experiment 5.7: Compare the hypervolume of MDGA and MPGA
when MPGA increases the number of migrations and the total number
of individuals is divided into multiple subpopulations. The experimen-
tal conditions are described in Table 5.8.

6 The MATLAB implementation is excluded due to its poor performance and limitations
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Figure 5.12: Hypervolume obtained in MPGA when the total number
of individuals is divided into multiple subpopulations.

Figure 5.12a is focused on analyzing the effect of dividing N = 480
individuals into 1 to 32 subpopulations, so that there are no migrations
between subpopulations. The maximum value, hv = 0.786, is reached
for NSp = 30, and the lowest corresponds to the case in which the 480
individuals compose a single subpopulation, i.e., the same behavior as
executing MDGA. When more subpopulations are used, the general
tendency of hypervolume is to increase, although not progressively
but with ups and downs. Since the total number of individuals is the
same for any number of subpopulations, the fact that the hypervolume
increases demonstrates that evolving subpopulations separately and
merging them in the end is the best option.

Moreover, the figure reveals a detail that should not be ignored: regard-
less of the number of subpopulations. Why is hypervolume worse than
that obtained in SGA (Figure 5.1a), even if individuals evolve along 60
generations instead of 50? This experiment differs from Experiment 5.1
in that the latter used only the first 480 features of the dataset due to
the high computational cost and MDGA and MPGA use all (3, 600). To
clarify this, both versions have been executed with only 480 features
and the same experimental conditions as those used in SGA. The result:
MDGA and SGA get the same hypervolume (as expected) and MPGA
exceeds SGA and MDGA when using multiple subpopulations (0.853).
Therefore, a plausible explanation could be that as the search space is
larger, the GA has more difficulty to find better solutions.
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Figure 5.12b checks the effect of using 5 migrations for the case in which
only 6 subpopulations evolve because including more subpopulations
in the graph (lines) can be confusing. As the process runs for 60 gener-
ations, migrations occur in generations 12, 24, 36, 48, and 60. The final
hypervolume is 0.77, a little better than that obtained in Figure 5.12

without migrations (0.759). However, what stands out in the figure is the
behavior after each migration, where a small jump in quality is obtained
in almost all subpopulations. Particularly, after the first migration, the
hypervolume increases greatly due to each subpopulation exchanges
many individuals (half of its Pareto front). The negative part is that
in the rest of generations the subpopulations hardly explore new so-
lutions. The reason is that the Pareto fronts of the subpopulations are
quite similar. Although it has been proven to reduce the number of
exchanges between populations, the hypervolume obtained is always
smaller, so despite the behavior observed in Figure 5.12b, it has been
decided to keep that scheme.

5.4 energy-time modeling for workload balancing

Due to the availability of mechanisms such as DVFS and heterogeneous
systems with different power consumption profiles, it is possible to
devise scheduling algorithms for parallel applications aware of both
execution time and energy consumption. This section proposes and
evaluates a bi-objective cost function to optimize the workload dis-
tribution among the CPU and GPU CUs. The objective is to reduce
energy consumption without increasing execution time or to reach a
trade-off between them. The energy-time model considered correspond
to version MPGA, although for simplicity only one population of indi-
viduals is evolved. The cost function is determined by a multiple linear
regression model that requires to assign weights to energy and time
objectives [134]. Moreover, the model is built from the experimental
energy-time values following the approach described in [35].

5.4.1 The Bi-objective Cost Function

The scheduling strategy proposed has to take into account information
about execution time and energy consumption. These two objectives
usually correspond to opposite goals, since improving execution time
could imply the increase of instantaneous power. An alternative to
solve this problem is to use a Pareto-based approach that searches a
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Figure 5.13: Task dependence graph.

set of non-dominated solutions among which the user selects the most
appropriate one for the given situation. Nevertheless, due to the high
execution time required by this Pareto-based approach, a cost function
whose minimum corresponds to the desired trade-off among time and
energy should be implemented. Of course, this trade-off is set offline
by manually setting the parameter values of the cost function.

In a sense, the wrapper approach of the procedures implemented in this
thesis could be interpreted as a set of TT tasks whose dependence graph
is shown in Figure 5.13a. In this graph, tasks T1, . . . , TT can be executed
in parallel after task T0, which are repeated cyclically until the end
of the execution. Moreover, the execution time of task T0 is negligible
with respect to that of parallel tasks. Many useful applications can be
parallelized according to the dependence graph of Figure 5.13a. Given
a task i with a workload equal to Wi clock cycles that is assigned to a
device j running at frequency f , it is possible to define two deviations
∆t(Wi, f j) and ∆E(Wi, f j) with values in the interval (0, 1):

∆t(Wi, f j) =
t(Wi, f j)− t(Wmin, fmax)

t(Wmax, fmin)− t(Wmin, fmax)
(5.5)

∆E(Wi, f j) =
E(Wi, f j)− E(Wmin, fmin)

E(Wmax, fmax)− E(Wmin, fmin)
(5.6)

Both equations are related to the relative deviations of the estimated
time and energy, t(Wi, f j) and E(Wi, f j), respectively. The min max
configurations in combination with C and f determine the situations of
maximum and minimum workload and frequency in which a task could
be. E.g., t(Wmin, fmax) is the time required by the task with the lowest
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workload in a device running at the highest frequency. In the same way,
t(Wmax, fmin) is the time required by the task with the highest workload
in a device running at the lowest frequency. The same logic is applied
to energy. Thus, to select a device and the corresponding frequency for
a given task, the scheduling algorithm could use a cost function that
takes into account both energy and time objectives through deviations
∆t(Wi, f j) and ∆E(Wi, f j). The bi-objective cost function is defined as:

∆(Wi, f j) = a · ∆t(Wi, f j) + b · ∆E(Wi, f j) (5.7)

with positive coefficients a and b verifying that a + b = 1. Depend-
ing on the values of a and b, it is possible to give more relevance to
the optimization of time or energy. Parameters t(Wi, f j) and E(Wi, f j)
also allow the determination of the maximum and minimum values
for time and energy: t(Wmax, fmin), E(Wmax, fmax), t(Wmin, fmax), and
E(Wmin, fmin). Different approaches have estimated these parameters to
quantify the energy-time behavior of an application in a given comput-
ing platform. As in [49] and many other works, the energy model can
be estimated from equations of instantaneous power corresponding to
CMOS circuits, which include the terms capacitance, short-circuit, andCMOS: Complemen-

tary Metal–Oxide

Semiconductor

leakage power. Assuming the capacitance term as the most significant,
the instantaneous power P in a device j can be estimated as:

Pj = α · f j ·
(
Vj
)2 (5.8)

where Vj is the supply voltage and parameter α the product of the
number of transistors switching in the device per clock cycle and the
total capacitance load. On the other hand, the execution time of task i
is calculated dividing its workload Wi by the device frequency, f j:

tj =
Wi
f j

(5.9)

As energy consumption E depends on instantaneous power and execu-
tion time, its value for a time tj can be defined as follows:

Ej = Pj · tj

= α · f j ·
Wi
f j
·
(
Vj
)2

= α ·Wi ·
(
Vj
)2

(5.10)
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Whenever a device j is in (I)dle state, there is a term called indirect
energy consumption, which can be estimated as:

EI
j = α · f j · tI

j ·
(

V I
j

)2
(5.11)

being V I
j the supply voltage of the device in idle state for a time tI

j .
A device j can operate at different SVLs, Vj,l ; ∀l = 1, . . . , VL, which SVL: Supply Voltage

Levelcorresponds to different clock frequencies, f j,l . Therefore, using those
terms and substituting, the deviations of Equations (5.5) and (5.6) can
be redefined as follows:

∆t(Wi, f j,l) =

Wi
f j,l
− t(Wmin, fmax)

t(Wmax, fmin)− t(Wmin, fmax)
(5.12)

∆E(Wi, f j,l) =
α ·Wi ·

(
Vj,l

)2
− E(Wmin, fmin)

E(Wmax, fmax)− E(Wmin, fmin)
(5.13)

In Equation (5.12), parameters t(Wmax, fmin) and t(Wmin, fmax) can be
obtained from the frequencies of the available devices, f j,l , and from
the highest and lowest Wi values because they are known in advance.
In Equation (5.13), the energy consumption while the devices are idle is
not explicitly shown to prevent unnecessary complexities in the mathe-
matical expressions. Taking into account that, the following parameters
can be evaluated:

t(Wmax, fmin) =
max (Wi)

min
(

f j,l

) (5.14)

t(Wmax, fmax) =
max (Wi)

max
(

f j,l

) (5.15)

t(Wmin, fmin) =
min (Wi)

min
(

f j,l

) (5.16)

t(Wmin, fmax) =
min (Wi)

max
(

f j,l

) (5.17)

verifying that t(Wmin, fmax) < t(Wmax, fmax) < t(Wmax, fmin) and also
that t(Wmin, fmax) < t(Wmin, fmin) < t(Wmax, fmin). Moreover, it is also
possible to define the corresponding energy consumption parameters:
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E(Wmax, fmin) = α ·max (Wi) ·min
(

Vj,l

)2
(5.18)

E(Wmax, fmax) = α ·max (Wi) ·max
(

Vj,l

)2
(5.19)

E(Wmin, fmin) = α ·min (Wi) ·min
(

Vj,l

)2
(5.20)

E(Wmin, fmax) = α ·min (Wi) ·max
(

Vj,l

)2
(5.21)

which verify that E(Wmin, fmin) < E(Wmax, fmin) < E(Wmax, fmax) and
also that E(Wmin, fmin) < E(Wmin, fmax) < E(Wmax, fmax).

5.4.2 Energy-aware Procedure for Task Scheduling

In what follows, a scheduling procedure that assigns tasks to devices
and frequencies with the objective of minimize both execution time and
energy consumption is described. The procedure takes advantage of
the proposed bi-objective cost function seen in Section 5.4.1, which joins
the deviations of Equations (5.12) and (5.13). The assignment of tasks
is carried out taking into account the available energy-time models and
the characteristics of the devices where the tasks are executed. Among
these characteristics, the possible frequencies at which the devices
can run and the availability of changing frequencies and voltages
either by the operating system or the user. Algorithm 5.4 provides the
pseudocode of the proposed scheduling procedure. Given a set of TT
tasks with workloads C, the procedure sorts the tasks according to
their workloads, verifying that Wi ≤ Wi+1 and therefore prioritizing
the execution of the lightest tasks. The frequencies of the ND devices
among which the tasks have to be distributed are also sorted according
to their values to obtain fmin and fmax.

Algorithm 5.4 proceeds as follows. For the first task W1 in the sorted list
of tasks, the cost function ∆(W1, f j,l) = a · ∆t(W1, f j,l) + b · ∆E(W1, f j,l)
is evaluated in order to assign this task to all possible frequencies in
the available devices. The task is assigned to device and frequency for
which the lowest value of ∆(W1, f j,l) is obtained. Then, the device and
its operating frequencies are marked as selected and the procedure
continues with the next task. The energy-aware scheduling procedure
could be implemented either in the runtime system or in the application,
depending on whether the changes in the device's frequency are done at
system or user level. E.g., it could be implemented inside the application
code whenever DVFS is available at user level.
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Algorithm 5.4: Pseudocode of the energy-aware procedure for
task scheduling.

1 Function EnergyAwareProcedure(T, ND, W, FL, a, b)
Input : Number of tasks, T
Input : Number of devices, ND
Input : Set W: workloads of the tasks
Input : Matrix FL: frequency levels of each device
Input : Coefficient a, related to execution time
Input : Coefficient b, related to energy consumption

2 W ← Sort verifying Wi ≤Wi+1

3 Wmax and Wmin ← max (W) and min (W)

4 FL← Sort by device j, FLj

5 repeat

// Select device and frequency to assign Wi
6 repeat
7 if device j has not been previously selected then

8 FL = size
(

FLj
)

9 fmax and fmin ← max
(

FLj
)

and min
(

FLj
)

10 t(Wmax, fmin)← Equation (5.14)

11 t(Wmin, fmax)← Equation (5.17)

12 E(Wmax, fmin)← Equation (5.18)

13 E(Wmin, fmax)← Equation (5.21)

14 repeat
15 ∆

(
Wi, f j,l

)
= a · ∆t

(
Wi, f j,l

)
+ b · ∆E

(
Wi, f j,l

)
16 until all f = FL frequency levels are considered;
17 end
18 until all j = ND devices are evaluated;

19 Wi → Assign to j and f that get the minimum ∆
(

Wi, f j,l

)
20 j← Mark device as selected

21 until all i = T tasks are assigned;
22 End

Moreover, the procedure can also be implemented in heterogeneous sys-
tems that include devices with different energy consumption profiles,
i.e., different operating frequencies or voltages. Given a set of TT tasks
to be distributed among ND devices, each with FL possible frequencies,
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Figure 5.14: Time increments and energy decrements with respect to
different scheduling procedures.

the computational complexity of the procedure is O(TT · ND · FL). I.e.,
the program explores all combinations to obtain the global optimum.
However, for very large sizes of TT , ND, and FL, this approach would
require an unsuitable computational cost, so that optimization methods
such as EAs are required to find a trade-off between time and energy.

On the other hand, the procedure considers that the number of available
devices, ND, matches with the number of tasks, TT . Nevertheless, the
procedure could be used in case of having more tasks than devices,
TT > ND. If this were the case, the remaining WR = TT − ND tasks can
be successively assigned once a device j completes the current task. In
the same way as for the first ND tasks, the cost function ∆(WR, f j,l) is
evaluated. The frequency f of device j for which the lowest value of
∆(WR, f j,l) is obtained is the one used.

Figure 5.14 provides information about the increments in execution
time and decrements in energy consumption obtained by simulating
Algorithm 5.4. The simulation uses 100 different random task con-
figurations with computing costs in the range of 100 and 3, 000. A
heterogeneous configuration with devices running at different sets of
relative speeds has been considered (see Table 5.9). These speeds are
relative with respect to the one achieved at the frequency of 1 GHz
(100% in P5, P6, P7, and P8). An idle frequency of 100 MHz has been
considered and the pairs of simulated coefficients (a, b) are (0.1, 0.9),
(0.25, 0.75), (0.5, 0.5), (0.75, 0.25), and (0.9, 0.1).
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Table 5.9: Relative speeds (%) used in the devices for the simulation of
task scheduling seen in Algorithm 5.4.

