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Abstract  

Up-regulated choline metabolism, characterized by an increase in phosphocholine (PCho), is a hallmark 

of oncogenesis and tumor progression. Choline kinase (ChoK), the enzyme responsible for PCho 

synthesis, has consequently become of a promising drug target for cancer therapy and as such a 

significant number of ChoK inhibitors have been developed over the last few decades. More recently, 

due to the role of this enzyme in other pathologies, ChoK inhibitors have also been used in new 

therapeutic approaches against malaria and rheumatoid arthritis. Here, we review research results in 

the field of ChoKα inhibitors from their synthesis to the molecular basis of their binding mode. 

Strategies for the development of inhibitors and their selectivity on ChoKα over ChoKβ, the plasticity 

of the choline-binding site, the discovery of new exploitable binding sites, and the allosteric properties 

of this enzyme are highlighted. The outcomes summarized in this review will be a useful guide to 

develop new multi-functional potent drugs for the treatment of various human diseases. 

Keywords: Choline kinase, inhibitors, structure-based drug design, cancer, malaria 

 

1. INTRODUCTION 

Cancer is a health and economic burden, and a leading cause of death worldwide that accounted for 

an estimated 9.6 million deaths in 2018.1 Despite of the vast complexity of biochemical mechanisms 

underlying this group of diseases, magnetic resonance spectroscopic (NMR) studies have revealed a 

common characteristic in some breast, lung, colon, bladder, prostate and ovarian cancers that can be 

used in the design of new antitumor drugs: an increase of phosphocholine (PCho) and total choline 

(Cho)-containing compounds relative to healthy tissues.2–6 This phenomenon is so pronounced that 

[11C]-Cho and [18F]-Cho are used in Positron Emission Tomography (PET) as tracers to diagnose, monitor 

and prognose solid tumors.7–11 

PCho is a precursor of phosphatidylcholine (PtdCho), which is a major component of mammalian and 

some prokaryotic cell membranes and also the precursor of signaling molecules, such as phosphatidic 

acid that triggers the mitogenic signal.12–15 PCho is synthesized by choline kinase (ChoK), a cytoplasmic 
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enzyme, the expression of which is regulated by the concentration of intracellular Cho,16 hypoxia-

inducible factor-1α (HIF1-α),17 hormones,18 cytokines and growth factors, such as EGF,19 insulin19 and 

prolactin.20 Human ChoK (hChoK) exists in nature as three isoforms (α1, α2 and β) that generate active 

homo or heterodimers, which catalyze the conversion of Cho into PCho by using ATP and Mg2+ as a 

cofactor. The catalytic mechanism has yet to be determined, but there are currently two proposed 

mechanisms. The first mechanism requires the formation of a ternary complex, whereas the second 

involves the formation of a phosphorylated enzyme intermediate (see section 4.3 for a detailed 

analysis of the two potential catalytic mechanisms).21,22  

hChoKα1 and hChoKα2, encompassing 457 and 439 amino acids, respectively, are the product of chk-

α gene alternative splicing, whereas hChoKβ (395 amino acids in length) is encoded by chk-β. Despite 

the high grade of identity (56%) at the amino acid level between hChoKα and hChoKβ, both enzymes 

have proven differences in the lipid metabolism and their role in carcinogenesis.23,24 hChoKα is 

overexpressed in some of the most common cancers and has oncogenic activity when overexpressed 

in human cells, yet most studies claim that hChoKβ does not contribute to oncogenic transformation.25–

30  

As a result of the relevance of hChoKα in human carcinogenesis, many hChoKα inhibitors have been 

synthesized by means of different chemical approaches. The inhibition of hChoKα leads to an indirect 

decrease of PtdCho and in turn, to cell proliferation arrest through apoptosis, which is an efficient 

antitumor strategy.31,32 

The first series of hChoK inhibitors were designed based on the results from quantitative structure–

activity relationship (QSAR) models of Cho uptake inhibitor hemicholinium-3 (HC-3; Figure 1).31 HC-3 

was modest in terms of activity (IC50 and EC50 values of 57 and 500 µM, respectively)33 and neuro- and 

lung-toxic at therapeutic doses. HC-3 consists of a biphenyl spacer and two oxazonium cationic 

rings34,35 that were subsequently pharmacomodulated to generate more active and safer derivatives 

in vitro and in vivo. MN58b (Figure 1), a derivative of HC-3, was identified as a lead molecule with 

potent antiproliferative activity in vitro and efficient antitumoral activity in human colon cancer 
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xenografts in nude mice.31,33,36 In addition, MN58b allowed a deeper understanding of the mechanism 

of action of this novel class of antitumor drugs and served as a template for the preparation of new 

compounds. In a later stage, the replacement of pyridinium by quinolinium as cationic moieties led to 

RSM-932A37 (aka TCD-717; Figure 1) that provided the best results in vitro and in vivo.38 In fact, RSM-

932A is the first hChoKα inhibitor reaching Phase I clinical trials for advanced solid tumor treatment 

(see NCT01215864 for further information).39  

The elucidation of the hChoKα2 crystal structure21 in 2006 and the discovery of the hChoKα1 crystal 

structure complexed with HC-340 in 2010 opened the possibility of structure-based drug design of new 

compounds. In recent years, the elucidation of the crystal structures of some of these inhibitors bound 

to hChoKα1 have been used for the development of completely different new scaffolds based on 

computational methodologies, such as docking, virtual screening, high-throughput screening and 

fragment-based drug design. 

The similarities between the active sites of ChoK orthologs have demonstrated the possibility of using 

ChoKα inhibitors to block the growth of some parasite species, such as Plasmodium falciparum.41–43 

These facts together with the recently reported high expression of hChoKα in the synovium of patients 

with rheumatoid arthritis and in fibroblast-like synoviocytes44 reveal the utility of ChoK as a therapeutic 

target to treat other prevalent diseases, such as malaria and rheumatoid arthritis.  

Due to the increasing information on ChoK as a druggable anticancer, antimalarial and antirheumatic 

target, several reviews have been published.3,4,11,28,32 However, most of these reviews focus on the 

biological role of the enzyme and its importance as a diagnostic/prognostic tracer. Herein, we review 

recent advances in the discovery of ChoK inhibitors by applying different methodologies, such as HC-3 

molecular modulation, screening of natural products or computer-based drug design as well as the 

structural aspects of inhibitor recognition by hChoKα and its impact in the structure-guided drug design 

for the treatment of different diseases. 
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2. INHIBITORS BASED ON HC-3 STRUCTURE MODIFICATIONS: THE USE OF MOLECULAR MODULATION 

IN DRUG DESIGN 

As already mentioned, the synthesis of several derivatives was first based on structural modifications 

of HC-3 that led to biscationic, triscationic and macrocyclic compounds, such as cyclophanes and bi-

cyclophanes (Figure 1).45–53 All these molecules are symmetrical with pyridinium or quinolinium 

moieties connected through an aromatic linker. As demonstrated by preclinical candidate TCD-717, 

this approach is successful and justifies its use in the design of new hChoK inhibitors. 

