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Abstract: 13 

Iron/silica core-shell microparticles (IMPs) were functionalized by different functional groups 14 

including amine, glycidoxy, phenyl, and thiocyanate. Many of the IMPs modifications are reported for the 15 

first time. The resulting surface chemistry turned out to affect the properties of magnetic alginate 16 

hydrogels fabricated from sodium alginate and dispersed IMPs. Differences in magnetorheological 17 

properties of the obtained magnetic hydrogels can be at least partially attributed to the interactions 18 

between alginate and surface functionalities of IMPs. Density Functional Theory (DFT) calculations were 19 

carried out to get detailed insight into those interactions in order to link them with the observed 20 

macroscopic properties of the obtained hydrogels. For example, amine groups on the IMPs surface 21 

resulted in well-formed hydrogels while the presence of thiocyanate or phenyl groups – in poorly formed 22 

ones.  This observation can be used for tuning the properties of various carbohydrate-based hydrogels. 23 

 24 

1. Introduction: 25 

Hydrogels can be considered as three-dimensional, hydrophilic networks of flexible polymer chains 26 

swollen by water or other fluid. They are able to store a large amount of water (even up to thousands 27 

times their dry weight) while maintaining the structure that can be cast into practically any shape or 28 

form (Seliktar, 2012). They are soft and capable of retaining large amounts of water thus closely 29 

resemble living tissues. Mainly for that reason hydrogels are considered as particularly promising 30 

materials in the rapidly developing field of tissue engineering as matrices for replacing and regenerating 31 
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different tissues and organs (Drury & Mooney, 2003; Geckil, Xu, Zhang, Moon, & Demirci, 2010; Peppas, 32 

Hilt, Khademhosseini, & Langer, 2006). Besides they also continuously find widespread applications in 33 

the biomedical field including biosensors (Buenger, Topuz, & Groll, 2012; L. Li et al., 2015; Ulijn et al., 34 

2007), drug delivery systems (Fan, Tian, & Liu, 2019; J. Li & Mooney, 2016; Qiu & Park) or wound healing 35 

materials (Dimatteo, Darling, & Segura, 2018; Griffin, Weaver, Scumpia, Di Carlo, & Segura, 2015; Liu & 36 

Guo, 2018). 37 

There is a plethora of different hydrogelators which can be used to fabricate hydrogels. Depending 38 

on hydrogelator origin, the resulting hydrogels can be: (i) natural polymer-based hydrogels, (ii) synthetic 39 

polymer-based hydrogels and (iii) supramolecular hydrogels (Du, Zhou, Shi, & Xu, 2015). Natural 40 

polymer-based hydrogels are particularly useful in tissue engineering related applications due to their 41 

remarkable in vitro and in vivo biocompatibility, confirmed in many studies (De Groot et al., 2001; 42 

Kulkarni, Boppana, Krishna Mohan, Mutalik, & Kalyane, 2012; Lai, 2010; C. Lee et al., 2013). Indeed, in 43 

the literature there is a continuously increasing number of papers reporting such potential biomedical 44 

applications with the use of alginate, chitosan, fibrin or collagen as the most prominent examples of 45 

natural polymer-based hydrogels; many recent reviews nicely summarize the current state-of-the-art 46 

(Dimatteo et al., 2018; X. Li, Sun, Li, Kawazoe, & Chen, 2018; Mahinroosta, Jomeh Farsangi, Allahverdi, & 47 

Shakoori, 2018; Mantha et al., 2019; Qureshi et al., 2019; Tu et al., 2019). 48 

Among different hydrogels’ types, alginate-based hydrogels are considered as one of the preferred 49 

formulations, mainly due to low cost and excellent biocompatibility of alginate hydrogelators (Espona-50 

Noguera et al., 2018; Soon-Shiong et al., 1994; Wang et al., 2019). Alginates (i.e., sodium, potassium, 51 

calcium or magnesium salts of alginic acid) are biopolymers usually extracted from different species of 52 

seaweeds (macroalgae) such as, for example, Rhodophyceae (red macroalgae), Phaeophyceae and 53 

Laminaria (brown macroalgae) or Chlorophyceae (green macroalgae). From chemical point of view 54 

alginic acid is composed of unbranched chains of α-L-guluronic acid (G-block) and β-D-mannuronic acid 55 

(M-block) covalently linked by 1-4 glycosidic bond (Fig. S1). Alginates extracted from different species 56 

usually show variations in their chemical structure due to different sequences of G- and M-blocks (K. Y. 57 

Lee & Mooney, 2012). In the presence of multivalent cations (e.g., calcium) alginates form a physical 58 

ionotropic hydrogel as a result of ionic crosslinking between the negatively charged polyionic alginate 59 

chains and multivalent cations. Negative charge of the alginate chains results from dissociation of –COOH 60 

(alginic acid) or –COONa (alginate) groups into carboxylate anions –COO–.  61 

To fabricate “smart” materials, alginate hydrogels can be doped with magnetic particles. 62 

Incorporation of magnetically-susceptible species into hydrogel structure may provide additional 63 
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features like stimuli-responsive action, sufficient biocompatibility or tailorable rheological properties 64 

(Gila-Vilchez, Duran, Gonzalez-Caballero, Zubarev, & Lopez-Lopez, 2019; Konwar, Gogoi, & Chowdhury, 65 

2015; Supramaniam, Adnan, Mohd Kaus, & Bushra, 2018). For those reasons, magnetic hydrogels are 66 

becoming even more useful for biomedical applications, particularly as scaffolds for soft tissue 67 

engineering, where the above-mentioned advantages are of paramount importance. The rheological 68 

properties of the magnetic hydrogels (also called ferrogels) in the presence of magnetic field are then 69 

predominantly controlled by the factors related to the type, size, shape and concentration of the 70 

incorporated magnetic particles (Bonhome-Espinosa et al., 2017; Gila-Vilchez et al., 2018; Gila-Vilchez, 71 

Duran, et al., 2019; Gila-Vilchez, Mañas-Torres, et al., 2019). For example, small particles (e.g., 72 

nanoparticles) experience a weak attraction between themselves under moderate magnetic field in 73 

contrast to bigger particles (e.g., microparticles) which are able to interact strongly even at low magnetic 74 

fields. Thus strong magnetic fields can provoke significant viscoelasticity changes of magnetic hydrogels 75 

composed of microparticles (Gila-Vilchez et al., 2018). The fascinating research area of magnetic 76 

hydrogels is, however, still at its infancy. There is a considerable number of reports about ferrogels but 77 

they do not fully reflect the high potential they have with regard to the current and emerging biomedical 78 

challenges. 79 

Functionalized magnetic particles can be used to modulate the interactions between them and the 80 

polymer filaments that form the hydrogels having a direct impact on the properties of the hydrogels, as 81 

has been recently shown (Bonhome-Espinosa et al., 2017). Furthermore, magnetic particles with the 82 

appropriate surface chemistry can conjugate drugs, proteins, enzymes or antibodies, which is required 83 

for numerous applications. For instance, it has been recently shown that medical treatment with 84 

magnetic particles conjugated by nerve growth factor significantly promotes neurite outgrowth and 85 

increases the complexity of the neuronal branching trees (Marcus, Skaat, Alon, Margel, & Shefi, 2015). 86 

