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Due to an error, the two limiting regimes of the theory were interchanged. We regret
to inform the readers that equation (16) in [1], that describes the ratio of the additive to
the multiplicative noise in human reaction times, is flawed. Here, we report the correct
expression, and, accordingly the modified figures 2(b), 3, and 4.

In section 3.1.2, the random multiplicative model of Piéron’s law implies a chrono-
logical order that must be preserved. That is, the encoding time t0 precedes the
asymptotic term or plateau tRT0

, and both precede the mean reaction time (RT),
μ, (0 < t0 < tRT0

< μ). The plateau tRT0
is the irreducible part of Piéron’s law and

represents a repulsion barrier from the origin located at the encoding time, t0,
(tRT0

= t0 exp(2 ln 2ΔH) > t0, ∀ ΔH > 0). At supra-threshold conditions, the mean
RT μ in Piéron’s law always drifts to the plateau (∀ I > I0 ⇒ μ→ tRT0

), and thus, tRT0

represents a bona fide additive noise term [2–4].
In page 8, the multiplicative, Da, and additive diffusion coefficient, D′

b, should be
written as follows:

Da
∼= exp(2 ln 2ΔH)

[(
I0
I

)p

+

(
I0
I

)2p

+ · · ·
]

� 0. (1)

D′
b = exp(2 ln 2ΔH) � 1, (2)
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Figure 2. (b) Double logarithmic plot of the ratio ρ as a function of the normalized
stimulus strength for different values of the exponent p. The horizontal black dashed
line indicates a ratio equals to unity.

Figure 3. Double logarithmic plot (log10) of RT moments as a function of the ratio
ρ for achromatic signals. (a) Mean value μ. (b) Variance σ2. (c) Absolute value
of the third-order moment |τ 3|. (d) Fourth-order moment τ 4. In each panel, data
points represent a total 216 of stimulus configurations. Red solid lines correspond
to a linear regression analysis. The corresponding slopes are J1, J2, J3, and J4.
Numbers in parentheses are (± standard error).

Equations (1) and (2) replace equations (14b) and (15) in [1], respectively. Then, it
follows in page 9, section 3.2, that the ratio ρ of the additive to the multiplicative noise
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Figure 4. (a) Double logarithmic plot (log10) of the RT variance σ2 as a function
of μ for achromatic stimuli. Solid circles and squares indicate those RT stimulus
configurations that correspond to a ratio ρ < 1.2 (weak additive noise), and ρ >
3.3 (strong additive noise), respectively. The red solid line corresponds to a linear
regression analysis, log10(σ

2) = log10(η) + λ log10(μ), being η a coefficient, and λ the
corresponding slope. (b) Linear plot of the kurtosis γ2 as a function of the skewness
γ1 for the same RT data. Blue, and red solid lines indicate the best fit to the
symmetric power function model with offset to those RTs in the strong (ρ > 3.3),
and weak additive noise (ρ < 1.2), respectively, being α the scaling exponent in
equation (2). In both panels, numbers in parentheses indicate (± standard error).

strength is written as:

ρ =

√
D′

b

Da

=

⎡
⎣
√(

I0
I

)p

+

(
I0
I

)2p

+ · · ·

⎤
⎦

−1

=

√(
I

I0

)p

− 1. (3)

Therefore, equation (3) is the reciprocal of equation (16) in [1], and replaces it.
Here, the additive noise becomes small at near-threshold conditions, ∀ I ∼ I0 ⇒ ρ→

0; being stronger at marked supra-threshold conditions, ∀ I � I0 ⇒ ρ � 1. Therefore,
when we said ‘strong additive noise’, it should be said, ‘weak additive noise’ and vice
versa across the entire text in [1]. There is a noised-induced transition and the transition
zone is now found at ρ ≈ 2. Accordingly, the modified figures 2(b), 3 and 4 are provided
below. The authors want to point out that these corrections do not affect the rest of
analyses and discussion except the above cited changes. We apologize to the editor, and
to the readers for any inconvenience caused.
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Abstract.  The human reaction/response time can be defined as the time 
elapsed from the onset of stimulus presentation until a response occurs in many 
sensory and cognitive processes. A reaction time model based on Piéron’s law 
is investigated. The model shows a noise-induced transition in the moments of 
reaction time distributions due to the presence of strong additive noise. The 
model also demonstrates that reaction times do not follow fluctuation scaling 
between the mean and the variance but follow a generalized version between the 
skewness and the kurtosis. The results indicate that noise-induced transitions 
in the moments govern fluctuations in sensory–motor transformations and open 
an insight into the macroscopic eects of noise in human perception and action. 
The conditions that lead to extreme reaction times are discussed based on the 
transfer of information in neurons.
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1.  Introduction

The human reaction/response time (RT) has been a standard tool in the research on 
stochastic latency mechanisms in sensory and cognitive phenomena for more than a 
century [1–4]. RTs are common in everyday tasks and involve attention and rapid deci-
sion making at supra-threshold conditions. Typical examples can be found in sports 
performance (e.g. soccer players) [5], driving safety [6], chess [7], etc. At least three 
major types of experiment have reported the existence of two dierent regimes or 
phases in RTs. (i) The shape of the RT probability density function (pdf) is often right-
skewed and depends on the external input signal. A transition is found as the stimulus 
strength I increases indicating the existence of a slow or ‘sustained’ and a fast or ‘tran-
sient’ temporal mechanism operating at low and high I values respectively [2, 8–14]. 
This sustained/transient transition is also an essential property of many sensory neu-
rons [15] and has become an important approach for better understanding trial-to-trial 
RT variability and for modeling RT pdfs [2, 8, 12, 14]. (ii) Alternatively, the moments 
of RT pdfs also reflect the existence of a bi-phasic relationship. The mean RT μ (mea-
sured in milliseconds or ms) decreases as I increases [2, 17, 18] and shows a transition at 
high I values [19–21]. In vision research, the bi-phasic relation in the mean μ depends 
on the spatial frequency of gratings, adaptation level, retinal area and colourimetric 
properties of stimuli [19–26]. (iii) Fluctuation scaling relates trial-to-trial variability as 
measured by the sample variance σ2 to the sample mean response approximately by a 
power function in many physical processes [27–30]:
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σ µ= νε ,2
� (1)

ε and ν being the amplitude and the scaling exponent respectively [27–30]. The sample 
RT standard deviation σ or the variance σ2 are correlated with the mean RT μ across 
stimulus conditions and they suer deviations from fluctuation scaling by showing a 
bi-phasic relation. In general, there is an abrupt transition or knee and σ2 saturates and 
reaches an asymptotic value for very large μ values [2, 12–14], [31–35].