Devices P1 P2 P3 P4 P5 P6 P7 P8

80 80 80 80 100 100 100 100

64 64 64 64 80 80 80 80Relative speed (%)

40 40 40 40 50 50 50 50

Figure 5.14a compares the scheduling obtained by Algorithm 5.4 with
a random assignments of tasks to devices running at their highest fre-
quencies. Figure 5.14b shows the increments with respect to a schedul-
ing that provides the minimum execution time. Figure 5.14 demon-
strates that, when coefficient b increases (and thus a consequently
decreases), the decrements in energy consumption with respect to the
reference scheduling are larger at the cost of increasing execution time.

5.4.3 A Scheduling Model for CPU-GPU Platforms

This section deals with the case of a platform including only two
different kinds of devices, CPU and GPU, among which it is necessary
to distribute a set of tasks. This allows a specific way for applying the
proposed bi-objective cost function ∆(Wi, f j) described in Section 5.4.1.
As previously mentioned, the model to be developed is applied to
version MPGA but with only one population, so that individuals are
distributed among the CPU and GPU CUs. Therefore, as the evaluation
of individuals is the heaviest task, the workload scheduling is reduced
to determine the rate of individuals assigned to GPU and CPU, x and
1− x. A model for execution time could be:

t = g ·
[

N · tM + max
(⌈

x · N
λG

⌉
· tG,

⌈
(1− x) · N

λC

⌉
· tC

)]
(5.22)

where g is the number of generations, N the number of individuals,
and λC and λG are the number of CPU and GPU CUs, respectively.
Parameter tM corresponds to the time required by the master thread to
process task T0 (Figure 5.13a) at each iteration, while parameters tC and
tG are the time required by CPU and GPU to evaluate one individual,
respectively. Parameters tM, tC, and tG can also be expressed according
to the workload and frequency of the corresponding device as:
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tM =
WM
fC

(5.23)

tC =
WC
fC

(5.24)

tG =
WG
fG

(5.25)

where fC and fG are the frequencies of the CPU and GPU CUs, respec-
tively. WM, WC, and WG are, in this order, the estimation of the cycles
for workloads of task T0, the evaluation of an individual in CPU, and
the evaluation of an individual in GPU. If all these terms are substituted
in Equation (5.22), the execution time can be modeled as:

t = g ·
[

N ·WM
fC

+ max
(⌈

x · N
λG

⌉
· WG

fG
,
⌈
(1− x) · N

λC

⌉
· WC

fC

)]
(5.26)

A consideration has to be highlighted regarding to the model of Equa-
tion (5.26). It has been supposed that the time required to evaluate
one individual, tC and tG, is the same for all individuals. This circum-
stance is unusual for other applications, but the MOGA approach of
version MPGA can be suitably modeled in this way because the number
of K-means iterations is fixed. Taking that into account, it is possible
to fit two linear regressions considering the values of the workload
distribution, x, verifying:

⌈
x · N
λG

⌉
· WG

fG
≤
⌈
(1− x) · N

λC

⌉
· WC

fC
(5.27)⌈

x · N
λG

⌉
· WG

fG
>

⌈
(1− x) · N

λC

⌉
· WC

fC
(5.28)

As the model is based on linear regression, the expressions obtained
match with the equation of a line in a 2D space, i.e., y = z + mx, where
m and z are the slope and y-intercept of the line, respectively:

tle f t = tle f t_0 + tle f t_1 ·
⌈
(1− x) · N

λC

⌉
(5.29)

tright = tright_0 + tright_1 ·
⌈

x · N
λG

⌉
(5.30)
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being tle f t the execution time in case of low values of x, where more
workload is assigned to CPU and thus GPU ends its workload earlier.
Following this scheme, tright is the execution time for high values of
x, where CPU finishes its workload earlier. Thus, for a given platform,
from the experimental values of tle f t and tright when using different x
values, it is possible to determine tC, tG, and tM since N, λC, and λG are
known. In addition, the values of WC, WG, and WM can be determined
because fC and fG are also known.

In what follows, an approximate model for energy consumption is
described. Since more terms are involved in the energy model than
in the time one, some of them will be grouped into new terms to
simplify. In this way, the terms RλC and RλG are defined as the ratio of
individuals assigned to a single CU of CPU and GPU, respectively.

RλC =
(1− x) · N

λC
(5.31)

RλG =
x · N
λG

(5.32)

Given a device j with λj CUs running at frequency f j, the energy
consumption during the evaluation of its individuals can be expressed
as the product of instantaneous power and execution time of each CU
plus the energy consumption of the CUs that are idle. Thus, the energy
consumption of CPU and GPU in each generation g can be defined as:

EC = PC ·
⌊

RλC

⌋
· tC +

PC
λC
·
[
(1− x) · N −

⌊
RλC

⌋
· λC

]
· tC + EI

C

= PC · RλC · tC + EI
C

= PC · RλC ·
WC
fC

+ EI
C

=
PC · RλC ·WC

fC
+ EI

C

(5.33)

EG = PG ·
⌊

RλG

⌋
· tG +

PG
λG

(
x · N −

⌊
RλG

⌋
· λG

)
· tG + EI

G

= PG · RλG · tG + EI
G

= PG · RλG ·
WG
fG

+ EI
G

=
PG · RλG ·WG

fG
+ EI

G

(5.34)
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Figure 5.15: GPU energy model expressions.

where PG is the instantaneous power when the GPU CUs are evaluating
individuals, and EI

G is the energy consumption of the idle CUs. PC and
EI

C are the analogous terms for CPU. The rationale for the previous
Equations (5.33) and (5.34) can be understood from Figure 5.15, which
refers to GPU but can also be applied to CPU (substituting x by 1− x).

In the figure, the squares in the horizontal dimension corresponds to
the number of CUs (λG) while the squares in the vertical dimension
corresponds to the times that the CUs work in parallel once the x · N
individuals are distributed among them. A blue square indicates that
the CU works with an instantaneous power of PG

λG
. On the contrary, a

white square corresponds to the instantaneous power when the CU are

in idle state, PI
G

λG
. Probably, in the last generation not all available CUs

work. Taking into account the previous expressions, the total energy
consumption along g generations is:

E = g · [EG + EC + ε]

= g ·
[

PG · RλG ·WG

fG
+

PC · RλC ·WC

fC
+ EI

C + EI
G + ε

] (5.35)

The last term, ε, corresponds to the energy consumed by task T0 and
other elements of the platform such as memory, buses, and I/O. Models
for EI

C and EI
G can also be obtained from the characteristics of the

platform and workload distribution as:

EI
C = PI

C ·
(
1− RλC +

⌊
RλC

⌋)
· WC

fC

=
PI

C ·
(
1− RλC +

⌊
RλC

⌋)
·WC

fC

(5.36)
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EI
G = PI

G ·
(
1− RλG +

⌊
RλG

⌋)
· WG

fG

=
PI

G ·
(
1− RλG +

⌊
RλG

⌋)
·WG

fG

(5.37)

Summarizing, the parameters of the energy-time models seen in Equa-
tions (5.26) to (5.30) and (5.33) to (5.37) could be determined from
experiments considering different workload rates (x), number of in-
dividuals (N), generations, (g), CUs (λC and λG), and frequencies ( fC
and fG, respectively). By fitting Equation (5.26) with experimental time
measures, it would be possible to obtain parameters WM, WC, and WG.
Once these values are substituted in Equations (5.35) to (5.37), the ex-
perimental values of energy consumption can be used to determine PC,
PG, PI

C, PI
G, and ε after fitting the energy model of Equation (5.35). Thus,

according to Equations (5.35) to (5.37) the multiple linear regression
model presents the following terms:

E = A0 + A1 · RλG + A2 ·
⌊

RλG

⌋
+ A3 ·

⌊
RλC

⌋
+ ε (5.38)

where coefficients A0, A1, A2, and A3 can be related to the parameters
of the model from Equations (5.35) to (5.37) as:

A0 = g ·
[

PI
G ·

WG
fG

+ PI
C ·

WC
fC
·
(

1− N
λC

)
+ PC ·

N
λC
· WC

fC

]
(5.39)

A1 = g ·
[(

PG − PI
G

)
· WG

fG
−
(

PC − PI
C

)
· WC

fC
· λG

λC

]
(5.40)

A2 = g · WG
fG
· PI

G (5.41)

A3 = g · WC
fC
· PI

C (5.42)

With all this, it is possible to build the cost function for unknown values
of N, g, λC, λG, etc. This approach for static workload scheduling is
depicted in Figure 5.16 and experimentally analyzed in Section 5.4.4.
The flow is as follows: multiple experiments with different workload
distributions are executed in CPU and GPU at a certain operating
frequency. From the experimental results, the energy-time model, and
the linear regression, the necessary parameters are obtained to generate
the bi-objective cost function, which determines the best static workload
distribution for the devices present in the heterogeneous platform.
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Regression
procedure
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into: (𝒙, 𝟏 − 𝒙)

Static workload distribution
Generation of the bi-objective

cost function

CPU CUs at 𝒇𝑪 MHz: 𝝀𝑪
GPU CUs at 𝒇𝑮 MHz: 𝝀𝑮

Figure 5.16: Scheme of the static workload distribution procedure for
CPU-GPU platforms.

5.4.4 Experimental Analysis of the Model

This section analyzes the model quality by running version MPGA
under different experimental conditions. The frequency of the CPU
cores is modified using the Unix cpupower command, which needs
superuser privileges for proper operation. Figures 5.17 and 5.18 provide
the time and energy measures, respectively, and curve fitting using the
model and multiple linear regression.

Experiment 5.8: Evaluate how the model fits the experimental results
and determine the optimal workload value for CPU and GPU when
different numbers of individuals and CPU frequencies are used. The
experimental conditions are described in Table 5.10.

Looking at Figures 5.17 and 5.18, it can be seen that the accuracy
of curve fitting is acceptable. In particular, the minimum of the fitted
curves corresponds to that experimentally observed. Indeed, it has been
proven that the R-squared (R2)7 values are closed to 1 in all alterna-
tives. In addition, p-values and error standard deviations demonstrate
that the proposed energy-time model is statistically significant. From
the experimental energy measures, it is clear that the curves do not
evolve linearly with the rate of GPU workload (x) and therefore ε in
Equation (5.35) does not either. The rest of terms in that equation are
linear with x or, as can be seen in Equations (5.33) and (5.34), bounded
by curves that are linear with x.

7 R-squared values approaching 1 is better
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Table 5.10: Experimental setup to analyze the energy-time model for
workload distribution.

Feature Description

Platforms Node 4: CPU and GPU Tesla K40m

CPU: all / 1 eachCUs /

work-items GPU: all / 1, 024 each

CPU: {1200, 1600, 2100} MHz
Frequency

GPU: maximum MHz

Compiler GCC with -O2 -funroll-loops

Dataset All features used

Individuals {240, 960}
Generations 50
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Figure 5.17: Curve fitting of experimental time measures for different
GPU workload rates (x), CPU frequencies, and population sizes, N.

The energy consumption by the application depends on the power
dissipated by the CPU and GPU CUs, other on-chip elements such as
memory and buses, and the remaining components of the system. It is
possible to assume that the power dissipated by all these elements is
constant once the computer has executed some workload for a time [45].
Moreover, it seems that ε behaves as a constant term up to a certain
value of x, from which the GPU memory transfers via PCIe bus implies



110 5 development on single-computer systems

0 0.2 0.4 0.6 0.8 1

Rate of GPU workload

0.8

1

1.2

1.4

1.6

1.8

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

W
 ·

 h
)

1,200 MHz

1,600 MHz

2,100 MHz

1,200 MHz (fit)

1,600 MHz (fit)

2,100 MHz (fit)

(a) N = 240 individuals

0 0.2 0.4 0.6 0.8 1

Rate of GPU workload

2.5

3

3.5

4

4.5

5

5.5

6

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

W
 ·

 h
)

1,200 MHz

1,600 MHz

2,100 MHz

1,200 MHz (fit)

1,600 MHz (fit)

2,100 MHz (fit)

(b) N = 960 individuals

Figure 5.18: Curve fitting of experimental energy measures for different
GPU workload rates (x), CPU frequencies, and population sizes, N.

more power consumption. From this value of x, the experimental
results seems to correspond to linear increments in ε when x grows.
It has to be taken into account that, although the time required by
memory accesses and bus transfers can be overlapped with CPU or
GPU processing without impacting on time, these elements consume
energy that is added to the values obtained. Therefore, ε is modeled as:

ε = ε0 · (x− xc) ·
⌊

x
xc

⌋
(5.43)

The value of xc in Equation (5.43) can be obtained by two linear regres-
sions. The first one is applied to values of x lower than xc and close to
0, corresponding to workloads much higher in CPU CUs than in GPU.
On the contrary, the second linear regression is applied to values of x
higher than xc and close to 1, where GPU has assigned more workload
than CPU. The crossing point between both lines estimates the value of
xc. Table 5.11 provides the estimated values of xc for different values of
N and fC to obtain the minimum execution times.

Table 5.12 provides some parameters of the energy-time model once
they are fitted to the experimental data of Figures 5.17 and 5.18. The val-
ues obtained, WM = 0.46 · 106, WC = 78.48 · 106, and WG = 13.69 · 106

cycles allow to solve Equation (5.26) and thus the possibility of predict-
ing the curves for the values of fC and N used. The values provided in
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Table 5.11: Estimated values of xc for different population sizes (N) and
CPU frequencies to obtain the minimum execution time, tmin.

N
fC

(MHz)
xc ± 0.05 x (tmin)± 0.05

1, 200 0.75 0.75

1, 600 0.75 0.60240

2, 100 0.50 0.50

1, 200 0.70 0.70

1, 600 0.65 0.60960

2, 100 0.50 0.55

Table 5.12: Parameters of the energy-time model fitted by multiple
linear regression. WC, WG, and WM values are given in (C)ycles ·106.