As can be seen from the comprehensive set of representative literature presented above the 87 

magnetic particles are usually used as received, i.e., without any functionalization. Incorporation of 88 

nano- or micro-sized particles into hydrogel is based on the physical incorporation within the hydrogel, 89 

having the possible consequence of continuous release of the particles from the hydrogel matrix to the 90 

environment (Barbucci, Giani, Fedi, Bottari, & Casolaro, 2012). However, apart from bulk iron providing 91 

magnetic field actuation, the surface of magnetic particles can be used to tune specific or nonspecific 92 

interactions with the hydrogelator moieties (Tanasa et al., 2019), which in turn can affect the final 93 

properties of resulting hydrogels and even provide more favorable features like better adhesion of 94 

biological species (e.g., cells). Functionalization with amine group with the use of 3-95 
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aminopropyltriethoxysilane or 3-aminopropyltrimethoxysilane is frequently reported strategy to modify 96 

the surface of the particles and properties of resulting hydrogels (Barbucci et al., 2012; Čampelj, 97 

Makovec, & Drofenik, 2009; Giani, Fedi, & Barbucci, 2012; Long et al., 2015; Park et al., 2009; Zhu, Zheng, 98 

Wang, & Wang, 2016). Unfortunately, in the literature there is few attempts to chemically functionalize 99 

magnetic particles using groups other than amines (Tanasa et al., 2019). 100 

In this work we seek to determine the role of surface functionalization of iron particles on the 101 

properties of the resulting alginate magnetic hydrogels. We hypothesize that different surface 102 

chemistries of iron particles can affect chemical interactions between the both phases in a distinct way, 103 

and these changes will contribute to the different microstructure, mechanical properties, and 104 

biocompatibility of ferrogels. Alginate was chosen as a model matrix due to its high biocompatibility 105 

allowing its use in biomedical applications. A set of different surface functionalizations of iron/silica core-106 

shell microparticles (IMPs) has been chosen. Interactions between specific surface groups and alginate 107 

chains have been elucidated with the aid of DFT quantum chemistry calculations to get a more detailed 108 

insight into those interactions.  109 

 110 

2. Experimental 111 

2.1. Reagents 112 

Sodium alginate (ALG, MW: 20-40 kDa, Sigma Aldrich) was used as received. The relative content of 113 

mannuronic to guluronic acid was experimentally estimated using protocols based on ellipsometry 114 

(Donati et al., 2003; Morris, Rees, & Thom, 1980) and FTIR spectroscopy (Filippov & Kohn, 1974). The 115 

ellipsometric method showed that the composition of ALG is as follows: 75% guluronic acid, 17% 116 

mannuronic acid, and 8% mixed sequences (cf. Fig. S1b); while FTIR method showed that it is: 82% 117 

guluronic acid and 18% mannuronic acid (cf. Fig. S1c). Powder of sodium alginate, as received, had a bulk 118 

density of 0.509 ± 0.017 g/mL and the reported skeleton density of sodium alginate is 1.6010 ± 0.0002 119 

g/mL (Censi, Gigliobianco, Malaj, & Di Martino, 2016). From this data, we estimated a porosity of the 120 

sodium alginate powder of 68.2 ± 1.1 % - for details on the bulk and skeletal density of aerogels see 121 

(Fitzpatrick, Staiger, Deb-Choudhury, & Ranford, 2018). Calcium carbonate (CaCO3, Sigma Aldrich), D-122 

glucono-δ-lactone (GDL, Sigma Aldrich), aminopropyltriethoxysilane (APTES,  97%, Sigma-Aldrich), (3-123 

trimethoxysilylpropyl)diethylenetriamine (TMPMT, 95%, Fluorochem), N-124 

phenylaminomethyltriethoxysilane (PATES, 95%, Fluorochem), thiocyanatopropyltriethoxysilane (TCTES, 125 

95%, Fluorochem), glycidoxypropyltrimethoxysilane (GPTMS, 98%, Sigma Aldrich), phenyltriethoxysilane 126 

(PTES, 97%, Gelest), sodium hydroxide (NaOH, Sigal), hydrochloric acid (HCl, Sigal) were used without 127 
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further purification. As magnetic particles we used silica-covered iron particles (CIP grade) supplied by 128 

BASF, Germany, referred in the test as IMPs. 129 

2.2. Functionalization of iron/silica core-shell microparticles 130 

2 g of IMPs were placed in a vial and mixed with 40 mL of absolute ethanol, previously acidified with 0.57 131 

mL of 1.75 M HCl. The suspension was sonicated for 5 min. After that time 1 mmol of proper 132 

organofunctional alkoxysilane (APTES, TMPMT, PTES, GPTMS, PATES or TCTES) was added and the 133 

suspension was submitted six times to the following sequence: 5 min of sonification and 25 min of 134 

stirring (in total 3 hours). After that time the IMPs were separated from the solution by magnet, washed 135 

two times with absolute ethanol and dried overnight at 40 °C. The numbering of the samples together 136 

with the organofunctional alkoxysilane used to their synthesis is given in Table 1. 137 

2.3. Preparation of magnetic hydrogels 138 

For the preparation of the magnetic hydrogels we followed a two-step protocol proposed in a previous 139 

work (Gila-Vilchez et al., 2018), which allows the generation of magnetic hydrogels with excellent 140 

homogeneity and reproducibility. Briefly, ALG was dissolved in distilled water to prepare 1% w/v 141 

solution. Then, 9 mg of CaCO3 was added to 6 mL of this solution, and the vial was vortexed for 1 min. 142 

After that 32 mg of GDL was added and the mixture was again vortexed for 1 min. Then the solution was 143 

left in a closed vial for 90 min at room temperature. After that time the forming gelling mixture was 144 

transferred to another vial, vortexed (1 min) and 0.7 mL was transferred do the Eppendorf vial 145 

containing specific amount of IMPs to reach the required final concentration of 0.9% v/v (note that from 146 

the initial amount of ALG mixture of 6 mL it is possible to prepare more IMP-ALG hydrogel samples of 0.7 147 

mL). The mixture of gel and IMPs in the Eppendorf vial was submitted to the following treatment steps to 148 

disperse well the IMPs within the gel: (i) vortex - 1 min, (ii) sonification - 5 min, (iii) vortex - 1 min. After 149 

this sequence the gel was transferred to the open vial and kept overnight in a water-saturated 150 

atmosphere. The next day the formed hydrogels were submitted to the further analyses. In the case of 151 

the non-magnetic reference hydrogel the preparation scheme was the same apart from the fact that 0.7 152 

mL of the solution was transferred to the empty Eppendorf vial without IMPs. 153 

2.4. Physicochemical characterization of the IMPs 154 

IMPs were analyzed by several instrumental techniques. The nitrogen sorption measurements were 155 

performed at −196 °C using a 1200e sorption analyzer (Quantachrome). All samples were degassed at 156 

