
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Asynchronous Processing for Latent
Fingerprint Identification on
Heterogeneous CPU-GPU Systems
ANDRES J. SANCHEZ1, LUIS F. ROMERO1, DANIEL PERALTA2,3,
MIGUEL ANGEL MEDINA-PÉREZ4, SIHAM TABIK5, YVAN SAEYS2,3, AND
FRANCISCO HERRERA5
1Department of Computer Architecture, University of Malaga, 29071 Malaga, Spain
2Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
3Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, 9000 Ghent, Belgium
4Tecnologico de Monterrey, Carr. al Lago de Guadalupe Km. 3.5, Atizapán, 52926 Estado de México, México
5Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, 18071 Granada, Spain

Corresponding author: Andres J. Sanchez (ajsanchez@ac.uma.es).

This work was supported in part by the Spanish Ministry of Science and Technology through the TIN2016-80920-R project, the National
Council of Science and Technology of Mexico (CONACYT) under the grant PN-720, and the University of Malaga (International Campus
of Excellence (ICE) Andalucia TECH) through the U-Smart-Drive project from the I Plan Propio Smart-Campus. Daniel Peralta is a
Postdoctoral Fellow of the Research Foundation of Flanders (FWO, 170303/12X1619N). Yvan Saeys is an ISAC Marylou Ingram Scholar.

ABSTRACT Latent fingerprint identification is one of the most essential identification procedures in
criminal investigations. Addressing this task is challenging as (i) it requires analyzing massive databases in
reasonable periods and (ii) it is commonly solved by combining different methods with very complex data-
dependencies, which make fully exploiting heterogeneous CPU-GPU systems very complex. Most efforts
in this context focus on improving the accuracy of the approaches and neglect reducing the processing
time. Indeed, the most accurate approach was designed for one single thread. This work introduces
ALFI (Asynchronous processing for Latent Fingerprint Identification), the fastest methodology for latent
fingerprint identification maintaining high accuracy. ALFI fully exploits all the resources of CPU-GPU
systems using asynchronous processing and fine-coarse parallelism for analyzing massive databases. Our
approach reduces idle times in processing and fully exploits the inherent parallelism of comparing latent
fingerprints to fingerprint impressions. We analyzed the performance of ALFI on Linux and Windows
operating systems using the well-known NIST/FVC databases. Experimental results reveal that ALFI is
in average 22x faster than the state-of-the-art algorithm, reaching a value of 44.7x for the best-studied case.

INDEX TERMS Asynchronous processing, accelerator architectures, CUDA, fine-grained parallelism,
fingerprint recognition, heterogeneous computing, latent fingerprint identification, parallel processing.

I. INTRODUCTION

THE identification of suspects based on fingerprints ac-
quired from crime scenes is an essential procedure

for forensics and law enforcement agencies all around the
world [1]–[3]. These biometric features are thoroughly used
in daily identification systems because of their uniqueness
and easiness of use. The problem of fingerprint recognition
can be addressed by using two different approaches [4]: ver-
ification and identification. The first approach only performs
one comparison to check if the particular fingerprint matches
with another stored previously; this is a 1:1 comparison. The
second approach is related to the problem of identifying a
person among those whose data are included in a specific

database; this is a 1:N comparison where N is the number
of samples of the database. It also coincides with the number
of comparisons to be performed in a procedure commonly
known as the matching process. This is the most challenging
one in terms of computational cost and complexity [5], [6].

The type of fingerprint is another aspect to consider when
developing a fingerprint matching algorithm. As shown in
Figure 1, fingerprints can be classified into three different
classes depending on the conditions under which they are
acquired [4]: rolled, plain, and latent. Rolled fingerprints
are obtained by rolling the finger from one side to the
other, hence getting more information, but also introducing
deformations in the resulting image. Plain fingerprints are

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

(a) Rolled (b) Plain (c) Latent

FIGURE 1: Types of fingerprints depending on the acquisition process.

produced just by pressing the finger onto a surface. Both
types of fingerprints are characterized by having a good
image quality due to a voluntary acquisition process per-
formed under controlled conditions. On the contrary, latent
fingerprints are those unintentionally left on a surface by
deposits of sweat and/or oil from the fingertip. This type of
fingerprint is usually not visible to the naked eye and requires
additional processing in order to be detected. Most common
acquisition techniques include dusting with fine powder and
the use of chemicals. Fingerprints obtained by any of these
procedures may result in incomplete and inaccurate informa-
tion per fingerprint, which introduces errors to the matching
process [7]. However, their utility in criminal investigations
and the inherent challenge of processing lower quality and
deformed images [8] are just a few of the compelling reasons
to process them.

The difficulty in processing latent fingerprints remains
very high nowadays. The current trend seems to be in the
direction of developing specific algorithms for latent fin-
gerprint matching so that they are suited to their particular
processing needs [7], [9]. Since there is very little informa-
tion available per latent fingerprint, the focus is on finding
and assessing relationships among the fingerprint descriptors.
This fact creates data dependencies between different stages
of processing and complex methodologies are required to
manage them, making the use of parallel techniques diffi-
cult. Another main disadvantage related to these algorithms
lies in their inability to handle massive databases, in the
order of millions of fingerprints, in the time required by
law enforcement authorities. The latent fingerprint identi-
fication algorithm that provided the best trade-off between
computational cost and precision is based on the Deformable
Minutiae Clustering (DMC) method using Minutia Cylinder-
Codes (CC) [10]. However, this algorithm was designed for
one single thread.

This paper introduces a new methodology, called ALFI
(Asynchronous processing for Latent Fingerprint Identifi-
cation), for latent fingerprint identification specifically de-

signed to fully exploit all the resources of heterogeneous
CPU-GPU systems. ALFI is able to analyze large databases
faster than the state-of-the-art algorithm [10] while providing
very similar precision results. This can be of great help to
local authorities as processing times get even closer to real-
time systems using the processing units available on almost
any computer today.

The main contributions of this work are:
• We design a new methodology named ALFI (Asyn-

chronous processing for Latent Fingerprint Identifica-
tion) for a faster and accurate latent fingerprint identifi-
cation.

• We propose a fine-grained parallelism at fingerprint
descriptor level as a basis for achieving an effective
CPU-GPU processing pipeline.

ALFI performance is tested on Linux and Windows operat-
ing systems (OSs) using three CPU-GPU pair systems. Well-
known identification databases such as NIST SD27, SD14,
and SD4 are used to test the accuracy of the proposed algo-
rithm. Additionally, FVC 2002, 2004, and 2006 verification
databases are also used. Computational performance results
prove that ALFI is in average 22x faster than the state-of-the-
art algorithm maintaining similar accuracy. In particular, for
the best-studied case, it yields a speed-up of 44.7x.

This paper is organized as follows: Section II presents
the state-of-the-art regarding fingerprint identification. Sec-
tion III explains current GPU architecture with particular fo-
cus on the CUDA parallel computing platform and program-
ming model. Section IV describes the ALFI methodology for
CPU-GPU heterogeneous systems. Section V evaluates the
proposed algorithm in terms of accuracy and computational
performance compared to the state-of-the-art algorithms.
Section VI presents the conclusions. The Appendix section
contains the essential functions used throughout this paper.

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

II. RELATED WORK: FINGERPRINT IDENTIFICATION
Relevant research in the field of fingerprint recognition can be
divided into five categories: (i) fingerprint representation, (ii)
fingerprint data enhancement, (iii) fingerprint data prepro-
cessing, (iv) accelerating fingerprint matching, and (v) latent
fingerprint identification.

There exists a large body of works in fingerprint represen-
tation. Early works analyze fingerprints considering core and
delta parameters or ridge flow methods [11], [12], whereas
current approaches consider minutiae [13]. Minutiae are local
structures related to specific points in the discontinuities
of the fingerprint ridges, such as endings and bifurcations.
These structures are the basis of the well-known Minutia
Cylinder-Codes descriptors (MCC) [14], widely used in the
recent literature because of its high accuracy at a relatively
low computational cost [13], [15].

Most works in fingerprint data enhancement focus on
designing new preprocessing techniques to improve the data
acquired from a fingerprint or verify its authenticity. For
instance, the orientation of the sample can produce bad ac-
curacy results, so most relevant approaches focus on finding
a correct orientation field model [16]. This parameter can
be built even in the presence of noise and distortion [17] or
using a trained Convolutional Neural Network (CNN) [18].
On the other hand, security and fault tolerance in current
identification systems are very important issues in our so-
ciety. Therefore, finding solutions to prevent attacks in the
fingerprint identification procedure is essential. This prob-
lem is usually addressed by analyzing whether a particular
fingerprint sample stems from a live subject or an artifi-
cial replica [19]. Although this problem remains difficult
in terms of robustness, effectiveness, and efficiency, several
studies are still proposing hardware and software-based ap-
proaches [20], [21].

Real-world fingerprint databases contain in the order of
millions of fingerprints. Several studies reduce the computa-
tional cost by using approaches such as classification, index-
ing, hardware improvement, and/or parallel computing. The
most studied one is classification, which filters large-scale
databases by separating fingerprints into different categories
based on their shapes. Only those belonging to the same class
as the input sample will be processed in the following steps.
This method increases the speed of processing and allows to
handle massive databases [22], [23]. Nevertheless, latent fin-
gerprints usually correspond to partially or poorly acquired
data making these preprocessing tasks almost impossible.

With the emergence of new hardware, the use of Graph-
ics Processing Units (GPUs) in biometric recognition algo-
rithms has increased in recent years. Several studies focus
on this particular approach for databases with good quality
fingerprints. For instance, the authors in [24] proposed an
optimized GPU fingerprint matching system based on MCC,
which accelerates the comparison method up to 100.8x over
the sequential CPU implementation. The proposal presented
in [25] yields a speed-up of 1946x and 207x, considering
the ratio between the thousand match per second (KMPS)

values and compared to the non-optimized baseline and
the one optimized with SIMD sequential CPU implementa-
tions, respectively. The work described in [26] accelerates a
well-known fingerprint matching algorithm [27], achieving
superior performance results in contrast to multi-threaded
CPU implementations [6]. The proposal in [28] speeds up
the comparison method and implements a novel strategy in
the consolidation stage that is shown to enhance accuracy.
All mentioned works that are specifically developed to be
executed on GPUs share a common object: to speed-up the
evaluation of massive databases by increasing the number
of fingerprints processed per second (throughput). However,
these implementations need to be developed considering the
underlying architecture and must be relatively simple to run
effectively on GPUs [29], thereby reducing accuracy in most
cases. Besides, GPU-based algorithms do not exploit the
power of the CPU in processing, which would lead to better
run-time results.