N
fC

(MHz)

WC

(C)

WG

(C)

WM

(C)

PC
λC

(W)

PG
λG

(W)

PI
C

λC

(W)

PI
G

λG

(W)

ε0

(W · h)

1, 200 78.48 13.79 0.46 7.96 9.62 1.41 2.48 1.82

1, 600 74.62 14.05 0.58 8.23 12.11 1.53 4.46 1.13240

2, 100 73.16 14.06 0.63 11.70 6.74 1.37 2.05 1.57

1, 200 82.30 15.22 0.38 6.44 4.39 2.78 1.38 8.07

1, 600 79.09 15.13 0.48 6.44 6.17 2.99 2.35 4.82960

2, 100 74.96 14.88 0.61 9.52 4.44 3.41 1.43 5.75

Table 5.12 for parameters WC and WG present standard deviations of
only 5.2% and 3.5%, respectively, compared to their respective mean
values. This circumstance seems to corroborate the assumption pre-
sented in Section 5.4.3 indicating that a similar number of cycles is
required to evaluate all WG individuals in GPU and all WC in CPU.

Moreover, from the experimental energy values after executing the
application it is possible to determine PC, PG, PI

C, PI
G, and ε0 from the

multiple linear regression of Equation (5.38), in which the term ε is
substituted by its definition given in Equation (5.43). As Table 5.12

shows, these parameters depend on the operating frequency of CPU.
The values of PC are similar for 1, 200 and 1, 600 MHz but higher for
2, 100 MHz in all population sizes. Regarding PG, the values in all
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Figure 5.19: Instantaneous power of MPGA for some fC and x values
using 1 subpopulation with N = 960 individuals.

population sizes are higher for 1, 600 MHz than for 1, 200 and 2, 100
MHz, which present similar values. The values of PC range from 1.4 to
3.7 times higher than those of PG. With respect to the parameters related
to energy consumption, the experimental results of Table 5.11 shows
that the values of xc slightly decrease when the CPU frequency grows
and almost do not change with the population size. Also, for each
population size, ε0 decreases from 1, 200 to 1, 600 MHz and slightly
increases from 1, 600 to 2, 100 MHz, as shown in Table 5.12. For each
CPU frequency, ε0 clearly grows with the population size, N.

Figure 5.19 draws the temporal evolution of the instantaneous power.
On the one hand, Figure 5.19a uses different CPU frequencies ( fC)
and the same workload distribution for CPU and GPU (x = 0.5).
On the other hand, Figure 5.19b uses fC = 2, 100 MHz and different
workload rates. From Figure 5.19a, it is clear that the instantaneous
power grows with fC and the value for 1, 600 MHz is closer to that
for 1, 200 MHz than for 2, 100 MHz. Moreover, it seems that execution
time is reduced proportionally to the increase in instantaneous power.
Figure 5.19b shows that the instantaneous power also changes with
the GPU workload rate. The line with the lowest value corresponds to
the situation in which all individuals are evaluated in GPU (x = 1.0).
This scenario reveals that GPU is a little more efficient than CPU since
the required execution time is the same but energy consumption is
lower. Finally, the higher instantaneous power is obtained when x = 0.5
because both devices are computing at the same time.
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5.5 conclusions

Throughout this chapter, eight sets of experiments have been carried
out to analyze five of the versions implemented under different experi-
mental conditions. Also, to complement the analysis, an energy-time
model has been designed capable of identifying and explaining the
behavior of the latest version developed so far, MPGA, although its
application is limited to the use of a single population of individuals.

Experiment 5.1 has shown that choosing a lower level programming
language allows to reduce execution time without having to parallelize
the application. Although programming with MATLAB is fast and
intuitive, using C++ is worth not only for its great performance but
also for its versatility and flexibility in managing hardware resources.

Experiment 5.2 has analyzed the first parallel version, which uses C++
for the host code and the OpenCL API to develop the CPU and GPU
kernels. The parallelization is based on a round-robin strategy in which
individuals are distributed statically among CPU or GPU CUs. The
results have shown that both devices accelerate the application several
orders of magnitude with respect to the sequential version, with CPU
being the device that gets the best speedup mainly due to its large
number of CUs and the performance per CU. Although appreciable
speedups are provided by GPU, its performance is poor compared
to the peak performance that its architecture can provide. The same
happens in CPU, but to a lesser extent.

For that reason, version OPGA has mainly focused on improving the
performance of the GPU kernel by reducing memory usage and apply-
ing the coalescing technique to optimize memory access. The analysis
carried out in Experiment 5.3, which compares OPGA and the non-
optimized version, has shown an improvement in the GPU speedup so
that its performance per CU already exceeds that achieved by CPU.

However, in general terms, GPU is outperformed since it has fewer
CUs. The analysis has also revealed that using more CUs than GPU can
handle simultaneously provides extra performance by hiding latencies.
The effect of using coalescing has been revealed not only by the increase
in speedup, but also by the fact that the non-optimized version gets
worse performance when the number of work-items increases too much
(1, 024 in this case because the work-items are distributed in a single
dimension, or range). Despite all optimizations applied, the synchro-
nization barriers and the required memory transfers between host and
GPU via PCIe bus, among others, still affect the final execution time.
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To increase the application performance, a master-worker scheduler
has been developed in version MDGA to dynamically distribute the
evaluation of individuals by simultaneously launching CPU and GPU
kernels. According to the results shown in Experiments 5.4 and 5.5,
through this scheduler the speedup obtained is almost equivalent to
the sum of the speedup that the devices obtain separately. Therefore,
the small loss of performance is conditioned by the times that the
OpenCL kernels are called, since a call to the kernel implies a certain
overhead caused by memory copies, parameter initialization, etc., as
seen in Table 5.7. From all combinations of devices evaluated, the best
result has been obtained for the combination that includes all devices,
demonstrating the efficiency of the scheduler.

One thing to highlight is the speedup behavior when scaling the num-
ber of CPU CUs. For a certain range, the speedup reached is worse than
using as many CUs as the number of physical cores the CPU has. This,
at least, in the case of CPUs with Hyper-Threading. Another conclusion
that can be obtained is that it is not a good idea to use all CPU CUs
in the kernel if CPU must also manage one or more GPUs. As has
been specified in Equation (5.3), the optimal number of CUs should
be less than the total number of CPU CUs and equal to the chunk of
individuals to be evaluated to avoid workload imbalance.

Taking into account that the kernels have been improved and the pro-
gram already allows to take advantage of all available devices, the
difficulty to optimize more is high. To continue improving, version
MPGA extends the current GA to a multi-population one where the sub-
populations are dynamically distributed among the devices, providing
up to three levels of parallelism in GPU. As shown in Experiment 5.6,
the speedup improves markedly with respect to version MDGA when
more than two subpopulations and all devices are used. In addition,
the use of migrations seems not to affect performance.

The figures also show that energy consumption depends on execution
time. Therefore, the lowest energy values are also obtained for the
situation in which all devices compute even though its instantaneous
power is greater. A performance comparison of all versions can be
seen in Figure 5.20, whose caption shows the experimental conditions.
Regarding hypervolume, as seen in Experiment 5.1, the main factor
that affects its final value is the total number of individuals followed
by the number of generations. Moreover, in Experiment 5.7 of MPGA,
the use of migrations and the division of individuals into subpopula-
tions provides better results than those achieved by previous versions,
reaching maximums of hv = 0.853 and 0.786 depending on whether all
features of the dataset are used or only first 480, respectively.
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Figure 5.20: Maximum speedup and energy consumption of the ver-
sions presented in this chapter when using 50 generations, 960 individ-
uals, and Node 2 of the cluster. MPGA evolves two subpopulations and
does not perform migrations.

Finally, in Section 5.4 a bi-objective cost function ∆ = a · ∆t + b · ∆E is
proposed to determine the best workload distribution according to the
information of execution time and energy consumption. It also allows
the prediction of time and energy for a given workload distribution and
computing platform once a suitable model is available. The cost func-
tion has been evaluated by simulation and is designed for those cases
in which the heterogeneous architecture include DVFS mechanisms
that allow different power consumption profiles for the devices.

In Experiment 5.8, the application is executed in a heterogeneous CPU-
GPU platform at different CPU frequencies. Moreover, by multiple
linear regression, the energy-time model has been fitted to the exper-
imental results with good accuracy and statistical significance. The
experiments have shown that by using adequate values for coefficients
a and b it is possible to get relevant energy-savings without important
increases in execution time. As energy consumption is the product of
instantaneous power and execution time, lower energy values can be
obtained once the right workload distribution is considered even using
higher CPU frequencies. The experiments demonstrate that, for some
applications like the MOGA here evaluated, the effect of programming
strategies that take into account energy-time profiles is directly ob-
servable in the behavior of the computing platforms, which opens the
possibility of analyzing, modeling, and optimizing the application.
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Distributed computing systems arise in response to the large number
of applications that make use of intensive computing. Although

the performance of single-computer systems continues to increase, it
does not improve at the same rate as the computing requirements. The
depletion of Moore's law, the high frequencies that microprocessors
already reach, or the difficulty in continuing to reduce lithography
are some of the causes that make single-computer systems not viable
for many applications. In Chapter 5, the developed versions already
exploited the capabilities that a heterogeneous computer can offer:
parallelism in CPU and GPU, optimization of kernels using techniques
such as coalescing, and the distribution of workload between both de-
vices. The evolutionary scheme was also changed to introduce the
multi-population MOGA, providing a slight improvement in perfor-
mance and hypervolume at the cost of an important algorithmic change.
In short, a situation has been reached in which the effort to scratch more
performance is not worth it unless the computing paradigm changes.
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Thus, in this chapter the application is extended to distributed sys-
tems to continue increasing performance. These systems offer new
computational paradigms and therefore new energy profiles that must
be taken into account when designing new versions. The procedures
implemented correspond to versions DGA, DGA-II, ODGA, DNN, and
GAAM, which following the methodology of Chapter 5 are evaluated
by eight sets of experiments with different experimental conditions.

The chapter is organized as follows: Section 6.1 describes and analyzes
the implementations based on the master-worker scheme. This includes
the first distributed version, another one in which the OpenCL CPU
kernel is replaced by an OpenMP-based implementation, and a new
version that optimizes the workload distribution and whose skeleton
is reused in Section 6.1.4 to distribute CNNs among the cluster nodes.
On the other hand, a multi-population approach with asynchronous
migrations is proposed in Section 6.2 as an alternative to the master-
worker approach implemented in previous versions. Finally, Section 6.3
shows the conclusions after finishing the experimentation.

6.1 implementations based on a master-worker scheme

Although having several nodes in the cluster provides different par-
allelization profiles, their computing devices and the characteristics
of the application will determine the approach to be used. In dis-
tributed systems, multi-population EAs can be treated mainly in two
ways: distribute the evaluation of subpopulations following the iterative
master-worker approach used in the previous procedures, or distribute
all subpopulations among the nodes before starting the evolutionary
process. In this chapter, both alternatives are studied. This section
tackles the master-worker approach and leaves the other for Section 6.2.

6.1.1 The First Distributed Version

The first distributed version that makes use of the cluster is called DGA,
and is presented as an evolution of version MPGA. The procedure is
developed with the MPI library for communication between nodes,
which entails major changes in the source code and therefore also
increases its complexity. So, if it has been previously commented that
changing the paradigm is partially motivated by the difficulty of contin-
uing to improve, why use an even more complex paradigm now? The
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Figure 6.1: MPI-OpenMP scheme defined in DGA, which constitutes
the first and second parallelism levels.

answer lies in the great potential in terms of performance offered by a
multicomputer system, making the effort worthwhile. A well-designed
source code would allow the program to easily scale according to the
number of nodes or computers that the cluster has. In case of MPGA,
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the program could be improved, e.g., using the SIMD model to take
advantage of vectorization in certain OpenCL kernel operations, but its
impact on performance would be slight. However, it all depends on
the requirements of the application. In the hypothetical case where the
maximum performance is needed all possibilities must be explored.

6.1.1.1 A New Parallelism Level

The main advantage of dividing parallelism into multiple hierarchical
levels, or layers, is that each of them can be optimized independently.
DGA adds a new parallelism level in addition to the three levels al-
ready offered by version MPGA, becoming the first level of parallelism.
Therefore, the new hierarchy is as follows:

1. First level: distribution of subpopulations among cluster nodes.
2. Second level: distribution of subpopulations/individuals among

OpenCL devices.
3. Third level: distribution of individuals among CUs.
4. Fourth level: GPU data parallelism in K-means.

Figure 6.1 depicts how the first level links with the second, starting with
the initial distribution of subpopulations in the master node, and end-
ing with the fitness evaluation of each individual in the worker nodes.
The second, third, and fourth levels correspond to the first, second, and
third levels of MPGA, which were already shown in Figure 5.9. In the
first level, the master distributes subpopulations among the worker
nodes through MPI functions. Each node is assigned an MPI process,
but the master is always the process with rank #0 and runs on Node 1.
To minimize workload imbalance, the subpopulations are distributed
dynamically. Observing Algorithm 6.1, the master obtains dataset DS,
from which it extracts the centroids, and initializes the individuals of
all subpopulations (Lines 2 to 4). At this point, master and workers are
ready to start communicating.

Firstly, the master broadcasts the centroids to all workers (Line 5), which
are necessary to perform K-means. Then, the dynamic distribution of
subpopulations and the migrations are repeated as many times as NGM
global migrations have been defined (Lines 6 to 17). The master asyn-
chronously begins to attend the requests of each worker and distributes
subpopulations until there is no more work to do (Lines 8 to 15). The
worker can make two kinds of requests: ask for new subpopulations or
return those already evolved. This situation is handled by the master
in the if conditional of Line 10. In the first case, the master checks if
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Algorithm 6.1: Master pseudocode defined in DGA to distribute
subpopulations among all worker nodes.