2.1. Symmetric bispyridinium, bisquinolinium and bisquinuclidinium derivatives 

Based on QSAR studies that demonstrated that the presence of an electron-releasing group at position 

4 of the pyridinium ring favors both hChoK inhibitory and antiproliferative activities,54 Gomez-Perez et 

al. prepared a new series of ten bispyridinium and bisquinolinium derivatives that all contained cyclic 

or acyclic amino groups at position 4 of the heterocycle.55 All structures showed a potent inhibitory 

activity against hChoKα2 with IC50 values in the range 0.08–1.35 µM. Compound 1 (Figure 2) was 

identified as the most potent hChoK inhibitor of this series with IC50 value of 80 nM, a ten-fold greater 

potency than HC-3 (IC50 = 0.92 µM) under the same assay conditions. Kinetic enzymatic assays indicated 

a mixed and predominantly competitive mechanism of inhibition for this compound, which exhibited 

a remarkable antiproliferative activity (EC50 = 1.5 µM) against the human breast cancer SKBR3 cell line.  

Following the classical bioisosteric equivalence between bipyridine and biphenyl, which has been 

identified as one of the most suitable spacers for development of symmetric ChoK inhibitors, Castro et 

al. prepared a new series of biscationic hChoK inhibitors (Figure 2).56 The introduction of two nitrogen 

atoms within the linker would improve the polarity of the structures and the affinity for the enzyme 

owing to the likely formation of additional hydrogen bonds with hChoKα1 active site residues, as 

predicted by computational studies. Regarding the inhibitory activity assayed on hChoKα1 enzyme, 

quinolinium and pyridinium derivatives presented a good inhibitory profile but no activity was 

observed for quinuclidinium structures. In turn, the potency of these derivatives was clearly boosted 

with the presence of an N-methylaniline fragment at position 4 of the pyridinium or quinolinium ring 
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with IC50 values ranging 3.9–9.0 μM. Seven cancer-cell lines of different origin, namely cervix, leukemia, 

breast, lung and colon, were used to test the antiproliferative activity of the structures, proving to be 

concordant with hChoKα1 inhibition. Although quinuclidinium and pyridinium derivatives had no or 

little effect respectively, quinolinium derivatives were in general potent antiproliferative compounds, 

especially against leukemia and colon cancer cells. As expected by enzyme inhibitory activities, the 

presence of an N-methylaniline fragment at position 4 of the quinolinium ring led to the greatest 

activities (EC50s = 0.28–16.7 μM) likely related to the combination of the direct effect of this group in 

the inhibition together with high lipophilicity conferred by it (clogPs = 2.70-3.45). Most active 

compound 2 (Figure 2) showed comparable activity to RSM-932A against human 

promyelocyticleukemia (HL-60) and colon carcinoma (HT-29) cell lines despite presenting less 

inhibitory capacity under the same experimental conditions (IC50s = 9.02 versus 0.78 μM). Importantly, 

compound 2 had low toxicity in non-transformed cells as previously observed for MN58b or RSM-

932A. Flow cytometry and immunoblot analysis with cervix and leukemia cancer cells confirmed that 

2 induces caspase-3-dependent apoptosis with a marked mitochondrial membrane depolarization. 

Considering previous evidence that supports bioisosterism as an effective tool to improve the binding 

to hChoK, Schiaffino-Ortega et al. reported a series of symmetric biscationic compounds with an 

oxygen-containing linker (1,2-diphenoxyethane) in an attempt to obtain more potent and soluble 

structures.57 Among the different cationic moieties included in this work, quinuclidinium-derived 

structures proved to be weak hChoKα1 inhibitors in agreement with previous data.56 However, 

pyridinium and quinolinium derivatives showed a moderate hChoKα1 inhibition activity favored by the 

presence of an alkylamine or a cycloalkylamine at the position 4 of both cationic moieties. Compounds 

3a and 3b (Figure 2) that present 4-(dimethylamino)pyridinium and 4-(pyrrolidin-1-yl)quinolinium, 

respectively, are the most potent hChoK inhibitors of this series with comparable activities to reference 

structures MN58b and RSM-932A (IC50s = 1.00 and 0.92 µM versus 0.78 and 1.92 µM, respectively). By 

means of tryptophan fluorescence quenching, Kd values of both compounds were calculated, rendering 

a high affinity for hChoKα1 enzyme (Kds = 0.70 and 0.35 μM, for 3a and 3b, respectively). Regarding 

the antiproliferative activity determined in a panel of 9 different cancer cell lines, pyridinium 
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derivatives provided better results than quinolinium derivatives, with poor activity for quinuclidinium-

derived structures. Aligned with hChoK inhibition data, 3a offered the best antiproliferative profile 

within the pyridinidium family with EC50 values in the nanomolar range (EC50s = 0.027–0.12 µM). 

Compound 3a was also investigated in non-tumor cells proving low toxicity against human fibroblast 

and HUVEC cells. In relation to the mechanism of cell death, this molecule caused a marked G1 cell-

cycle arrest with concomitant reduction of the S phase in Jurkat, MCF-7 and MDA-MB-231 cancer cells. 

Surprisingly, treatment with compound 3a induced just a slight increment of apoptotic cells in Jurkat 

cells, with no increase in MCF-7 and MDA-MB-231 cells.  

Based on the marked activity of 3a on cell proliferation, additional studies were performed in a panel 

of human T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary cultures of pediatric T-ALL 

patients in which the consistent overexpression of hChoKα isoform was previously proved.58 

Compound 3a exhibited remarkable antiproliferative activity in all the T-cell leukemia cell lines tested 

(EC50 values 0.9–479 nM) and a good efficacy to inhibit cell growth in primary cell cultures (EC50 values 

0.52–6.07 µM). In agreement with previous results, 3a induced a block of the cell cycle in G1 with a 

consequent decrease of the S phase that ultimately led to apoptotic cell death following the 

mitochondrial pathway. Reverse Phase Protein Array analysis was performed to evaluate the signaling 

pathways activated by 3a in T-ALL cell lines, which revealed rapid activating phosphorylation of AMP-

activated protein kinase (AMPK) followed by deregulation of the mTOR pathway. Drug combination 

assays with dexamethasone and L-asparaginase, commonly used in T-ALL therapeutic protocols, 

proved that 3a enhances the chemotherapeutic effects of both drugs, especially L-asparaginase. 