Figure 1(a) shows an example of manual RTs in the ( )σ µ,2 -plane for visual stimuli 
selected across the cardinal directions of the human colour space. The human colour 
space is an abstract three-dimensional representation of the colourimetric properties of 
visual stimuli. In colour coding, current models assert that L (long-), M (middle-) and 
S (short-) wavelength-sensitive cone photoreceptor signals are re-organized into three 
post-receptoral mechanisms or orthogonal cone axes: a luminance axis (L+M); and two 
chromatic-opponent cone axes at a constant luminance level or isoluminance: a red–
green (L-M) axis and a blue–yellow axis [S-(L+M)]. Achromatic stimuli (i.e. black and 
white) stimulate the luminance system whereas red–green and blue–yellow stimuli at 
isoluminance stimulate the red–green and blue–yellow vision systems respectively [36], 
[37–40]. In figure 1(a), pattern formation in RTs shows a similar trend for both achro-
matic and isoluminant signals. The mean RT μ is often larger for isoluminance signals 
and the knee is observed for each visual signal separately [9, 36].

Together with the mean μ and the variance σ2, the skewness γ1 and the kurtosis γ2 
provide a quantitative description of heavy-tailed non-Gaussian RT distributions [31, 
36]. RT pdfs are also correlated in the ( )γ γ,1 2 -plane across stimulus conditions and fol-
low a U-shaped pattern [36], in the same way as many variables in climate, plasma 
physics, finance, etc [30, 43–46]. Figure 1(b) shows the same experimental RT data in 
the ( )γ γ,1 2 -plane. There is not an abrupt transition or knee and the U-shaped pattern is 
similar for achromatic and isoluminance stimuli. Pattern formation in the ( )γ γ,1 2 -plane 
imposes important constraints for modeling RT pdfs [36]. The U-shaped pattern is 
quite sensitive to the existence of errors or extreme RT values from the tails of pdfs, 
specifically, false alarms and misses [36]. False alarms are anticipatory responses that 
produce very short RTs and left-skewed RT distributions (γ < 01 ). Misses are rare RTs 
at the right tail of pdfs and produce very large kurtosis values (γ � 502 ) [36]. A gener-
alized version of fluctuation scaling has been proposed in the ( )γ γ,1 2 -plane by using a 
symmetric power function model with oset [36, 47]:

S K ,2 1 R Rγ β γ= | − | +α� (2)

β, α, SR and KR being the amplitude, the scaling exponent, the center and the oset 
respectively. The parameters (SR, KR) indicate a lower bound that aects the overall 
location of data points. If γ1� SR and γ2� KR, the symmetric power function model fol-

lows, γ2≃ βγα
1
. In colour vision the scaling exponent is located between the asymptotic 

limit /α = 4 3 for very large γ1 and γ2 values [46, 47] and the quadratic function α = 2 
for moderate values [30, 43, 45], and is higher for achromatic (α≈ 1.8) than isoluminant 
stimuli (α≈ 1.7) [36].

In previous works, we have investigated the functional role of fluctuation scaling 
in human colour vision and visual masking at threshold. A random multiplicative 

model with weak additive noise explains pattern formation in the ( )σ µ,2 -plane and in 
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the ( )γ γ,1 2 -plane as well, with the additive noise term proportional to the contrast of 
mask stimuli [30]. We have also investigated fluctuation scaling at supra-threshold 
conditions by using RTs as exemplified in figure  1(b). Although pattern formation 
was similar in the ( )γ γ,1 2 -plane at threshold and supra-threshold conditions [30, 36], 
it is not clear whether fluctuation scaling shares common generative mechanisms in 
both regimes. Deviations from fluctuation scaling in RTs as shown in figure 1(a) and 
reported elsewhere [2, 14, 31, 32, 34] suggest that fluctuation scaling could be the 
result of dierent processes in visual–motor communications at supra-threshold con-
ditions. To elucidate these aspects, we will use an RT model based on Piéron’s law. 
Piéron’s law describes the hyperbolic decay of the mean RT μ as a function of stimu-
lus strength I [1, 2, 17, 18], µ γ= + −t I p

RT0 , tRT0 being the asymptotic term or plateau 
reached at very high I values, and γ and p being coecients, the latter controlling the 
hyperbolic decay [2, 17, 18, 31, 48, 49]. Piéron’s law is valid in each sensory modality, 
in both simple and choice RTs and in certain animal models [2, 16, 18], [49–55]. In 
comparison with other approaches to RTs [2, 10], the RT model based on Piéron’s law 
uses elements from statistical physics and information theory to define an universal 
ecient encoder in sensory communications [13, 48, 49, 51, 52]. In previous works, 
the RT model has provided a distinct mechanism that describes the bi-phasic relation 
type (i), i.e. the shape of RT pdfs as the result of a transition between log-normal and 
power-law pdfs [14]. We have also discussed the possible functional implications of 
sustained/transient mechanisms and power functions in RTs [4, 9, 16, 52, 56]. In this 
paper, we will investigate the RT model from a dierent perspective by examining the 
functional role of additive noise. We will provide a unifying description of bi-phasic 
relations type (ii) and type (iii), i.e. the bi-phasic behavior of the RT moments and 
departures from the power function of fluctuation scaling, equation (1), and the origin 
of equation (2) respectively.