Many studies analyze the performance of general identifi-
cation algorithms in processing latent fingerprint databases.
The achieved results revealed a poor performance owing to
the low quality of the input data [30] and thus, opening
the way to the development of new algorithms specifically
designed to this aim. In latent fingerprint identification,
early works proposed several solutions for handling typi-
cal deformations which affect the matching procedure. For
instance, regarding the minutiae matching process, several
approaches were considered: the use of a minutia-based
descriptor [31] or a combination of this structure and an
orientation field descriptor of the fingerprint [32]. In practice,
a global matching operation is performed by selecting the
five best minutiae pairs to find new sets. For each found
cluster, a matching score is computed, and after that, the
maximum value is chosen as the similarity score between
latent and rolled fingerprints. On the other hand, the proposal
presented in [33] uses a different approach that combines
local minutiae descriptors and fingerprint alignment through
the Hough Transform to improve fingerprint matching per-
formance. One main characteristic of latent fingerprints lies
in the presence of noise after the feature extraction. For this
reason, researchers in [34] developed a method to improve
the latent matching accuracy by incorporating feedback from
exemplars (rolled or plain fingerprints) to refine the feature
extraction. The most accurate latent fingerprint identification
algorithm among those which are based solely on minutiae
structures finds deformable clusters of matching minutiae
pairs in local regions by performing multiple alignments [10].
Overlapped clusters are merged to find consolidated match-
ing minutiae pairs that are thereafter used to build a Thin-
Plate Spline (TPS) model [35]. New minutiae pairs, which
might not have been found due to deformations in previous
steps, can be obtained through this methodology.

This work addresses a new solution to the latent fingerprint
identification problem in order to fully exploit the capabilities
of heterogeneous CPU-GPU systems. Our approach brings
the identification procedure even closer to a real-time task.

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

We evaluate and compare in terms of accuracy and speed-
up our methodology to the state-of-the-art algorithms [10].
The latter was specifically designed for CPU processing and
neglects the potential of GPUs. To the best of our knowledge,
there are no related algorithms in the literature developed for
latent fingerprint identification for heterogeneous systems.

III. GENERAL-PURPOSE COMPUTING ON GPUS
In the last decade, the role of Graphics Processing Units
(GPUs) has evolved from managing tasks only related to
visual processing (e.g., rendering 3D graphics in video games
and visual applications) to general data processing, com-
monly known as General-Purpose Computing on Graph-
ics Processing Units (GPGPU). The areas in which GPU
processing is widely used are usually related to emerging
scientific and technological fields such as molecular anal-
ysis, weather prediction, and biometric recognition [24]–
[26]. These scientific fields have in common the need to
manage and process a massive amount of data, a task which
can be remarkably accelerated by using graphical processing
units. The first developers using GPUs for general-purpose
computing needed to represent their mathematical problems
by using vertices and pixels so that they could be executed
on these devices. Nevertheless, it was not until the year 2006
when NVIDIA [36] launched a hardware and software archi-
tecture to use NVIDIA GPUs for general-purpose computing,
allowing researchers and developers to take advantage of the
parallel nature of GPUs with less effort and more efficiently
than before. This framework called Compute Unified Device
Architecture (CUDA) provides a high-level abstraction for
C/C++ programming and enables applications running on the
CPU (host) to perform data processing on the GPU (device).
A model of this framework is given in Figure 2 for a better
understanding of the following sections.

A. HARDWARE AND SOFTWARE ARCHITECTURE
The hardware side of the NVIDIA CUDA framework [36]
is formed by a set of Stream Multiprocessors (SMs), whose
number depends on the GPU architecture. Each SM is com-
posed of usually 32 cores, which can run many threads in
parallel responsible for executing the functions, commonly
known as kernels, specifically designed for the device. Like-
wise, threads are grouped into processing structures called
warps (typically containing 32 threads each). Every thread
from a particular warp should be performing Single Instruc-
tion Multiple Data (SIMD) operations inside the kernels to
achieve maximum performance. The cause of this fact lies in
avoiding the thread divergence problem, which occurs when
threads from the same warp take different paths after process-
ing a branch instruction such as if-else and switch statements.
Threads are also grouped at a higher level into thread blocks,
which run on the same SM sharing its resources. Finally,
thread blocks are gathered together inside a grid and must
be able to be executed independently, since communication
is not possible between blocks unless the global memory is
used.

Block 1Block 1Block 1

Host (CPU)

Global memory

Shared memory

GridGrid

Registers

Thread 1 Thread N... ...

Local
memory

Registers

Local
memory

Block NBlock NBlock N

Shared memory

Registers

Thread 1 Thread N...

Local
memory

Registers

Local
memory

FIGURE 2: CUDA platform model formed by grids, blocks,
threads, and the different sorts of memories in the device
(GPU) and host (CPU) processing units.

B. MEMORY HIERARCHY
Regarding the device memory hierarchy, the smallest and
fastest memory units are registers, followed by local memory,
which is much slower. Both types of memory are private for
every thread, and the data stored cannot be shared between
them. The next level of memory is the shared memory space
whose data is accessible for all threads within the same block,
provided that the block is being executed. Finally, the largest
and slowest storage space is the global memory, which can be
accessed by all thread blocks and therefore allowing sharing
data between threads, even those that belong to different
blocks. This last memory unit is also used for communication
with the host unit. Data allocations in the host memory are
pageable by default, and the device cannot access this data
directly. Therefore, when a data transfer from pageable host
memory to device memory is invoked, the CUDA driver
comes into play. This must first allocate a temporary page-
locked (generally known as pinned memory), copy the host
data to this pinned memory and, finally, transfer the data
from the pinned memory to device memory. To avoid this
expensive process, data in the host can be directly allocated
in pinned memory, improving transfer speeds by preventing
the memory from being swapped out.

C. CONCURRENT MODEL
In CUDA programming, concurrent execution is possible by
using structures called streams which are a series of queued
commands that are executed sequentially. Developers can
create and utilize non-default streams, performing multiple
operations such as the execution of multiple kernels and
memory transfers concurrently in different streams. For this
reason, using multiple streams can add an additional layer
of parallelization to particular applications. This also offers
many more opportunities for optimization, e.g., overlapping
data transfers with (i) computation on the host, (ii) compu-

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

tation on the device, and (iii) other data transfers between
the host and device. Synchronization between the different
operations is necessary, and events can be used to perform
this particular task. They can block the device or the host
execution until some operations inside a particular stream are
completed.

IV. ALFI METHODOLOGY FOR LATENT FINGERPRINT
IDENTIFICATION
This section describes the new methodology specifically
designed to address the latent fingerprint identification prob-
lem. Our proposal is called ALFI (Asynchronous processing
for Latent Fingerprint Identification) and fully exploits the
intrinsic parallelism of the latent fingerprint identification
procedure, which has not been addressed in recent literature.
This methodology is developed considering the technical fea-
tures of CPU (host) and GPU (device) to take the maximum
advantage of these high-performance devices.

First, an analysis in detail of the state-of-the-art latent
identification algorithm is carried out in Section IV-A. Af-
terwards, we describe the fundamentals of the ALFI method-
ology regarding asynchronous processing (Section IV-B) and
fine-grained parallelism (Section IV-C). The necessary data
structures are described in Section IV-D. In Section IV-E, the
different pseudo-codes are presented related to (i) the host
function in control of the device in Section IV-E1, (ii) the
different kernels running on the device in Sections IV-E2-
IV-E5, and (iii) the host function in charge of the final
evaluation stage in Section IV-E6.

A. REVIEW OF THE STATE-OF-THE-ART
IDENTIFICATION ALGORITHM
The Deformable Minutiae Clustering algorithm using Minu-
tia Cylinder-Codes representation (DMC-CC) [10] was de-
veloped by merging four well-known independent methods
and a final similarity computation stage to obtain the similar-
ity values between latent and fingerprint impressions. First,
this algorithm uses the Minutia Cylinder-Codes descriptors
as input data of the local matching processing to find the
first group of minutiae pairs. In addition, these descriptors
are based on 3D data structures built from minutiae positions
and angles, after merging local structures [27]. The Minutiae
Discrimination method [37] calculates the quality value
of each minutia in the latent fingerprint and the fingerprint
impression based on the direction consistency around it.
The Deformable Minutiae Clustering method [10], [38] finds
clusters of minutiae pairs, along with a weight value for each
one, from the initial set of matching minutiae pairs. After
merging the clusters, a final set of minutiae pairs is used for
calculating an initial similarity score between fingerprints.
Then, the Thin Plate Spline method (TPS) [35] is applied
to avoid data loss due to fingerprint deformation and find
new matching minutiae pairs. These pairs could have been
discarded in previous steps owing to the deformation effects
and may improve the previously calculated similarity value.
The last step is called Similarity Computation, where the

different statistical outcomes are obtained depending on the
type of experiment. Given the above, the DMC-CC algorithm
can be described as follows:

1) Minutia Cylinder-Codes. Let L and T be the minutiae
sets of the latent fingerprint and a particular fingerprint
impression from a database, respectively. Each minutia
q ∈ L is compared to all minutiae p ∈ T based on their
minutiae descriptors. Similar minutiae are selected as
matched minutiae pairs (q, p) and included inside a
new set A, which is after that, sorted in descending
order according to their similarity values. Then, a new
array M is filled with no more than max{|L|, |T |}
local matching minutiae pairs from A so that the repe-
tition of minutiae within different pairs is reduced.

2) Minutiae Discrimination. Quality value is computed
for every minutia q ∈ L and p ∈ T , relying on the
minutiae direction consistency of all minutiae inside its
respective neighbourhood. After that, two sets contain-
ing all minutiae quality values from both fingerprints
are obtained.

3) Deformable Minutiae Clustering.

a) Every minutiae pair (q, p) ∈ M is used to align
fingerprints and find a cluster of matching minu-
tiae pairs. Let Cs be the set of found clusters
of matching minutiae pairs. Every (qh, ph) ∈
M,h = 1...|M | is used in this step to work as
the centroid of its cluster, denoted as Bh. For
each (qg, pg) ∈ M, g = 1...|M | compute if
qg matches with pg when aligning using current
(qh, ph) and, if this condition is fulfilled, update
Bh = Bh ∪ (qg, pg).

b) Sort Bh in descending order according to their
new similarity values obtained in the previous
step. Let Ch be defined as the cluster which will
contain a reduced number of minutiae pairs from
sorted Bh to decrease the repetition of minutiae
within different pairs. A weight wqhph for every
minutiae pair is computed depending on the num-
ber of minutiae pairs inside its respective cluster
Ch and the number of minutiae in the latent and
fingerprint impressions. Every admissible cluster
is then added to the actual set Cs = Cs ∪ {Ch}
which will be used in the following steps.

c) The final weight wCh for each cluster Ch ∈
Cs, h = 1...|Cs| is obtained by accumulating
every weight wqkpk of the minutiae pairs (qk, pk) ∈
Ch, k = 1...|Ch|. Then, Cs is sorted in descend-
ing order based on their cluster weights and,
thereafter, all clusters are merged according to
several design parameters to find a preliminary
set of global matching minutiae pairs (M ′).