110 °C in vacuum prior to measurements. The BET specific surface areas (SBET) were evaluated in the 157 

range of relative pressures of 0.05–0.20. The total pore volumes (Vp) were calculated by converting the 158 
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amount of adsorbed nitrogen at relative pressure ∼0.99 to the volume of liquid adsorbate. The SEM 159 

imaging of randomly selected parts of the surface was performed under high vacuum conditions by 160 

means of Quanta 3DFEG (FEI, USA) microscope with the accelerating voltage 5/20 kV. X-ray 161 

photoelectron spectroscopy (XPS) spectra were obtained in high vacuum (8×10−9 Pa) by means of Multi-162 

Chamber Analytical System (Prevac, Poland) equipped with monochromatic 450 W Al K-alpha X-ray 163 

radiation source. The binding energy scale was referenced against C 1s = 284.7 eV line. Deconvolutions of 164 

the obtained spectra were done using MultiPak software. To determine the surface pH 0.1 g of IMPs was 165 

suspended in 50 mL of water and stabilized overnight before the measurement. The pH of the solution 166 

was then measured using a 510 pH-meter (Oakton Instruments). The zeta potential was evaluated using 167 

Zetasizer Nano ZS (Malvern Instruments). Suspensions were prepared by dispersing ~5 mg of IMPs in 168 

2 mL of 1×10−3 M KCl.  169 

2.5. Physicochemical characterization of the IMPs-ALG hydrogels 170 

The water-releasing tests were carried out for each hydrogel (in triplicate). Fresh hydrogel with known 171 

mass (~0.47-0.51 g) was placed in a plastic vial and submitted to drying  at room temperature. Weight 172 

losses were recorded during drying at specific times during 14 hours (i.e., until the bottom of the vial 173 

only dry residue remained and the weight did not change over time). Humidity was not controlled during 174 

the experiments but it was the same for all the samples. The microscopic structure of the selected 175 

hydrogels was analyzed by Scanning Electron Microscopy (SEM), accomplished using a FEI Quanta 400 176 

ESEM equipped with a Peltier effect cooling stage. Before SEM analysis, the hydrogels were prepared 177 

according to a well-established protocol (detailed information is provided in Supplementary data) and 178 

subjected to CO2 critical point drying (Anderson, 1951). Differential scanning calorimetric (DSC) 179 

measurements were carried out using a DSC 204 Netzsch calorimeter. The dynamic mode scans were 180 

collected at a heating rate of 20 °C·min−1, from 20 °C to 200 °C under argon flow (20 cm3·min−1). 181 

Aluminum pots were punched with a needle before each experiment. 182 

2.6. Rheological measurements of the IMPs-ALG hydrogels 183 

Rheological properties of the hydrogels were determined at room temperature using the MCR 300 184 

magneto rheometer (Physica Anton Paar) using a plate-plate geometry of 20 mm of diameter. Linear 185 

viscoelastic region (LVR) of the studied hydrogels was determined by subjecting them to deformation 186 

amplitude sweep tests at a constant frequency of 1 Hz and stepwise increasing shear strain amplitude, 187 

γ0. From these measurements the values of the storage (G’) and loss (G’’) moduli as a function of γ0 were 188 

determined along with the averaged G’ and G’’ values within the LVR region. Frequency sweep tests 189 
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were done at a fixed shear strain amplitude (γ0=0.03%) within the LVR, and increasing frequency in the 190 

range from 0.15 to 15 Hz. From these measurements the values of G’ and G’’ were determined as 191 

functions of frequency. Both amplitude and frequency scans were carried without and with the presence 192 

of magnetic field of two arbitrarily chosen intensities of 141 kA m-1 and 242 kA m-1. 193 

2.6. Cell viability assessment 194 

First, the viability of the human fibroblasts was analyzed using functional WST-1 assays (Cell 195 

Proliferation Reagent WST-1, Roche Diagnostics, Germany) based on the colorimetric transformation of 196 

tetrazolium salt (WST-1) to formazan driven by the activity of the mitochondrial dehydrogenase of living 197 

cells, which is directly proportional to the number of viable (i.e., metabolically active) cells. Fibroblasts 198 

were cultured for 48 h in contact with hydrogel, and the absorbance of the colorimetric reaction was 199 

inspected with an Assay UVM 340 spectrophotometer in triplicate. 200 

To determine the structural integrity of cells cultured in contact with the biomaterials, the total 201 

DNA released by the cells corresponding to each condition was quantified with a NanoDrop 2000 UV-Vis 202 

Spectrophotometer (Thermo Fisher Scientific). 10 μL of the culture medium was used to determine the 203 

amount of DNA for each condition and time. The release of DNA from cells into the culture medium 204 

occurs as a result of irreversible damage to the cell membrane. Therefore higher DNA concentration in 205 

the culture medium indicates a higher number of dead cells with the membrane structurally disrupted. 206 

Finally, Live/Dead cell viability assays were used on cell cultured with the different types of 207 

materials evaluated in the present work. This method combines a functional assay based on calcein AM, 208 

which is metabolically activated and turns to green by living cells, and a structural assay based on 209 

ethidium homodimer-1, which can only enter to the cell nucleus if the cell is dead. Therefore, living cells 210 

are labeled in green and dead cells are labeled in red. Cells were cultured in the presence of each 211 

material for 48 h and washed in PBS. Then, calcein AM and ethidium homodimer-1 were added as 212 

suggested by the manufacturer, and representative micrographs were taken from human fibroblasts 213 

cultured for 48 h in contact with magnetic hydrogels using an A1R Nikon fluorescence microscope 214 

(Nikon) with constant illumination and capture parameters. Micrographs were analyzed using the NIS-215 

Elements and ImageJ v1.46 software packages, and the percentage of live and dead cells was calculated 216 

for each experimental condition. 217 

2.7. Theoretical calculations 218 

The Density Functional Theory (DFT) calculations were carried out at the DFT/B3LYP/6-311++G** 219 

level. Equilibrium geometries and harmonic vibrational frequencies of the considered molecular systems 220 
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were found first. The type of stationary point was determined by analysis of the obtained frequencies. 221 

All calculated frequencies were real indicating that minima on PES were found. Calculations were 222 

performed using the PQS quantum chemistry package (Baker et al., 2009). The relative energies, which 223 

include zero-point vibrational energy (ZPVE) corrections, were calculated as ΔE=E(products)-224 

E(substrates), thus the negative value of ΔE means that the products are more stable than substrates. 225 

Following our previous findings (Barczak & Borowski, 2019; Barczak, Wierzbicka, & Borowski, 2018) we 226 

considered interactions of alginate representative fragments and functionalities as the energetics is not 227 

affected by the presence of the matrix. 228 

2.8. Statistical analysis 229 

Parametric analysis of variance (ANOVA) was used to determine differences between hydrogels with 230 

respect to their water releasing profiles and storage modulus (G’). After ANOVA analysis, pairwise 231 

multiple comparisons analysis was performed using Tukey HSD and Dunnett two-tailed post hoc tests. 232 