Figure 1.  Statistical properties of RTs in human colour vision. (a) Double 
logarithmic plot (log10 ) of the variance 2σ  as a function of the mean μ for dierent 
visual stimuli selected across the cardinal directions of the colour space [36, 37, 40].  
(b) Linear plot of the kurtosis 2γ  as a function of the skewness 1γ . The black dashed 

line indicates the statistical limit, 12 1
2γ γ= +  [41, 42]. The vertical solid line 

indicates the symmetric condition, 01γ = . In both panels, each point corresponds 
to dierent stimulus configurations. The total number of experimental RTs was 
well over 126 000 and they were grouped in 1509 stimulus conditions [36].

http://dx.doi.org/10.1088/1742-5468/2016/09/093502
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Although noise is often considered a nuisance in neural systems, noise-induced 
phenomena can enhance the dynamics and stability properties in many bi-stable and 
threshold-based systems. Some examples are stochastic and coherence resonance, noise-
induced synchronization, spatial patterns, etc [57–60]. Previous works have investigated 
the functional role of signal-dependent noise in sensory–motor communications [61–63] 
and fluctuation scaling in neurons [62, 64–67]. Here we report a dierent noise-induced 
process in mental chronometry. We demonstrate that bi-phasic relations type (ii) and 
type (iii) are mainly governed by a unique noise-induced transition in the moments 
of RT pdfs due to strong additive noise. The RT model also derives fluctuation scal-

ing, equations (1) and (2), and explains pattern formation in the ( )σ µ,2 -plane and in 
the ( )γ γ,1 2 -plane in figures 1(a) and (b) respectively. We demonstrate that this noise-
induced transition in the RT moments represents a non-trivial eect in sensory–motor 
communications and opens an insight into how noise-induced phenomena aect sto-
chastic latency mechanisms in the brain at a macroscopic scale [30, 36, 59, 68].

The paper is organized as follows: in section 2, we describe the experimental meth-
ods and procedure used for RTs. We focus on RTs in human colour vision by using an 
extensive RT database that covers a wide range of stimulus conditions from dierent 
subjects [9, 14, 36, 69], [70]. In section 3 we derive the RT model based on Piéron’s 
law. We discuss some of its basic properties by using a multiplicative growth process 
with additive noise and showing the existence of an internal threshold mechanism in 
RTs. Fluctuation scaling in equations (1) and (2) are derived from the RT model. We 
also present experimental results of a noise-induced transition in the mean RT μ. The 
RT model of Piéron’s law generalizes the bi-phasic relationship in the mean μ type (ii) 
to higher-order moments and explains the bi-phasic relation type (iii). The implications 
in the temporal dynamics of parallel visual pathways and the origin of RT false alarms 
and misses are discussed in section 4. Conclusions are summarized in section 5.

2. Experimental methods

We have re-analyzed an RT database in colour vision containing more than 126 000 
RTs from dierent subjects. The experimental methods and procedure are standard 
in visual psychophysics and colourimetry and have been reported elsewhere [9, 14],  
[36, 69–71]. Briefly, colour coordinates of visual stimuli were selected along the lumi-
nance direction and along the red–green and blue–yellow isoluminant directions of 
the human colour space. Stimuli were generated by using a colour calibrated display 
connected to a microcomputer equipped with a graphics card. At isoluminance, het-
erochromatic flicker photometry was used to match the luminance of red–green and 
blue–yellow stimuli to a reference adapting stimulus. RTs for chromatic variations at 
isoluminance were performed by using the hue-substitution method. The hue-substitu-
tion method avoids any luminance transient changes and RTs were measured for pure 
hue signals. All stimuli were uniform circular patches and were presented on a dark 
background. They were centered at the fovea in both monocular and binocular vision 
by using natural and artificial pupils. Subjects were seated in front of the colour display 
in a dark room. A chin rest was used for head stabilization. All subjects had normal 

http://dx.doi.org/10.1088/1742-5468/2016/09/093502
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colour vision according with standard clinical tests and were experienced in RT tasks. 
For each subject, we collected a number of sessions across dierent days, months and 
years until reaching a distribution of no less than 70 RTs for each stimulus condition. 
For each session, subjects were allowed to adapt to darkness and to adapt to a refer-
ence stimulus. Dierent adapting stimuli were used at isoluminance. Subjects did not 
know which stimulus was the next in the sequence and their task consisted only of 
responding as soon as possible to an intensity change. RTs were measured for manual 
responses and were taken independently for each cardinal direction of the colour space. 
The computer clock was programmed to measure RTs with 1 ms accuracy.

3. Results

3.1. A human reaction time model

3.1.1. Piéron’s law as a multiplicative process.  Physics-based approaches to human 
RTs assert the existence of a cascade of random variables that control the time course 
of RTs in a certain chronological sequence or causal order [2, 3, 16, 49, 52, 53]. This 
formulation of RTs plays a central role to define not only an order but also a direction 
in the time axis. The time direction of RTs makes a parallelism with the definition of 
an irreversible process and can be characterized by an information entropy function 
as we will show below [48, 51, 72]. For a generic RT task, we define the growth of 
RT in the time axis at discrete steps to indicate the existence of dierent processes. 
The RT at the step n  +  1, xn+1, depends on the previous step n, xn, by means of a 
random multiplicative process with additive noise following a discrete-time Langevin  
equation [16, 52, 58, 73]:

( )= + + ++ �x a x b O x ,n n n n n1
2

� (3)

an and bn being the multiplicative and additive noise terms respectively. Equation (3) 
implies that xn occurs before xn+1 and 0 ⩽< +x xn n 1. When an  >  1 and 0  <an  <  1, the 
magnitude of the RT is amplified or reduced respectively. The solutions of equation (3) 
are restricted within a lower and an upper bound. In the former, the additive noise 
term (bn  >  0) prevents xn+1 dropping to zero when an goes to zero and reaches a mini-

mum RT value. In the latter, non-linear terms ( )O xn
2 , etc keep the solution bounded up 

to a maximum RT value. Random multiplicative processes as in equation (3) are one of 
the simplest mechanisms that leads to power functions in such dierent fields as econo-
physics, noisy on–o intermittency in complex systems, etc [30, 58, 74–79]. Following 
the Langeving approach proposed by Nakao [79], it is established that ⟨ ⟩∝ ≠a D 0n a  and 
⟨ ⟩∝ ≠b D 0n b , the brackets ⟨ ⟩�  being the time average over many trials or repetitions 
of the same RT experiment. The factors Da and Db are the diusion coecients and 
indicate the average strength of interactions of the multiplicative and additive noise 
terms respectively. Applying the time average to equation (3) and considering only the 
first two terms on the right-hand side and ⟨ ⟩ ⟨ ⟩≡a x a xn n n 0, x0 being a reference value 
related with an ecient encoder, the mean RT μ is the result of the interplay between 
the additive and multiplicative noise:
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⟨ ⟩µ≡ ≅ ++x D x D .n a b1 0� (4)
It is assumed that both Da and Db are not fixed but elastic and that both are state-
dependent and stimulus-driven. Equations (3) and (4) are an alternative way to rewrite 
Piéron’s law, µ γ= + −t I p