4) Thin Plate Spline. From the previous set of minutiae
pairs, a TPS model is built in order to correct any
deformations the fingerprint image may have. By using
this method, new minutiae pairs are found and included

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

Time

H

D-str0

D-str1

H2D

H2D

K

K

D2H

D2H

FES

H2D K D2H

H2D K

FES

D2H

FES FES

Loop

E0

E1

E0

E1

E0 E1 E0 E1

K D2H

A(|L|)

A(|L|)

H2D

A(nm)

A(|TDB|)
T1

T2

T3

T4

A(nm)

FIGURE 3: Particular case of the proposed methodology considering one latent fingerprint L and four batches T of fingerprints
resulting from splitting the database TDB . These batches are allocated (A) in both device D and host H memories. Data
transfers (H2D,D2H) and device computation carried out in kernelsK are overlapped with the multi-threaded final evaluation
stage FES performed on the host. CUDA streams str0 and str1 and their corresponding synchronization events E0 and E1

are used to coordinate the requested operations.

in a set called M∗. The weights of these minutiae pairs
found with this method are calculated in a similar way
as the one presented in Step 3a-3c.

5) Similarity Computation. The matching score between
the latent fingerprint and the fingerprint impression is
obtained by accumulating the weights of every minu-
tiae pair inside both M ′ and M∗ sets.

The above-mentioned steps of the DMC-CC algorithm
present several unavoidable and complex dependencies
which force to execute them sequentially. This fact causes
a significant loss of performance when computing on multi-
core and heterogeneous systems.

B. ASYNCHRONOUS DATA PROCESSING
ALFI methodology is inspired by the state-of-the-art DMC-
CC algorithm but based on a complete redesign to achieve
faster processing and correct performance on heterogeneous
systems. We decided to change and develop new methods for
Step 1-3a to be executed through different kernelsK because
they are suitable to be processed on the device. Step 3b-
5 are modified to take the device outcomes as input and
process them on the host to balance the computational load
between both processing units. The computation of these
last steps performed on the host will be referred to as the
multi-threaded final evaluation stage FES from now on.
In addition, the host unit also coordinates the launch of all
further operations to be performed on the device.

Let L and TDB be the latent fingerprint used as a case
study and the large-scale fingerprint database of impressions,
respectively. Since all the information cannot be entirely
stored in the device memory at one stroke, the large-scale
database must be divided into several batches. The com-
parison between the latent fingerprint L and every impres-
sion fingerprint from a particular batch T ∈ TDB can be
processed on the host after several steps are completed on
the device. These steps include host to device data transfer
H2D, processing kernels K, and device to host data transfer

D2H operations. ALFI methodology efficiently overlaps and
synchronizes these operations and the operations performed
on the host through the use of synchronization events in a
effective CPU-GPU processing pipeline avoiding idle times.

The behaviour of ALFI is shown in Figure 3 for the partic-
ular case of the TDB divided into four batches of fingerprints
Ti ∈ TDB , i = 1...4, for the sake of simplicity. First, the allo-
cation of the latent fingerprint A(|L|) and the entire database
A(|TDB |) are performed in the hostH , particularly in pinned
memory. The allocation of the entire database is possible in
the host but not in the device since typically the memory
space available in the host is far larger than the available
space in the device memory. Besides, pinned memory is used
in the host memory since this method prevents these memory
spaces from being swapped out, improving the speed of
memory transfers between host and device units. Regarding
the memory management in the device D, the allocation of
the latent fingerprint A(|L|) is carried out at start-up. The
rest of the available memory space is divided into two large
spaces. Both areas, denoted as A(2 · nm), will be filled in
with two different batches of fingerprints so that memory
transfers and computation can be overlapped. Likewise, each
area and the batch included within it is managed by one of
the two non-default streams str0 and str1 from the device.
In particular, these two memory areas will be filled in with
T1 and T2 batches at start-up and managed by str0 and
str1, respectively. In the following iterations, T3 will be
stored in the first memory space for the stream str0 while
the processing of T2 is taking place in the stream str1 and
after the D2H operation containing the results of processing
T1 is finished (E0 event). Similarly, T4 will be stored in the
second memory space for str1 while the processing of T3 is
taking place in str0 and after the D2H operation containing
T2 results is finished (E1 event). This way the data is always
stored in the device before starting the processing and thus
reducing idle times.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

0 1 2 s s+1 e m - 1 m

F0 F1 Fn

... ...

...

T

tid = s tid = s+1 tid = e

FIGURE 4: The proposed processing of fingerprint impressions by one CUDA stream on the device. Each thread tid performs
all the required operations in a kernel K over its corresponding minutia from a fingerprint Fi inside the T batch of fingerprints.
Parameter descriptions are shown in Table 1.

C. FINE-GRAINED PARALLELISM IN PROCESSING

Once the data is correctly allocated in the device memory,
four different kernels K are launched to process batches
of fingerprints on the device. Local minutiae matching is
performed in K1,2 with a fixed number of found matching
minutiae pairs. The quality score for every minutia inside the
latent fingerprint and the batch of fingerprints is related to
two executions of K3, with slight variations for the latent
fingerprint. Finally, the alignment of the minutiae pairs to
find clusters of these structures is carried out in K4 for a
specific batch of fingerprints. The computation performed in
the previously mentioned kernels follows a similar pattern,
except for K1, since it implements a modified version of the
algorithm described in [25]. Detailed descriptions of these
kernels will be presented in Section IV-E.

Inside each kernel, our methodology (Figure 4) states that
every thread is in charge of processing a certain minutia from
a batch of fingerprints, according to its thread identification
number tid. For instance, considering a batch of fingerprints
T containing m minutiae and a kernel K, the thread with
tid = s will pick and analyze the similarity of the minutia
with index s with the ones in the latent fingerprint. This
thread will carry out all the requested operations considering
the fingerprint limits (starting s and ending e minutia in-
dexes) to which the chosen minutia belongs. After processing
the four kernels on the device, a set of partial outcomes vT
will be generated for every processed batch of fingerprints.
This result is then transferred to the host and used as input to
perform the multi-threaded FES step, obtaining similarity
scores between the latent and the fingerprint impressions.

D. DATA CONFIGURATION

To bring the aforementioned methodology to reality, a num-
ber of data structures are needed to efficiently handle fin-
gerprint processing. All different sorts of structures and pa-
rameters required by the ALFI methodology are shown in

Tables 1-2, and their descriptions follow:

• ClusterCount is a vector which contains the number
of minutiae pairs inside the corresponding cluster from
the ClusterMtiaK matrix.

• ClusterMtiaK is a matrix which contains the latent
minutiae indexes found while performing alignments
for each minutiae pair, which is formed by the one in
T and its partner stored in MaxMtiaL, working as the
centroid of the clusters.

• L is a SoA which includes the information related to
the latent fingerprint. It is built in a similar way as the
previously described one, but without the use of the
index parameter since only one fingerprint is stored.

TABLE 1: Parameter descriptions and values. The values
replaced by hyphen symbols indicate that they are dependent
on the database used in the experiments or design choices
specified in the results section.

Parameter Description Value
α The highest number of minutiae in a

fingerprint from the database
-

λ Max. angular difference between minutiae π/4
ξ Special value used to point the end of an array −1
b Bit-vector length of each minutia cylinder 1280
Cb The number of blocks in the device unit 32 · Cs
Cs The number of SMs available in the device unit -
Ct The number of threads per block in the device unit 1024
Hθ Threshold for angular minutiae similarity π/6
He Threshold for distance minutiae similarity 16
Hm The number of minutiae inside the neighbourhood 3
Hq1,q2 Thresholds used for computing minutiae quality 18, 42
l The number of minutiae in the latent fingerprint -
md The number of minutiae in the fingerprint database -
m The number of minutiae in the i-th batch of fps. -
ND,S Sections and cells in every minutia cylinder 5,16
nd Total number of fps. in the fingerprint database -
nm The number of fps. per stream in the device memory -
n The number of fps. in the batch of fingerprints -
tid Thread identification number -
z Total number of quantized angles 256

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

TABLE 2: Data structures used in the ALFI methodology for
host and device units. Parameter descriptions and their values
are shown in Table 1.

Name Layout Memory
Transfer

Device
Access

ClusterCount Array[m] D2H W
ClusterMtiaK Matrix[m · α] D2H W
L SoA[l] H2D R
LUTD Matrix[z · (l + 1)] - R/W
LUTS Array[n+ 1] H2D R
MatchingV alue Array[m] D2H R/W
MaxMtiaL Array[m] D2H R/W
QualityL Array[l] D2H W
QualityT Array[m] D2H W
Similarity Array[nd] - -
TDB SoA[md] - -
T SoA[m] H2D R

• LUTD is a look-up table which includes all allowed la-
tent minutiae indexes for any quantized angle γ̂ = 0...z
so that LUTD[γ̂] = {qh ∈ L[dθ(θ̂h, γ̂) < λ̂]}, where
dθ, in this particular case, represents the minimum angu-
lar difference between two quantized angles (Equation 1
in Appendix).

• LUTS is a look-up table which contains the first minutia
index for every fingerprint in the database.

• MatchingV alue is a vector which includes the simi-
larity value between every minutia in T and its found
partner stored in MaxMtiaL.

• MaxMtiaL is a vector used to store the most similar
latent minutiae indexes from L for each minutia in T .

• QualityL and QualityT are vectors which include the
quality value for each minutia in L and T , respectively.

• Similarity is a vector which includes the final match-
ing score between latent and fingerprint impressions.

• TDB is a structure of arrays (SoA) which contains the
data of the fingerprint database in an optimal way for
processing. In particular, every minutia data inside the
fingerprint database is distributed across several vectors
according to its different attributes, along with the k
index of the fingerprint to which it belongs (Definitions
1 and 2 in the Appendix). In addition, TDB will be split
into several batches T for processing and the content of
every one can be accessed on the device just by indexing
with pointers.