For Dunnett test, the R hydrogel was a single control. A difference was considered to be statistically 233 

significant if p value was lower than 0.05. Hydrogels biocompatibility (i.e. WST-1 and DNA quantification) 234 

due to the lack of samples normality (as confirmed by Shapiro-Wilk test), was assessed using non-235 

parametric Kruskal-Wallis test, followed by multiple pairwise comparisons based on the Conover-Iman 236 

post host test. A difference was considered statistically significant if the p-value was less than 0.05 237 

corrected by Bonferroni correction. 238 

 239 

3. Results and discussion 240 

3.1. Functionalization and characterization of iron microparticles 241 

The commercial iron core/shell particles (IMPs) used in this study are composed of spherical and 242 

often aggregated units with a wide distribution of sizes. The SEM images of the initial particles (referred 243 

as R) at different magnifications are presented in Fig. 1. The average size is around 2-3 μm and the 244 

density of 7.71 ± 0.19 g cm-3. The IMPs used in this study exhibit a typical ferromagnetic behavior with 245 

saturation magnetization of approx. 1600 kA m-1 (Gila-Vilchez et al., 2018). The particles are covered, 246 

though not perfectly, with a layer of silica thus there are many surface silanol groups present, which 247 

makes the resulting surface very versatile and ready to be modified by attaching specific functional 248 

groups. Due to that the grafting of different organosilica monomers was chosen in this study as the most 249 

straightforward functionalization strategy. To accomplish it, six different monomers were tested – the 250 

range of the monomers used is listed in Table 1; grafted functional groups are also presented in Fig. 1 251 

and S2a. The reason for choosing such a wide range of functional groups was twofold: (i) examining 252 
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whether functionalization of iron surface can be achieved using monomers other than APTES and (ii) 253 

investigating the possible effect of chemistry of IMP surface layer on the properties of obtained alginate 254 

magnetic hydrogels. The choice of functional groups used in this study was dictated by the fact that they 255 

can interact with the alginate network in various ways. For example, amino or thiocyanate groups can 256 

form hydrogen bonds with alginate oxygens, while phenyl or glycidoxy groups are expected to 257 

repulsively interact with a negatively charged alginate hydrogel network. 258 
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 259 

Table 1. Structural and chemical properties of the functionalized iron particles 260 

No. Monomer Grafted func-

tional group  

Nitrogen sorption& XPS elemental comp. (at. %) EDS elemental comp. (at. %) pH ζ $ 

   SBET 

(m2 g-1) 

Vt  

(cm3 g-1) 

d 

(nm) 

Fe O C Si N Fe O C Si N  (mV) 

R --- --- 2.3 0.003 6.0 3.7 25.4 68.7 2.2 --- 42.6 21.7 34.5 0.4 --- 5.8±0.05  ~7 

1 APTES I° amine 3.8 0.003 2.9 2.4 23.2 68.6 5.1 --- 41.2 17.2 40.6 0.5 --- 4.7±0.03 ~20 

2 TMPMT I° and II° amine 2.6 0.004 6.0 4.5 34.2 43.7 14.9 2.5 57.8 7.8 31.2 0.4 2.4 5.2±0.03 ~20 

3 GPTMS glycydoxy 1.9 0.001 3.4 3.4 25.2 64.9 6.5 --- 22.2 40.5 35.9 0.7 --- 5.6±0.05 ~ 3 

4 PTES phenyl 4.1 0.005 5.1 3.3 24.4 68.1 4.2 --- 35.9 29.6 33.4 0.5 --- 5.2±0.02 ~(-1) 

5 PATES aminophenyl 1.3 0.002 5.2 1.9 24.1 67.3 6.7 --- 60.5 7.1 31.8 0.4 --- 5.8±0.04 ~9 

6 TCTES thiocyanato 19.1 0.014 3.0 6.3 29.4 57.9 6.4 --- 52.8 12.9 33.6 0.4 --- 6.3±0.07 ~3 

SBET – specific surface area by BET method, Vt – total volumes of the pores, d – average pore size 261 

& – The error associated with the determination of porous structure parameters based on nitrogen sorption data is usually assumed to be ±2 %. In this case – due to the low 262 

porosity – this error can be higher. 263 
$ – IMPs quickly settle on the bottom of the measuring cell preventing accurate measurement of zeta potential, therefore the values given, although averaged over three 264 

measurements, should be treated as approximate.  265 
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The first visual observation is that the color of ethanol solution during the functionalization 266 

changes depending on the monomer used (Fig. S2b). This means that the outer silica layer of IMPs is not 267 

perfect and the solution containing organosilica monomers can be easily contacted with the carbonyl 268 

iron. Due to that some reactions can occur between the carbonyl iron and the organosilica monomers as 269 

well as traces of contaminants (note that the purity of the monomers is within the range of 95-97% so 270 

some initial reagents/co-products/catalysts are also present). Different colors of the solutions mean that 271 

the different sets of reactions may occur. Interestingly, the reference sample R (no organosilica 272 

monomer added) changed the color which means that some IMPs have nanometric dimensions and form 273 

stable suspension of iron nanoparticles (cf. Fig 2b). Only the sample 2 does not change color what may 274 

be explained by fast attachment of the silica monomer due to the presence of reactive methoxy groups. 275 

In fact, high content of silica of the sample 2 (vide infra) is due to the formation of a tight organosilica 276 

layer surrounding the IMPs, which does not allow the reactions, as is the case with other systems.  277 

To investigate the effect of functionalization on the structural and chemical properties of the 278 

resulting IMPs, they were submitted to thorough characterization by a wide range of instrumental 279 

techniques. SEM images of the obtained microparticles are presented in Fig. 1. As can be seen the IMPs 280 

are composed of spherical multisized and often agglomerated spheres. After functionalization the 281 

particles remain unchanged – the only exception is sample 6, where complex formation/corrosion is 282 

observed under higher magnification. Indeed, thiocyanates are considered to be highly corrosive to iron 283 

and steel (Melendres, O’Leary, & Solis, 1991; Ravald, Chilver, & Williams, 2007) and they can also form 284 

red complexes with iron. The occurring corrosion confirms the fact that the silica coating is not 285 

sufficiently tight to protect the core iron from the contact with external environment. 286 
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 287 

Fig. 1. SEM microphotographs of the iron microparticles at different magnifications 288 

Structural parameters of the porous structure derived from nitrogen sorption isotherms are given 289 

in Table 1. As can be seen all the microparticles but 6 have low specific surface areas (in the range of 1.3-290 

4.1 m2 g-1) and pore volumes (in the range 0.001-0.005 cm3 g-1). Only sample 6 has higher values of SBET 291 

and Vp (19.1 m2 g-1 and 0.014 cm3 g-1, respectively), when compared with the rest of the samples, due to 292 

remarkable corrosion. The fast corrosion process of the sample 6 was confirmed by visual observation of 293 

water solutions of microparticles in closed vials kept for 30 days (cf. Fig. S3). After that time reddish iron 294 

oxide layer was formed in the case of 4 (after ~10 days) and 6 (after 1 day) but not in the case of the 295 

remaining samples. This clearly testifies that the iron microparticles have different types of the external 296 

layers, some of them inhibiting and some of them accelerating corrosion process. From the point of view 297 

of biomedical applications the effective inhibition of corrosion is very important due to the permanent 298 

contact of iron particles with different physiological fluids. Thus functional groups accelerating corrosion 299 

cannot be used in those applications regardless of their functional usefulness.  300 
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Apart from morphological features also the chemistry of the functionalized magnetic particles was 301 

thoroughly inspected by two quantitative methods: XPS and EDS. The first one is considered a surface-302 

sensitive technique enabling determination of the surface composition to a depth up to several nm 303 