In a subsequent publication, the effect of 3a was further investigated in vitro and in vivo in breast 

cancer, in which the overexpression and hyperactivation of hChoKα is associated with tumor 

progression, invasion, and metastasis.59 Among the main findings, it was demonstrated that 3a 

treatment significantly reduced PCho levels in MDA-MB-231 cells and strongly affected MDA-MB-231, 

MDA-MB-468 and MCF-7 cell proliferation with a G1-phase cell-cycle arrest. Additionally, 3a was able 

to suppress migration and invasion in the highly metastatic MDA-MB-231 cell line. Consistent with the 
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previously obtained results in T-ALL cell lines, 3a activated the AMPK-mTOR signaling pathway and 

triggered cellular senescence in the 3 breast-cancer cell lines tested. In vivo, compound 3a caused a 

significant reduction of the tumor volume in a syngeneic orthotopic E0771 mouse model of breast 

cancer as well as the number of micro and macrometastases in the lungs of treated mice.  

Later, due to the involvement of hChoK in the biosynthesis of PtdCho through Kennedy’s pathway, 

Sola-Leyva et al. carried out a thorough study of the effect of 3a and 3b on the lipid metabolism in 

HepG2 cells.60 Results demonstrated that 3a and 3b clearly inhibited Cho uptake and incorporation of 

radiolabeled Cho into PtdCho. Both inhibitors caused a decrease in cholesterogenic activity and 

alterations in the expression of proteins related to cholesterol homeostasis with a more pronounced 

effect for 3b. Treatment of HepG2 cells with 3a and 3b also resulted in a lowering of hChoKα protein 

levels and, in turn, PtdCho levels. The investigation of the AMPK signaling pathway confirmed that 

these inhibitors increased the phosphorylation and activation of AMPK in HepG2 cells. 

By using 4-dimethylaminopyridinium as choline-mimicking moieties, Trousil et al. prepared a set of 

symmetric hChoK inhibitors that bears different alkyl linkers.61 The results of the inhibitory activity 

against recombinant hChoKα2 proved that the potency of these structures is directly related to the 

length of the alkyl chain, with an 18-fold increase in the inhibitory capacity when the linker is elongated 

from 8 to 14 carbons. One of the competitive inhibitors included in this work, ICL-CCIC-0019 (Figure 2), 

was selected for rigorous pharmacological assessment due to its inhibitory potency (IC50 = 0.27 ± 0.06 

μM) and anticancer properties in HCT116 cells (EC50 = 0.64 ± 0.05 μM). This small inhibitor selectively 

targets hChoKα2 as shown in a multi-kinase screening and rendered a potent antiproliferative activity 

(EC50 values from 0.0389 to 16.2 μM) across 60 cell lines included in the National Cancer Institute panel 

(NCI-60), with significant sensitivity against breast and non-small lung cancer cell lines.62 ICL-CCIC-0019 

reduced the uptake of [3H]-Cho into HCT116 cells (EC50 = 0.98 ± 0.24 μM), decreasing intracellular PCho 

levels and the incorporation of labelled Cho into lipids. Treatment with ICL-CCIC-0019 for 48 hours 

induced a marked G1 cell cycle arrest and caspase-3/7-mediated apoptosis in colon cancer HCT116 

cells. Analysis of key regulators of endoplasmic reticulum (ER) stress showed that ICL-CCIC-0019 caused 

a profound ER stress response with no formation of reactive oxygen species. Studies of ICL-CCIC-0019 
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in HCT116 xenograft bearing mice showed potent antitumor activity in vivo directly related to hChoKα 

inhibition as confirmed by PET by using the radiotracer [18F]-D4-FCH that targets the same enzyme. An 

in-depth study of the metabolic consequences of hChoK inhibition by ICL-CCIC-0019 revealed a 

previously unappreciated effect of Cho metabolism on mitochondria function.62 Drug treatment 

elicited a loss of mitochondria membrane potential and dose-related suppression of mitochondrial 

respiration, which is concomitant with increased glycolysis. 

With a one-pot approach, Martín-Cantalejo et al. synthesized a series of bispyridinium salts of 4,4´-

bispyridyl-5,5´perfluoroalkyl-2,2-bisoxazoles from symmetric diamides.63 These molecules, structurally 

related to HC-3 and its bispyridinium derivatives, were assayed as inhibitors of hChoKα and 

antiproliferative agents against human colon adenocarcinoma HT-29 cells, which resulted in an 

acceptable correlation between both biological activities. Regarding the cytotoxicity, the presence of 

a p-biphenyl linker and a CF3CF2 chain at position 5 of both oxazole rings clearly enhanced the 

antiproliferative activity of the structures. The best EC50 value was achieved with a CH2-CH2OH 

substituent at the pyridine nitrogen, which has the ability to form H-bonds (4a; Figure 2, HT-29 EC50 = 

0.84 ± 0.005). In terms of hChoKα inhibition, no correlation between the activity of the molecules and 

either the linker or perfluoroalkyl substituent was observed. However, the inhibition capacity was 

clearly improved with the use of CH2-CON(CH3)2 as alkylating agent for the quaternization of the 

pyridine (4b; Figure 2, IC50 = 0.30 ± 0.003). 

2.2. Symmetric bisindolium derivatives 

To image the hChoK expression and function in vivo, Arlauckas et al. designed a carbocyanine-derived 

hChoKα inhibitor, termed JAS239 (Figure 2), based on the existing structural similarities of previously 

reported bis-symmetric hChoKα inhibitors and carbocyanine dyes.64 To this end, hydroxyethyl alkyl 

groups that mimic Cho structure were attached at the nitrogen atoms of both indolium rings present 

on a carbocyanine dye, the 7-carbon spacer of which confers fluorescence in the near infrared (NIR) 

range.  
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In vitro experiments evidenced that JAS239 showed comparable potency to reference compound 

MN58b both inhibiting phosphorylation of 14C-labeled Cho and blocking cell growth in breast cancer 

cell lines. The hChoK inhibition was reversible by the addition of unlabeled Cho at 2 hours post-

treatment, which demonstrates that JAS239 acts as a competitive inhibitor. This competitive 

mechanism was later corroborated by fluorescence imaging; cells pre-treated with a hChoKα-specific 

antibody presented a marked reduction in JAS239 retention.65 The analysis of the cellular uptake by 

means of fluorimetry and confocal microscopy demonstrated that JAS239 rapidly enters breast cancer 

cells independently of Cho transporters and is accumulated in the cytosolic space. 

In vivo, the inherent optical properties of this small-molecule inhibitor allowed the study of its 

biodistribution in orthotopic 4175-Luc+ tumors xenografts.65 Intratumoral NIR fluorescence was 

detectable in JAS239-injected mice, although it was also noticeable in other major organs. Moreover, 

JAS239 accumulation was significantly higher in hChoKα-overexpressing breast tumors relative to 

empty vector counterparts. In a similar manner as found for MN58b, JAS239 significantly decreased 

total Cho-containing metabolite levels and tumor growth rate of orthotopically-implanted 4175-Luc+ 

tumors with no observable toxicity up to 4 mg/kg. Histological assessment of the tumor status revealed 

marked cell density reduction and an increase of caspase-3 positive cells in response to JAS239. 

 

3. IN VITRO SCREENING OF NATURAL PRODUCTS 

Natural products and their derivatives have also been considered as potential hChoK inhibitors. 