E. PSEUDO-CODES
1) The work of the host: Controlling the device
The host unit controls all further operations to be performed
on the device, as presented in Algorithm 1. The parameter r
represents the ratio between the number of fingerprints in the
database and the size of the fingerprint batches. It is used to
indicate how many times the loop is performed. Moreover, i
and k are auxiliary variables used as indexes for the execution
of the different operations. These operations are queued
and will be dispatched sequentially inside each stream, but
operations running in different streams can be overlapped.
Once the data is successfully transferred to the device, the

Algorithm 1: Host function that controls the device.

1 r = nd/n, i = 2 and k = 1

2 A(|L|) and A(|TDB |) in pinned host memory

3 Split TDB into Th, h = 1...r

4 A(|L|) and A(2 · nm) in device memory

5 str1← do H2D(L)

6 str1← launch K1(z threads per block, 1 block)

7 str1← launch K3(128 threads per block, 1 block)

8 str1← do D2H(QualityL)

9 str0← do H2D(T1)

10 str0← launch K2(Ct/2 threads per block, Cb blocks)

11 str0← launch K3,4(Ct threads per block, Cb blocks)

12 str0← do D2H(vT1)

13 str1← do H2D(T2)

14 str1← launch K2(Ct/2 threads per block, Cb blocks)

15 str1← launch K3,4(Ct threads per block, Cb blocks)

16 for iter = 1 to r − 2 do
17 strk ← do D2H(vTi)

18 Update i = i+ 1 and k = 1− k
19 strk ← do H2D(Ti) and launch K2−4

20 Perform FES(Ti−2, vTi−2)

21 strk ← do D2H(vTi)

22 Perform FES(Ti−1, vTi−1) and FES(Ti, vTi)

Algorithm 2: LUTD computation (Kernel-1).

1 λ̂ = (z · λ)/(2π) and γ̂ = tid

2 for each qh ∈ L, h = 0...|L| and i = 0 do
3 θ̂h = (z · θh)/(2π)

4 if dθ(θ̂h, γ̂) < λ̂ then
5 LUTD[γ̂][i] = h and i = i+ 1

6 LUTD[γ̂][i] = ξ

processing is carried out in the following sequential kernels.
Kernel execution configurations are selected after carrying
out several tests to obtain the optimal combination that allows
the hardware to reach its full performance potential.

2) Preprocessing angular differences (Kernel-1)
This kernel filters less similar minutiae based on the angular
direction similarity as presented in Algorithm 2. This pre-
processing technique makes Kernel-2 run faster by avoid-
ing checking the condition in processing. In particular, the
LUTD look-up table will contain all the minutiae indexes
from the latent fingerprint that meet the condition for every
quantized angle γ̂ = 0...z [25]. The condition is fulfilled if
the minimal angular differences (see Equation 1 in the Ap-
pendix) between the minutia direction and the corresponding
γ̂ = tid are below the quantized λ threshold. Regarding the
execution of this kernel, only one block of threads with z
threads is launched, i.e., one thread per quantized angle.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

Algorithm 3: Local matching process (Kernel-2).

1 for each qh ∈ L, h = 0...|L| do
2 Store νh in shared memory

3 while tid < m do
4 Set maxSim to max{Float}
5 maxIx = ξ

6 T [tid]← pt

7 Store νt in local memory

8 Set θ̂t = (z · θt)/(2π) and i = 0

9 while LUTD[θ̂t][i] 6= ξ do
10 k = LUTD[θ̂t][i]

11 sim = σ(qk, pt)

12 if sim > maxSim then
13 maxSim = sim

14 maxIx = k

15 i = i+ 1

16 MatchingV alue[tid] = maxSim

17 MaxMtiaL[tid] = maxIx

18 tid = tid+ Ct · Cb

3) Matching minutiae descriptors (Kernel-2)

This kernel aims to find a first set of matching minutiae pairs
using the operations shown in Algorithm 3. Every thread
manages a particular minutia pt ∈ T, t = tid (Definitions 1
and 2 in Appendix) and compares it to every allowed minutia
qh ∈ LUTD[θ̂t] resulting from the execution of Kernel-1. In
the end, the most similar minutia from the latent fingerprint
is stored for every impression minutia in the database. This
selection is based on the function described in Equation 4
in the Appendix. This kernel is launched using Ct/2 threads
per block so as not to exceed the maximum register size and
optimizing available resources.

4) Minutia quality computation (Kernel-3)

The object of this kernel lies in the calculation of a quality
value for every processed minutia as given in Algorithm 4.
Every thread takes a particular minutia pt ∈ T, t = tid and
obtains the quality value depending on the direction consis-
tency between this one and the surrounding minutiae, which
form its neighbourhood. The computation of the Euclidean
distance is carried out between all minutiae inside a specific
circumference to find the Hm closest minutiae inside every
fingerprint. The mean distance value is then used to obtain
the final quality score for each minutia depending on Hq1

and Hq2 thresholds (See Equations 3 and 5 in the Appendix).
Likewise, this kernel is also used to obtain the quality value
of every minutia in the latent fingerprint. In this case, the
kernel is launched using Ct threads per block to optimize
available resources.

Algorithm 4: Minutia quality calculation (Kernel-3).

1 while tid < m do
2 Set array distance = {0}
3 T [tid]← pt

4 s = LUTS [t] and e = LUTS [t+ 1]− 1

5 for each ph ∈ T, h = s...e do
6 d = de(ph, pt)

7 if (h 6= t) ∧ (d < distance) then
8 update distance with d

9 Compute d̄ from Hm first values in distance

10 QualityT [tid] = ρ
(
d̄
)

11 tid = tid+ Ct · Cb

Algorithm 5: Finding clusters of matching minutiae

pairs (Kernel-4).

1 while tid < m do
2 s = LUTS [t], e = LUTS [t+ 1]− 1

3 T [tid]← pt

4 h = maxMtiaL[t]

5 if h 6= ξ then f1 = 1 else f1 = 0 and h = 0

6 ClusterMtiaK[t][0] = t

7 for each pk ∈ T, k = s...e and i = 1 do
8 r = maxMtiaL[k]

9 if r 6= ξ then f2 = 1 else f2 = 0 and r = 0

10 q′r = ψ(qr, qh, pt)

11 sim = σe(q′r, pk) · σθ(q′r, pk) · σt(q′r, pk)

12 if (f1 · f2 · sim) > 0 then
13 ClusterMtiaK[t][i] = k

14 i = i+ 1

15 ClusterCount[tid] = i

16 tid = tid+ Ct · Cb

5) Finding clusters (Kernel-4)
This kernel, shown in Algorithm 5, finds clusters of similar
minutiae pairs after checking for alignments using the initial
set obtained in Kernel-2. More specifically, each thread takes
a minutia pt ∈ T, t = tid and looks for the most similar
one in the latent fingerprint. Therefore, two scenarios are
possible: (i) all the minutiae in T have a match in L, or
(ii) some minutia in T does not have a similar one in L.
In the first case, the workload will be balanced between
all the threads, so there is no degradation of performance.
However, the second case suffers from the thread divergence
problem as a few threads will carry on with the processing
whereas others will be idle. To address this problem, the first
minutia from the latent fingerprint is selected as a dummy
structure for those minutiae in T that does not have a similar
one. Using this approach, the thread divergence problem is
minimized since broad if-else statements are avoided. Once

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

Algorithm 6: Host function in charge of the final

evaluation stage (FES).

1 for each fp ∈ T in parallel do
2 s = LUTS [fp] and e = LUTS [fp+ 1]− 1

3 for each pk ∈ T, k = s...e do
4 h = maxMtiaL[k]

5 if h 6= ξ then
6 M = M ∪ (qh, pk)

7 for each pk ∈ T, k = s...e do
8 for i = 0 to ClusterCount[k] do
9 r = ClusterMtiaK[k][i]

10 h = maxMtiaL[r]

11 ∀ (qh, pr) ∈M : Bh = Bh ∪ (qh, pr)

12 Perform Step 3b from Section IV-A

13 Perform Step 3c-5 and update Similarity[fp]

this problem has been solved, clusters of minutiae pairs are
obtained by performing several alignments following the
expressions from Equations 6-9 in the Appendix. This proce-
dure obtains a set of corresponding minutiae indexes from the
impression fingerprints, which are stored inClusterMtiaK,
and their matched minutiae from the latent fingerprint. This
way new matching minutiae pairs are included to the initial
group of matches. Regarding the execution of this kernel, it
is launched using the same configuration as Kernel-3.

6) Final evaluation stage executed on the host
The results obtained after processing a particular batch of
impressions on the device are used as input to the FES
function executed on the host (Algorithm 6). This function
carries out the final part of the fingerprint matching process,
which is performed in parallel at fingerprint matching level.
In every fingerprint comparison, found minutiae pairs formed
by each impression minutia and its most similar one from
the latent fingerprint, stored in the MaxMtiaL vector, will
be placed as the centroid of the corresponding cluster. These
clusters are formed by reading the impression minutiae in-
dexes previously stored in the ClusterMtiaK vector and
considering the number of minutiae for the corresponding
cluster in ClusterCount for each minutia inside the impres-
sion fingerprint. Finally, consolidation and TPS methods are
carried out, obtaining the final similarity values. It should be
pointed out that while the FES function is being executed
on the host over a particular batch of impressions, the device
will finish processing the next one and deliver the results to
the host so that idle times are removed.

V. EXPERIMENTS AND RESULTS
This section analyzes and compares our proposal with respect
to the state-of-the-art in terms of accuracy and computational
performance on widely used databases.

Section V-A explains the experimental setup. Section V-B
describes the databases used in the different experiments.
Section V-C1 evaluates the accuracy of the ALFI proposal
in the latent fingerprint identification task. Additionally, Sec-
tion V-C2 evaluates the accuracy of ALFI in the verification
task. Section V-D assess the computational performance of
ALFI in terms of execution time and speed-up for Linux and
Windows operating systems. Finally, Section V-E discusses
the results accomplished regarding accuracy and computa-
tional performance.

A. EXPERIMENTAL SETUP
This research focuses on the design of a new methodology
for latent fingerprint identification specifically designed for
heterogeneous CPU-GPU systems. With this in mind and
after considering the published works in this area so far, we
can conclude that:

• DMC is the latent fingerprint identification algorithm
that has demonstrated the best results when working
with all considered combinations of databases or even
with a background database of more than 1.1 million
impressions [10]. Apart from its excellent performance
in identifying fingerprints, it is the algorithm with the
second-best performance in the field of fingerprint ver-
ification in the FMISO-HARD-1.0 competition of the
FVC-onGoing platform [39], [40], among those devel-
oped by academic groups. The algorithm with the best
performance in this competition is the MntModel [37];
however, it cannot be replicated since several steps of
the development of the algorithm were omitted in the
article. Also, this algorithm was not tested on latent
fingerprint identification, and its performance carrying
out this particular task is unknown.