RT0 , by using a certain chronological sequence that cannot be 
violated [52, 53]. In equation (4), fluctuations in Da and Db across stimulus conditions 
are mapped into tRT0, γ and p.

3.1.2. A derivation of Piéron’s law.  To elucidate the internal structure of Da and 
Db as a function of tRT0, γ and p, we derive Piéron’s law from first principles by using 
an informational theory proposed by Norwich [16, 48, 49, 51, 72]. In this framework, 
information processing in neurons is not instantaneous and always takes time. The RT 
can be defined as the time from stimulus presentation needed to gather ∆H  bits of 
information [48, 51]:

( ) ( ) ⩾∆ = −H H I t H I t, , 0.0� (5)
The information entropy H is a Bolztmann-type entropy function that evolves con-

tinuously in time and provides a measure of the internal uncertainty state in sensory 
systems, t0 and t being the encoding time and the time to react respectively. The encod-
ing time t0 in ∆H  is an important variable and indicates the existence of a maximum 
entropy classifier or ecient encoder before reaction [49, 80]. The gain of information 
∆H  represents an irreversible process after ecient encoding and is linked with the 
formation of an internal variable threshold in the sensory system [16, 48, 49, 51–53]. In 
equation (5), a temporal sequence of events is implicit in the time axis and < <t t0 0 . 
A plausible model for the information entropy function H can be written as follows  
[16, 48, 49, 51, 72]:

⎜ ⎟
⎛
⎝

⎞
⎠

φ
= +H

I

t

1

2 ln 2
ln 1 ,

p

� (6)

φ being a parameter. The information entropy as defined in equation (6) is a useful 
approach to examining the drop of internal uncertainty from a maximum entropy value 
or potential to receive information. Its origin is related to how sensory neurons trans-
mit the information received by the sensory receptors about an external input signal 
of intensity I. The information entropy in equation (6) provides the basis to explain 
many empirical laws in human sensation and perception. Its mathematical derivation 
has been reported elsewhere [48, 51, 72]. Introducing equation (6) into equation (5):

⎜ ⎟
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠
⎤

⎦
⎥φ φ

∆ = + − +H
I

t

I

t

1

2 ln 2
ln 1 ln 1 .

p p

0
� (7)

Solving equation (7) for the time t [48, 51]:

( )
( )⎡

⎣⎢
⎤
⎦⎥φ

=
∆

−
− − ∆

−

t
t H

H

I

1

exp 2 ln 2

1 exp 2 ln 2
.

p
0

1

� (8)

The asymptotic term or plateau in equation (8) is reached at very high stimulus 
strength [48, 51]:
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( )
→

≡ = ∆
∞

t t t Hlim exp 2 ln 2 .
I

RT 00� (9)

The maximum value of t occurs for a just-threshold signal ( =I I0), I0 being an inter-
nal threshold or reference value that depends on the stimulus configuration and ∆H  
[48, 49, 51]:

( )
→

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟φ

≡ = −
− − ∆

−

t t
t

H

I
lim

1 1 exp 2 ln 2
.

I I
pRT

RT 0

1

0
MAX

0

� (10)

Substituting the term ( )− − ∆H1 exp 2 ln 2  from equation (10) into equation (8):

⎜ ⎟
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝

⎞
⎠

⎤

⎦
⎥= − −
−

t t
t

t

I

I
1 1 .

p

RT
RT

RT

0

1

0

0

MAX

� (11)

Equations (8) and (11) show that RTs decay as a hyperbolic function of the stimulus 
strength I between an upper (tRTMAX) and a lower bound (tRT0). If the dierence between 
tRTMAX and tRT0 is large enough ( �t tRT RT0 MAX), Piéron’s law exists in RTs. In many prac-
tical situations, it is assumed that tRTMAX is too large ( →∞tRTMAX ), i.e. lack of response 
at threshold. This issue will be discussed further later. Therefore, a generalized version 
of Piéron’s law can be written as follows [16, 48, 49, 51]:

  ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥µ≡ = −
−

t t
I

I
1 .

p

RT
0

1

0� (12)

In equation (12), an RT response occurs only if ( >I I0). The classical form of Piéron’s 
law [17] is obtained by taking the first two terms of the geometric series expansion in 
equation (12) [16]:

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥µ = + + +�t t

I

I

I

I
,

p p

RT RT
0 0

2

0 0� (13)

and for the coecient γ of Piéron’s law, γ≅ t I p
RT 00  [16]. Here, < < <t t t0 0 RT0  [16, 49, 

52, 53]. The multiplicative noise term in equation (4), D xa 0, is related to the asymptotic 
term tRT0 of Piéron’s law [74, 77]:

= >x t 0,0 0� (14a)

( ) ⩾= ∆D Hexp 2 ln 2 1.a� (14b)

The diusion coecient of additive noise Db in equation (4) also depends on the pla-
teau tRT0 but is mainly modulated by the reciprocal of the stimulus strength I. Taking 
the remaining terms of the geometric series expansion in equation  (13), we rewrite 

= ′D D tb b 0. ′Db can be expressed as follows:

( ) ⩾⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥≅ ∆ + +′ �D H

I

I

I

I
exp 2 ln 2 0.b

p p
0 0

2

� (15)
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Figure 2(a) shows an example of Piéron’s law by plotting the normalized mean RT 
( /µ tRT0) as a function of the normalized stimulus strength ( /I I0) for dierent values of the 
exponent p. The higher the value of p, the faster the hyperbolic decay [16, 48, 49, 51].