Triterpenequinonemethides (TPQs) are bioactive compounds isolated from plants of the Celastraceae 

family that possess a pentacyclic D: A-friedo-nor-oleanane-type skeleton. Due to the presence of two 

hydrophilic and electron-deficient electronic regions located on the A and E rings and a hydrophobic 

zone located on the B, C and D rings, natural TPQs may fit the structural requirements for being hChoKD 

inhibitors. Accordingly, Estevez-Braun et al. prepared a set of semi-synthetic TPQ derivatives derived 

from natural ones by chemical modifications, such as bromination, oxime formation and 

esterification.66 Both natural and semi-synthetic derivatives were assayed against partially purified 
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recombinant hChoKα1 expressed in E. coli, and 14 out of 59 compounds had IC50 values in the range 

0.6–8.6 µM. Preliminary structure-activity relationships led them to establish that compounds derived 

from naturally occurring 22β-hydroxy-tingenone (Figure 2) are more active than those derived from 

either tingenone or pristimerine. The most potent hChoK inhibitors (IC50s ≤ 10 µM) were also analyzed 

as antiproliferative agents against the human colon adenocarcinoma HT-29 cell line. Among them, 22β-

hydroxy-tingenone showed an EC50 value of 6.5 µM and was selected for further in vivo investigations. 

Toxicity studies performed in CD1 nude mice demonstrated a lethal dose (LD50) of 12.5 mg/kg. 

Remarkably, its intraperitoneal administration (at 7.5 mg/kg in a daily basis for 5 days) resulted in a 75 

% reduction of tumor growth in HT-29 human colon carcinoma xenograft. 

 

4. HARNESSING THE POTENTIAL OF CRYSTALLOGRAPHIC STUDIES FOR THE DESIGN OF NEW CHOK 

INHIBITORS 

The hChoK three-dimensional structures determined by X-ray crystallography (Figure 3) have enabled 

the visualization of the α and β isoforms architecture, which has ultimately provided the understanding 

of its catalytic and allosteric mechanisms, and the molecular basis for the development of tailor-made 

inhibitors. Moreover, these structures have also inspired new hypotheses to probe the binding modes 

of plausible inhibitors in alternative pockets and the feasibility of cross-inhibition of the hChoKα 

inhibitors for the treatment of infectious diseases. Altogether, this section evidences the rapid growth 

on the structural information of ChoK in recent years and its impact in the structure-based design of 

potent inhibitors. 

4.1. ChoK X-ray crystal structures reveal ATP and Cho binding sites 

Knowledge of the tridimensional structure of a therapeutic target speeds up the development of more 

selective drugs. The crystal structure of Caenorhabditis elegans ChoK (CeChoK) apo-form (PDB ID: 

1NW1) revealed for the first time the architecture of the active site.67 Although the ATP pocket was 

solvent exposed, the Cho binding site was a deep hydrophobic groove located in the proximity of the 

ATP pocket. Based on the 3D structure of CeChoK, Milanese et al. prepared a homology model of 



12 
 

hChoKα that was employed for docking studies of reported symmetric biscationic inhibitors.68 In this 

article, the authors suggest that the compounds bind simultaneously in both the ATP and Cho putative 

binding sites. 

At the same time that the hChoK homology model was published, three crystal structures of hChoKα2 

isoform were also reported: the apo-form (PDB ID: 2CKO) and two binary complexes that contain the 

products of the enzymatic reaction, ADP (PDB ID: 2CKP) and PCho (PDB ID: 2CKQ).21 These structures 

unambiguously identified both the ATP and Cho binding pockets, and the residues tethering these 

products.  

ADP binds into a cleft between the N and C-terminal lobes and is stabilized by a network of hydrogen 

bonds with R117, N122, R146, E206, Q207, I209, S211, R213 and D330 (Figure 4). In addition, ADP is 

also tethered by L124, L144, L313, and F208 through hydrophobic and π-π interactions. The Cho 

binding site is a deep hydrophobic groove formed by Y333, Y354, W420, W423 and Y440 (Figure 4) that 

comprises a rim of acidic residues (E215, E217, E218, E309, E349, E357, E434 and D353). PCho is 

stabilized by π-cation interactions between quaternary ammonium moiety and the aromatic residues 

of the hydrophobic cleft (Y333, Y354, W420, W423 and Y440), and hydrogen bonds between its 

phosphate group and residues L120, S121, Q308 and N311.  

4.2. Structural differences between the active sites of hChoKα1 and hChoKβ 

The publication of the crystal structure of hChoKα1 and β isoforms in complex with HC-3 and phospho-

HC-3 (pHC-3), respectively (Figure 5; PDB IDs: 3G15 and 3FEG),40 allowed a deeper understanding of 

the structural differences between both isoforms. Both structures revealed that HC-3 and pHC-3 bind 

at the Cho binding site, which provides a rationale of its inhibitory properties. However, HC-3 is a better 

inhibitor of hChoKα1 than hChoKβ as observed from the Kd values (450-fold lower for hChoKα1 versus 

hChoKβ).40 A thorough inspection of both crystal structures determined that the selectivity of HC-3 on 

hChoKα1 in detriment of hChoKβ was explained by reduced flexibility of W353 in hChoKβ relative to 

its homologue W420 in hChoKα1. Although a more rigid amino acid, such as F352 is close to W353 and 

limited its motion, homologue residue L419 in hChoKα1 allows W420 to have more freedom of motion 
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allowing the flexibility seen in W420 to interact optimally to HC-3. This reduction in flexibility of the 

W353 likely caused the different and non-optimal binding mode of the pHC-3 oxazinium ring and in 

turn explained the poor affinity of HC-3 towards hChoKβ.40 

4.3. Proposed catalytic mechanisms based on structural and kinetic studies 

The understanding of the catalytic mechanism and the residues participating in binding and catalysis 

is of enormous importance for the design of new drugs. 

To date, two catalytic mechanisms have been proposed for ChoK. The first mechanism was reported 

in 2006 based on a model from X-ray crystal structures of hChoKα2 in the apo form (PDB ID: 2CKO), 

complexed with ATP (PDB ID: 2CKP) and Cho (PDB ID: 2CKQ).21 This hypothesis was based on the 

formation of a tertiary complex of hChoKα with ATP, Cho and Mg2+ prior to phosphorylation. The 

authors, according to their mutagenesis data, proposed that D306 and D330 played an essential role 

in the reaction mechanism by coordinating the magnesium ions that bridge the ADP and PCho 

molecules (Figure 6). However, no information was provided to account for the binding order of the 

substrates, the phosphorylation step and product release. 

Secondly and more recently, Hudson et al. supported a double displacement catalytic mechanism 

based on substrate kinetic studies (Figure 7).22 According to their hypothesis, the γ-phosphate of ATP 

is transferred to Cho in two steps through the formation of a phospho-enzyme intermediate. In the 

first step, ATP binds to ChoK and then D306 develops a magnesium-mediated nucleophilic attack to 

the γ-phosphate of ATP. Once the D306 is phosphorylated, ADP is released from the active site and 

Cho enters its binding pocket where the transfer of the phosphate group from the phospho-D306 (P-

D306) to Cho takes place. ChoK undergoes conformational change to release PCho. Such a mechanism 

offers great potential for the design of new compounds that bind into different enzyme intermediates 

according to the phosphorylated states of D306.  