• Only the works described in [14] and [10] provide
the source code or program which allows researchers
to replicate the results with different databases, and
therefore, we can only compare ourselves against the
numbers they report in their articles.

• The DMC-CC version uses the Cylinder-Codes descrip-
tors, which were shown in a recent study to be the
best minutiae descriptors for identifying latent finger-
prints [13].

Regarding the implementation, ALFI has been developed
using C++ and CUDA C++ programming languages. C++
is a compiled language so that it is translated into machine
language before being executed. It allows us to test the per-
formance of ALFI on Linux and Windows operating systems
(OSs) using the same implementation. We have proven that
its use significantly improves the computational performance
of the latent identification task according to a previous re-
search presented in [41].

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

Host codes are compiled with -O2 optimization flag using
g++ 5.4 and MSVC 14.16.27023 for Linux (Ubuntu 16.04.5
LTS) and Windows 10, respectively. Devices codes make use
of the NVIDIA NVCC compiler from the CUDA compila-
tion tools V10.0.130. The OpenMP C/C++ version 2.0 is
used inside the final evaluation stage function to enable the
multi-threaded execution at the fingerprint matching level.
The Armadillo C++ library version 7.800.2 [42], [43] with
OpenBLAS 0.2.14.1 is also used to carry out the necessary
linear algebra operations.

B. DATABASES
To test the performance of the ALFI methodology in the
identification task, the popular NIST SD27 [44] database
is used in the experiments, which includes fingerprints and
minutiae. This database holds 258 latent fingerprints col-
lected from real cases, along with their images available
at 500 dpi. Every case includes the image of the latent
fingerprint and its rolled fingerprint mate, where experts
have validated all minutiae. Moreover, we have designed six
background databases according to different combinations of
fingerprints, as shown in Table 3. Indeed, the NIST SD27
database is further extended with rolled fingerprints from the
NIST SD4 [45] and NIST SD14 [46] databases to obtain
small (B1−3) and medium (B4−5) sized databases. In order
to obtain a more extensive background database, synthetic
plain fingerprints generated using the SFinGe Version 4.1
(build 1746) Demo were included in B6. The fingerprints
generated with this last software have been used in several
fingerprint verification competitions proving that the results
achieved with these features are similar to the ones achieved
on real databases [47]. However, as plain fingerprints contain
less information than rolled ones, this can affect the experi-
ments in terms of accuracy and computational performance.
Regarding minutiae per fingerprint, they are extracted using
the VeriFinger SDK [48] for the impression fingerprints.

Although ALFI is designed for identification, we choose
to test its accuracy on fingerprint verification databases as
well to check whether it is suitable for this particular task.
The FVC 2002 [49], FVC 2004 [50], and FVC 2006 [51]
databases are used to carry out the fingerprint verification
experiment. The DB1_A section from FVC 2006 database

TABLE 3: Background databases used in the experiments
with their number of fingerprints included. The two right-
most columns show the total number of fingerprints and
the average number of minutiae extracted per fingerprint,
respectively.

Database NIST
SD27

NIST
SD4

NIST
SD14

Synthetic No fps. No mtiae./fp.

B1 258 - - - 258 21
B2 258 - 2,000 - 2,258 149
B3 258 2,000 - - 2,258 101
B4 258 - 27,000 - 27,258 163
B5 258 2,000 27,000 - 29,258 159
B6 258 2,000 27,000 357,985 387,243 38

was discarded due to the low resolution of the images.
On the other hand, the computational performance of ALFI

is analyzed under conditions that are as close to a real
case as possible. In particular, several of the six background
databases (from Table 3) have a similar number of finger-
prints and hence, some of them can be dismissed to eliminate
redundancy. Therefore, medium and large-sized background
databases related toB3,B5, andB6 are considered since they
have a representative number of fingerprints.

C. ACCURACY ANALYSIS
This experiment presents the accuracy results of ALFI using
identification and, additionally, verification databases. We
compare the ALFI methodology to the state-of-the-art DMC
algorithm using the following descriptors: Cylinder-Codes
(CC), M-Triplets (MT) and Neighboring Minutiae-based De-
scriptor (NMD).

1) Identification databases
Cumulative Matching Characteristic (CMC) curves, de-
scribed in [32], are widely used in the literature to assess
the accuracy of identification algorithms that produce an
ordered list of possible matches. This type of result plots
the probability that a correct identification occurs (rank-k
identification rate) within a group of k returned candidates,
where k = 1...20. In practice, latent fingerprint examiners
may request (i) all returned candidates with a match score
above a certain threshold, or (ii) a specific number of highest-
ranked candidates instead. In any case, examiners normally
begin the analysis with the candidate which has the highest
rank (related to rank-1), and continue through the remaining
ones if they do not succeed [52]. Therefore, not only the
rank-1 value is important for the identification evaluation,
but also the rank-20 and the complete CMC curve in order
to make it as close to a real case as possible.

In this experiment, each latent fingerprint in the
NIST SD27 is compared to every impression fingerprint in
the background database generating the Cumulative Match-
ing Characteristic (CMC) curves shown in Figure 5. These
results are complemented by the corresponding rank-1 and

TABLE 4: Rank-1 values from the CMC curves shown in
Figure 5. Values are given in percentages.

Algorithm B1 B2 B3 B4 B5 B6

DMC-CC 87.21 81.01 80.62 70.16 69.77 62.79
DMC-MT 82.95 76.74 76.36 69.38 69.38 66.67
DMC-NMD 83.72 77.13 79.46 66.67 66.67 62.79
ALFI 84.50 78.29 77.52 67.83 67.44 61.24

TABLE 5: Rank-20 values from the CMC curves shown in
Figure 5. Values are given in percentages.

Algorithm B1 B2 B3 B4 B5 B6

DMC-CC 94.57 91.47 91.09 85.27 84.50 78.68
DMC-MT 93.41 87.60 89.15 79.84 79.84 77.13
DMC-NMD 92.25 87.98 89.53 81.78 81.40 78.29
ALFI 92.64 90.31 89.92 83.72 83.72 75.58

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

1 3 5 7 9 11 13 15 17 19

Rank

50

55

60

65

70

75

80

85

90

95

100

Id
en

ti
fic

at
io

n
ac

cu
ra

cy
(%

)

DMC-CC

DMC-MT

DMC-NMD

ALFI

(a) B1

1 3 5 7 9 11 13 15 17 19

Rank

50

55

60

65

70

75

80

85

90

95

100

Id
en

ti
fic

at
io

n
ac

cu
ra

cy
(%

)

DMC-CC

DMC-MT

DMC-NMD

ALFI

(b) B2

1 3 5 7 9 11 13 15 17 19

Rank

50

55

60

65

70

75

80

85

90

95

100

Id
en

ti
fic

at
io

n
ac

cu
ra

cy
(%

)

DMC-CC

DMC-MT

DMC-NMD

ALFI

(c) B3

1 3 5 7 9 11 13 15 17 19

Rank

50

55

60

65

70

75

80

85

90

95

100

Id
en

ti
fic

at
io

n
ac

cu
ra

cy
(%

)

DMC-CC

DMC-MT

DMC-NMD

ALFI

(d) B4

1 3 5 7 9 11 13 15 17 19

Rank

50

55

60

65

70

75

80

85

90

95

100

Id
en

ti
fic

at
io

n
ac

cu
ra

cy
(%

)

DMC-CC

DMC-MT

DMC-NMD

ALFI

(e) B5

1 3 5 7 9 11 13 15 17 19

Rank

50

55

60

65

70

75

80

85

90

95

100

Id
en

ti
fic

at
io

n
ac

cu
ra

cy
(%

)

DMC-CC

DMC-MT

DMC-NMD

ALFI

(f) B6

FIGURE 5: Cumulative Match Curves (CMC) of the DMC algorithms and the ALFI proposal using the NIST SD27 database
as reference and six different background databases B1−6 described in Table 3.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

rank-20 values presented in Tables 4-5 according to differ-
ent background databases. From these results, the following
observations may be made:

• In most cases, the DMC-CC algorithm is the best
ranked; however, the difference in accuracy between this
version and the ALFI proposal is negligible.

• Compared to the DMC-MT algorithm, ALFI outper-
forms it by approximately 1.6%, 1.6%, and 1.2% on
databases B1, B2, and B3, respectively, considering
rank-1 values. For rank-20 values, ALFI outperforms
the same algorithm by approximately 2.7%, 0.8%,
3.9%, and 3.9% on databases B2, B3, B4, and B5,
respectively.

• Compared to the DMC-NMD algorithm, ALFI outper-
forms it by approximately 0.8%, 1.2%, 1.2%, and 0.8%
on databases B1, B2, B4, and B5, respectively, con-
sidering rank-1 values. For rank-20 values, ALFI out-
performs the same algorithm by approximately 0.4%,
2.3%, 0.4%, 1.9%, and 2.3% on databases B1, B2, B3,
B4, and B5, respectively.

TABLE 6: Accuracy results for the DMC algorithm and the
ALFI proposal on FVC 2002 databases [49].

Database Algorithm EER
(%)

FMR100
(%)

FMR1000
(%)

ZeroFMR
(%)

DB1_A DMC-CC 0.55 0.64 0.79 1.18
DMC-MT 0.65 0.79 1.11 1.25
DMC-NMD 0.50 0.61 0.79 1.14
ALFI 0.55 0.79 1.00 1.54

DB2_A DMC-CC 0.50 0.50 0.71 1.00
DMC-MT 0.43 0.61 0.75 0.79
DMC-NMD 0.60 0.61 0.86 1.04
ALFI 0.59 0.68 1.00 1.36

DB3_A DMC-CC 2.27 2.43 3.71 4.82
DMC-MT 2.54 3.18 4.07 5.18
DMC-NMD 2.39 3.11 4.32 4.64
ALFI 2.67 3.21 4.14 6.00

DB4_A DMC-CC 1.08 1.18 1.89 2.18
DMC-MT 1.51 1.86 2.68 3.79
DMC-NMD 1.58 1.79 2.50 2.75
ALFI 1.28 1.43 2.36 3.21

TABLE 7: Accuracy results for the DMC algorithm and the
ALFI proposal on FVC 2004 databases [50].