3.2. The eects of additive noise

To investigate power-law behavior of moments of RT pdfs, the Langevin approach 
made by Nakao compares the strength of the additive noise with respect to the mul-
tiplicative noise term under external driving [79]. The ratio ρ of the additive to the 
multiplicative noise strength can be defined as follows [79]:

⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥
⎥

ρ = = + + = −
′

−

�
D

D

I

I

I

I

I

I
1 .b

a

p p p
0 0

2

0

1

� (16)

Figure 2(b) shows ρ as a function of the normalized stimulus strength ( /I I0) for 
dierent values of the exponent p. In general, ρ decreases as I increases and the scal-
ing exponent p of Piéron’s law controls the decay. The higher the value of p, the faster 
the decay ρ. The additive noise strength becomes small ( ρ< <0 1) at marked supra-
threshold conditions ( �I I0). A balance is obtained when ρ = 1. However, strong addi-
tive noise eects (ρ> 1) are persistent in the critical region near the threshold ( ≅I I0). 
In this regime, the lower the value of the scaling exponent ( < <p0 1), the higher the 
additive noise strength (figure 2(b)).

When the eects of the additive noise strength are weak ( →ρ 0), Nakao [79] has 
demonstrated that the moments of the pdf in the Langevin model follow a power law as 
a function of ρ. The first moment is the mean μ and the second-order moment centered 
around the mean is the variance σ2 [79]:

µ ρ≅ +G G ,J
0 1

1� (17)

Figure 2.  (a) Example of Piéron’s law. Double logarithmic plot (log10) of the 
normalized mean RT ( tRT0/µ ) as a function of the normalized stimulus strength 
(I I0/ ) for dierent values of the scaling exponent p. (b) Double logarithmic plot of 
the ratio ρ as a function of the normalized stimulus strength for dierent values of 
the exponent p. In both panels horizontal dashed black lines indicate a ratio equal 
to unity.
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σ ρ≅ +G G ,J2
2 3

2� (18)

G0, G1, G2 and G3 being coecients and J1 and J2 the corresponding scaling exponents 
[30, 79]. To derive fluctuation scaling, we assume that ≅G0 0 and ≅G2 0 and introducing 
ρ from equation (17) into equation (18):

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

σ µ=
G

G

.
J

J

J
J2 3

1

2

1

2

1� (19)

From this, and taking into account equation (1), the amplitude ε and the exponent 
ν of the standard version of fluctuation scaling are:

=ε
G

G

,
J

J

3

1

2

1
� (20a)

ν =
J

J
.2

1
� (20b)

A similar treatment can be performed between the higher-order moments. Let τ3 
and τ4 be the third- and fourth-order moments of the RT pdf, centered around the 
mean, respectively. Under the assumption of weak additive noise ( →ρ 0) [79]:

τ ρ≅ +G G ,J
3 4 5

3� (21)

τ ρ≅ +G G ,J
4 6 7

4� (22)

G4, G5, G6 and G7 being coecients and J3 and J4 the corresponding exponents in 
the same way as in equations  (17) and (18). Substituting ρ from equation  (21) into 
equation (22):

( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

τ τ= + −G
G

G

G .
J

J

J
J4 6

7

5

4

3

3 4

4

3� (23)

We assume that sensory systems are symmetric with respect to the osets G4, and 
G6 in equations (21) and (22) [81]. The skewness γ1 and the kurtosis γ2 are the standard-

ized third- and fourth-order moments respectively [82]: τ γ σ=3 1

3
2, τ γ σ=4 2

2. Therefore, 

the symmetric power function model in the (γ γ,1 2)-plane becomes:

⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

γ
σ

σ
γ

σ
= + | − |

−G G

G

G
.

J

J

J
J

2
6

2

7
2

5

4

3

1
4

3
2

J

J

3 4
2 3 4

3� (24)

The amplitude β, the scaling exponent α and the oset (SR, KR) in equation (2) can 
be identified with the corresponding coecients in equation (24):
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β
σ

=
−G

G

,
J

J

7
2

5

4

3

J

J

3 4
2 3

� (25a)

α =
J

J
,4

3
� (25b)

σ
=S

G
,R

4

3
2

� (25c)

σ
=K

G
.R

6

2� (25d )

3.3. Noise-induced transition

We investigate power-law behavior of equations  (17), (18), (21) and (22) by using 
experimental RT data. The ratio ρ in equation (16) can be evaluated by providing an 
estimate of I0 and p. In colour vision and contrast coding, the stimulus strength I is 
the contrast of stimuli. We have simplified the situation and have focused on RTs for 
achromatic visual signals. The RTs for red–green and blue–yellow signals at isolumi-
nance follow in a similar way. For achromatic stimuli I can be defined as the standard 
Michelson contrast:

=
−
+

I
N N

N N
,max min

max min
� (26)

Nmax and Nmin being the maximum and minimum luminance of stimuli with respect to 
the adapting reference stimulus [9, 14, 36]. Other contrast metrics [71, 83] produce sim-
ilar results. The mean RT μ as a function of I was fitted to the generalized version of 
Piéron’s law in equation (12) and the parameters I0 and p were estimated. A weighted 

non-linear least-squares procedure was performed by minimizing the χ2 statistics [84]. 
Weights were selected as the reciprocal of the RT standard deviation σ.