(Burrell, 2001) while the second - to several hundred nm (Prencipe, Dellasega, Zani, Rizzo, & Passoni, 304 

2015). When analyzing data collected in Table 1, the first conclusion is that the results collected using 305 

both techniques are significantly different which means that the chemical composition of the surface is 306 

different from the chemical composition of the bulk phase. Another general observation from the EDS 307 

elemental analysis (which was derived from three different probing regions for each sample) is that the 308 

overall chemical composition is extremely variable demonstrating the remarkable chemical 309 

heterogeneity (in addition to the structural one as evidenced by SEM analysis). For example looking at 310 

the EDS elements content it can be seen that the iron content is in the range 22.2-60.5 %, and oxygen –  311 

7.1-40.5 %. The contents of carbon and silicon are more homogenous: 31.2-40.6 % and 0.4-0.7 %, 312 

respectively. In the case of the sample 2 functionalized by TMPET significant amount of nitrogen was 313 

detected by both, EDS (2.4 %) and XPS (2.5 %). 314 

Interestingly, XPS elemental analysis shows that carbon is the more abundant element present on 315 

the surface, while the iron content is low. XPS elemental analysis reveals that the silicon content in the 316 

initial IMPs is only 2.2 % while after each functionalization it elevates significantly, from 4.2 % (sample 4) 317 

to 14.9 % (sample 2). In the case of the latter the functionalization was the most efficient, which is also 318 

supported by the fact that the content of nitrogen introduced in the course of functionalization is high 319 

(2.4 %). In the case of other samples functionalized by monomers containing amine groups (samples 1 320 

and 5), the amounts of nitrogen were apparently below the detection limit of both techniques. 321 

The higher efficiency of functionalization with the use of TMPMT than APTES and PATES can be 322 

related to three factors. The first factor is that the larger ethoxy groups of APTES and PATES hydrolyse 323 

more slowly than smaller methoxy groups of MPTMS (Brochier Salon & Belgacem, 2011; Osterholtz & 324 

Pohl, 1992). The second factor is that the amine groups are additionally catalysing the processes of 325 

hydrolysis and condensation of TMPMT facilitating the formation of bigger clusters of co-condensed 326 

MPTMS molecules which are finally bound to the IMP’ surface. The third factor is that metals and many 327 

metal oxides can strongly adsorb silanes if a chelating functionality such as diamine is present. The last 328 

two factors explain the difference in functionalization efficiency between TMPMT and GPTMS - another 329 

methoxy-derived monomer used in this work. 330 

The values of surface pH and ζ potential also vary depending on the samples testifying to the 331 

remarkable chemical changes of the surface character occurring during functionalisation. In contrast to 332 
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XPS and EDS techniques which have intrinsic local probing character, ζ potential and surface pH shows 333 

overall effect of surface chemistry alterations. As can be seen in the case of the samples 1 and 2 the 334 

values of ζ potential significantly shift towards more positive values, most probably due to the presence 335 

of protonated amine groups. In contrast, for the sample 4 the value of ζ potential is slightly negative, 336 

because of the presence of π electrons of phenyl rings introduced during functionalization. Changes of 337 

pH values are more subtle; nevertheless, even those subtle changes show that the surface of magnetic 338 

particles is different in each case. For example, lowering of pH from 5.8  for R sample to 4.7, 5.2 and 5.2 339 

for the samples 1, 2 and 5, respectively testify to the releasing H3O+ ions from the protonated amine 340 

groups. Majority of amine groups are protonated because during the functionalization (see Experimental 341 

part for details) a small amount of hydrochloric acid was used to catalyze the hydrolysis of alkoxy groups 342 

of the silica monomers. 343 

 344 

3.2. Preparation and structural characterization of magnetic alginate hydrogels 345 

Alginate hydrogels fabricated with the use of non-functionalized and functionalized iron 346 

microparticles were first inspected visually (Fig. 2). As can be seen they retained the shape of the 347 

container used for their preparation. All ferrogels were black, albeit with different macroscopic 348 

appearance: hydrogels 1, 2, and 5 were highly homogeneous, while in the case of the remaining samples, 349 

partial separation of water was observed on the next day (cf. Fig. 2: the water envelope around the 350 

hydrogels 3 and 4 is clearly visible). In the case of the hydrogel 6 the hydrogel structure was collapsed 351 

and the color was changed due to the formation of the red complexes with iron or/and progressing 352 

corrosion. Since all the hydrogels were obtained in the same time using the same stock solution of 353 

alginate, the resulting changes in the physical appearance are undoubtedly attributed to the different 354 

surface chemistries of the incorporated magnetic microparticles. For well-formed hydrogels (samples 1, 355 

2 and 5), magnetic microparticles were not only entrapped within the polymer network, but bonded 356 

effectively to the alginate chains and consequently, no leakage of magnetic microparticles was observed 357 

in these hydrogels (even after immersing samples 1, 2 and 5 in water for several days). On the contrary, 358 

as observed in Fig. 2, leakage of particles took place for the other hydrogels. 359 
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 360 

Fig. 2. Physical appearance of magnetic hydrogels studied. Note that in the case of the hydrogels 3, 4 and 6 a liquid phase 361 

separated from the bulk hydrogel structure is seen  362 

The water-releasing behavior of the magnetic hydrogels at room temperature is presented in Fig. 363 

3a. For non-magnetic alginate hydrogel, A, the total weight loss was 98.4% while for the magnetic 364 

hydrogels the total weight losses were in the range 91.5-93.7%. These small differences in the amount of 365 

the absorbed water suggest that the functionalization effect does not significantly affect the porosity of 366 

most hydrogels. However, statistical post hoc comparisons of 2-ALG vs 4-ALG pair and 4-ALG vs 6-ALG 367 

pair shows that the impact of surface functionalization can play an important role (cf. Fig. S6a). Water 368 

release rates are slightly different for different hydrogels and could be attributed to different surface 369 

chemistries of the magnetic microparticles. Statistical analysis shows, however, that the observed 370 

differences are not statistically significant. During the first 8 hours of water-release the slopes of the 371 

curves are similar for all the hydrogels because the bulk concentration of microparticles in all hydrogels 372 

is only 0.9%, therefore most of the evaporating water during first hours of drying is the water absorbed 373 

in the pores of the hydrogel without direct contact with the surface of the iron microparticles. However, 374 

as the evaporation continues, more and more water molecules are in closer proximity to the 375 

functionalized surface of the microparticles. This is well seen in the last hours of drying, when some 376 

hydrogels are almost dry while others still hold water. Microparticles with primary amine groups (i.e., 1, 377 