1 Function MasterDGA(NSp, SS, M, NGM, NWk)

Input : Number of subpopulations to be evolved, NSp
Input : Subpopulation size, SS
Input : Number of objectives, M
Input : Number of global migrations, NGM
Input : Number of workers, NWk
Output : Sp, the subpopulations already evolved

2 DS← getDataset()
3 k← getRandomCentroids(DS)
4 Sp← initSubpopulations(NSp, SS, M, DS)

// Start MPI section

5 MPI::Bcast(k)→ To all NWk workers

6 for i← 1 to NGM global migrations do

// Dynamic distribution of subpopulations

7 RemainingWork← NSp

8 repeat

9 MPI::Recv(Sp)← Request from worker Wkn

10 if worker Wkn requests subpopulations then
11 sent← min(RemainingWork, Requested)
12 MPI::Send(Sp, sent)→ To Wkn
13 RemainingWork← RemainingWork− sent
14 end
15 until all NSp subpopulations are evaluated;

16 Sp← globalMigration(Sp, NSp, SS, M)

17 end

// End MPI section

18 MPI::Bcast(FINISH)→ To all NWk workers
19 Sp← subpopulationMerging(Sp, NSp, SS, M)

20 return Sp
21 End

there are still subpopulations to evolve. If so, it sends the worker as
many subpopulations as indicated in the request, or less if there are not
enough. When all subpopulations have evolved, in Line 16 the master
performs a global migration between subpopulations in the same way
as in MPGA. Once all NGM global migrations have been completed,
the master broadcasts the FINISH signal to the workers to notify that
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Algorithm 6.2: Worker pseudocode defined in DGA to evaluate
the subpopulations received from the master.

1 Function Worker(SS, M, NLM, ND)

Input : Subpopulation size, SS
Input : Number of objectives, M
Input : Number of local migrations, NLM
Input : Number of devices, ND

2 DS← getDataset()

// Start MPI section

3 MPI::Bcast(k)← Centroids from the master
4 D ← initDevices(DS, k, ND)

5 repeat

// Ask for as many subpopulations as ND devices

6 MPI::Send(ND)→ Request subpopulations to the master
7 MPI::Recv(Sp)← rcv subpopulations

8 repeat

9 #pragma omp parallel for num_threads(rcv)
10 for j← 1 to rcv do
11 Spj ← evolve(Spj, SS, M, D, ND)

12 end
13 end

14 Sp← localMigration(Sp, rcv, SS, PF)

15 until all NLM local migrations are completed;

16 MPI::Isend(Sp, rcv)→ Return rcv subpopulations

17 until the FINISH signal is received;
18 End

there are no more subpopulations to be evolved and therefore the MPI
communications have ended (Line 18). Then, the master merges all
subpopulations in Line 19 to perform the final subpopulation, which is
returned to the main function. While the master process schedules the
distribution of subpopulations, the workers (Algorithm 6.2) perform
all evolutionary steps of each subpopulation. Previously, the worker
obtains the dataset, receives the centroids from the master, and initial-
izes the OpenCL devices (Lines 2 to 4). Then, after starting the MPI
communications with the master, in Line 6 the worker requests the
master as many subpopulations as ND devices are present in the node.
However, the number of subpopulations received, rcv, could be lower
than ND if there are not enough subpopulations available.



6 .1 implementations based on a master-worker scheme 123

The rcv subpopulations received by the worker are evolved in parallel in
Lines 9 to 13. Here, the operation is the same as in MPGA, i.e., as many
OpenMP threads as subpopulations are created. Depending on the value
of rcv, the following may occur: if rcv = ND, the DSSI scheduler will
distribute one subpopulation per device. Also if 1 < rcv < ND, but in
this case ND− rcv devices will not work. On the contrary, if rcv = 1, the
DSSI scheduler will distribute the individuals of that subpopulation
among all ND devices. As a reminder, this constitutes the second
parallelism level because the DSSI scheduler assigns workload to all
devices regardless of the number of subpopulations received.

On the other hand, the worker also performs NLM local migrations in
the same way the master performs a global migration, but between
the rcv subpopulations received (Line 14). Once the whole process
is finished, the worker returns to the master the rcv subpopulations
already evolved (Line 16). Now, it awaits the assignment of more work
or the FINISH signal, which means that all NGM global migrations have
been carried out by the master and therefore the worker can finish.

6.1.1.2 Hypervolume and Speedup Analysis

Experiment 6.1: Evaluate the hypervolume and speedup of DGA
when using all cluster nodes and the total number of individuals is
divided into multiple subpopulations. The experimental conditions are
described in Table 6.1.

Figure 6.2a shows the hypervolume obtained in DGA when 3, 840
individuals are divided into multiple subpopulations. The reason for
evolving 3, 840 individuals in this experiment is to ensure that all
nodes have enough workload to correctly evaluate the performance
of the new version. What can be seen in the figure is that all values
are very similar and are in the range of 0.827 to 0.86, the latter being
reached for NSp = 26. Although there seems to be a slight increase
from 21 subpopulations, the Kruskal-Wallis test indicates that there is
no statistical significance.

Despite this, the important thing is that in all cases the hypervolume
is higher than the two maxima reached by MPGA, that is, 0.786 and
0.853 depending on whether MPGA used 480 or 3, 600 dataset features,
respectively. As a trend in the hypervolume variation is not appreciated
when the number of subpopulations changes, the improvement could
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Table 6.1: Experimental setup to analyze DGA.

Feature Description

Platforms All cluster nodes and desktop PC

Cluster: all CPUs and Tesla GPUs
Devices

PC: only GPUs

Compiler GCC with -O2 -funroll-loops

Dataset All features used

Individuals 3, 840

Subpopulations {1, . . . , 32}
Generations 150

Global: 5
Migrations

Local: 15
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Figure 6.2: Hypervolume and speedup obtained in DGA when using
all cluster nodes and the total number of individuals is divided into
multiple subpopulations.

be motivated by one or more of the following factors: (i) the increase in
the number of individuals per subpopulation; (ii) the increase in the
number of generations, and (iii) the local migrations. Global migrations
are not considered because they are equivalent to the migrations per-
formed by MPGA, which do not alter performance. Summarizing what
was seen in the previous chapter about hypervolume:
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• Increasing the number of individuals directly affects its value.
• From 20-30 generations the hypervolume tends to stabilize.
• A migration rapidly increases the value of the hypervolume, but

limits its progression during the rest of the generations.

Thus, the cause is probably the number of individuals. To solve the
dilemma, DGA has been executed with only 60 generations and also
without local migrations. The result is that hypervolume is the same
when removing local migrations and hardly decreases when reduc-
ing generations. Therefore, it can be concluded that the hypervolume
improvement is due to the increase in the total number of individuals.

On the other hand, Figure 6.2b shows the speedup when using all
cluster nodes. In general, the speedup is higher when the number
of subpopulations increases, reaching several peaks above 70. The
anomalous behavior observed from 1 to 5 subpopulations is related
to the way in which the subpopulations are assigned to the nodes: as
there are two OpenCL devices working on each node, only one worker
node computes when evolving 1 or 2 subpopulations, so that the lower
speedups are obtained. In case of 3 and 4 subpopulations, two workers
compute. From 5 on, the three worker nodes compute but a better
speedup is achieved for 6 subpopulations since this number coincides
with the total number of devices. As all cluster nodes work, a total of 115
CUs plus the master CPU thread of Node 1 are computing. The increase
in speedup shown for more than 6 subpopulations can be explained
by taking into account that when the number of subpopulations is
increased, more distribution and less workload imbalance occurs.

6.1.1.3 Energy-time Behavior

Experiment 6.2: Evaluate the energy-time behavior of DGA when
using all cluster nodes, the desktop PC, and the total number of
individuals is divided into multiple subpopulations. The experimental
conditions are also described in Table 6.1.

Figure 6.3a provides the evolution of the instantaneous power of all
cluster nodes when evolving 32 subpopulations. The measures of the
switch are not included in the figures as their values are very low. Due
to the heterogeneity of the nodes, the instantaneous power of each one
is different, being Node 1 the one that shows the lower values because
it only uses a CPU thread to distribute the subpopulations. Another
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Figure 6.3: Energy measures obtained in DGA when using all cluster
nodes and the total number of individuals is divided into multiple
subpopulations.

highlight is related to the five instantaneous power drops that occur
for several seconds. These falls are a consequence of performing the
global migrations, which also require communication between nodes.
During the migration process, the entire workload falls on the master,
so the worker nodes do not compute in the meantime.

With respect to energy consumption, Figure 6.3b shows the energy
rate necessary by an execution that uses all nodes with respect to a
sequential execution of DGA. The shape of the lines matches with that
shown in Figure 6.4a since the shorter execution time, the lower energy
consumption. In fact, the best value of speedup and energy is reached
when NSp = 19 subpopulations. In that situation, the energy rate is
below 6% and therefore an important energy-saving is achieved. Even
in the worst case (2 subpopulations), the energy rate is about 12%.
Thus, from Figures 6.2b and 6.3b, it is clear that parallel processing
constitutes a valuable alternative not only to reduce execution time but
also to decrease energy consumption.

Although DGA is designed to obtain the best performance in multi-
computer systems, its use is not limited to these platforms. For its
correct operation, only two MPI processes are necessary: one that act
as a master and another that act as a worker. Therefore, DGA could
run on a single node of the cluster as well as on the desktop PC. The
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Figure 6.4: Execution time obtained in DGA when using different
platform configurations and the total number of individuals is divided
into multiple subpopulations.

execution time obtained by both platforms is provided in Figure 6.4.
For any number of subpopulations, the PC obtains better results even
with a smaller number of CUs (60). This occurs for two reasons: the first
one, the differences between GPU architectures. The GPUs included in
the cluster are based on Kepler1 architecture, while those of the PC are
based on Pascal1, which is newer and incorporates technological im-
provements. E.g., the clock frequency of both PEs and memory is much
higher, the latter being especially beneficial since the kernel makes
intensive use of memory. The second reason is that the PC offers lower
workload imbalance. Its configuration for this experiment corresponds
more to that of a homogeneous system than a heterogeneous one since
both GPUs are the same and CPU is not used to evaluate individuals.
As a result, shorter and more stable execution times are achieved. This
can be seen in Figure 6.4b, which shows small fluctuations with few
subpopulations and a full time stabilization from 6 subpopulations on.

Despite the good performance of the PC, its GPUs also do not offer
maximum performance due to the irregular K-means characteristics,
which were discussed in Chapter 5. In fact, although the TDP of each
GPU is about 250 W, using the nvidia-smi2 command it has been
observed that the instantaneous power ranges between 135 and 158 W
when they are computing, so GPUs are not pushed to the limit.

1 The Kepler and Pascal architectures date from 2012 and 2016, respectively
2 Command line utility that allows the management and monitoring of NVIDIA GPUs
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Algorithm 6.3: OpenMP K-means pseudocode defined in DGA-II
to evaluate a chunk of individuals in CPU.

1 Function KmeansCPU(I, NI , DS, k, NT)

Input : Individuals, I
Input : Chunk of individuals to be evaluated, NI
Input : Dataset DS: NP points (samples) with NF features
Input : Set k of K centroids randomly chosen from DS
Input : Number of CPU threads, NT
Output : Individuals already evaluated, I

2 #pragma omp parallel for num_threads(NT )
3 for i← 1 to NI individuals do

4 kC ← Create a copy of the centroids
5 Initialization of the mapping table, MT ← 0

6 repeat

7 for j← 1 to NP points do
8 MTj ← Point pj in DS is assigned to a cluster
9 NDj ← Store the distance for point pj

10 end

11 kC ← Update centroids using dataset DS

12 until stop criterion is not reached;

13 f1(Ii)← wcss(kC, ND) according to Equation (4.1)
14 f2(Ii)← bcss(kC) according to Equation (4.2)

15 end
16 end

17 return I
18 End

6.1.2 Use of OpenMP to Evaluate Individuals in CPU

In the versions developed so far, OpenCL has been used to build the
CPU and GPU kernels. However, the version DGA-II proposed in this
section replaces the OpenCL CPU kernel with the OpenMP pseudocode
shown in Algorithm 6.3. Its implementation is the same as that of
Algorithm 5.1 but it adds two components: (i) the input parameter
NT indicating the number of CPU threads to use, and (ii) the pragma

necessary to create the parallel region in order to distribute the individ-
uals among the threads. Parameter NT replaces the term λC previously
used since the OpenMP terminology does not contemplate the term CU.
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Depending on the programming language or library, the nomenclature
to refer to CPU and GPU PEs is different. In case of OpenCL, the right
terms are CU and work-item. However, as DGA-II implements the eval-
uation of individuals in CPU with OpenMP instead of OpenCL, for this
device the terms CU and work-item will be replaced by the terms core
and thread, respectively.

Replacing OpenCL with OpenMP is not a random decision. Its use
is motivated by the ease of implementation, since a single #pragma

omp parallel for is enough to distribute the loop that iterates over
the array of individuals. Moreover, OpenMP could offer better perfor-
mance. Although this can lead to confusion, it should be noted that the
OpenCL kernels are compiled at runtime by the OpenCL driver while
the OpenMP code is compiled by the corresponding C++ compiler. Al-
though the OpenCL kernels can also be compiled offline, for simplicity
they have been compiled at runtime. This circumstance, along with the
compiler used and the possible optimizations that each one is able to
achieve, can make the difference between choosing one option or the
other. To get rid of doubts, the following experiment carries out a small
comparison between DGA and DGA-II.

Experiment 6.3: Compare the execution time and energy consump-
tion of DGA and DGA-II when different compilers and optimization
flags are used. The experimental conditions are described in Table 6.2.

Figure 6.5 provides the execution time and energy consumption of DGA
and DGA-II when using GCC and ICC compilers, and optimization
flags -O2 and -O3. Only CPU is used in the experiment because the com-
pilers act exclusively on the host code, so that GPUs are disconnected.
Focusing first on GCC compiler, the figure shows that DGA-II does not
outperform DGA. The CPU driver seems to apply better optimizations
on the OpenCL code than GCC is able to apply on the OpenMP code.
Even the use of optimization level -O3 is not enough to achieve the
performance of DGA. As discussed in Section 4.2, an inexperienced
programmer might think that compilation with -O3 is not possible in
heterogeneous systems since the generated binary file would not be
executed correctly. However, MPI allows the user to specify a binary
file for each process that runs the program, although depending on
the application this can lead to many headaches. E.g., in DGA-II the
order of the processes when launching the application is important
since each one is mapped to a node following the order of the host list.
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Table 6.2: Experimental setup to compare DGA and DGA-II.