Figure 3 exemplifies in a double logarithmic plot the mean μ, the variance σ2, the 
absolute value of the third-order moment τ| |3  and the fourth-order moment τ4 of RTs 
as a function of the ratio ρ for achromatic signals. Although there are broadening 
eects [29], figure 3(a) clearly shows the existence of a noise-induced transition in the 
mean RT μ. This noise-induced transition represents the bi-phasic relationship type  
(ii) [20–23, 26], and is generalized to higher-order RT moments in figures 3(b)–(d). At 
supra-threshold conditions ( �I I0) the strength of additive noise is weak or transient 
( →ρ 0) (see figure 2(b)). In figure 3, RT moments slightly increase as a function of ρ 
but the slopes are nearly flat and close to zero. A reliable estimation of the scaling 
exponents in equations  (17), (18), (21) and (22) was not possible due to broadening 
[29]. However, at near-threshold conditions the additive noise is strong and produces 
a sustained behavior (ρ� 0.8) (see figure 2(b)). In this regime, RT moments in figure 3 
increase as the ratio ρ increases and the slopes are higher than unity.

http://dx.doi.org/10.1088/1742-5468/2016/09/093502


Noise-induced transition in reaction times

12doi:10.1088/1742-5468/2016/09/093502

J. S
tat. M

ech. (2016) 093502

In all RT moments, there is a transition zone around ρ≈ 0.5 that separates the tran-
sient/sustained behavior. It is interesting to note that the transition zone is smoother 
for the mean RT μ (figure 3(a)) and becomes sharper for higher-order moments. 
Transition zones are similar between the variance, σ2 and the third- τ| |3  and fourth-
order τ4 moments (figures 3(b)–(d)). These dierences between transition zones explain 

the existence of a knee in the ( )σ µ,2 -plane (figure 1(a)) and thus, the bi-phasic relation 
type (iii), whereas a similar knee in the (γ γ,1 2)-plane is absent (figure 1(b)).

Figure 4(a) exemplifies in a double logarithmic plot the same RT data for achro-

matic signals in the (σ µ,2 )-plane. RTs at dierent stimulus conditions were classified 
into two groups: those σ2 and μ values that correspond to weak additive noise (ρ< 0.3) 
and those that correspond to strong additive noise (ρ> 0.8). The remaining RT condi-
tions around the transition zone (ρ≈ 0.5) were excluded. In figure 4(a) the two dierent 
regimes of the bi-phasic relation type (iii) are clearly discerned and avoid the existence 
of a single power function or the conventional version fluctuation scaling in equa-
tion  (1) [28–30]. The transient or weak additive noise regime (ρ< 0.3) produces the 
lowest σ2 and μ values. Figure 4(b) represents the same RT data in the (γ γ,1 2)-plane. 
Those stimulus conditions for weak and strong additive noise lead to two dierent 

Figure 3.  Double logarithmic plot log10( ) of RT moments as a function of the ratio 
ρ for achromatic signals. (a) Mean value μ. (b) Variance 2σ . (c) Absolute value of 
the third-order moment 3τ| |. (d) Fourth-order moment 4τ . In each panel, data points 
represent a total 216 of stimulus configurations. Red solid lines correspond to a 
linear regression analysis. The corresponding slopes are J1, J2, J3, and J4. Numbers 
in parentheses are (±standard error).
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U-shaped patterns. In the weak additive noise regime (ρ< 0.3), some RT distributions 
contain many false alarms and are left-skewed (γ < 01 ). However, in the strong additive 
noise regime (ρ> 0.8) false alarms are minimized and RT distributions are right-skewed 
(γ > 01 ).

The RT model with weak additive noise produces power-law behavior in the 
moments of pdfs as shown in equations (17), (18), (21) and (22) [79]. Power-law behav-
ior of moments could also be extended to strong additive noise because Piéron’s law is 
valid under both supra-threshold and near-threshold conditions (figure 2(a)). We inves-
tigate this issue in figure 3 in the strong additive noise regime (ρ� 0.8). A linear least-
squared regression analysis for each RT moment was performed in a log–log plot. The 
scaling exponents for μ, σ2, τ| |3  and τ4 for strong additive noise were J1  =  1.38, J2  =  2, 
J3  =  1.5 and J4  =  1.9 respectively. In figure 4(a), a linear least-squared regression analy-
sis was performed between σ2 and μ in the strong additive noise regime and for the 
slope λ = 1.5. From equation (20b), the scaling exponent of fluctuation scaling ν leads 
to, ( / )ν≡ =J J 1.442 1 , which is a very good approximation to the slope λ. In figure 4(b), 
a non-linear least-squares procedure to the generalized version of fluctuation scaling, 

equation (2), was performed by minimizing the χ2 statistics [84]. The scaling exponent 

α in the strong additive noise regime was α≈ 1.73. From equation (25a), the scaling 
exponent of the symmetric power function model leads to ( / )α≡ =J J 1.264 3 , which is 
a reasonable approximation. It is interesting to note that the U-shaped pattern for 
achromatic signals found using raw RT data was α≈ 1.8 [36]. This scaling exponent 
nearly matches the results obtained in the weak additive noise condition in figure 4(b) 
(α = 1.77) [36]. However, raw RTs for both red–green and blue–yellow isoluminant 
signals show U-shaped patterns (α≈ 1.7) that are closer to the strong additive noise 
condition in figure 4(b) (α≈ 1.73) [36].

4. Discussion

4.1.  Implications in neurophysiology

It has been argued that the bi-phasic relationship in the mean RT μ type (ii) for ach-
romatic signals is mediated by dierent sub-cortical pathways [23, 25, 26], whereas the 
same bi-phasic relation is absent for chromatic signals at isoluminance [23–26]. We 
have extended previous works and generalized the bi-phasic relation type (ii) to higher-
order RT moments, i.e. σ2, τ3 and τ4 by using a RT database that contains a huge 
number of RTs spanning a broad range of stimulus conditions and several subjects [36]. 
The analyses of RT pdfs [9] and RT moments (figure 1) [36] are not compatible with 
a bi-phasic relation only for achromatic signals. The RT model based on Piéron’s law 
demonstrates that bi-phasic relations type (ii) and deviations from fluctuation scaling 
or type (iii) are the result of a generic noise-induced transition due to strong additive 
noise. In both cases, a transient/sustained dynamics co-exist when using both achro-
matic and isoluminant stimuli (figures 1, 3 and 4).