Even though the two catalytic mechanisms are different, both of them have been observed in the 

kinase superfamily and share the fundamental role of D306 in catalysis.69 
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4.4. Structure-based rational drug design 

4.4.1. Non-symmetric pyridinium derivatives 

Based on the information provided by the hChoKα2 isoform crystal structure, Rubio-Ruiz et al. 

prepared the first series of non-symmetric hChoK inhibitors.70,71 These rationally designed compounds 

contain a 4-substituted pyridinium system bonded to an adenine moiety through linkers of different 

lengths. The pyridinium moiety would act as a cationic head resembling the Cho structure, whereas 

the adenine moiety would mimic the ATP adenine fragment. The N9 and N3 adenine alkylated 

derivatives were isolated and their biological activity assessed. The inhibitory capacity was evaluated 

by using a radiometric assay that relies on the phosphorylation of [methyl-14C]Cho by hChoK enzyme, 

which was partly isolated from cytosol of human HepG2 cells. In general, the dimethylamine 

substituent at the position 4 of the pyridinium fragment led to higher hChoK inhibitory potency that 

was also favored by the presence of longer linkers, such as 1,4-diphenylbutane. On the contrary, the 

antiproliferative activity on HepG2 cells shown by 4-pyrrolidine derivatives was slightly greater than 

the activity reported by the dimethylamine analogs. Compounds 5a (IC50 = 10.70 ± 0.40 µM) and 5b 

(IC50 = 6.21 ± 0.97 µM) of the N9 and N3 series, respectively, were the most potent ChoK inhibitors 

(Figure 8).70 Docking studies performed in hChoKα1 (PDB ID: 3G15) suggested that 5a bound 

simultaneously in both the ATP and Cho binding sites of hChoKα1 enzyme, which provides a rationale 

of its potency. 

In a follow-up publication, Sahún-Roncero et al. reported the crystal structure of hChoKα1 in complex 

with 5a (PDB ID: 3ZM9),72 which confirmed the binding mode previously predicted by docking studies 

(Figure 8). A comparison of the overall structure of hChoKα1-5a crystal structure with the apo structure 

revealed large conformational changes.72 In addition, the asymmetry of the two monomers that form 

the dimer of hChoKα1-5a provided the structural basis of the negative cooperativity observed by 

isothermal titration calorimetry.72 This experiment evidenced that compound 5a firstly bound to one 

of the two monomers of hChoKα1 with a dissociation constant Kd1 of 38 nM, whereas the binding to 

the second monomer led to a higher Kd2 of 190 nM. Besides these evidences, molecular dynamics (MD) 
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and anisotropic elastic network studies on the hChoKα1-5a crystal structure confirmed the negative-

cooperativity allosterism.72 MD simulations revealed that the two monomers, alternatively assumed 

an open/semi-open or closed state with a fast interconversion rate. Taken together, these data 

explained the molecular mechanism of the negative cooperativity phenomenon, the inter-monomer 

coupling, and set the foundation to design better and more selective inhibitors. 

Through a chemical deconvolution approach based on hChoKα1-5a and hChoKα1-5b crystal structures, 

it was shown that the adenine and 1-benzyl-4-(dimethylamino)pyridinium components were the most 

efficient fragments in binding to hChoKα1 (Figure 8).73 

This first library of non-symmetric hChoK inhibitors evidenced a modest antiproliferative activity that 

was associated to their lack of lipophilicity. The introduction of a benzylthio substituent at position 6 

of the purine heterocyclic ring led to a new series of hChoK inhibitors with an enhanced 

antiproliferative profile against human cervical carcinoma HeLa cell line.74 The cLogP values of these 

structures are at least 2-fold higher than the corresponding clogP values of the adenine series, which 

likely explains the higher antiproliferative effect observed. Treatment of HeLa cells with these 

compounds caused clear disturbances of cell cycle progression and induction of apoptosis in a caspase-

3-dependent process.74 As already mentioned, the presence of a dimethylamino group at the position 

4 of the pyridinium ring led to a greater effect. However, the activity was also favored by short 

linkers, contrary to that previously observed for adenine counterparts. In fact, compound 6 (Figure 

9), which possesses a benzene moiety as a spacer, is the most potent inhibitor in the series against 

ChoKα1 (IC50 = 0.4 μM ± 0.03).75  

A similar approach was pursued by Trousil et al. that used alkyl linkers (C8 and C12) to bridge both the 

Cho and ATP-mimicking groups.61 Benzimidazole, adenine and purine were explored while keeping 4-

(dimethylamino) as the cationic moiety. The presence of an adenine (7, Figure 9) was associated with 

a significant increase in inhibitory activity (IC50 = 0.8 µM), although little correlation was found between 

the potency of hChoKα2 inhibition and the antiproliferative effect.  
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Non-heterocyclic fragments were also considered as ATP mimetics in an attempt to obtain hChoK 

inhibitors with improved potency. Schiaffino-Ortega et al.76 prepared analogs to mimic the first series 

reported by Rubio et al.70 that contain a 3-aminophenol moiety instead of adenine. These analogs were 

chosen following preliminary computational studies that suggested that this moiety was inserted into 

the ATP binding site and was efficiently stabilized by hydrogen bonds with R146, D206, Q207 or I209. 

Additionally, these studies suggested that either O- or N-linkages to 3-aminophenol would facilitate 

the simultaneous binding of all the designed derivatives into the Cho and ATP binding sites, excluding 

those structures with short linkers (i.e. benzene). Surprisingly, the biological results showed that 

molecules with long linkers are inactive or give rise to only a slight hChoK inhibitory effect, which 

invalidates the initial hypothesis. The authors rationalized that these results may be a consequence of 

the higher affinity of adenine fragment for the ATP binding site in relation to the 3-aminophenol 

affinity, which makes these inhibitors incapable of competing with ATP and occupy both binding sites. 