2) bind water more strongly than unmodified microparticles (R), or the ones modified with phenolic 378 

groups (4). This effect can be associated with various interactions of both specific (hydrogen bridges) and 379 

non-specific (electrostatic and hydrophobic interactions) character. These interactions may cause slower 380 

water release from the semi-dry hydrogel. 381 

DSC thermograms of all tested hydrogels exhibit a broad endothermic peak starting at  ~100 °C 382 

(Fig. 3b), which indicates the loss of water from the hydrogel matrix. The fastest rate of water release is 383 
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observed for R-ALG hydrogel, while for other hydrogels the dynamics of water evaporation is slower. This 384 

suggests that covering of iron particles with a silica layer, regardless of its functionalization, results in a 385 

more hydrophilic interphase in which water can be more strongly bound by the hydrophilic silica surface. 386 

Another reason may be related to differences in cross-linking of alginate, governed by various 387 

interactions of alginate chains with surface functionalities (vide infra). Although water evaporation peak 388 

maxima are clearly located at different temperatures, the results should be interpreted with caution as 389 

can strongly depend on the conditions of DSC experiments (Bellich, Borgogna, Carnio, & Cesàro, 2009; 390 

Craig & Reading, 2006). Nevertheless, the observed different DSC profiles (cf. Fig. 3b) confirm the water 391 

release observations of (cf. Fig. 3a), supporting the fact that water retention ability can be at least partly 392 

attributed to the effect of the presence of specific functional groups on the iron surface. In particular, 393 

the difference between hydrogels 1-ALG and 2-ALG and hydrogel 4-ALG is clearly visible. The overall 394 

conclusion can be summarized as follows: water is held more strongly by hydrogels with particles with 395 

hydrophilic surfaces (e.g. 1-ALG and 2-ALG) than by hydrogels with particles with hydrophobic surfaces 396 

(3-ALG and 5-ALG). 397 

 398 

Fig. 3. (a) Water releasing kinetics upon drying (inlets: appearance of the magnetic hydrogels after 10 hours of drying (bottom), 399 

last period of drying, including error bars (top right), (b) DSC thermograms of wet magnetic hydrogels 400 

In order to check whether the functionalization of microparticles affects the morphology of the 401 

final magnetic hydrogels, SEM imaging of selected hydrogels were run. The selected microphotographs 402 

are presented in Fig. 4 and a larger number of them is available in Supplementary. The pictures show 403 

that there are remarkable differences between ways of binding of the alginate hydrogels to the 404 
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microparticles surface for the considered systems. In the case of R-ALG and 4-ALG, a characteristic 405 

cobweb-like network is visible which is connected only to the specific points of the surface of 406 

microparticles (marked with red circles on the Fig. 4). However, most of the surface is bare due to the 407 

lack of adequate surface chemistry that could ensure the appropriate interaction between alginate and 408 

iron microparticles. On the other hand, in the case of 1-ALG and 2-ALG hydrogels (i.e., hydrogels with 409 

abundance of amine groups on the surface), there is a completely different type of connectivity between 410 

both phases. The microparticles are surrounded by a hydrogel, without significant formation of cobweb-411 

like structures but rather tight covering of most of the microparticles’ surface (marked with blue circles). 412 

In the case of the hydrogel 1-ALG, remarkable changes in the morphology of hydrogel chains surrounding 413 

some microparticles are seen, i.e., in some places alginate chains are clearly thicker probably due to 414 

strong attractive interactions between both phases. 415 

 416 

Fig. 4. SEM microphotographs of the selected hydrogels (red circles show cobweb-like single point type joints, blue circles – 417 

multi point joints of the microparticles with alginate network) 418 

3.3. Quantum chemical description of possible interactions between alginate and functional groups 419 

To get more detailed view into the possible specific interactions of alginate with the surface 420 

groups (particularly amine groups) DFT calculations have been carried out. Calculations of the energetic 421 

effects accompanied sodium and calcium salt formation of alginic acid and comparison with those found 422 

for formation of complexes with functionalities present on the microparticle surface may give an insight 423 

into the competitive character of metal ions and functionalities interactions. It was found previously that 424 
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the effect of presence of model silica surface the functionalities are attached to is not essential to the 425 

overall energetics (Barczak et al., 2018). Thus functionalities alone endcapped with hydrogen atoms were 426 

considered. The relevant formulas for calculating binding energies can be also found in our earlier papers 427 

(Barczak & Borowski, 2019; Barczak, Gil, Terpiłowski, Kamioski, & Borowski, 2019; Barczak et al., 2018). 428 

Calculations on systems like alginic acid sodium salt [M]m[G]n (Fig. 5a), where m and n are fairly large, are 429 

impractical unless very small basis sets or semi empirical methods are used. However, in such a case the 430 

calculated energetics would be highly inaccurate. The alternative is to consider the case m=n=1 (the MG 431 

molecule) and perform the DFT calculations with extended basis set (cf. Computational details section). 432 

The first problem we were faced with was endcapping of MG molecule, assumed to be a representative 433 

fragment of the salt. There are two possibilities: termination with hydrogen atoms, i.e., formation of 434 

hydroxyl groups, or termination with methyl groups, i.e., formation of methoxy groups. The second 435 

choice (Fig. 5b) seems to be more appropriate one as in the [M]m[G]n chain the bridging oxygen atoms 436 

are bound to sp3-hybridized carbon atom of a next unit (M or G). We believe that with such a simplified 437 

model the most important interactions with Na+, Ca2+, as well as with the functionalities attached to the 438 

nanoparticles will be accurately accounted for. The remaining systems representing sodium alginate 439 

considered in this work for the purpose of calculating relative energies are shown in Figs 5c and 5d. The 440 

representative fragment of the calcium alginate is shown in Fig. 5e. Note, that only one Ca2+ ion linking 441 

two chains was considered in the representative fragment to reduce the overall computational cost. 442 

 443 

 444 

Fig. 5. (a) Sodium alginate monomer unit, (b) corresponding representative fragment endcapped with methoxy groups, MGNa2, 445 

(c) fully dissociated alginate unit, MG2–, (d) partially dissociated alginate unit, MGNa–, (e) two partially dissociated alginate units, 446 

MGNa–, cross-linked by Ca2+ cation. Colors of the atoms: grey - carbon, red - oxygen, white - hydrogen, violet - sodium, green - 447 

calcium. 448 

 449 
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First the effect of dissociating of Na+ cation from the starting model, MGNa2, was investigated 450 

(note that all energies are reported in kJ mol-1 in the reaction schemes). Dissociation of the first and then 451 

second sodium cation is associated with significant overall energy increase of 1298.6 kJ mol-1, i.e., 452 

MGNa2 
           
→       MGNa– + Na+   and   MGNa– 

           
→       MG2– + Na+.              (1) 453 

Such a high energy increase is associated with strong electrostatic interactions between oppositely 454 

charged ions. Dissociation of MGNa–…Ca2+…–NaMG is even more energetically demanding, i.e., 455 

MGNa–…Ca2+…–NaMG 
            
→        2MGNa– + Ca2+. (2) 456 

The binding energy of attaching the protonated amine group (–NH3
+) to the carboxylic group (–COO–) 457 

accompanied by the formation of a complex shown in Fig. 6a is nearly –540 kJ mol-1,  458 