Feature Description

Platforms Node 3

Devices CPU

Compiler {GCC, ICC} with -{O2, O3} -funroll-loops

Dataset All features used

Individuals 3, 840

Subpopulations 1

Generations 150
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Figure 6.5: Impact of compilers on DGA and DGA-II when using
different compilers and optimization flags.

On the other hand, when using ICC compiler, what is observed is that
all results obtained by GCC have been improved or matched. Moreover,
DGA gets similar execution times since the compiler cannot act on the
OpenCL code. The difference between both compilers is even greater
when the optimization flag -O3 is used. This means that ICC applies
more aggressive optimizations, allowing version DGA-II to reduce
execution time and energy consumption of DGA by approximately
19%. The behavior is as expected taking into account that both CPU
and compiler have been designed by the same vendor (Intel Corporation).
However, as ICC is a proprietary compiler, for the next experiments
only GCC will be used.
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Algorithm 6.4: Master pseudocode defined in ODGA to dis-
tribute subpopulations among all worker nodes.

1 Function MasterODGA(NSp, SS, M, NGM, NWk, ND)

Input : Number of subpopulations to be evolved, NSp
Input : Subpopulation size, SS
Input : Number of objectives, M
Input : Number of global migrations, NGM
Input : Number of workers, NWk
Input : Number of devices, ND
Output : Sp, the subpopulations already evolved

2 DS← getDataset()
3 Sp← initSubpopulations(NSp, SS, M, DS)

4 if NWk == 0 then

5 k← getRandomCentroids(DS)
6 D ← initDevices(DS, k, ND)
7 for i← 1 to NGM global migrations do
8 Sp← evolve(Sp, NSp, SS, M, D, ND)

9 Sp← globalMigration(Sp, NSp, SS, M)

10 end
11 else
12 for i← 1 to NGM global migrations do
13 RemainingWork← NSp

14 repeat
15 MPI::Recv(Sp)← Request from worker Wkn
16 sent← min(RemainingWork, Requested)
17 MPI::Isend(Sp, sent)→ To Wkn
18 RemainingWork← RemainingWork− sent
19 until each worker has work || RemainingWork == 0;
20 repeat
21 MPI::Recv(Sp)← Request from worker Wkj

n
22 sent← min(RemainingWork, 1)

23 MPI::Send(Sp, sent)→ To Wkj
n

24 RemainingWork← RemainingWork− sent
25 until RemainingWork == 0;
26 Sp← globalMigration(Sp, NSp, SS, M)

27 end
28 MPI::Bcast(FINISH)→ To all NWk workers
29 end
30 Sp← subpopulationMerging(Sp, NSp, SS, M)

31 return Sp
32 End
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6.1.3 Optimization of Workload Distribution

DGA offers great performance and is able to use all cluster nodes, so
the highest level of parallelism is already reached. However, as it is
the first distributed version, there is room for improvement. Therefore,
this section presents version ODGA as an implementation based on
optimization and whose pseudocode can be found in Algorithm 6.4.
The goal is to minimize the drawbacks of DGA by improving aspects
such as the workload distribution and communications between nodes.

The first change is related to the capabilities of the master process. As
discussed in Section 6.1.1.3, when DGA and DGA-II are executed on
a single node, an MPI process that acts as a master and another as a
worker is mandatory. However, logically this presents a problem with
the saturation of CPU and memory resources, since each process is
mapped to a thread of the same node and therefore less resources are
available to evaluate individuals. In addition, other overheads such as
the message passing between both processes or their synchronization
requirements have to be taken into account. The issue is fixed by giving
the master the worker role without the need for more processes (Line 4).

By using an if-else statement, the program checks the total number
of workers running the application. If the condition becomes true,
no workers are available and therefore the master is the responsible
for doing the entire job. As the master has the role of the worker, in
addition to centroids and datasets, it also has to initialize the devices
(Line 6). On the contrary, if the if-else statement becomes false, it
means that the subpopulations are computed by the workers and the
subpopulations must be distributed by the master. This time, the master
does not broadcast the centroids since each worker can obtain them
from dataset DS. Regarding the distribution of subpopulations, two
changes have been introduced. In DGA, the distribution is carried out
with a single loop, which attends requests, identifies their type, and
acts accordingly. In ODGA, the distribution is done with two loops:

1. First loop: the master sends to all nodes a first chunk of subpop-
ulations less than or equal to the one indicated in the request.
The purpose is to make all nodes busy as soon as possible to
reduce idle states. In addition, as the type of request is restricted
to the workload demand, the master can use the MPI::Isend

asynchronous function for the sending operation since there is
no conflict with the MPI::Recv function of Line 15. In DGA, the
reception and sending operations use the same variable, Sp, so
the use of asynchronous communications was not possible.
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Algorithm 6.5: Worker pseudocode defined in ODGA to evaluate
the subpopulations received from the master.

1 Function Worker(SS, M, ND)

Input : Subpopulation size, SS
Input : Number of objectives, M
Input : Number of devices, ND

2 DS← getDataset()
3 k← getRandomCentroids(DS)
4 D ← initDevices(DS, k, ND)
5 MPI::Isend(ND)→ Request subpopulations to the master
6 MPI::Recv(Sp)← rcv subpopulations

7 repeat

// Create rcv workers, Wkj
n; ∀j = 1, . . . , rcv

8 #pragma omp parallel num_threads(rcv)
9 repeat
10 Spj ← evolve(Spj, SS, M, D, ND)

11 MPI::Isend(Spj, 1)→ Return subpopulation
12 MPI::Recv(Spj)← New subpopulation
13 until no new subpopulation is received in Spj;
14 end

15 MPI::Isend(ND)→ Request subpopulations to the master
16 MPI::Recv(Sp)← rcv subpopulations

17 until the FINISH signal is received;
18 End

2. Second loop: once all workers are computing, the master waits for
new requests. The loop ends when all subpopulations are evolved.
As each worker already has work assigned, a new request involves
receiving one subpopulation and sending another if available.

Why only one subpopulation? The reason is as follows: in versions DGA
and DGA-II, worker Wkn does not ask for more work to the master
until its rcv subpopulations have been evolved. However, this strategy
causes workload imbalance because the devices are not homogeneous,
being this imbalance even greater when their computing capabilities
differ significantly. Normally, the most powerful devices finish their
work first, so they remain idle. As a result, an increase in energy
consumption and also a reduction in the acceleration of the application.
Thus, in ODGA, the thread Wkj

n that handles device j now has the
capacity to return its subpopulation directly to the master and ask for
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Table 6.3: Experimental setup to compare DGA, DGA-II, and ODGA.

Feature Description

Platforms All cluster nodes

Devices All CPUs and Tesla GPUs

Compiler GCC with -O2 -funroll-loops

Dataset All features used

Individuals 3, 840

Subpopulations {1, . . . , 32}
Generations 150

Migrations Global: 5

a new subpopulation (Lines 11 and 12 of Algorithm 6.5). The cost of
introducing this improvement is the elimination of the local migrations
implemented in version DGA, which allowed migrations of individuals
between the subpopulations of each device. However, as shown in
Experiment 6.1, these migrations do not provide any improvement in
the quality of the hypervolume, so its elimination is not a problem.

6.1.3.1 Energy-time Analysis

Experiment 6.4: Compare the execution time and energy consump-
tion of DGA, DGA-II, and ODGA when using all cluster nodes and
the total number of individuals is divided into multiple subpopulations.
The experimental conditions are described in Table 6.3.

Figure 6.6 provides the execution time and energy consumption of DGA,
DGA-II, and ODGA when using all cluster nodes. From these figures,
it is clear that version ODGA provides the best energy-time values
from 10 to 32 subpopulations. For lower number of subpopulations,
ODGA always exceeds DGA-II but is outperformed by DGA in both
time and energy. The reasons is that with few subpopulations, only
exist the initial distribution and at most three more, so the effect of the
optimizations cannot be appreciated. In addition, as DGA-II and ODGA
use OpenMP for the evaluation of individuals in CPU, the execution
time is worse than that shown by DGA if ICC with -O3 is not used,
as was demonstrated in Experiment 6.3. The best execution time is
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Figure 6.6: Performance obtained in DGA, DGA-II, and ODGA when
using all cluster nodes and the total number of individuals is divided
into multiple subpopulations.

achieved by ODGA when using 28 subpopulations. For this number, a
sequential execution has been carried out in order to obtain the speedup
and the corresponding energy consumption. Speedup measures are
not provided for all subpopulations because an execution in sequential
mode is very slow. The energy-time values obtained by the sequential
execution are ES = 626.2 W · h and tS = 11, 840.26 s. Thus, ODGA
provides a speedup of 83 with only 4.9% of the energy consumption
shown by the sequential execution.
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6.1.3.2 Fitting the Time Model to ODGA

In this section, a time model is built to explain the execution time shown
in Figure 6.6. The purpose is not to achieve an accurate prediction of the
experimental data but to extract conclusions about the best alternative
to select according to the power-performance goals. The model starts
from Equation (5.26), which was already seen in Section 5.4. To facilitate
reading it is shown again:

t = g ·
[

N ·WM
fC

+ max
(⌈

x · N
λG

⌉
· WG

fG
,
⌈
(1− x) · N

NT

⌉
· WC

fC

)]
(6.1)

The meaning of each term is also remembered:

• g: number of generations.
• N: total number of individuals.
• λG: number of GPU CUs.
• NT : number of CPU threads. In previous versions known as λC.
• x: rate of individuals assigned to GPU.
• 1 − x: rate of individuals assigned to CPU.
• WM : workload assigned to the master.
• WC: evaluation of an individual in CPU.
• WG: evaluation of an individual in GPU.
• fC and fG: operating frequencies of CPU and GPU, respectively.

Equation (6.1) determines the execution time in a single-computer
system when only a population of individuals is used. This means that
it must be adapted to the operation of ODGA. Summarizing, the master
process distributes a total of NSp subpopulations among the workers,
which evolve one subpopulation in each device. When a subpopulation
is evolved, it is returned to the master and another one is requested.
Every certain number of generations, the master performs a global
migration and when it finishes the subpopulations are distributed again.
The whole process is repeated as many times as NGM global migrations
have been defined. Taking into account the operation mode, for ODGA
the following terms are redefined:

RλG =
x · N

NSp

λG

=
x · N

λG · NSp

(6.2)
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RλNT
=

(1− x) · N
NSp

NT

=
(1− x) · N

NT · NSp

(6.3)

Terms RλNT
and RλG correspond to the ratio of individuals assigned to a

single CPU thread and GPU CU, respectively. As with λC, RλNT
replaces

the term RλC used in previous versions. In this way, the execution time
required by a worker node to compute the generations between each
global migration can be estimated as:

tWk =
g

NGM
·
[

N ·WWk
fC

+ max
(⌈

RλG

⌉
· WG

fG
,
⌈

RλNT

⌉
· WC

fC

)]
(6.4)

where WWk is the workload for the sequential part of the worker. Thus,
the total execution time for the distributed system is as follows:

t = NGM · [tM + max (tWkn) + tCom] ; ∀n = 1, . . . , NWk (6.5)

being tM the time required by the master, tWkn the time of worker Wkn,
and tCom the cost of communications between workers.

Experiment 6.5: Evaluate how the time model fits the experimental
results of version ODGA when the total number of individuals is
divided into multiple subpopulations. The experimental conditions are
also described in Table 6.3.

Figure 6.7 compares the experimental and fitted execution time when in-
creasing the number of subpopulations. Although there are significant
deviations in the predictions for some cases, the model fits correctly the
changes shown from 1 to 6 subpopulations, which are more irregular
due to the workload imbalance. The model quality is evaluated with
the NRMSE3 metric, a standard criteria for regression whose values NRMSE: Normal-

ized Root-Mean-
Squared Error

are in the interval [0, 1] depending on whether the model fits the ex-
perimental data properly or not. The NRMSE value obtained is 0.787,
which is an acceptable fit taking into account the model complexity.

3 A value of NRMSE higher than 0.2 is considered in [135] as a good result
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Figure 6.7: Execution time and model fit obtained in ODGA when the
total number of individuals is divided into multiple subpopulations.

6.1.3.3 Fitting the Energy Model to ODGA

The energy model can also be adapted to ODGA. As energy consump-
tion depends on instantaneous power and execution time, its value for
a worker node can be estimated as:

EWk = PWk · tWk + PI
Wk · (t− tWk) (6.6)

where PWk and PI
Wk are the instantaneous power of the worker when

it is computing workload or in idle state, respectively. Expression
(t− tWk) corresponds to the time that the worker is in idle state. In this
way, the energy consumption for the distributed system is obtained as
the sum of energy consumption of all workers plus that of the network:

E = ENet +
NWk

∑
n=1

EWkn (6.7)

As a switch is required for communications between workers, the
energy consumption of the network, ENet, could be defined taking into
account its instantaneous power and execution time:

ENet = PSw · tCom + PI
Sw · (t− tCom) (6.8)
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Figure 6.8: Energy consumption and model fit obtained in ODGA when
the total number of individuals is divided into multiple subpopulations.

being PSw and PI
Sw the instantaneous power of the switch when there

are or there are no communications, respectively. Expression (t− tCom)
corresponds to the time in which there are no communications.

Experiment 6.6: Evaluate how the energy model fits the experimental
results of version ODGA when the total number of individuals is
divided into multiple subpopulations. The experimental conditions are
also described in Table 6.3.

The precision in the estimation of energy consumption depends on
the behavior of the instantaneous power. The model always assumes
two possible average instantaneous power values for each element
of the cluster: one when it is working and another when it is in idle
state. Of course, this situation does not happen frequently, but if the
experimental values are quite close to two different average values, the
approach could be useful to estimate energy consumption.

In this way, Figure 6.8 compares the experimental values of energy
consumption with those estimated by the model. The NRMSE value
obtained is 0.744, which is similar to that shown by the time model
and therefore corresponds to good model approximations. This means
that the two average instantaneous power values used in the model are
sufficient to provide an acceptable estimate of energy consumption.
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Figure 6.9: Instantaneous power obtained in ODGA when using differ-
ent platform configurations and 32 subpopulations.

