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Abstract/resumen

In this thesis we will study Lovelock Theories, that is, some extensions to General
Relativity with particularly good properties, for example, giving second-order
differential equations and having Levi-Civita connection as a solution of first-
order formalism. Despite their advantages, these theories had never been studied
so deeply and in this thesis we will present several new results.

First of all, we explain basic concepts and set the mathematical base. In sec-
ond chapter, we study the Einstein-Hilbert action. We will see that the solution
to the metric-affine formalism is not only the Levi-Civita connection, but a set
of connection that we will call Palatini connections. In third chapter, we talk
about general properties of every Lovelock Theory, especially about projective
invariance, which explains why Palatini connections are solutions of these theo-
ries. Finally, we study the Gauss-Bonnet action and we give a non-trivial solution
of metric-affine formalism that is physically distinguishable of Levi-Civita, hence
demonstrating the non-equivalence between metric and metric-affine formalisms.

En esta tesis se estudian las Teorías de Lovelock, unas extensiones a la Relati-
vidad General con ciertas propiedades especialmente buenas, como por ejemplo,
tener ecuaciones de movimiento de segundo orden y la conexión de Levi-Civita
como solución al formalismo de primer orden. A pesar de sus ventajas, estas teo-
rías nunca habían sido estudiadas tan a fondo y en esta tesis presentaremos varios
resultados novedosos.

En primer lugar, se explican conceptos básicos y se sientan las bases matemá-
ticas necesarias. En el segundo capítulo se estudia la acción de Einstein-Hilbert,
donde veremos que la solución del formalismo métrico-afín no es únicamente Levi-
Civita, sino otro conjunto de conexiones más general que llamaremos conexiones
de Palatini. En el tercer capítulo se habla de propiedades globales de todas las
Teorías de Lovelock, en especial de la invarianza proyectiva que da sentido a las
conexiones de Palatini como solución de las Teorías de Lovelock. Por último, se
estudia la acción de Gauss-Bonnet y se da una solución no trivial del formalismo

vii
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métrico-afín que es físicamente distinguible de Levi-Civita, demostrando así la
no equivalencia entre los formalismos métrico y métrico-afín.



Introduction

In 1915, ten years after publication of Special Relativity, Einstein proposed Gen-
eral Relativity. The purpose of this theory was to explain gravity while retaining
compatibility with the new paradigm established by Special Relativity. This the-
ory explained the effects of gravity in a totally different way as Newton’s theory.
While, in the latter, time and space were absolute and immutable, the former
introduced the concept of space-time, modeled mathematically as a manifold.

This dynamics is governed by the so-called Einstein-Hilbert action, which
gives the Einstein equations as equations of motion. These equations describe
the detailed relation between curvature and energy-momentum distribution, and
they constitute a system of partial differential equations, coupled to each other,
non-linear and of second order. They are usually solved in situations with enough
symmetry.

Despite the complexity of this theory, it led to lots of new research, taking
into account new ideas, concepts and interpretations, perhaps black holes being
the most famous ones, with the first black-hole solution of Einstein equations
in 1916. After this solution proposed by Schwarzschild, several more appeared:
Reissner-Nordström black hole (1916–1918), Einstein static universe (1917), de
Sitter space (1917), Friedmann-Lemaître-Robinson-Walker solution (1922), Kerr
black hole (1963), Kerr-Newman black hole (1965). . . It also allowed to explain
some post-Newtonian phenomena: Mercury’s apsidal precession, gravitational
lenses. . . other experiments like energy loss in binary pulsars and black holes, and
the recent discovery of gravitational waves.

Furthermore, along the beginning of the 20th century, another theory ap-
peared, partly based on Einstein research of photoelectric effect, indeed, and
other observations that could not be explained with the classical theories. In the
mid-1920s, Quantum Mechanics was formulated by Erwin Schrödinger, Werner
Heisenberg, Max Born and others. As with General Relativity, this resulted in a
new paradigm in physics.