MGNa– + +H3N–C3H7 
           
→       MGNa– ...+H3N–C3H7. (3) 459 

It thus seems that in the case of sodium alginate favorable interactions between protonated amines and 460 

carboxylic groups hardly occurs as it requires additional 38.9 kJ mol-1 (cf. Reaction 1). The situation seems 461 

to be even less advantageous in the case of calcium alginate. However, the calculated energy of a 462 

process 463 

MGNa–…Ca2+…–NaMG 
           
→       MGNa–…Ca2+ + MGNa– (4) 464 

indicates that protonated amine groups may compete with calcium ions for carboxylic groups (this time 465 

only extra 14.3 kJ mol-1 is required, cf. Reaction 3). On the other hand there is a number of other places 466 

in the alginate monomer unit susceptible for attachment of protonated amine groups, like for example 467 

structure shown in Fig. 6b. Note that protonated amine group is capable of forming two hydrogen bonds 468 

with oxygen atoms present in the MG molecule: one is a bridging, and the other one is carboxylic 469 

hydrogen atom. Such a double link should effectively stabilize the obtained complex. To calculate the 470 

binding energies we used sodium alginate representative fragment (Fig. 5b) but the energies are not 471 

expected to depend strongly on the chosen fragment. A few structures like those presented in Fig. 6b 472 

were considered. All binding energies were found to be in the range from –146 to –230 kJ mol-1. These 473 

values are well below –80 kJ mol-1, which means that the complexes are very stable at room 474 

temperature. The less negative binding energy (indicating that the complex is least stable) was found for 475 

the system in which the double link involves two “ether-like” oxygen atoms (e.g., bridging and hydroxyl 476 

hydrogen atoms). The most negative binding energies were obtained when one of the oxygen atoms was 477 

carboxylic oxygen. These energies are large enough for the complex to be very stable at room 478 

temperature and follow from strong ion-dipole interactions (    ∼    ). It thus appears that, regardless 479 
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of the accessibility of carboxylic groups to functionalities present on the nanoparticle surface, alginate 480 

acid salts can be successfully bound to the aminated surface of iron particles. As discussed earlier, this is 481 

because the alginate chains can interact with specific functionalities also via not-carboxylic oxygen 482 

arrangements, as shown in Fig. 6b. 483 

More interesting is the case of protonated –S–C N groups (denoted –SCN+H). The structures 484 

considered are shown in Figs 6c and d. The binding energy in a following process (Fig. 6c) 485 

MGNa– + H+NCS–C3H7 
           
→       MGNa–…H+NCS–C3H7 (5) 486 

is high. The –SCN+H group seems to compete successfully with metal ions for the carboxylic group (cf. 487 

energies reported in Reaction 1 and 4). In addition, –SCN+H group can be bound to a variety of non-488 

carboxylic oxygen atoms (similarly to the protonated amine group). One of the structures found is shown 489 

in Fig. 6d and the binding energy is equal to 204.9 kJ mol-1. Unfortunately the SCN-modified 490 

microparticles (sample 6) are strongly corroded (cf. Figs 2 and S3) thus we could not fully verify their 491 

effect on the final properties of magnetic hydrogels. However, in the case of other non-corroding 492 

particles (like for example silica, titania or carbon nano/microparticles) the strong interactions predicted 493 

by our calculations can be easily verified. 494 

 495 

Fig. 6. (a) Complex between protonated amine group and MGNa– involving carboxylic group, (b) MGNa2 doubly linked to the 496 

protonated amine group, (c)  complex between protonated –S–C≡N group and MGNa– involving carboxylic group, (d) MGNa2 497 

linked to the protonated –S–C≡N group through hydroxyl oxygen. Colors of the atoms: grey - carbon, red - oxygen, white - 498 

hydrogen, blue - nitrogen, yellow - sulfur, violet - sodium 499 

 500 
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3.4. Rheological characterization of the ferrogels 501 

Rheological characteristics of all the hydrogels but ALG-6 were tested using well-known protocols 502 

adopted by us in our previous works. The dependence of the storage modulus (G’) and loss modulus (G”) 503 

as a function of the shear strain amplitude, SSA, in oscillatory regime (ν=1 Hz) is shown in Fig. S4 -as an 504 

example, result for R-ALG hydrogel is shown in Fig 7a too. It has a typical shape for a viscoelastic solid-505 

like material characterized by G’>>G” at low strain amplitude (Gila-Vilchez et al., 2018). This means that 506 

the hydrogel exhibits a solid-like response. Both viscoelastic moduli have a broad plateau-like region 507 

within the range of ~0.01-5 % of SSA, which is called linear viscoelastic region (LVR). When SSAs reach 508 

critical values, values of G’ decrease dramatically, whereas G” first increase reaching maximum and 509 

decrease afterwards. The increase in G’’ represents an enhancement in the dissipation of energy related 510 

to the irreversible destruction of the microstructure of the hydrogel by the shear forces. As observed in 511 

Fig. S4, this maximum in G’’ approximately coincides with the intersection of the curves of G’ and G’’, 512 

with G’’ being higher than G’ above this maximum point, which represents a liquid-like behavior. This 513 

region where G’ and G’’ experience rapid changes in their magnitude is known as nonlinear viscoelastic 514 

region (NVR). Within this region, irreversible deformation of the internal structure of the hydrogels 515 

occurs, which results in the observed decrease of elasticity manifested by huge decrease of G’. At the 516 

microscopic level, these changes are explained by increasing friction between the hydrogel 517 

chains/segments (increase in loss modulus, G’’) as well as possible breakage of the alginate segments 518 

(Cvek et al., 2020). The observed differences in G’ values between hydrogels are significant for 1-ALG, 2-519 

ALG and 5-ALG hydrogels compared to R-ALG (Dunnett post hoc test, α=0.05) with p-values respectively 520 

0.0001, 0.001 and 0.044. However, for 3-ALG and 4-ALG hydrogels, no significant difference was seen 521 

compared to R-ALG. Detailed statistical analysis was included in Supplementary data (cf. Fig. S6b). 522 

Looking at these values collected in Table 2 (and also, for better visualization in Fig. 7c) it can be 523 

seen that the incorporation of amine-modified microparticles 1 and 2 results in much higher values of G’ 524 

of the resulting hydrogels 1-ALG and 2-ALG (410 and 483 Pa, respectively) when compared with the 525 

hydrogel R-ALG (137 Pa). In contrast, hydrogels doped with glycidoxy- and phenyl-functionalized IMPs (3 526 

and 4, respectively) have almost non-affected G’ values (112 and 141 Pa, respectively). These results 527 

agree with the differences in adhesion between polymer chains and particles observed by means of 528 

electron microscopy (Fig. 4), and clearly demonstrate the critical role of the proper functionalization of 529 

the iron particles in governing final mechanical properties of the resulting hydrogels. Another 530 

characteristic feature is the maximum in G” modulus that is known as yielding point, at which dissipation 531 

of energy is maximal (Moghimi, Jacob, Koumakis, & Petekidis, 2017). The values of SSA corresponding to 532 
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the maximal values of G” are also collected in Table 2. Differences between them can be also attributed 533 

to the changes of the structure of hydrogels due to different interactions with various microparticles. 534 