Our approach is dierent from the random multiplicative model with weak addi-
tive noise used in visual masking at threshold [30]. First, the RT model derives 
Piéron’s law which describes sensory–motor transformations by using a power 
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function at supra-threshold conditions. Second, the ratio ρ in RTs as defined in 
equation (16), decreases as the stimulus strength I increases (figure 2(b)). However 
in visual masking, that ratio increases as the stimulus strength increases [30]. Third, 
the additive noise term of the RT model is not always weak as in visual masking 
[30, 79] but it becomes stronger at near-threshold conditions (figure 2(b)). Therefore, 
we conclude that there are distinct generative mechanisms that exhibit transient/
sustained dynamics and modify fluctuation scaling in RTs at supra-threshold condi-
tions. Dierences between achromatic and isoluminant signals can be investigated 
by analyzing the scaling exponent α in the (γ γ,1 2)-plane [30, 36]. Figure 4(b) dem-
onstrates that both transient and sustained mechanisms produce U-shaped patterns 
with distinct α values. This is a crucial aspect that characterizes RTs for each visual 
signal. The results indicate that RTs for achromatic signals mainly contribute to the 
development of weak additive noise or transient dynamics (α≈ 1.8) [36]. However, 
isoluminant signals often provoke strong additive noise or sustained dynamics in 
RTs (α≈ 1.7) [36].

Piéron’s law is invariant under transformations of scale in the time axis [14, 49, 85].  
This property is similar to deflation or block renaming by means of a renormalization 
group approach in statistical physics. Self-similarity in Piéron’s law at dierent time 
scales leads to an analogy with the reciprocal of the Naka–Rushton equation in neu-
rophysiology [86]. The Naka–Rushton equation is considered a canonical form of gain 
control in neurons as a function of the stimulus strength [86–88]. Let /=R t1 RT and 

/=′R t1 RT0. Then, the Naka–Rushton equation can be derived from Piéron’s law as fol-
lows [14, 49]:

Figure 4.  (a) Double logarithmic plot (log10) of the RT variance 2σ  as a function 
of μ for achromatic stimuli. Solid circles and squares indicate those RT stimulus 
configurations that correspond to ratios 0.3ρ<  (weak additive noise) and 0.8ρ>  
(strong additive noise) respectively. The red solid line corresponds to a linear 

regression analysis, log log log10
2

10 10( ) ( ) ( )σ η λ µ= + , η being a coecient and λ the 
corresponding slope. (b) Linear plot of the kurtosis 2γ  as a function of the skewness 

1γ  for the same RT data. Blue and red solid lines indicate the best fit to the 
symmetric power function model with oset to those RTs in the weak ( 0.3ρ< ) 
and strong additive noise ( 0.8ρ> ) respectively, α being the scaling exponent in 
equation (2). In both panels, numbers in parentheses indicate (±standard error).
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In equation (27), the neural response R (in spikes per second) increases as the stimu-
lus strength I increases and then it saturates at high I values until reaching the asymp-
totic limit ′R . The exponent of the Naka–Rushton equation p has the same role as in 
Piéron’s law and controls the raise or the hyperbolic growth in equation (27). In RTs, p 
is related with microscopic neural interactions and dierent interpretations have been 
proposed [13, 14, 48, 49, 51, 89, 90]. In our case, gain control mechanisms as modeled 
by Piéron’s law have a fundamental role and modulate the strength of the additive 
noise term under external stimulus driving (equation (16)). RTs for achromatic signals 
favour weak additive noise and, thus, their corresponding neural responses in equa-
tion (27) saturate sooner ( >p 1achromatic ) [91, 92] (see also figure 2(b)). However, RTs for 
isoluminant signals promote strong additive noise. In accordance with equation (27), 
their associate neural responses are more linear and sustained and for the scaling expo-
nent ( <p pisoluminant achromatic) (figure 2(b)).

These RT dierences between achromatic and isoluminant signals support the 
notion that noise-induced transitions in RT moments are mediated by the retino-
cortical magno-, parvo- and konio-cellular parallel pathways [39, 40, 93]. Magno cells 
combine L- and M-cone signals (L+M). They exhibit transient activity and respond 
better to achromatic stimuli. Their responses are faster and they saturate at high 
stimulus contrasts. However, parvo cells combine L-cones opposed to M-cones (L-M). 
They are more sustained and respond stronger to red–green stimuli at isoluminance. 
Their responses are slower and they do not saturate, and increase linearly as the stimu-
lus contrast increases. Konio cells combine S-cones opposed to L- and M-cone signals 
[S-(L+M)]. They exhibit a sluggish delay in the visual cortex. They respond better 
to blue–yellow stimuli at isoluminance and their responses are heterogeneous at high 
stimulus contrasts [39, 40], [91–99].

4.2. Origin of false alarms and misses

The RT model based on Piéron’s law governs the strength of the additive noise term 
(figure 2) if the dierence between the lower tRT0 and upper tRTMAX bounds takes too 
large values (equation (11)). However, this is not always the case because the asymp-
totic term of Piéron’s law, ( )= ∆t t Hexp 2 ln 2RT 00  can be an unstable multiplicative 
process [76, 77], and the transfer of information ∆H  acts as a bifurcation parameter 
when →∆ ∞H  [16].

Figure 5(a) exemplifies the eects of the upper and lower bounds in Piéron’s 
law by taking dierent values of the ratio ( /t tRT RT0 MAX) in equation (11). In the limit 
( /t tRT RT0 MAX)  →  1, Piéron’s law almost disappears and becomes nearly flat near the 
threshold. From equation (10), the ratio ( /t tRT RT0 MAX) always decreases below unity as 
tRT0 increases and guarantees the existence of Piéron’s law in RTs. However, ( /t tRT RT0 MAX) 
also depends on the encoding time t0 and the normalized threshold φI p