Database Algorithm EER
(%)

FMR100
(%)

FMR1000
(%)

ZeroFMR
(%)

DB1_A DMC-CC 3.24 5.39 9.79 17.39
DMC-MT 3.76 6.36 10.25 15.46
DMC-NMD 3.62 6.04 12.14 17.75
ALFI 3.41 5.18 11.39 16.21

DB2_A DMC-CC 4.18 5.96 9.00 10.68
DMC-MT 4.23 5.68 8.21 10.04
DMC-NMD 4.52 6.11 8.96 13.21
ALFI 4.52 6.86 9.89 11.46

DB3_A DMC-CC 2.74 4.07 5.96 9.54
DMC-MT 3.38 4.79 8.32 12.46
DMC-NMD 2.78 4.79 10.14 15.89
ALFI 2.77 3.93 6.36 7.82

DB4_A DMC-CC 2.15 2.82 3.89 4.46
DMC-MT 2.91 3.25 3.96 4.89
DMC-NMD 2.80 3.32 4.36 4.86
ALFI 2.91 3.50 4.46 5.75

TABLE 8: Accuracy results for the DMC algorithm and the
ALFI proposal on FVC 2006 databases [51].

Database Algorithm EER
(%)

FMR100
(%)

FMR1000
(%)

ZeroFMR
(%)

DB2_A DMC-CC 0.42 0.35 0.50 1.18
DMC-MT 0.36 0.37 0.50 1.31
DMC-NMD 0.51 0.42 0.78 1.88
ALFI 0.48 0.42 0.60 1.39

DB3_A DMC-CC 3.36 4.46 6.76 10.69
DMC-MT 3.51 4.95 7.80 12.44
DMC-NMD 3.39 4.64 8.12 14.13
ALFI 3.70 5.25 7.96 11.76

DB4_A DMC-CC 2.52 3.13 5.91 8.17
DMC-MT 2.75 3.51 5.07 11.13
DMC-NMD 2.57 3.32 6.30 8.83
ALFI 3.10 3.79 7.66 10.43

2) Verification databases
Although ALFI is a methodology developed specifically for
latent identification, its accuracy on fingerprint verification
databases is also analyzed. The FVC 2002, FVC 2004, and
FVC 2006 databases are used for this purpose, along with
the performance evaluation proposed by Cappelli et al. [47]
based on EER, FMR100, FMR1000, and ZeroFMR indica-
tors where lower values are related to better performance.

The results of this experiment are given in Tables 6-8.
From them, the following observations may be made:

• Compared to the DMC-CC algorithm, ALFI performs
equal to or better than it for 5 accuracy measurements.

• Compared to the DMC-MT algorithm, ALFI performs
equal to or better than it for 15 accuracy measurements.

• Compared to the DMC-NMD algorithm, ALFI performs
equal to or better than it for 21 accuracy measurements.

Considering all the accuracy measurements and the high
variability on the results, it could be pointed out that the
accuracy values of ALFI are in the same range as the ones ob-
tained by the DMC algorithm, even though ALFI is intended
for latent identification.

D. COMPUTATIONAL PERFORMANCE ANALYSIS
In this section, we aim at comparing the computational
performance of ALFI with the results obtained by the state-
of-the-art algorithm. The DMC-CC algorithm is chosen for
the comparison due to its better performance compared to
DMC-MT and DMC-NMD approaches, as stated in [10].

In the experiment, a random latent fingerprint from the
NIST SD27 database is matched against the B3, B5, and
B6 background databases (described in Section V-B). We
measure the time required to complete this task and the
average throughput in processing. This last parameter is
measured in KMPS which stands for thousand matches per
second. Also, we use three CPU-GPU pair systems (S1−3)
whose characteristics are presented in Tables 9-10 with the
aim of carrying out a thorough analysis. The outcomes of this
experiment are presented according to the operating system
(OS), either Linux or Windows, on which the computational
performance is measured.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

TABLE 9: Characteristics of the host units.

Parameter S1 (Linux) S2 (Both) S3 (Windows)
Processor Type Intel Xeon Intel Core AMD Ryzen
Processor Model E5-2698 v3 i5-8600K 7-1700x
Number of cores 16 6 8
Number of threads 32 6 16
Frequency (GHz) 2.3 3.6 3.4
Memory RAM (GB) 256 8 16
Cache L1 (kB) 8x64 6x64 8x96
Cache L2 (kB) 8x256 6x256 8x512
Cache L3 (MB) 1x40 1x9 2x8

TABLE 10: Characteristics of the device units.

Parameter S1 (Linux) S2 (Both) S3 (Windows)
Model GTX 980 GT 1030 GTX 1050-Ti
Architecture Maxwell Pascal Pascal
Number of CUDA cores 2048 384 768
Number of SMs 16 3 6
Base clock (MHz) 1.12 1.22 1.12
Global memory (GB) 4 2 4
Memory per block (kB) 48 48 48
Max. threads per block 1024 1024 1024
Threads per warp 32 32 32
Memory bandwidth (GB/s) 224 48 112
Performance (TFLOPs) 4.6 1.13 2.14

1) Linux OS
The results of this experiment are shown in Table 11 and
Figure 6 in terms of execution time and throughput, respec-
tively. The baseline DMC-CC algorithm has been port from
C# to C++ to ensure a fair comparison on Linux. The reason
for this choice is that the original C# code could not run
efficiently on Linux, making it impossible to compare the
ALFI methodology with the one presented by the authors
in [10]. Best-studied cases show that:
• S1: ALFI is up to 28.9 times faster than the DMC-CC

algorithm on database B5. The maximum throughput
value is 31.13 KMPS and it is achieved by ALFI on
database B6.

• S2: ALFI is up to 20.6 times faster than the DMC-CC
algorithm on database B6. The maximum throughput
value is 43.66 KMPS and it is achieved by ALFI on the
same database.

2) Windows OS
The outcomes of this study are shown in Table 12 and
Figure 7. The reference DMC-CC algorithm for Windows
is the C# implementation presented by their authors. Best-
studied cases for every system show that:
• S2: ALFI is up to 29.2 times faster than the DMC-CC

algorithm on database B6. The maximum throughput
value is 23.89 KMPS and it is achieved by ALFI on the
same database.

• S3: ALFI is up to 44.7 times faster than the DMC-CC
algorithm on database B6. The maximum throughput
value is 24.29 KMPS and it is achieved by ALFI on the
same database.

TABLE 11: Average run-time and speed-up results of the
ALFI proposal and DMC-CC on Linux OS.

S1 S2

Database Algorithm Time (s) Speed-up Time (s) Speed-up
B3 DMC-CC 4.36 1.0 2.63 1.0

ALFI 0.66 6.6 0.36 7.3
B5 DMC-CC 91.69 1.0 57.37 1.0

ALFI 3.17 28.9 3.57 16.1
B6 DMC-CC 292.85 1.0 183.08 1.0

ALFI 12.44 23.5 8.87 20.6

DMC-CC (S1) ALFI (S1) DMC-CC (S2) ALFI (S2)

Algorithms

100

101

T
h

ro
u

gh
p

u
t

(K
M

P
S

)

0.52

3.42

0.86

6.27

0.32

9.23

0.51

8.20

1.32

31.13

2.12

43.66
B3

B5

B6

FIGURE 6: Throughput results of the ALFI proposal and
DMC-CC on Linux OS.

TABLE 12: Average run-time and speed-up results of the
ALFI proposal and DMC-CC on Windows OS.

S2 S3

Database Algorithm Time (s) Speed-up Time (s) Speed-up
B3 DMC-CC 6.61 1.0 9.48 1.0

ALFI 0.61 10.8 0.66 14.4
B5 DMC-CC 146.98 1.0 209.22 1.0

ALFI 6.71 21.9 5.46 38.3
B6 DMC-CC 472.66 1.0 712.78 1.0

ALFI 16.21 29.2 15.94 44.7

DMC-CC (S2) ALFI (S2) DMC-CC (S3) ALFI (S3)

Algorithms

100

101

T
h

ro
u

gh
p

u
t

(K
M

P
S

)

0.34

3.70

0.24

3.42

0.20

4.36

0.14

5.36

0.82

23.89

0.54

24.29
B3

B5

B6

FIGURE 7: Throughput results of the ALFI proposal and
DMC-CC on Windows OS.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

TABLE 13: Accuracy differences for the identification experiment obtained from analyzing the data in Tables 4-5. The lowest
accuracy value of the four algorithms is taken as a reference for every background database.

Algorithm B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6

DMC-CC 4.3% 4.3% 4.3% 3.5% 3.1% 1.6% 2.3% 3.9% 1.9% 5.4% 4.7% 3.1%
DMC-MT 0.0% 0.0% 0.0% 2.7% 2.7% 5.4% 1.2% 0.0% 0.0% 0.0% 0.0% 1.6%
DMC-NMD 0.8% 0.4% 3.1% 0.0% 0.0% 1.6% 0.0% 0.4% 0.4% 1.9% 1.6% 2.7%
ALFI 1.6% 1.6% 1.2% 1.2% 0.8% 0.0% 0.4% 2.7% 0.8% 3.9% 3.9% 0.0%

rank-1 rank-20

E. ANALYSIS OF THE RESULTS
The primary goal of the ALFI development lies in ob-
taining the best possible computational performance in the
latent identification procedure without compromising accu-
racy. Considering this, ALFI has accomplished significant
results in both terms.

1) Accuracy
In latent fingerprint identification, the accuracy values of
ALFI are within the same range as the ones obtained by the
state-of-the-art algorithms, as shown in Table 13. However,
the inclusion of graphical processing units in processing
results in a slight accuracy reduction for some background
databases and k-ranks compared to the reference algorithm in
latent identification. The reason for this lies in the impossibil-
ity of developing a dynamic algorithm for GPU processing,
which profoundly affects the early stage of the processing
where matching minutiae pairs must be found. Using the
host code, it is possible to obtain very different numbers
of minutiae pairs (dynamic allocation in memory) from
one fingerprint comparison to another without compromising
performance. However, using the device code, a maximum
number of minutiae pairs must be imposed to improve per-
formance (forced fixed allocation in memory) resulting in the
loss of some possible matching minutiae pairs. This draw-
back is balanced with the significant improvement achieved
in computational performance.

2) Computational performance
ALFI has proven to outperform the state-of-the-art algorithm
in execution time for every studied database and operating
system in the latent identification task. This achievement is
based on the fact that the workload is balanced between
the CPU and GPU using asynchronous processing and fine-
grained parallelism so that idle times are drastically reduced.
On the contrary, the state-of-the-art algorithm is designed
for single-thread execution and neglects the use of GPUs to
accelerate the processing.