Figure 6.9a shows the evolution of instantaneous power when using
all cluster nodes and 32 subpopulations. The highest values correspond
to Nodes 2, 3, and 4 because they compute the highest workload. The
figure also shows a behavior similar to that of DGA and clearly reveals
the two instantaneous power states in which a worker node can be.
The existence of these states is partly motivated by the use of perfor-
mance profiles that the devices offer. E.g., the standard ACPI providesACPI: Advanced

Configuration and

Power Interface

information about energy profiles to optimize energy consumption or
control the temperature. Similarly, the Linux kernel implements the
Cpufreq infrastructure [136]. It allows the operating system to change
the operating frequency of the processor either automatically through
events generated by the ACPI interface or through user program calls.

Figure 6.9b illustrates the histogram of instantaneous power and the
corresponding density function for Node 3. The number of bins in the
histogram is equal to the square root of the number of experimental
samples. As it can be seen, the density function depicts two maxima:
one for 150 W and the other for approximately 174 W. The highest
value corresponds to the moment in which the worker is computing;
the lowest to when the worker is waiting for the master to perform the
global migration (idle state). The maxima can be used to estimate the
parameters PWk and PI

Wk required by Equation (6.6). Table 6.4 provides
the estimate of these parameters for all cluster nodes. As the table
shows small variations in the values of the standard deviation, it can
be concluded that the estimate is acceptable.
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Table 6.4: Standard deviation of PWk and PI
Wk for all cluster nodes.

Node PWk (W) PI
Wk (W)

1 234.72± 2.65 156.58± 1.47

2 177.36± 3.21 154.38± 3.41

3 244.58± 2.93 170.14± 2.16

Table 6.5: CNN hyperparameter values. NFt: number of filters for the
convolution layers with a kernel size of KS x KS; HL: number of hidden
layers; FC: number of fully-connected layers with HN hidden neurons.

NFt KS HL FC HN Epochs K-folds

16 3 1 1 100 50 4

32 9 2 2 200 100 6

6.1.4 Distribution of Neural Networks

There are two methods commonly used to parallelize the training of a
neural network with clusters: (i) model parallelism [137], where different
nodes of the distributed system are responsible for computing different
parts of the network, and (ii) data parallelism [138], in which the nodes
have a complete copy of the model and each one handles a different
portion of data. In both cases, the result of each part is somehow
combined. These approaches are focused on the parallelization of a
single neural network. However, the classification problem considered
requires the training of multiple CNNs with different hyperparameters,
so either of these two methods is not efficient given the large number
of synchronization operations required by the nodes. Thus, version
DNN provides a more efficient approach where each CNN is trained
independently in each node of the cluster.

6.1.4.1 CNN Structure and Operation Mode

The implementation of DNN is similar to the master-worker scheme
of ODGA but eliminates the evolutionary steps and reuses the MPI
functions for workload distribution and communication between nodes.
The master process runs on Node 1 again. Also, a two-dimensional
CNN (2D-CNN) is adopted as an EEG classifier. NC = 128 different
combinations of hyperparameters are considered to build different
CNN architectures, which are obtained from combining two possible
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Figure 6.10: Scheme defined in DNN and 2D-CNN topology. The master
distributes combinations of hyperparameters among the worker nodes.

values for each of the seven hyperparameters (see Table 6.5). The values
are arbitrary, although they have been chosen to obtain valid outputs
in the networks. Figure 6.10 shows a general scheme of the proposed
procedure and the CNN topology, which is built as follows:

1. The first layer is a 2D-convolutional operation whose input shape
is a 240 x 15 matrix since an EEG signal is composed of 240
samples from 15 electrodes. The convolution applies NFt filters
with a kernel size of KS x KS.

2. A batch normalization operation is applied to normalize the
activations of the first layer at each batch.

3. A max-pooling operation of size 2 x 1 is applied to reduce the size
of the samples' dimension.

4. HL hidden layers are applied, which are also convolutional op-
erations. Each convolution applies half of the filters used by the
previous layer but keeps the kernel size. After each hidden layer,
a batch normalization operation and a max-pooling of size 1 x 2
are applied to reduce the electrode's dimension. All convolution
layers compose the FS part, which should be able to select the
most relevant spatio-temporal features of the EEGs.

5. A flattening operation is used to reshape the output of the last
convolutional layer to vectors.

6. FC fully-connected layers, together with the output layer compose
the classification part. The first fully-connected layer contains HN
hidden neurons. The next one, half of the neurons of the previous
layer, and so on. The output layer contains three units since an
EEG can belong to one of the three possible classes.
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Algorithm 6.6 details the master-worker scheme to distribute and eval-
uate combinations of hyperparameters. Certainly, the procedure is a
mixture between DGA and ODGA because it takes advantage of the
simplicity of DGA but also some of the ODGA optimizations. The
workload distribution is again dynamic to avoid workload imbalance.
It must be taken into account that execution time depends not only
on the heterogeneity of the nodes but also on each combination of
hyperparameters. The Main function is divided into two sections: one
for the master process (Line 2) and the other for the workers (Line 20).

Firstly, the function receives the input parameters necessary to oper-
ate correctly: the number of hyperparameter combinations, the CSV CSV: Comma-

Separated Valuesfilename with these combinations, the Python file with the CNN imple-
mentation, and the number of workers available. The CSV file is read by
the master in Line 3. Each row of the file contains a different combina-
tion, which is composed of multiple columns, i.e., the hyperparameters.
As in ODGA, if no workers are available the master will perform all
the job by using the CPU or GPU devices. If the if-else statement
becomes false, the master asynchronously attends the requests of each
worker. It dynamically distributes the rows of the CSV file until there
is no more work to do. Once all NC combinations (rows) have been
evaluated, the master sends the FINISH signal to all workers to notify
that the job has finished (Line 18).

In the case of workers, each of them requests to the master a combi-
nation of hyperparameters at the beginning, which is stored into C
if the FINISH signal has not been received (Lines 22 and 23). Then,
the worker cyclically trains the CNN, asks the master for more work,
and awaits the response (Lines 25 to 28). Regardless of whether the
training of the network is done by the master or a worker, the oper-
ation mode is as follows: from the application, a call to the Python
interpreter is made by invoking the command line interpreter through
the system function (Line 8 and Line 26). This function requires as an
argument the command to be executed, which is composed mostly
from the hyperparameters. Its use is equivalent to executing it through
a terminal of the operating system. The command is a concatenation
of, in this order: name of the Python interpreter, name of the Python file
with the CNN implementation, the hyperparameters, and the device to
use (CPU or GPU). Taking into account the possible combinations of
seven hyperparameters that could be obtained from the values shown
in Table 6.5, an example of the command to be executed is:

python3 cnn.py 2 9 4 100 1 100 32 GPU
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Algorithm 6.6: Master-worker pseudocode defined in DNN to
distribute and evaluate combinations of hyperparameters. If no
workers are detected, the master will perform all combinations.

1 Function Main(NC, CSVFile, PyFile, NWk)

Input : Number of hyperparameter combinations, NC
Input : CSVFile: file containing all NC combinations
Input : PyFile: Python file with the CNN implementation
Input : Number of workers, NWk

2 if Master then

// Each row is a string like "<ARG_1>...<ARG_N>"

3 C ← readCSV(NC, CSVFile)

4 if NWk == 0 then

5 D ← getDevice()

6 for i← 1 to NC combinations of hyperparameters do
7 CmdExec← append("python3 ", Ci, D)
8 Acc← system(CmdExec)
9 end

10 else

11 RemainingWork← NC

12 repeat
13 MPI::Recv(Acc)← Request from worker Wkn
14 sent← min(RemainingWork, 1)
15 MPI::Isend(C, 1)→ To Wkn
16 RemainingWork← RemainingWork− sent
17 until RemainingWork == 0;

18 MPI::Bcast(FINISH)→ To all NWk workers

19 end
20 else

21 D ← getDevice()
22 MPI::Isend(1)→ Request one combination to the master
23 MPI::Recv(C)← 1 combination from the master

24 repeat
25 CmdExec← append("python3 ", C, D)
26 Acc← system(CmdExec)
27 MPI::Isend(Acc)→ Return the CNN accuracy
28 MPI::Recv(C)← 1 combination from the master
29 until the FINISH signal is received;
30 end
31 End



6 .1 implementations based on a master-worker scheme 145

Table 6.6: Experimental setup to analyze DNN.

Feature Description

Platforms All cluster nodes and desktop PC

Cluster: CPU of Nodes 3 and 4 and all Tesla GPUs
Devices

PC: only one GPU

Compiler GCC with -O2 -funroll-loops

Dataset All features used

CNN 128 combinations of hyperparameters (see Table 6.5)

6.1.4.2 Node Scalability and CPU-GPU Issues

Experiment 6.7: Evaluate the energy-time performance of DNN
when using all cluster nodes and the desktop PC to train 128 CNNs.
The experimental conditions are described in Table 6.6.

Figure 6.11a shows the average execution time obtained after training all
possible CNNs. Observing the cluster measures, it can be seen that the
more nodes are used, the less execution time. In theory, the execution
time when using Nodes 3 and 4 should be half the time obtained when
only Node 4 computes, but what happens is that the value is even less.
As TensorFlow executes some operations on CPU, the difference is due
to the fact that the CPU of Node 3 is more efficient than that of Node 4
despite having fewer cores/threads. This can be verified in the figure
by observing the CPU execution times for both nodes. The behavior
can be explained taking into account that the number of CPU sockets
of Node 3 is 1, while Node 4 has 2. It has been checked that during the
program execution the threads constantly migrate between the cores of
both sockets, which introduces a considerable overhead. Probably, if
two homogeneous CPUs had been used, the speedups would be very
close to 2. Unfortunately, each node of the cluster has a different CPU.

On the other hand, using all worker nodes provides a time reduction
equal to 3. This is pure coincidence, since continuing with the previous
logic the speedup should be greater than 3. However, it seems that
the lower capabilities of the GPU Tesla K20c of Node 2 along with
the overhead caused by its 2 CPU sockets derive in a performance
reduction. In any case, it seems that the algorithm scales correctly since
the execution time necessary to train a network is almost 100%.
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Figure 6.11: Performance obtained in DNN when using different plat-
form configurations to train 128 CNNs.

Executions on GPU have been compared with the equivalent ones on
CPU. The result confirms that CPUs are not currently the best devices
for this type of problems. The time to perform the task on these devices
is around 10 times slower than the worst possible scenario when using
GPUs. Although the CPU of Node 4 contains 16/32 cores/threads, dur-
ing executions the CPU usage does not exceed 35%, so CPU is not being
exploited (45% for Node 3). This issue could be motivated by one or
several factors: (i) that neural networks are not highly parallelizable in
CPU; (ii) TensorFlow is not optimized for these devices, perhaps derived
from point (i); (iii) the network topology used for the experiment is not
complex enough to take advantage of the full architecture. For GPU,
the percentage of use ranges 68-85% when the program is executed.

Figure 6.12 shows that in all configurations the instantaneous power
goes up and down twice and the general tendency is to increase with
the passage of time. This is because the hyperparameters that create
a more complex neural network model are evaluated at the end of
each stretch. If the instantaneous power is higher when the model is
more complex, and given that the device usage is related to energy
consumption, it can be concluded that at least point (iii) is affecting
performance. Although this also affects GPU, the CPU is negatively
affected not only by its low usage, but also because it does not have the
same data parallelism capacity as GPU architectures. Summarizing, all
this makes the GPU far outperform CPU, so that it is the best device to
accelerate neural networks.
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Figure 6.12: Instantaneous power obtained in DNN when using differ-
ent platform configurations to train 128 CNNs.

From Figure 6.12, it can also be observed that the use of more nodes
not only entails a reduction in execution time but also an increase of
instantaneous power, as it is logical. However, the instantaneous power
of the desktop PC can be highlighted. It is able to perform the task in a
slightly shorter time than needed by Nodes 3 + 4 but with the instanta-
neous power to just over half. The reasons were already commented
in Experiment 6.2: the differences between the GPU architecture of
the cluster and that of the PC. Moreover, it must be taken into account
the energy consumption of the three nodes (Nodes 1, 3, and 4), which
include RAMs, CPUs, hard disks, etc. Based on the results obtained,
the GPU architecture acquires great importance. Thus, it could be bet-
ter to acquire more modern architectures and amortize their cost by
decreasing the number of nodes and the monetary cost associated with
energy consumption.

Figure 6.11b shows the energy consumption after training all networks.
As expected, its behavior is similar to that of execution time and the
shape of the bars for CPU remains constant. However, the interesting
thing is to see how the number of nodes and the type of architecture
affects energy consumption. Using all nodes simultaneously provides
almost the same energy consumption than using only Nodes 3 + 4 but
with the difference that the execution time is shorter. Using only Node
4 leads to a reduction in energy consumption of approximately 15.6%
with respect to the other two cluster configurations, but its execution
time is 3x slower than when using all nodes, and approximately 2x if
Nodes 3 + 4 are used. Again, GPU TITAN Xp allocated in the desktop
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PC provides the most remarkable results because it provides the lowest
energy consumption while offering good times. Moreover, it is the
simplest platform. Analyzing the data, it seems that there is a certain
tie between using the desktop PC and all cluster nodes. The energy-time
product metric, presented in Section 4.3, should clarify the situation:

EtCluster = 38.23 · 475.89 = 1.819327 · 104

EtPC = 52.61 · 269.87 = 1.419786 · 104
(6.9)

As the lowest value of Et corresponds to the desktop PC, it can be
concluded that this option provides the best results. Nevertheless,
depending on the context, it may be preferred the option with the lowest
energy consumption or the one that provides the fastest execution.

6.2 an implementation with asynchronous migrations

This section presents the latest version developed in this thesis: GAAM.
Unlike previous versions, GAAM does not use the master-worker ap-
proach to distribute subpopulations among nodes. Instead, all working
nodes have the same number of subpopulations unless the total num-
ber of them is not entirely divisible by the number of workers, so that
one or more workers would have one more subpopulation. Also, in
the case where there are more nodes than subpopulations, some of
them will not compute. In this way, the first level of parallelism is
preserved since in a certain way the subpopulations are distributed
among nodes. The master-worker scheme is not completely ruled out,
since the operation mode of the workers remains governed by the same
principles of ODGA. This means that each worker distributes all its
subpopulations among the devices iteratively.