Compounds 8a and 8b (Figure 9) with IC50s of 6.37 ± 0.53 and 7.89 ± 0.05 µM, respectively, were the 

most active hChoK inhibitors of this series, which indicated that the 4-(dimethylamino)pyridinium 

cationic moiety and a biphenyl linker favored hChoK inhibition activity.76 

4.4.2. Non-Symmetric bispyridinium derivatives 

In line with the trend of preparing hChoK inhibitors with non-symmetric structure, Rubio-Ruiz et al. 

reported the first library of asymmetric bispyridinium derivatives to explore potential new binding 

modes to the enzyme.77 In these structures, 4-(4-chloro-N-methylanilino)-pyridinium, 1-benzyl-4-

(dimethylamino)pyridinium and 4-pyrrolidinopyridinium fragments were combined and both positive 

charged moieties were connected with variable linkers (Figure 10). All the molecules were similar in 

terms of hChoK inhibition, with IC50 values less than 2.5 μM determined by measurement of the rates 

of incorporation of 14C from [methyl-14C]Cho into PCho. The effects of these molecules on human 

cervical carcinoma HeLa cells proved that they efficiently inhibited cancer cell proliferation (EC50 ˂ 10 

µM) which resulted in disturbances in cell-cycle progression and induction of apoptosis. Particularly, 
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treatment with 9a caused significant cell-cycle arrest in the G0/G1 phase and a 40% increase of the 

number of apoptotic cells in a caspase-3-dependent manner. 

The crystal structures of hChoKα1 in complex with compounds 9a-9c (PDB ID: 4CG8, 4CGA and 4CG9, 

respectively) demonstrated that they bind exclusively to the Cho binding site. Particularly, the 

hChoKα1 X-ray crystal structure in complex with 9a (Figure 10) enabled the discovery of a new binding 

pocket adjacent to the Cho binding site.77 This is a key indicator of the plasticity of the active site and 

can be exploited in the design of new selective and potent inhibitors. Compound 9a contains 4-(4-

chloro-N-methylanilino)pyridinium and 4-(dimethylamino)pyridinium fragments that are covalently 

bound through a 1,4-biphenylbutane linker. Due to its long flexible linker, this compound adopted a 

twisted conformation in the Cho binding site in which the 4-chloro-N-methylaniline moiety accessed 

an alternative hydrophobic pocket located at the back of the Cho binding site, which is formed by 

residues W248, T252, Y256, Y333, L419, W420, and W423 (Figure 10). This adjacent binding pocket 

was accessible prior induction of local conformational changes of several amino acids (Y256, E332, 

Y333, and W420). The rotation of the Y333 (|20°), W420 (|45−62°) and Y256 (|90°) side chains with 

respect to the position of the same residues in previous crystal structures was critical for inducing the 

aperture of the adjacent binding pocket. Access of the 4-chloro-N-methylaniline moiety to this new 

binding site together with the presence of a longer linker led to a better dissociation constant (Kd) for 

9a relative to the Kds of 9b and 9c (0.11 ± 0.01 μM versus 0.40 ± 0.10 and 0.62 ± 0.15, respectively).77  

Overall, the authors concluded that flexible and long linkers in hChokα1 inhibitors increased the 

probability of accessing the adjacent binding pocket, which in turn improved selectivity and ligand 

affinity to give better in vitro biological effects.  

4.5. Computer-based drug design 

4.5.1. Pharmacophore-based virtual screening  

Pharmacophore identification by a target-based approach is a potent tool for the discovery of new 

active compounds against a particular target. This strategy has been used for the discovery of new 
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hChoKα1 binders based on the chemical structure of previous HC-3-derived inhibitors and the X-ray 

crystal structure of hChoKα1 in complex with HC-3 (PDB ID: 3G15).78  

The identified pharmacophore model is formed by five moieties (three aromatic rings, a nitrogen atom 

and a positive charge; Figure 11) that are included in the 1-benzyl-4-(N-methylaniline)pyridinium 

fragment. This allowed the dissection of common structural features that were important for the 

binding mechanism and biological activity of the previous HC-3 derivatives (Figure 11). By using this 

pharmacophore model as a guide to search different virtual screenings, such as Enamine, Chembridge 

and Life Chemicals libraries, several molecules with low µM range binding affinities against hChoKα1 

were discovered (Figure 11). Compound 10 was the most active (Kd of 0.438 ± 0.1 µM), followed by 11 

(Kd= 0.526 ± 0.1 µM) and 12 (Kd= 2.60 ± 0.70 µM). Protein crystallization studies demonstrated that 12 

(PDB ID: 5AFV) binds to both the Cho and ATP binding sites, which suggests that this particular 

molecule has a dual mechanism in which it competes with both ATP/Mg+2 and Cho.78 

According to the Kd values, this pharmacophore model is efficient at discovering new hChoKα1 binders 

that can lead to a new generation of simpler and potent inhibitors by optimization of their chemical 

properties.  

4.5.2. In silico virtual screening of chemical libraries 

To identify potential hChoKα-interacting compounds, Clem et al. conducted an in silico screening of 

the ZINC Library by using the X-ray structure of hChoKα2.79 The 16 best-score compounds in terms of 

binding with hChoKα were then tested in vitro. Only CK37 (Figure 12) significantly inhibited hChoKα 

activity in HeLa cell lysates and was selected for further experiments. This competitive inhibitor caused 

a dose-dependent suppression of bacterially expressed recombinant hChoKα activity, which is 

completely reversed in the presence of increasing concentrations of Cho. Treatment of HeLa cells with 

CK37 at 10 µM demonstrated the capacity of this molecule to suppress hChoKα activity in whole cells, 

which caused a reduction in Cho uptake and PCho production that in turn resulted in a decrease in the 

steady-state concentration of downstream Cho metabolites, such as phosphatidic acid. Additionally, it 

was found that exposure to 10 µM of CK37 disrupted downstream MAPK and PI3K/AKT signaling by 
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decreasing ERK and AKT-activating phosphorylations, altered the actin cytoskeletal organization and 

markedly attenuated plasma membrane ruffling. This inhibitor also suppressed cell growth in six 

neoplasic cell lines (EC50s = 5–10 μM). This cytostatic activity was clearly dependent on the level of 

hChoKα expression because transfection of HeLa cells with a plasmid encoding hChoKα conferred 

resistance to the effects of CK37. Intraperitoneal administration of CK37 (0.08 mg/g per day for eight 

days in mice) significantly decreased tumor growth (48% versus vehicle controls) and tumor PCho 

levels (51% versus vehicle controls) in a lung tumor xenograft mouse model. 

4.6. Fragment-based drug design 

Zech et al. successfully applied a fragment-based approach targeting hChoKα1 to generate new 

inhibitors.80 Saturation-transfer difference nuclear magnetic resonance spectroscopy was used as the 

primary screening technique to select hits that were further validated by biophysical methods like 

surface plasmon resonance (SPR) and docking and crystallography studies, which rendered lead-like 

compounds with nanomolar binding affinities and modest cellular potency. The most potent 

compound, 13 (Figure 13), inhibited hChoKα1 with an IC50 of 0.07 µM and a Kd of 0.01 µM. Structurally 

related compounds 14 and 15 (Figure 13, IC50 = 0.09 and 0.46 µM, respectively), proved growth 

inhibition and apoptosis induction on breast MDA-MB-468 and MDA-MB-415 cancer cell lines (EC50s = 

2−9 μM) with slight activity against non-transformed MCF-12A and MCF-10A cells (EC50s = 18−40 μM). 

Treatment with both small inhibitors for 24 hours caused a clear decrease in intracellular PCho levels 

in MDA-MB-468 and MDA-MB-415 cell lines, which confirmed the inhibition of hChoKα1. 