The throughput experiment also revealed that this param-
eter increases with the size of the database for the ALFI
methodology. On the contrary, the throughput of the DMC-
CC algorithm decreases between databases B3 and B5, but
increases with B6. The explanation for this lies in the differ-
ence in the nature of the fingerprints included in the databases
and the nonlinearity of their processing. In particular, B6

contains 7.6% of rolled fingerprints and the rest are plain
fingerprints. This latter type includes less information per fin-

gerprint and they are therefore processed faster compared to
rolled ones. Indeed, database B6 has in average 38 minutiae
per fingerprint; whereas databases B3 and B5 have 101 and
159, respectively, as given in Table 3.

VI. CONCLUSIONS
In this paper, we present a novel methodology called ALFI
based on Asynchronous processing for latent fingerprint
identification on heterogeneous CPU-GPU systems. ALFI
efficiently overlaps and synchronizes two tasks related to
(i) the data processing on the device which involves finding
matching minutiae pairs, computing minutia quality and ob-
taining clusters, and (ii) the multi-threaded final evaluation
stage performed on the host that evaluates clusters and returns
the possible matched fingerprints. This methodology reduces
idle times in host and device units, obtaining faster similarity
results between latent and fingerprint impressions. Besides,
the novel strategy applied to the data processing on the device
takes advantage of the intrinsic parallelism of the latent
identification process. It makes each thread from the device to
process a particular minutia from a batch of fingerprints, and
compares it with every minutia from the latent fingerprint.

ALFI has been tested on Linux and Windows operat-
ing systems using three different CPU-GPU pair systems.
Well-known identification databases such as NIST SD27,
NIST SD14, and NIST SD4 were used to test the accuracy
of the proposed algorithm in latent fingerprint identification.
Additionally, the FVC 2002, FVC 2004, and FVC 2006
verification databases were also used to test the verification
performance. Experiments have proven that ALFI outper-
forms the state-of-the-art DMC algorithm in computational
performance up to 22x in average maintaining the accuracy
results within the same range. In particular, considering the
best-studied case ALFI yields a speed-up of 44.7x. To the
best of our knowledge, ALFI is the first methodology in the
literature for latent fingerprint identification that is specifi-
cally designed to fully exploit the capabilities of heteroge-
neous CPU-GPU systems.

APPENDIX A
Definition 1. Minutiae are points located in the ridge dis-
continuities of a fingerprint. Every minutia structure is char-
acterized by x and y positions, θ direction, cylinder c =
(ν, η) containing its value and norm, respectively, and also
type t ∈ [0, 1, 2] : t → [unknown, end, bifurcation].
Definition 2. The set of all possible minutiae is defined as
A = {(x, y, θ, ν, η, t) : x, y, θ, η ∈ R | ν, t ∈ N}, where R

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

and N represent the sets of real and natural numbers.
The function dθ computes the minimal difference between

two quantized angles α̂ and β̂:
dθ : N× N→ N

(α̂, β̂)→ min (|α̂− β̂|, z − |α̂− β̂|) (1)

where z is the total number of quantized angles. Furthermore,
this function can be also used with two given minutiae a and
b as inputs:
dθ : A×A→ R

(a, b)→ min (|θa − θb|, 2π − |θa − θb|) (2)

The function de computes the Euclidean distance given
two minutiae a and b:
de : A×A→ R

(a, b)→
√

(xb − xa)2 + (yb − ya)2 (3)

The function σ computes the similarity score between two
given minutiae a and b by using their minutiae descriptors:
σ : A×A→ R

(a, b)→ 1−
√
pop(νa ⊕ νb)
ηa + ηb

(4)

where ν is related to the minutia cylinder value, η is the
cylinder norm, the XOR operator is denoted as ⊕ and the
function pop is the bit population count operation.

The function ρ returns the corresponding quality value for
an specific minutia depending on Hq1 and Hq2 thresholds
and a given distance d:
ρ : R→ R

d→

 1 if d > Hq2

0 if d < Hq1

(d−Hq1)/(Hq2 −Hq1) otherwise
(5)

The function ψ maps the minutia a into another by using a
minutiae pair (b, c) as reference:
ψ : A×A×A→ A

(a, b, c)→c(∆θ) −s(∆θ) 0
s(∆θ) c(∆θ) 0

0 0 1

xa − xbya − yb
θa − θb

+

xcyc
θc

T (6)

where c and s denote the trigonometric sine and cosine
functions, respectively, and ∆θ = θc − θb.

The function σe computes the similarity score between two
given minutiae a and b according to their Euclidean distance:
σe : A×A→ [0, 1]

(a, b)→
{

0 if u or v or w

1− de(a,b)
He

otherwise
(7)

where ∆x = xb−xa, ∆y = yb−ya, the empirical threshold
value is denoted asHe, and de is the Euclidean distance func-
tion described in Equation 3. Also, u denotes |∆x| > He, v
denotes |∆y| > He and w denotes de(a, b)

2
> He

2.
The function σθ computes the similarity score between two

given minutiae a and b according to their direction difference:

σθ : A×A→ [0, 1]

(a, b)→
{

0 if dθ(a, b) > Hθ

1− dθ(a,b)
Hθ

otherwise
(8)

where Hθ is an empirical threshold value and dθ is the
angular difference function described in Equation 2.

The function σt computes the similarity score between two
given minutiae a and b based on their types:
σt : A×A→ [0.5, 0.75, 1]

(a, b)→
{

0.75 if ta = 0 or tb = 0
g otherwise

(9)

g : [0, 1, 2]× [0, 1, 2]→ [0.5, 1]

(ta, tb)→
{

1 if ta = tb
0.5 otherwise

REFERENCES
[1] K. Cao and A. K. Jain, “Automated latent fingerprint recognition,” IEEE

transactions on pattern analysis and machine intelligence, vol. 41, no. 4,
pp. 788–800, 2018.

[2] K. Cao, D.-L. Nguyen, C. Tymoszek, and A. K. Jain, “End-to-end latent
fingerprint search,” IEEE Transactions on Information Forensics and Se-
curity, vol. 15, pp. 880–894, 2019.

[3] A. B. Kanbar, “Fingerprint identification for forensic crime scene investi-
gation,” International Journal of Computer Science and Mobile Comput-
ing, vol. 5, no. 8, pp. 60–65, 2016.

[4] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint
recognition. Springer Science & Business Media, 2009.

[5] S. L. Cooper, “Challenges to fingerprint identification evidence: Why the
courts need a new approach to finality,” Mitchell Hamline L. Rev., vol. 42,
p. 756, 2016.

[6] D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, and J. M. Benitez,
“Fast fingerprint identification for large databases,” Pattern Recognition,
vol. 47, no. 2, pp. 588–602, 2014.

[7] A. Sankaran, M. Vatsa, and R. Singh, “Latent fingerprint matching: A
survey.” IEEE Access, vol. 2, pp. 982–1004, 2014.

[8] S. Kiltz, M. Hildebrandt, J. Dittmann, and C. Vielhauer, “Challenges
in contact-less latent fingerprint processing in crime scenes: Review of
sensors and image processing investigations.” in 2012 Proceedings of the
20th European Signal Processing Conference (EUSIPCO). IEEE, 2012,
pp. 1504–1508.

[9] B. DeCann and A. Ross, “Can a “poor” verification system be a “good”
identification system? a preliminary study.” in 2012 IEEE International
Workshop on Information Forensics and Security (WIFS). IEEE, 2012,
pp. 31–36.

[10] M. A. Medina-Pérez, A. M. Moreno, M. A. F. Ballester, M. García-
Borroto, O. Loyola-González, and L. Altamirano-Robles, “Latent finger-
print identification using deformable minutiae clustering,” Neurocomput-
ing, vol. 175, pp. 851–865, 2016.

[11] K. Karu and A. K. Jain, “Fingerprint classification,” Pattern recognition,
vol. 29, no. 3, pp. 389–404, 1996.

[12] A. Ross, A. Jain, and J. Reisman, “A hybrid fingerprint matcher,” Pattern
Recognition, vol. 36, no. 7, pp. 1661–1673, 2003.

[13] D. Valdes-Ramirez, M. A. Medina-Pérez, R. Monroy, O. Loyola-
González, J. Rodríguez, A. Morales, and F. Herrera, “A review of finger-
print feature representations and their applications for latent fingerprint
identification: Trends and evaluation.” IEEE Access, vol. 7, pp. 48 484–
48 499, 2019.

[14] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code: A new
representation and matching technique for fingerprint recognition.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12,
pp. 2128–2141, 2010.

[15] D. Peralta, M. Galar, I. Triguero, D. Paternain, S. García, E. Barrenechea,
J. M. Benítez, H. Bustince, and F. Herrera, “A survey on fingerprint
minutiae-based local matching for verification and identification: Taxon-
omy and experimental evaluation,” Information Sciences, vol. 315, pp. 67–
87, 2015.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

[16] W. Bian, D. Xu, Q. Li, Y. Cheng, B. Jie, and X. Ding, “A survey of the
methods on fingerprint orientation field estimation,” IEEE Access, vol. 7,
pp. 32 644–32 663, 2019.

[17] S. Yoon, J. Feng, and A. K. Jain, “Latent fingerprint enhancement via
robust orientation field estimation.” in 2011 international joint conference
on biometrics (IJCB). IEEE, 2011, pp. 1–8.

[18] J. Li, J. Feng, and C.-C. J. Kuo, “Deep convolutional neural network for la-
tent fingerprint enhancement.” Signal Processing: Image Communication,
vol. 60, pp. 52–63, 2018.

[19] L. J. Gonzalez-Soler, M. Gomez-Barrero, L. Chang, A. Perez-Suarez, and
C. Busch, “On the impact of different fabrication materials on fingerprint
presentation attack detection,” in 2019 International Conference on Bio-
metrics, ICB 2019, 2019, pp. 1–8.

[20] H. Liu, W. Zhang, G. Liu, and F. Liu, “A zero-shot based fingerprint
presentation attack detection system,” arXiv preprint arXiv:2002.04908,
2020.

[21] R. Agarwal, A. S. Jalal, and K. V. Arya, “A review on presentation attack
detection system for fake fingerprint,” Modern Physics Letters B, vol. 34,
no. 05, p. 2030001, 2020.

[22] K. N. Win, K. Li, J. Chen, P. F. Viger, and K. Li, “Fingerprint classification
and identification algorithms for criminal investigation: A survey,” Future
Generation Computer Systems, 2019.

[23] D. Peralta, I. Triguero, S. García, Y. Saeys, J. M. Benitez, and F. Herrera,
“On the use of convolutional neural networks for robust classification of
multiple fingerprint captures,” International Journal of Intelligent Systems,
vol. 33, no. 1, pp. 213–230, 2018.