Table 2. Mean values of G’ corresponding to the LVR and values of SSA in yielding point for the hydrogels studied 535 

 No magnetic field Magnetic field: 141 kA m-1 Magnetic field: 282 kA m-1 

hydrogel G’LVR 

(Pa) 

SSA of G”max 

(%) 

G’LVR 

(Pa) 

SSA of G”max 

(%) 

G’LVR 

(Pa) 

SSA of G”max 

(%) 

R-ALG 137±34 5-26 1278±151 72 2088±202 36 

1-ALG 410±105 18 1429±243 43 2117±338 36 

2-ALG 483±83 22 1600±33 51 2267±75 43 

3-ALG 112±22 13-72 1486±357 51 2297±441 31 

4-ALG 141±24 16 1223±250 43 1982±373 36 

5-ALG 286±58 13-36 1152±404 43 1660±661 31 

 536 

 537 

Fig. 7. (a) Storage and loss moduli of the R-ALG hydrogel as a function of shear strain amplitude. (b) Storage and loss moduli of 538 

R-ALG hydrogel as a function of frequency. 0A refers to the measurements without the presence of magnetic field, 1A and 2A 539 

refer to the magnetic field of 141 kA m-1 and 242 kA m-1, respectively. (c) Comparison of the values of storage modulus (G’) of 540 

the hydrogels studied without the presence of magnetic field 541 
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In the presence of the magnetic field strong increase of the viscoelastic moduli is observed due to 542 

the magnetically induced reorganization of the structure, which was not hindered by the elastic matrix of 543 

alginate hydrogel. Furthermore, as observed in Fig. S4 and Table 2 (see also Fig. 7a for R-ALG hydrogel), 544 

in the presence of applied magnetic field the onset of the NVR and the yielding point move in general to 545 

higher values of the SSA, with respect to the absence of applied field, something that must be connected 546 

to the strengthening of the microstructure due to the interparticle attraction mediated by the applied 547 

magnetic field. The magnetic field-dependence for all the magnetic hydrogels is similar.  548 

The dependence of both viscoelastic moduli as a function of frequency within the LVR was also 549 

analyzed and is presented in Fig. S5 (as an example, result for R-ALG hydrogel is shown in Fig 7b too). As 550 

observed, both moduli, G’ and G”, only slightly change with the frequency of oscillation for the range of 551 

frequencies under study (0.1-10 Hz). In all cases G’ was considerably larger than G”. The observed 552 

tendencies are typical of cross-linked polymer systems (Macosko, 1994), as well as of soft human tissues 553 

(Callejas et al., 2017). As expected, the values of G’ and G” remarkably increases when magnetic field is 554 

applied during rheological measurements. 555 

 556 

3.5. Assessment of cell viability 557 

Finally, cell viability of the selected hydrogels has been tested. At this point it should be mentioned 558 

that we wanted merely to compare the selected hydrogels (i.e., R-ALG, 2-ALG and 4-ALG) with each 559 

other rather than to assess absolute cytotoxicity. This is due to the fact that a thorough cytotoxicological 560 

study would require finding interrelations between the cell viability and alginate concentration, cell 561 

density, calcium concentration and exposing time. For example, it was reported that exposure of cells to 562 

the calcium environment (note that calcium ions are involved in crosslinking process) can cause 563 

significant loss of living cells in culture media (Cao, Chen, & Schreyer, 2012). Such as rigorous study was 564 

not the aim of this work. Representative fluorescence micrographs of calcein-AM-stained, live cells 565 

(green) and propidium iodide-stained, dead cells (red), corresponding to the Live/Dead assay are shown 566 

in Fig. 8a. As can be seen, the number of live cells was significantly reduced for all alginate magnetic 567 

hydrogels studied when compared with the control cells. Most importantly, we observed differences 568 

between the tested hydrogels: in the case of R-ALG sample, no dead cells were observed on the top of 569 

the hydrogel, while in the case of 4-ALG sample, a significant number of dead cells was found on some 570 

images. Statistical analysis of the functional WST-1 assays (Fig. 8b) showed significant differences among 571 

hydrogels R-ALG and 4-ALG (p-value<0.0001) but not R-ALG and 2-ALG (p-value=0.016). This means that 572 

amine groups present on the surface of the sample 2 does not results in decreased cell viability. In  573 
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contrast, functionalization with phenyl groups (sample 4) makes the resulting hydrogel less 574 

biocompatible. Therefore, it can be concluded that biocompatibility of the hydrogels depends on the 575 

surface chemistry of functionalized microparticles and thus, apart from the macroscopic and mechanical 576 

properties, also the cell viability depends on the functionalization (cf. Fig. S6c). These results are 577 

confirmed by the free DNA quantification analysis showing statistically significant differences between all 578 

the compared samples (cf. Fig. S6d). As it can be seen from the Fig. 8c, 4-ALG hydrogel was associated 579 

with the highest levels of cell damage and DNA release to the culture medium, while the hydrogels R-580 

ALG and 2-ALG showed much better biocompatibility.  581 

 582 

Fig. 8. (a) Cytotoxicity of the selected hydrogels revealed by the fluorescence microscopy, (b) WST-1 absorbance test, (c) and 583 

DNA quantification in the cell medium 584 

 585 

4. Conclusions 586 

Iron microparticles were modified by introducing a number of functionalities on their surface, ranging 587 

from amine to phenyl groups. Although surface functionalizations have not significantly affected the 588 

properties of the microparticles themselves, they changed remarkably the final properties of magnetic 589 

hydrogels obtained by embedding the iron microparticles into the pre-polymerized alginate matrix. Thus, 590 

the successful dispersion of functionalized microparticles was twofold beneficial: (i) magnetic activity 591 
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was introduced in-situ, (ii) enhancement of the macroscopic and mechanical properties was achieved 592 

thanks to the altered interactions of alginate with functionalized surface. Among all the systems studied, 593 

amine functionalized IMP-based hydrogels exhibited superior properties when compared with the 594 

hydrogel prepared with the use of their non-functionalized counterpart. Properties such as hydrogel 595 

integrity, water-holding capability, storage modulus of the amine-based hydrogels of 2-ALG and 4-ALG 596 

were significantly altered in comparison with R-ALG hydrogel. For example, storage moduli for the 597 

former ones are 410 and 483 Pa, respectively, while for the latter - only 137 Pa. SEM images revealed 598 

that the lack of adequate surface chemistry limits the contact between both phases, which are 599 

connected only by limited number of anchoring points. In contrast, amination of the iron surface results 600 

in more tight covering of most of the microparticles’ surface by multiple connections. Theoretical DFT 601 

calculations revealed that alginate chains are chemically active not only because of the presence of 602 

carboxyl groups but also other non-carboxylic oxygen arrangements which can interact with 603 

functionalities. Even blocking of all carboxyl groups by calcium cations during alginate crosslinking does 604 

not limit the possibility of tuning of alginate interactions with appropriately modified surfaces. 605 

 606 
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