One interesting chemical aspect of these new inhibitors is the absence of a non-permanent positive 

charge in the amino group, which is a major difference with most of the hChoKα1 inhibitors that had 

been previously synthesized. Although the positive charge in the compounds is important to achieve 

an efficient inhibition of the enzyme due to its resemblance to Cho, quaternary ammonium ions are 

also responsible for unspecific inhibition to other Cho-binding enzymes, which led to undesirable side 

effects. Most of the compounds identified as hChoKα1 inhibitors from this fragment-based approach 

include basic amines (diazepanes or piperazines) that may be protonated depending on the local pH. 
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The crystal structure of hChoKα1 in complex with 13 (Figure 13; PDB ID: 5EQY) proved that the 

methyldiazepane fragment is a new pharmacophore that binds to the Cho binding site.80 Interestingly, 

the methyldiazepane fragment establishes a hydrogen bond with D306, which has been suggested as 

the hChoKα1 catalytic base. 

Although ATP binding site inhibitors were also identified through NMR fragment screening, their 

potency in comparison with the identified Cho-binding site inhibitors was much lower. This finding is 

in agreement with previous attempts to develop ATP mimics70,76 that confirmed the low druggability 

of the hChoKα1 ATP binding site. 

4.7. High-throughput screening of compound collection 

Inhibitor V-11-023907 (Figure 14) was discovered after applying high-throughput screening techniques 

with the Vertex compound collection.22 By means of a spectrophotometric assay, the IC50 value against 

hChoKα was determined as 0.47 ± 0.08 μM. The hChoKα-V-11-023907 crystal structure (Figure 14, PDB 

ID: 4DA5) pinpointed the location of the compound in the Cho binding site and determined that the 

compound disrupted the role of the key catalytic D306 residue in catalysis by interaction through a 

hydrogen bond. Contrary to the crystal structure, kinetic studies indicated that compound V-11-

023907 was a non-competitive inhibitor of hChoKα with respect to Cho. These opposing conclusions 

have been rationalized by a second catalytic mechanism (see section 4.3) in which a double 

displacement is proposed. Accordingly to this mechanism, Cho binds to the phosphorylated form of 

the enzyme, whereas V-11-023907 may bind to the free enzyme. The existence of different enzyme 

intermediates based on the diverse protonation states of D306 offer the potential for compounds to 

potentially bind to different enzyme states, which could lead to the design of more potent and 

selective hChoKα inhibitors. 

Then, a lead optimization approach performed by the same company (Vertex Pharmaceuticals) gave 

rise to compound V-11-0711 that inhibited recombinant hChoKα with an IC50 of 20 nM and exhibited 

excellent selectivity against a panel of 50 kinases.81 Although V-11-0711 treatment led to substantial 

depletion of PCho levels in HeLa cells (IC50 ˂ 1 µM), low levels of cell death were observed after 
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incubation for 72 h at 10 µM. A detailed analysis of the cell cycle progression confirmed that this small 

molecule caused a slowdown in cell growth and division with great G1-phase accumulation. According 

to this data, the authors speculated that a non-catalytic protein scaffolding function of hChoKα would 

drive its oncogenic properties and suggested an antitumor strategy aimed at destabilizing the protein. 

4.8. The crystal structure of TCD-717 in complex with hChoKα opens the possibility of interrupting 

protein-protein interactions in cancer  

Despite the variety of hChoKα inhibitors that have been synthesized to date, only symmetric 

bisquinolinium compound TCD-717 has completed phase I clinical trials.38 In recent work, the 

inhibitor’s interaction with hChoKα1 enzyme (PDB ID: 5W6O) has been examined by X-ray 

crystallography and kinetic assays.82 Strikingly, TCD-717 bound near the surface of the enzyme (Figure 

15) in a new binding site that was not exploited by the previously characterized hChoKα inhibitors. This 

fact together with other factors, such as its cell permeability, target specificity, in vivo bioavailability 

and low toxicity, could explain the significant in vivo effects of this compound, which inhibited hChoKα 

with an IC50 of 520 ± 150 nM.  

As described by Kall et al., TCD-717 did not bind to the Cho or ATP binding sites, and occupied a location 

near the surface.82 Residues Y148, A176, M177, E180, F200, P201, W248, T252, Y256, E332, Y333, and 

L419 accommodate TCD-717 through hydrophobic interactions (Figure 15), which precludes Cho 

binding due to the secondary structure movements induced. For instance, W248 and Y333 side chains 

experienced rotations (|100 and |35°, respectively, relative to the apo structure) to accommodate 

one of the TCD-717 quinolone rings. The other quinolone moiety of TCD-717 is stabilized by Y148 and 

M177 that also suffer conformational changes. The biphenyl linker helps to position the head groups 

of the compound in place and also displaces the side chains of E180 and E332, which avoids Mg2+ 

coordination and therefore ATP binding.  

The phosphorylation of Y333 in a cSrc-dependent manner is linked to cancer progression. 

Phosphorylation may increase the enzymatic activity of hChoKα, which is a signal in the oncogenic 

pathway. Kall et al. have also very recently demonstrated, through SPR and crystallographic analysis, 
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that ChoKα interacts with cSrc by a non-catalytic poly-proline motif (residues 60-69; see PDB ID: 6C4S) 

located in hChoKα N-terminal domain.83 This finding could lead to the design of new inhibitors that 

disrupt this hChoKα-cSrc interaction.  

4.9. Finding exploitable differences at the ChoK binding site between the human and pathogenic 

species for drug design  

The identification of high structural similarities in the active sites of ChoK orthologs led to the 

hypothesis that the hChoKD1 inhibitors could be repurposed for the treatment of infectious diseases 

in which ChoK might play an essential role.  

With the aim of identifying similarities among the active sites of ChoKs from different species, the 

crystal structures of hChoKα1, Plasmodium falciparum ChoK (PfChoK) and Cryptosporidium parvum 

ChoK (CpChoK) were computationally analysed.84 Through sequence identity search and MD 

simulations, it was noted that the ATP and the Cho binding sites of hChoKα1, PfChoK and CpChoK were 

conserved (Figure 16), which suggests that previous compounds that inhibit the human enzyme may 

also interact with ChoK from different pathogens. This observation was substantiated with 

experimental in vitro fluorescence polarization assays that showed 16 and 17 presented similar Kds for 

hChoKα1, PfChoK and CpChoK (Figure 16).  

A subsequent study by Serrán-Aguilera et al.43 used previously reported non-symmetric bispyridinium 

derivatives 9d and 9e77 (Figure 10) to probe whether these hChoKα1 inhibitors could target efficiently 

PfChoK and also propose a new mechanism of action of inhibition of ethanolamine kinase activity of 

PfChoK, which led to a severe decrease in phosphatidylethanolamine levels within P. falciparum.43 The 

much lower dose of these compounds employed to inhibit P. falciparum growth suggested that these 

compounds could be exploited in the design of new clinical antimalarial drugs. 