[24] P. D. Gutierrez, M. Lastra, F. Herrera, and J. M. Benitez, “A high per-
formance fingerprint matching system for large databases based on gpu,”
IEEE Transactions on Information Forensics and Security, vol. 9, no. 1,
pp. 62–71, 2014.

[25] R. Cappelli, M. Ferrara, and D. Maltoni, “Large-scale fingerprint identifi-
cation on gpu,” Information Sciences, vol. 306, pp. 1–20, 2015.

[26] M. Lastra, J. Carabaño, P. D. Gutiérrez, J. M. Benítez, and F. Herrera, “Fast
fingerprint identification using gpus,” Information Sciences, vol. 301, pp.
195–214, 2015.

[27] X. Jiang and W.-Y. Yau, “Fingerprint minutiae matching based on the local
and global structures,” in Proceedings 15th international conference on
pattern recognition. ICPR-2000, vol. 2. IEEE, 2000, pp. 1038–1041.

[28] H. H. Le, N. H. Nguyen, and T.-T. Nguyen, “Speeding up and enhancing
a large-scale fingerprint identification system on gpu,” Journal of Informa-
tion and Telecommunication, vol. 2, no. 2, pp. 147–162, 2018.

[29] C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu, “A survey on parallel
computing and its applications in data-parallel problems using gpu archi-
tectures,” Communications in Computational Physics, vol. 15, no. 2, pp.
285–329, 2014.

[30] A. Mikaelyan and J. Bigun, “Ground truth and evaluation for latent
fingerprint matching.” in 2012 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops. IEEE, 2012, pp.
83–88.

[31] A. K. Jain, J. Feng, A. Nagar, and K. Nandakumar, “On matching latent
fingerprints,” in 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops. IEEE, 2008, pp. 1–8.

[32] A. K. Jain and J. Feng, “Latent fingerprint matching,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 33, no. 1, pp. 88–100,
2011.

[33] A. A. Paulino, J. Feng, and A. K. Jain, “Latent fingerprint matching using
descriptor-based hough transform,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 1, pp. 31–45, 2013.

[34] S. S. Arora, E. Liu, K. Cao, and A. K. Jain, “Latent fingerprint matching:
performance gain via feedback from exemplar prints,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2452–
2465, 2014.

[35] A. M. Bazen and S. H. Gerez, “Fingerprint matching by thin-plate spline
modelling of elastic deformations,” Pattern Recognition, vol. 36, no. 8, pp.
1859–1867, 2003.

[36] “Nvidia corporation,” Accessed January 12, 2020, https://www.nvidia.
com.

[37] K. Cao, E. Liu, L. Pang, J. Liang, and J. Tian, “Fingerprint matching
by incorporating minutiae discriminability,” in 2011 International Joint
Conference on Biometrics (IJCB). IEEE, 2011, pp. 1–6.

[38] M. A. Medina-Pérez, M. García-Borroto, A. E. Gutierrez-Rodríguez, and
L. Altamirano-Robles, “Improving fingerprint verification using minutiae
triplets,” Sensors, vol. 12, no. 3, pp. 3418–3437, 2012.

[39] “Fvc-ongoing,” Accessed November 13, 2019, https://biolab.csr.unibo.it/
FVCOnGoing.

[40] B. Dorizzi, R. Cappelli, M. Ferrara, D. Maio, D. Maltoni, N. Houmani,
S. Garcia-Salicetti, and A. Mayoue, “Fingerprint and on-line signature
verification competitions at icb 2009,” in International Conference on
Biometrics. Springer, 2009, pp. 725–732.

[41] A. J. Sanchez, L. F. Romero, S. Tabik, M. A. Medina-Pérez, and F. Herrera,
“A first step to accelerating fingerprint matching based on deformable
minutiae clustering,” in Conference of the Spanish Association for Arti-
ficial Intelligence. Springer, 2018, pp. 361–371.

[42] C. Sanderson and R. Curtin, “Armadillo: a template-based c++ library for
linear algebra,” Journal of Open Source Software, vol. 1, no. 2, p. 26, 2016.

[43] ——, “A user-friendly hybrid sparse matrix class in c++,” in International
Congress on Mathematical Software. Springer, 2018, pp. 422–430.

[44] M. D. Garris and M. D. Garris, NIST special database 27: Fingerprint
minutiae from latent and matching tenprint images. US Department of
Commerce, National Institute of Standards and Technology, 2000.

[45] C. I. Watson and C. Wilson, “Nist special database 4,” Fingerprint
Database, National Institute of Standards and Technology, vol. 17, no. 77,
1992.

[46] C. I. Watson, “Nist special database 14: Mated fingerprint cards pairs 2
version 2,” tech. rep., Citeseer, 2001.

[47] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Perfor-
mance evaluation of fingerprint verification systems,” IEEE transactions
on pattern analysis and machine intelligence, vol. 28, no. 1, pp. 3–18, 2006.

[48] “Verifinger sdk,” Accessed January 20, 2020, http://www.
neurotechnology.com/verifinger.html.

[49] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, “Fvc2002:
Second fingerprint verification competition,” in Object recognition sup-
ported by user interaction for service robots, vol. 3. IEEE, 2002, pp.
811–814.

[50] ——, “Fvc2004: Third fingerprint verification competition,” in Interna-
tional Conference on Biometric Authentication. Springer, 2004, pp. 1–7.

[51] R. Cappelli, M. Ferrara, A. Franco, and D. Maltoni, “Fingerprint verifica-
tion competition 2006,” Biometric Technology Today, vol. 15, no. 7-8, pp.
7–9, 2007.

[52] N. Ratha and R. Bolle, Automatic fingerprint recognition systems.
Springer Science & Business Media, 2003.

ANDRES J. SANCHEZ received the B.S. de-
gree in Industrial Technology Engineering with
specialization in Automatic Systems and the M.S.
degree in Mechatronic Engineering from the Uni-
versity of Malaga, Malaga, Spain, in 2016 and
2017, respectively. In 2018, he joined the De-
partment of Computer Architecture, University of
Malaga, where he is currently pursuing the Ph.D.
degree in Mechatronic Engineering in the field of
parallel programming on heterogeneous systems.

His research interests include algorithm optimization, parallel programming
and large-scale data processing on heterogeneous GPU-CPU systems.

LUIS F. ROMERO received the M.Sc. degree
in Physics from the Complutense University of
Madrid, Madrid, Spain, in 1988 and the Ph.D.
degree in Computer Science from the University
of Malaga, Malaga, Spain, in 1996. He is a Full
Professor in the Department of Computer Archi-
tecture at the University of Malaga, where he has
been since 1989. His research interests span both
heterogeneous parallel computing and computer
physics. Much of his work has been on improving

the understanding, design, and performance of parallel and networked com-
puter systems, mainly through physical system modelling, GIS algorithmics
and numerical integration.

VOLUME 4, 2016 17

https://www.nvidia.com
https://www.nvidia.com
https://biolab.csr.unibo.it/FVCOnGoing
https://biolab.csr.unibo.it/FVCOnGoing
http://www.neurotechnology.com/verifinger.html
http://www.neurotechnology.com/verifinger.html

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005476, IEEE Access

Sanchez et al.: Asynchronous Processing for Latent Fingerprint Identification on Heterogeneous CPU-GPU Systems

DANIEL PERALTA received the M.Sc. and Ph.D.
degrees in Computer Science from the University
of Granada, Granada, Spain, in 2011 and 2016
respectively. He is currently a post-doctoral re-
searcher at Ghent University and the Vlaams Insti-
tuut voor Biotechnologie (Ghent, Belgium) within
the Data Mining and Modeling for Biomedicine
research group. He has published 15 papers in
international journals, and received the BBVA
Award for Young Computer Science Researchers

in 2018. His research interests include data mining, biological imaging data
analysis, biometrics and large-scale parallel and distributed computing.

PROF. MIGUEL ANGEL MEDINA-PÉREZ re-
ceived the Ph.D. degree in Computer Science from
the National Institute of Astrophysics, Optics, and
Electronics, Mexico, in 2014. He is currently a
Research Professor with the Tecnologico de Mon-
terrey, Campus Estado de Mexico, where he is also
a member of the GIEE-ML (Machine Learning)
Research Group. Prof. Medina-Pérez has rank 1
in the Mexican Research System. His research
interests include Pattern Recognition, Data Visu-

alization, Explainable Artificial Intelligence, Fingerprint Recognition, and
Palm Print Recognition. Prof. Medina-Pérez has published tens of papers in
referenced journals such as “IEEE Transactions on Information Forensics
and Security,” “Pattern Recognition,” “Information Fusion,” “Knowledge-
Based Systems,” “Information Sciences,” and “Neurocomputing.” Prof.
Medina-Pérez has an extensive experience developing software to solve
pattern recognition problems. A successful example is a fingerprint and palm
print recognition framework which has more than 1.2 million visits and 132
thousand downloads.

SIHAM TABIK received the B.Sc. degree in
Physics from University Mohammed V, Rabat,
Morocco, in 1998 and the Ph.D. degree in Com-
puter Science from the University of Almeria,
Almeria, Spain, in 2006. She is currently Ramón
y Cajal researcher at the University of Granada,
Granada, Spain. Her research interests include ma-
chine learning and high performance computing.

YVAN SAEYS received the M.Sc. and Ph.D. de-
grees in Computer Science from Ghent University,
Ghent, Belgium. After spending time abroad at
the University of the Basque Country and the
University of Lyon, he established the DAMBI re-
search group at VIB and Ghent University, where
he is currently an Associate Professor in the De-
partment of Applied Mathematics, Computer Sci-
ence and Statistics. His research focuses on the
development and application of data mining and

machine learning techniques for biological and medical applications. He has
published more than 100 papers in international journals and high-profile
conferences and has been involved in the organization of many international
workshops and conferences on machine learning and bioinformatics. His
current research interests include instance and feature selection, large-scale
machine learning, and machine learning for single-cell biology.

FRANCISCO HERRERA received the M.Sc.
and Ph.D. degrees Mathematics from the Uni-
versity of Granada, Granada, Spain, in 1988 and
1991, respectively. He is currently a Full Professor
in the Department of Computer Science and Arti-
ficial Intelligence from the University of Granada,
Granada, Spain. He has been the Supervisor of
42 Ph.D. students. He has published more than
370 journal papers, receiving more than 71,000
citations and an h-index of 135.

18 VOLUME 4, 2016

https://www.codeproject.com/Articles/97590/A-Framework-in-C-for-Fingerprint-Verification-2
https://www.codeproject.com/Articles/97590/A-Framework-in-C-for-Fingerprint-Verification-2