6.2.1 Buffers Hierarchy Design

The new implementation allows the migration of individuals from one
subpopulation to another at each generation. The whole migration
process is performed asynchronously thanks to a hierarchy of I/O
buffers and a handler whose function is to receive and send migration
requests, manage buffers, and decide how many individuals to migrate.
Communication between the handlers of each node is done through
MPI library. The GAAM pseudocode is shown in Algorithm 6.7.
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Algorithm 6.7: Procedure pseudocode defined in GAAM that
evolves subpopulations using asynchronous migrations.

1 Function Main(NSp, SS, M, NWk, ND)

Input : Number of subpopulations to be evolved, NSp
Input : Subpopulation size, SS
Input : Number of objectives, M
Input : Number of workers, NWk
Input : Number of devices, ND
Output : hv, the hypervolume metric

2 NSpW ←
NSp
NW

3 if Wkn < (NSp mod NW) then
4 NSpW ← NSpW + 1
5 end
6 if NSpW > 0 then

7 DS← getDataset()
8 Sp← initSubpopulations(NSpW , SS, M, DS)
9 k← getRandomCentroids(DS)

10 D ← initDevices(DS, k, ND)
11 B← initBuffers(SS)

12 #pragma omp parallel num_threads(2)

13 if omp_get_thread_num() == 0 then

14 th← min(NSpW , ND)

15 #pragma omp parallel for num_threads(th)
16 Sp← evolve(SpW , NSpW , SS, M, D, ND, B)
17 end
18 else
19 handler(SS, B)
20 end
21 if Wkn == 0 then
22 MPI::Gatherv(Sp)← SpW from all Wkn
23 Sp← subpopulationMerging(Sp, NSp, SS, M)

24 hv← getHypervolume(Sp, NSp, SS, M)

25 else
26 MPI::Gatherv(SpW , NSpW )→ to root MPI process
27 end
28 end
29 end

30 return hv
31 End
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Although the master-worker scheme is not present in this version,
for simplicity each node will continue to be known as a worker. This
means that all nodes are workers and the master role does not exist.
At the beginning of the procedure, each worker determines how many
subpopulations it has to evolve. This is calculated by dividing the total
number of subpopulations by the number of workers. If the remainder
of the division is nonzero, those workers with MPI rank lower than the
remainder will evolve one more subpopulation (Lines 3 to 5).

One of the drawbacks of ODGA is that all workers are active through-
out the execution. This is because after requesting subpopulations to
the master, they remain waiting for an answer. On the contrary, in
GAAM the workers previously calculate the number of subpopulations
to evolve. This allows them to know in advance if they have to continue
with the execution or can finish (Line 6). In case of continuing, each
worker performs the usual steps, i.e., obtaining the dataset and cen-
troids, initializing subpopulations, devices, and buffers necessary for
the asynchronous migrations (Lines 7 to 11). Then, through the OpenMP
pragma of Line 12, a parallel region with two threads is created, where
the thread #0 will be in charge of the evolutionary steps and the thread
#1 will be in charge of the handler. In turn, thread #0 creates another
parallel region with as many threads as indicated by the operation of
Line 14 to distribute the evolution of subpopulations among the devices.
The aim is not to create more threads than necessary and therefore not
to waste resources. Finally, once the workers complete the evolution of
their subpopulations, the root MPI process performs the subpopulation
merging in Line 23. To do this, it combines its populations with those
received by the rest of workers through the MPI::Gatherv operation of
Line 22. This step could be considered as the only one in which there
is synchronization among the workers, although it occurs at the end of
the execution.

With respect to the migration step, this is carried out within the handler

function. The handler continually awaits the receipt of a migration
request from another worker's handler, although it can also randomly
initiate a migration request. The handler and certain buffers will only
exist if they are necessary, which avoids the use of unnecessary CPU
resources. Figure 6.13 illustrates the six possible scenarios in what a
worker can be. Its situation depends on the number of workers, devices,
and subpopulations used during the program execution. E.g., if only
one node is used, the handler is expendable since communications with
other nodes are not required. If there is also only one subpopulation,
I/O buffers are not created either. Assuming the case of Figure 6.13b
for being the most complete, to make the entire process asynchronous
a hierarchy of buffers with the following elements is used:
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Figure 6.13: Different migration scenarios and buffers hierarchy of the
nodes depending on their number of devices, assigned subpopulations,
and number of nodes used during program execution.

• The handler has an input prebuffer to store the individuals re-
ceived from other handlers and an output prebuffer with individ-
uals ready to send. These prebuffers can only be accessed by the
handler and can store a quarter of the subpopulation size ( SS

4 ).

• Each thread that evolves a subpopulation has an output buffer
on which it can add individuals after each generation. When the
handler decides to migrate, it selects one of the output buffers
and copy some individuals to its output prebuffer. An output
buffer can only be accessed by its corresponding thread and the
handler except in the case of Figure 6.13e. Here, since there is no
handler, the migration is performed directly between the threads
of each subpopulation. The storage of these buffers is also SS

4 , and
the pragma omp critical has been used to control shared access.

• There is an intermediate input buffer that acts as a link between
the handler's input prebuffer and the threads of each subpop-
ulation. This buffer has a capacity of SS

2 because it is shared
between all threads and the handler. After receiving individuals
from other workers, the handler copies some individuals from
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Table 6.7: Experimental setup to compare ODGA and GAAM.

Feature Description

Platforms All cluster nodes

Devices All CPUs and all GPUs Tesla and TITAN Xp

Compiler GCC with -O2 -funroll-loops

Dataset All features used

Individuals 3, 840

Subpopulations 32

Generations 150

Migrations Global: 5

its input prebuffer to the intermediate buffer. At each generation,
the threads check the buffer and may randomly pick up some
individuals, completing the migration. In a sense, migrating in this
way can be seen as a mix between the global and local migrations
implemented in DGA. As this buffer is shared, the individuals
that a thread obtains can come from the same node or another.

All decisions, both of threads and handler are random with a probabil-
ity of 0.25. The number of individuals to copy between buffers ranges
from 1 to the square root of the origin buffer size. The intention is to
avoid excessive migrations between subpopulations.

6.2.2 ODGA and GAAM Comparison

Experiment 6.8: Compare the energy-time performance of ODGA
and GAAM when using different platform configurations. The experi-
mental conditions are described in Table 6.7.

Figure 6.14 shows the performance of ODGA and GAAM when using
different platform configurations. It should be noted that for this ex-
periment the two GPUs TITAN Xp of the desktop PC have been added
to Nodes 3 and 4 of the cluster. The extra performance for incorporat-
ing both GPUs can be seen indirectly in Figure 6.14a. The data show
execution times 2.5x faster than those shown in Figure 6.6a, denoting
the great impact that TITAN Xp has on performance.
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Figure 6.14: Energy-time performance obtained in ODGA and GAAM
when using different platform configurations.

The figure also reveals that GAAM runs a little faster when using Node
4. Although both versions use a single node to compute, the master pro-
cess of ODGA runs on Node 1, so the cost of communications reduces
performance. On the other hand, if Node 3 also computes, GAAM
reduces its execution time by 28% but is slightly worse than that shown
by ODGA. Its scalability is not so good because the CPU of Node 3 has
half the cores than that of Node 4. In addition, as a consequence there
is a workload imbalance that ODGA does not show. It is remembered
that GAAM assigns the same number of subpopulations to each node
regardless of their computing capabilities. This is demonstrated by
observing the behavior of GAAM when Node 2 is added. This node
does not have a TITAN Xp, its GPU Tesla is slightly lower than Teslas
of Nodes 3 and 4, and its CPU is somewhere in between. In summary,
Node 2 is much less powerful in terms of computing capabilities and
as a result the execution time is degraded.

Regarding energy consumption, in Figure 6.14b it can be seen that
GAAM shows an energy profile different from that of ODGA. Of all
experiments carried out so far, it is the first time that energy consump-
tion does not completely follow the same trend as execution time. With
a single node, GAAM is a little faster but the energy value is reduced
to less than half. The reason lies in the absence of the master of Node 1
and therefore its energy consumption is not taken into account. When
two nodes compute, the energy value increases, although it does so to
a lesser extent than time reduction. This behavior differs from those
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Figure 6.15: Instantaneous power obtained in ODGA and GAAM when
using different platform configurations.

shown by previous versions where the more parallelism, the less con-
sumption. Finally, when three nodes are used, energy consumption
increases since more nodes are used and time reduction is not obtained.

The workload imbalance of GAAM is depicted in more detail in Fig-
ure 6.15, which shows the instantaneous power for different platform
configurations. It can be seen that in GAAM there are no power drops
as a result of global migrations. Instead, falls occur every time a node
finishes its work, giving clues about how long a node or device could
be in idle state. Thus, in the case of Nodes 2 to 4, all nodes and devices
work for 28 s. In the interval of 28-52 s, some devices stop working and
until second #132 only two nodes compute. From here, only one node
is active. Based on the moment the first fall occurs, a redesign of GAAM
that incorporates workload balancing may provide better results than
ODGA since full parallelism is only achieved for 17.7% of the time.

6.3 conclusions

In this chapter, eight sets of experiments have been carried out to
evaluate the versions designed for distributed systems. The first version
is DGA, which adds local migrations and a new parallelism level in
which a master node distributes subpopulations among worker nodes.
It has allowed not only to reach speedup peaks above 70 but also an
increase in hypervolume as a result of increasing the problem size.
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However, DGA states some issues related to communications between
nodes and workload distribution, which have been improved in version
ODGA by giving the devices the ability to communicate directly with
the master. Local migrations have also been eliminated, since according
to Experiment 6.1 they have no impact on hypervolume. The analysis
performed in Experiment 6.4 demonstrates that the optimizations im-
plemented in this version improve performance, raising the speedup to
a maximum of 83 with only 4.9% of the energy consumption shown by
a sequential execution. Therefore, this version is presented as the most
balanced and efficient developed throughout this thesis. To complement
the analysis, in Experiments 6.5 and 6.6 an energy-time model for this
version has been developed and evaluated. The results are promising,
since the model allows predicting the behavior of the procedure with
an acceptable error. Moreover, in an attempt to improve ODGA, version
GAAM is created in order to remove synchronizations and idle states
derived from global migrations. For this, the master-worker approach
is replaced by a scheme based on asynchronous migrations and hierar-
chical buffers. However, Experiment 6.8 shows that its performance is
worse as a result of the workload imbalance. Even so, this version has
room for improvement, so its approach should not be easily discarded.

On the other hand, version DGA-II is born as a variant of DGA that
uses OpenMP instead of OpenCL to implement K-means. The premise is
that a good compiler could extract from the OpenMP code more per-
formance than the OpenCL driver could obtain. This has been checked
in Experiment 6.3, which analyzes the impact on performance of GCC
and ICC compilers. The analysis determines that the best result in both
execution time and energy consumption is obtained when using the
proprietary compiler (ICC) along with the -O3 optimization flag.

Finally, a procedure based on neural networks has been developed
as an alternative to MOGA, which reuses the master-worker scheme
of ODGA to distribute the workload among the cluster nodes, if any.
Instead of subpopulations, the master distributes combinations of hy-
perparameters, where each one is used to train a different CNN. As the
procedure is based on ODGA, it is mainly coded with C++, although
CNNs are implemented with Python, Keras, and TensorFlow. The pro-
posed algorithm has been analyzed in Experiment 6.7, which shows
that when more nodes are used, the procedure scales linearly and the
lowest execution time is obtained. However, the desktop PC provides
the best energy results since the efficiency of the GPUs TITAN Xp is far
superior to that shown by GPUs Tesla. The experiment also states that
CPUs, although nowadays include many processing cores, are not the
most suitable devices for training neural networks. This demonstrates
that each task should be carried out with the appropriate device.
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Although many works in the literature have shown important ad-
vances in the development of efficient metaheuristics, less details

have been reported about the benefits of parallel architectures for
energy-saving. For this reason, the main contribution of this thesis has
been to provide efficient and parallel methods capable of taking advan-
tage of the computing resources that heterogeneous systems provide.
The application considered here corresponds to an EEG classification
problem for BCI tasks that has been addressed with neural networks
and a multi-objective GA where the individuals codify different FSs.
Both approaches have been parallelized for single-computer and dis-
tributed systems, which include platforms such as multi-core CPUs
and GPUs accelerators. More specifically, a heterogeneous four-node
cluster and a desktop PC have been used.

However, the use of heterogeneous systems with different energy pro-
files and computing capabilities has shown other problems, mainly
related to the workload imbalance. In addition, GAs also add irreg-
ularities in memory accesses during the fitness evaluation caused by
the FS characteristics. To identify the impact of these problems on
performance, the procedures have been analyzed under different ex-
perimental conditions. Through experimentation it is possible to find
optimizations that allow to reduce execution time and therefore energy
consumption. In fact, each procedure is developed taking into account
the drawbacks of its predecessor and keeping those functionalities that
provide good results. Another contribution of this thesis has been the
development of energy-time models to approximate the behavior of the
algorithms in both single-computer and distributed systems, which is
not very common to find today. Although they are fitted to the profile
of the application proposed here, a generalization of the models would
not be a problem since most of the terms in the equations refer to the
characteristics of the platforms rather than the application.
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7.1 conclusions about the proposed objectives

In Section 1.2, a total of nine objectives were proposed, which have been
satisfactorily completed throughout the document. The first objective
is essential as it consists in creating at least one full version of the
application. Finally, a MATLAB version and another one in C++ have
been created and compared. In general, the remaining objectives are
related to performance improvement through the use of parallelism,
new computing paradigms, optimization techniques, and strategies for
workload distribution. The term performance refers to execution time,
energy consumption, and hypervolume.

Parallelism has allowed the application to accelerate several orders of
magnitude using the computing capabilities of CPU and GPU devices.
In distributed systems, it has been possible to implement up to four
parallelism levels in GPU, providing in the best case speedup peaks of
83 that reduce energy consumption to 4.9%. Within the optimization
options, the coalescing technique can be found, which has allowed
improving access to GPU memory and take advantage of local memory.
The cooperation between CPU and GPU for the fitness evaluation can
also be considered as a way of optimization, although it is close to the
domains of workload balancing. Regarding the latter, there are several
versions focused on this objective. Experiment 6.8 demonstrates that
workload balancing can have the same impact on final performance
as parallelism. In fact, a bad strategy can spoil everything, as has
been the case of GAAM. While the idea is correct and really achieves
what it proposes (eliminating idle states), the equitable allocation of
subpopulations to all workers has impaired its performance.