Finally and following the same rationale illustrated above, Zimmerman et al.85 demonstrated that the 

active site of Streptococcus pneumoniae ChoK (SpChoK) was very similar to hChoKα1 and in turn 

inhibitors such as MN58b and RSM-932A acted as modest and potent inhibitors, respectively, at 

enzymatic and cellular level (IC50s = 197 and 10 PM and EC50s = 0.5 and 0.4 PM, respectively). 
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Altogether, all these results exemplified the potential benefit of repurposing hChoKα1 inhibitors to 

tackle a wide range of infectious diseases.  

 

6. CONCLUSIONS AND FUTURE PERSPECTIVES 

The discovery of HC-3 as a lead compound and the later structural resolution of several hChoKs can be 

considered as the two major breakthroughs in the field of hChoKα inhibitors. The first one provided 

the starting point to design potent inhibitors, and the second one allowed a tailor-made design of 

specific inhibitors that exploited our knowledge of the active site architecture of this enzyme. 

The development of most hChoKα inhibitors synthesized during the last 15 years has exploited 

information amassed from hChoK X-ray crystal structures. This knowledge, together with 

computational techniques, such as docking, virtual screening, high-throughput screening or molecular 

dynamics, have been key in the successful design of highly potent and specific hChoKα inhibitors that 

are considered lead compounds. 

By applying all these medicinal chemistry, biophysical and computational approaches, we have learned 

a plethora of information on the biophysical characteristics of these enzymes and the key parts of the 

compounds to achieve potent inhibition: (a) HC-3 and subsequent compounds allowed us determine 

that potent inhibitors might contain a 1-benzyl-4-(N-methylaniline)pyridinium fragment that had a 

positive charge. However, the positive charge of the nitrogen atom of the inhibitors is not a 

requirement for inhibition as exemplified by 13; (b) the high selectivity of the inhibitors towards 

hChoKα in detriment of hChoKE is explained by a less flexible hChoKE Cho binding site that does not 

allow for better accommodation of the inhibitors; (c) compound 5a elucidated that the dimeric form 

of hChoKα1 presented allosteric properties and in particular negative cooperativity that was 

characterized by chemical communication between the active sites of both monomers; and (d) the Cho 

binding site is more exploitable for drug design and is responsible for the improved affinity of 

inhibitors. In addition, the majority of the compounds interact with this binding site rather than the 
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ATP binding site. Compound 9a allowed the discovery of a new exploitable binding site that was 

adjacent to the Cho binding site; and surprisingly, TCD-717 was located bound near the surface of the 

enzyme and not in the active site as designed. This binding mode blocks hChoKα1 binding to Cho and 

can also block phosphorylation of Y333 that can lead to a decrease in the enzymatic activity of hChoKα.  

Although the successful development of Choα inhibitors for the treatment of cancer has resulted in 

one molecule reaching clinical trials, an approved ChoKα inhibitor for the treatment of specific types 

of cancer is still lacking. Because of the similarities between human ChoKα and orthologs from 

pathogens, the vast number of Choα inhibitors should be evaluated, to fulfil the promise of targeting 

this important enzyme for the treatment of cancer and infectious diseases. Hopefully, the coming years 

will prove these compounds as useful therapeutics. 
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FIGURE LEGENDS 

Figure 1. Structural modifications carried out on HC-3 that led to bis- and tris-quaternary ammonium 

salts. 

Figure 2. Chemical structure of symmetric biscationic derivatives and natural product 22β-hydroxy-

tingenone. 

Figure 3. Historical chart depicting the ChoK X-ray crystal structures reported up to date. The PDB IDs 

are indicated for each structure. The crystal structures have been determined for different ChoK 

orthologs in which Ce, h, Pk, Pf, Cp and Sp stand for Caenorhabditis elegans, human, Plasmodium 

knowlesi, Plasmodium falciparum, Cryptosporidium parvum and Streptococcus pneumoniae, 

respectively. Compounds are numbered according to the main text with the exception of compounds 

11 and 37 that keep the original names indicated in the corresponding PBD files. *No publications have 

been associated with this PDB ID to date. 

Figure 4. a) Close-up view of the ATP binding site of the hChoKα2 isoform. b) Cho binding site. Red 

dashed lines indicate hydrogen bonds.  

Figure 5. a) Close-up view of hChoKα1 complexed to HC-3. b) Close-up view of hChoKβ complexed to 

pHC-3.  

Figure 6. First proposed hChoK catalytic mechanism based on the formation of a ternary complex with 

ATP, Mg2+ and Cho.  

Figure 7. Second proposed mechanism of action for hChoK based on the formation of a phosphorylated 

intermediate (P-D306).  

Figure 8. a) Chemical structure of pyridinium derivatives 5a and 5b. b) Compound 5a binds to both ATP 

and Cho binding sites. c) Residues of the active site that stabilize 5a. Red dashes indicate hydrogen 

bond interactions. 

Figure 9. Chemical structures of non-symmetric pyridinium compounds 6, 7, 8a and 8b. 

Figure 10. a) Chemical structure of compounds 9a–9c. b) Close-up view of the crystal structure of 

hChoKα1-9a complex that shows the newly discovery binding pocket adjacent to the Cho binding site, 

which is formed by residues W248, T252, Y256, Y333, L419, W420, and W423. 

Figure 11. a) Pharmacophore model and chemical structures of the three most potent hChoKα1 

binders discovered by this pharmacophore-based approach. b) Crystal structure of hChoKα1-12 

complex. c) Residues that interact to the two molecules of 12. Hydrogen bonds are represented by red 

dashes.  

Figure 12. Compound CK37. 

Figure 13. a) Chemical structure of compounds 13–15. b) hChoKα-13 X-ray crystal structure. c) Close-

up view of 13 and the residues of Cho binding site that contribute to its stabilization. Red dashes 

represent hydrogen bond interactions. 
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Figure 14. a) Compounds V-11-023907 and V-11-0711. b) Crystal structure of hChoKα-V-11-023907 

complex. c) Close-up view of the Cho binding site showing the residues that interact with V-11-023907. 

Red dashes represent hydrogen bonds.  

Figure 15. a) TCD-717 binding mode. b) Residues of the binding site that stabilize the compound. c) 

Close-up view of ATP and Cho binding sites that depict the orientation of ADP and PCho with respect 

to TCD-717. 

Figure 16. a) Chemical structure of compounds 16 and 17 and the Kds values (µM) among ChoK 

orthologs. b) Surface representation of the hChoKα1 colored by sequence conservation: black (100% 

identity), grey (|50% identity) and white (no identity). Sequence conservation was inferred by 

comparison of the amino acid sequences between hChoKα1, PfChoK and CpChoK. The overall structure 

shows ADP (PDB ID 3G15) and a modelled PCho for illustration purposes. c) Close-up views on ADP 

(above) and PCho (below) binding sites.  
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