0. The higher the 
value of φI p

0 in equation (10), the slower the decay will be and the ratio ( /t tRT RT0 MAX) 
will be closer to unity. This eect could prevent an ecient gain control of the additive 
noise strength in ρ (equation (16)) in certain situations.
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In general, the plateau tRT0 is an auto-catalytic process where fluctuations in t0 have 
a direct link with fluctuations in ∆H  and vice versa. The multiplicative growth process 
indicates that tRT0 decreases and →∆H 0 as →∞t0 . However, tRT0 increases and →∆ ∞H  
as →t0 0 [76, 77]. We have investigated this issue by examining the eect of S-cone 
distribution in the human retina on RTs for blue–yellow changes at isoluminance. The 
spatial configuration of visual stimuli was 16 and 90 min of arc and they were centered 
at the fovea [70]. The former configuration allows us to stimulate the S-cone free zone 
in the central fovea or foveola. In the foveola, only L- and M-cone signals are available 
(usually called foveal tritanopia). However at 90 min of arc both L-, M- and S-cone 
signals are present [16, 70]. The paucity of S-cones at the foveola has a direct impact 
on RTs in the blue–yellow system [S-(L+M)]. The model of Piéron’s law predicts that 
at 16 min of arc ∆H  increases and t0 decreases because only L- and M-cone signals are 
available in the blue–yellow channel and their corresponding latencies are shorter than 
S-cone signals [97]. Therefore, the plateau tRT0 increases and by using Piéron’s law and 
fluctuation scaling, the mean RT μ and the variance σ2 are higher at 16 min of arc as 
demonstrated in figure 5(b). A similar result is obtained in the (γ γ,1 2)-plane.

The asymptotic term tRT0 is also state-dependent and varies between a minimum 
and a maximum value:

( )= ∆t t Hexp 2 ln 2 ,RT 0 MIN0MIN MAX� (28a)

( )= ∆t t Hexp 2 ln 2 .RT 0 MAX0MAX MIN� (28b)

The minimum simple manual RT for visual signals is often considered to be between 
≅t 160RT0MIN

–180 ms [2, 100]. We conclude that optimal ecient encoding at t0MAX is 

Figure 5.  (a) The eects of boundary conditions on Piéron’s law. Double logarithmic 
plot (log10) of the normalized mean RT ( tRT0/µ ) as a function of the normalized 
stimulus strength (I/I0). Solid circles, squares, diamonds and triangles denote 
ratios (t tRT RT0 MAX/ ) of 0.001, 0.1, 0.5 and 0.9 respectively. (b) Semi-logarithmic plot 
of RT time series as a function of the trial number in the S-cone isolating axis. 
The example shows RTs for blue–yellow stimuli at isoluminance for two dierent 
stimulus sizes, 16 min or arc (S-cone free zone) and 90 min or arc. The inset shows, 
in a double logarithmic plot, the corresponding RT variance 2σ  as a function of the 
mean μ at 16 min or arc (circle) and 90 min or arc (square).
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achieved when both L-, M- and S-cone signals are present. This is a manifestation 
of the principle of trichromacy in human colour vision [37–40] and involves dierent 
visual latencies across sub-cortical parallel pathways. This also implies that S-cone 
signals have a special role and modulates the plateau tRT0 in the last instance because 
they exhibit larger latencies [96, 97]. In equation (28a) and after ecient encoding, the 

ratio of the two successive latencies ( /t tRT 00MIN MAX) asymptotically approaches the golden 

mean ( )/Φ = + ≡ …1 5 3 1.618 03 . The golden mean is a characteristic scaling factor 
and indicates how to subdivide the minimum length of the whole segment tRT0MIN

 into 
the greatest common divisor t0MAX in the time axis. Consequently, the minimum transfer 
of information ∆ ≈HMIN  0.347 bits and for the optimal encoding time ≈ −t 98 1110MAX  
ms, which is a very good approximation to the sluggish response of S-cone signals in the 
primary visual cortex (96–135 ms) [96]. In equation (28b), magno cells (L+M) exhibit 
the shortest latencies at the visual cortex [97] and, ≈t 340MIN  ms [97]. We establish the 
maximum transfer of information as the value that leads to a stable geometric series 

expansion in equation (13), ∆ ≈H 4MAX  bits [16]. It follows that ≈t 8700RT0MAX
 ms, i.e. 

nearly 55 times higher than tRT0MIN
.

Those RTs outside the optimal range of ecient coding (t t,0 0MIN MAX) can be consid-
ered as extreme values. Under this approach, false alarms are errors that result from bad 
coding ( �t t0 0MAX) and promote a transfer of information in neurons below the minimum 
value allowed (∆ <∆H HMIN). However, RT misses are errors that result from poor cod-
ing ( �t t0 0MIN) and (∆ >∆H HMAX). The results also indicate a counter-intuitive role for 
red–green and blue–yellow channels in temporal vision. It consists in exploiting the right 
amount of additive noise or the ratio ρ (equation (16)) to produce accurate visual–motor 
transformations within the ecient coding range. In colour vision, red–green and blue–
yellow channels are considered second-order mechanisms with regard to their slower 
latencies [9, 69, 70, 94–97]. However, these chromatic-opponent channels can stabilize 
the temporal dynamics of the luminance system by promoting larger amounts of addi-
tive noise in such a way that the visual system stays in a sustained dynamics for a longer 
time. This could help to reduce false alarms in the analysis of complex visual scenes.

5. Conclusions

We have investigated the role of additive noise in a human RT model based on the 
information entropy H and Piéron’s law, which is a universal feature for gain control 
at supra-threshold conditions. The model describes an irreversible process, ⩾∆H 0, that 
is connected with the formation of an internal threshold in RTs. The RT model unifies 
bi-phasic relationships type (i) [16], (ii) and (iii); from RT pdfs [16], through the mean 
RT μ and higher-order moments, σ2, τ3 and τ4, to deviations from fluctuation scaling in 

the (σ µ,2 )-plane and pattern formation in the (γ γ,1 2)-plane. A noise-induced transition is 
revealed due to the presence of strong additive noise. This noise-induced transition pro-
vides a common basis for transient and sustained mechanisms in human colour vision. Our 
RT model can be also applied in the research into transient and sustained mechanisms in 
other sensory modalities such as in hearing, etc and abnormal sensory–motor transforma-
tions such as in Parkinson’s disease, attention-deficit disorders, etc. The results open a 
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new perspective on the macroscopic eects of noise-induced phenomena, gain control and 

pattern formation in neurons in the (σ µ,2 )-plane [64, 65, 67] and in the (γ γ,1 2)-plane [44] 
and may help to develop novel prostheses for sensory–motor impairments.
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