A comprehensive analysis of each implemented version was also pro-
posed as an objective. This has been done through 16 sets of experi-
ments distributed among Chapters 5 and 6. Thanks to them, the prob-
lems of each version have been identified and improved. In addition to
the usual performance analyzes, energy-time models have also been
proposed to understand the behavior of the procedures. However, no
model has been designed for version DNN because TensorFlow acts
as a black box and it is difficult to identify how it works internally.
This version is the only one that is not based on the MOGA approach.
Instead, it uses neural networks for EEG classification. Although DNN
has been presented as an alternative method, no classification metrics
have been provided since the scope of this thesis is more related to
the energy-time analysis, so it remains as future work. Even so, some
preliminary results show that the classification accuracy obtained from
the trained CNNs is between 61.81 and 79.13%, and 72.55% on average.
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7.2 future works and outlook

A lot of research work is still possible since this thesis deals with
multiple aspects. On the one side, it would be very useful to have
more accurate energy-time models that take into account other system
elements, as well as measure the energy consumption of each device.
E.g., The CUDA library of NVIDIA GPUs provides methods to measure
in real-time the instantaneous power of its devices. Intel CPUs also have
similar functionalities. In addition, the energy measurement system
must be improved because with current accuracy (1 s) information is
lost, especially in executions with relatively small execution time.

On the other hand, this thesis has focused on the performance of the
procedures and has relegated to the background the EEG classification
problem. Therefore, this should be the first issue to address. Although
K-means is a good method, it is not the most appropriate to solve the
problem. The successor could be the KNN supervised algorithm for its
similar implementation and high parallelism. Another possibility is to
continue the line of neural networks since they currently obtain good
results. In order to evaluate the performance of DNN, the topology of
the CNNs has been previously fixed. However, the correct way to train a
neuronal network is by optimizing its hyperparameters. Thus, as future
work a hybrid method that combines neural networks with evolutionary
procedures is proposed to optimize these hyperparameters.

Concerning energy-time performance, it is clear that heterogeneous
clusters are essential to advance in the field of energy-aware computing.
The different parallelism levels they provide open new opportunities to
improve performance. One of them is to analyze the scalability of the
procedures in larger clusters, something that has not been possible in
this thesis due to economic factors. Although it is possible to continue
optimizing at the device level, scaling the number of nodes offers
performance with no apparent limits. However, this is not entirely true
because the massive use of nodes implies solving challenges related to
communication costs and high energy consumption. In addition, the
workload balancing issues seen in this thesis must be added, which
could be aggravated in larger clusters. In this sense, it is proposed the
creation of a new procedure that unifies the advantages of the master-
worker approach of ODGA and the philosophy of GAAM, despite its
poor results. However, probably the most important factor to consider
in the coming years is not performance, but energy consumption due to
environmental reasons such as the problem of climate change. Although
luckily it is already working on it, there is still a long way to go in this
regard and this thesis has tried to take a small step forward.
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The proposed wattmeter is designed for Linux distributions and
allows real-time energy measures of one or several platforms.

The measurements are made at intervals of one second and determine,
for each platform, both instantaneous power P (W) and accumulated
energy consumption E (W · h). For the experiments carried out in this
thesis, one wattmeter has been used for the cluster and another one for
the desktop PC. Both platforms were described in Section 4.2.

The measurements are made by sensors capable of obtaining the electric
current flowing through the cable that supply the platform. Measuring
at this point allows to determine its real consumption, including all
active components as well as the conversion losses of the power supply.
Among its different utilities, measuring energy consumption can be
used to identify the energy profile of an application and make the
necessary improvements according to the observations.

b.1 wattmeter composition

The wattmeter consists of an Arduino Mega [139] board and a set of
sensors connected directly to the analog inputs. The power cable of
each equipment is placed in a different sensor and the clamp is closed
to fix it, detecting the current flowing through the cable. Then, the
Arduino board is connected to the USB port of the platform, which USB: Universal

Serial Bussupplies power and allows data to be transmitted through the serial
port created in the /dev/ttyACM0 interface. In the case of the cluster, it is
simply connected to the board to one of the nodes. The Arduino obtains
four measurements of instantaneous power and energy consumed per
second from each sensor, calculates the average, and transmits the
result through the serial port at intervals of one second.
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CT

(a) Arduino Mega board and current sensors

CT

(b) Internal diagram of the current sensor

Figure B.1: Wattmeter based on Arduino Mega for energy measurements.

The sensor model used is known as SCTD010T-5A, and has been sup-
plied by YHDC Electronics Co., Ltd. The sensor is capable of measuring
up to 5 A and provides an output voltage between 0 and 5 V. In addition,
its accuracy is around ±2% and the supported working temperature
is in the range of −20 to +50° Celsius. The analog signals emitted by
the sensors are processed by the Arduino through its internal 10-bit
analog to digital converter. In addition, to take better advantage of its
dynamic range, the internal reference of 2.56 V is used, which is only
available in the Mega model. Although this reduces the measurement to
a maximum input of 2.56 V, in practice it allows instantaneous power
values of up to 588 W. Since the platforms present lower values, the
reduction of the maximum voltage does not represent any limitation
when obtaining the measurements. Figures B.1a and B.1b show the
wattmeter and the internal diagram of the current sensors, respectively.

b.2 software description

The software is developed with Python and allows different users to
obtain energy measurements independently and simultaneously. As the
Arduino board sends the information to the serial port through USB, it
is necessary to share the data received between the different users. For
this, the ZeroMQ1 message system is used under the publish-subscribe
pattern. A master process called master_meter.py opens the serial port
and activates with ZeroMQ a data publishing process through TCP portTCP: Transmission

Control Protocol 5214, in which the received data is retransmitted. Each user who wants
to receive data executes a process in Python named show_consumption
to subscribe to the system, so that data is received from Arduino in

1 Asynchronous messaging library used in distributed or concurrent applications
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Figure B.2: Scheme of the publish-subscribe pattern.

Accumulated 
energy

Instantaneous 
power

Figure B.3: Energy values obtained by the wattmeter when the cluster
nodes are in idle state. The first four columns within each color box
represent Nodes 1 to 4, while the fifth column correspond to the switch.

real-time. Since multiple processes can be connected to the sending
system, all receive the information simultaneously. A general scheme
of this process can be seen in Figure B.2.

In addition, each user has in his $HOME directory a file with the accu-
mulated energy consumption after the first call to show_consumption.py.
In the next call, the user will obtain the difference between the current
value and the one stored in the file. However, the values can be set to
0 at any time to re-estimate the accumulated energy for a period of
time. In the experiments performed in Chapters 5 and 6, the values
were always reset before each measurement. To do this, The option R

of show_consumption.py can be used to rewrite the file with the values
of that moment. To reset the values and start the measurement with
the shortest time interval the following command is used:

./show_consumption R && ./show_consumption

The output when using the cluster nodes can be seen in Figure B.3.
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This appendix presents a user guide designed for people interested
in using version ODGA as it is the most efficient version devel-

oped to date. The program can be found as a tool of e-hpMOBE project
[140] or directly in Github repository [141]. Before using the software it
is recommended to read the documentation, whose information also is
presented in the following sections.

The program provides a subpopulation-based GA for accelerating
an EEG classification problem and includes multi-level parallelism
to take advantage of parallel architectures such as multi-core CPUs
and GPUs. The procedure is mainly developed with MPI to distribute
subpopulations among the cluster nodes. Moreover, it implements two
dynamic scheduling alternatives to evaluate individuals according to
the number of existing subpopulations (one or more). Inside of each
node, OpenMP is used to distribute dynamically either subpopulations
or individuals among devices. The fitness evaluation of the individuals
is performed using OpenMP in CPU and OpenCL in GPU. This way, by
taking into account the devices characteristics, the procedure provides
three parallelism levels in CPU and up to four levels in GPU.

c.1 program compilation and use of parameters

To build the project a Makefile is provided. The program is compiled by
running the following command in a Unix shell:

make -j N_FEATURES=NF COMP=COMPILER
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where NF is the number of features of the dataset to use (columns),
which must be in the range of 4 and the total number of features of
the dataset. COMPILER set the MPI compiler (mpic++ by default). The
executable file, named hpmoon, is generated in the bin folder. To run it,
in the shell the next command must be executed:

mpirun --bind-to none --map-by node --host

node1,. . .,nodeX ./bin/hpmoon -conf config.xml

where config.xml is the necessary configuration file for the correct
performance of the program, which is specified by the option -conf

and located in the root folder of the project. In addition, the user can
indicate separately through command line most of the parameters
of the XML file. Table C.1 summarizes the list of parameters, their
possible values, and how to use them in the command line. In any case,
the special option -h displays the available options and examples to
use. The option --map-by node is mandatory because it is necessary to
guarantee that the MPI processes and the nodes are mapped correctly.
In the XML file, the information of the devices for each node is sorted
according to the MPI process ID. The option --bind-to none is also
mandatory since the program uses OpenMP threads to evaluate the
fitness of the individuals. This option avoids the mapping of all threads
to the same CPU core. On the other hand, the Makefile contains a rule
to generate Doxygen documentation in the doc/html folder. This can be
done by running the following command:

make documentation

Finally, the files and documents generated when compiling the project
can be deleted. There are two types of cleaning depending on the
content to be deleted. The command:

make clean

deletes the following contents:
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• Binary files.
• .o files.
• ∼ files.

For a complete cleaning, run the following command:

make eraseAll

which also removes the following content:

• gnuplot files.
• Documentation files generated by Doxygen.

The gnuplot files contain the fitness of the individuals belonging to the
Pareto front and the necessary source code for the gnuplot program.

c.2 the xml configuration file

The XML configuration file is required to run the program. Its parame-
ters are read and used at runtime. On the contrary, the parameters for
the make command are read at compile time to avoid dynamic memory.
Table C.1 shows the value ranges of all input parameters, while the
XML parameters are described below:

• NSubpopulations: total number of subpopulations.
• SubpopulationSize: size of the subpopulation.
• NGlobalMigrations: number of migrations between nodes.
• NGenerations: number of generations in each subpopulation.
• MaxFeatures: maximum number of features initially set to 1.
• DataFileName: name of the file which will contain the fitness of

the individuals belonging to the Pareto front.
• PlotFileName: name of the file which will contain the gnuplot

code to generate a figure.
• ImageFileName: name of the file which will contain the figure

after using the gnuplot program to generate it.
• TournamentSize: number of individuals in the tournament step.
• NInstances: number of instances of the dataset to use (rows).
• FileName: name of the file containing the dataset.
• Normalize: if the dataset must be normalized or not.
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Table C.1: Value range of the HPMoon input parameters and how to
use them from the command line (if available).

Parameter Value range Command line option

N_FEATURES (NF) 4 ≤ NF ≤ NF -

NSubpopulations 1 ≤ NSp -ns

SubpopulationSize 1 ≤ SS -ss

NGlobalMigrations 1 ≤ NGM -ngm

NGenerations 0 ≤ g -g

MaxFeatures 1 ≤ MF ≤ NF -maxf

DataFileName Valid filename -plotdata

PlotFileName Valid filename -plotsrc

ImageFileName Valid filename -plotimg

TournamentSize 2 ≤ TS -ts

NInstances 4 ≤ NI ≤ NP -trni

FileName Existing dataset -trdb

Normalize 1 or 0 -trnorm

NDevices 0 ≤ ND -

Names Existing device name -

ComputeUnits 1 ≤ λ -

WiLocal 1 ≤WL ≤ 1, 024 -

CpuThreads NT -

KernelsFileName Existing kernel file -ke

Display usage - -h

List devices - -l

• NDevices: number of OpenCL devices that will run the program
in a specific node.

• Names: name of each previous OpenCL device. The values must
be separated by commas and in the same order than their corre-
sponding devices.

• ComputeUnits: number of CUs (λ) for each previous OpenCL
device. The values must be separated by commas and in the same
order than their corresponding devices.

• WiLocal: number of work-items per CU for each previous OpenCL
device. The values must be separated by commas and in the same
order than their corresponding devices.
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• CpuThreads: number of OpenMP threads to use in CPU (NT)
during the fitness evaluation. If this parameter is set to 1 and
NDevices to 0, the program will run in a sequential mode.

• KernelsFileName: name of the file containing the GPU kernel.

c.3 considerations for use

The following points should be considered to obtain good performance
when running the program:

The evaluation function for each individual is parallelized in GPU
with OpenCL. A CU evaluates one individual and it is composed by
WiLocal work-items. Thus, WiLocal should be a multiple of 32 (warp) to
improve performance. The user can approximate the optimal value of
WiLocal. This value is calculated as the total number of PEs divided
by the number of CUs. E.g., the GPU NVIDIA GeForce GTX 1080 has
2, 560 PEs and 20 CUs, so that 2,560

20 = 128 work-items. However, for
this program it is recommended to use 1, 024 to hide latencies. In CPU,
CpuThreads should have a value equal to the number of logical cores.

The NDS step of NSGA-II contains a loop of quadratic time complexity
that is related to the number of individuals. For good quality results it
is not necessary to increase the number of individuals so much. The
best option is to increase the number of generations or subpopulations.

On GPU, the program performs better with values of N_FEATURES
and NInstances higher than the number of work-items. However, the
dataset is stored into local memory and its capacity is very limited
(approximately 49 KB depending on the device). The program will
abort if the dataset is too large.

If multiple devices are specified, and only one subpopulation is present
in the node, the evaluation of individuals is distributed dynamically
among the devices by using OpenMP pragmas. Each OpenMP thread
handles one device, which computes chunks of individuals equal to
their number of CUs or CPU threads until all individuals are evaluated.

Only one MPI process is mandatory to run the program. This is the
best scenario for single-computer systems. However, the program can
be run using more MPI processes. In this case, the MPI process #0
distributes subpopulations among the workers (nodes), which are the
MPI processes #1, #2, and so on. This situation should be considered
when the program is run on a cluster containing multiple nodes.
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