Nowadays, these theories have greatly evolved with the aim, to a certain de-
gree, of unifying all fundamental physics, that is, electromagnetism, gravitation,

ix



x INTRODUCTION

strong interaction and weak interaction. We would like to be able to explain
all effects of physics using a single theory. In fact, unification has been almost
achieved in the quantum paradigm with all of them except gravitation, thanks
to the Standard Model.

When trying to unify gravitation with these theories, problems appear due
to the different nature of gravitational theory with respect to the others. While
gravitation is a geometrical theory, the others are gauge quantum theories. If we
try to quantize gravitation, we get a non-renormalizable theory.

Gravitation also predicts its own limitations as irregularities—we know it is
not the final answer. We work towards a formulation of quantum gravity that
evaporates singularities and solve other problems with black holes, for instance.
There are three popular approaches to this goal:

First one is directly looking for a theory that includes each one of the previ-
ously mentioned in a particular limit. If found, that would resolve everything,
we would have the theory that includes every other, and all known physics (and
potentially more) would be included in that one, until an experiment went out of
that theory and led to new physics again. This is what String Theory and Loop
Quantum Gravity try to do, for example. The problem with this strategy is that
we expect those theories to become measurable at Plank length, fifteen orders of
magnitude above what we can measure today in our best particle accelerator, so
we do not have any evidence of how these theories should be.

This reason leads to the second approach: exploring extensions to Quantum
Physics, which we can understand as low-energy corrections of that hypothetical
quantum gravity theory, more accessible. If we explore extensions of that theory,
we will not find the final answer, but we can get a larger set of physically accept-
able theories, and so people looking for the big theory mentioned before have a
greater set of physics to land in. For instance, physics beyond standard model
experiments with this.

Finally, the third approach is as the second, but applied to General Rela-
tivity. There are a lot of possible theories for extending General Relativity, for
example, f(R)-gravities, scalar-tensor theories, Ricci-based gravities or Lovelock
Theories. Each of them has its advantages, but we will focus on the latter in this
thesis. Lovelock Theories are a set of corrections of General Relativity with a
lot of good properties that make them very good candidates for being physically
acceptable. They appeared when trying to generalize the Einstein-Hilbert action,
being the obvious way adding terms of quadratic order (or more) in the curvature.
This, however, introduces a problem: equations of motion get derivatives of order
greater than two, causing ghost solutions to appear. A particular combination
that gave rise to second-order differential equations was already known by Lanc-
zos in 1938, the Gauss-Bonnet term, and this was later generalized by Lovelock
in ref. [31] for any order in the curvature: these are the Lovelock Theories—at
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zeroth and first order being cosmological constant and Einstein-Hilbert actions,
respectively. It was shown in 1980, in refs. [52, 51], that although these correc-
tions in higher orders of the curvature appear naturally in String Theory, they
would engender ghosts if not in the exact combinations described by Lovelock.

Another property of Lovelock Theories is that equations of motion derived
using first- and second-order formalisms lead to almost equivalent dynamics—
completely equivalent for Einstein-Hilbert action, as we will see in this thesis—
and this serves as a justification for using Levi-Civita connection (see refs. [5, 16,
13]), as it appears as a solution of the equations of motion.

When we talk about these two formalisms, we mean the method that we
use to obtain the equations of motion from the action. They differ in which
variables they take as fundamental. On the one hand, when we use the first-order
formalism, connection and metric are both degrees of freedom of the theory and
so one have to take the variation of the action with respect to each of them to
get both equations of motion. On the other hand, when we use the second-order
formalism, the connection is written in terms of the metric and only the metric is
computed from its equations of motion. The latter is the traditional formalism,
presented in General Relativity, where one assumes always that the connection is
the Levi-Civita connection, while the former was first done by Einstein in 1925 in
ref. [15] and it is gathering some research impetus in different areas. First-order
formalism has mainly two advantages: the equations of motion are much easier
to compute and, as I said before, Levi-Civita connection shows up as a solution
of its equations of motion, not as an assumption.

Lovelock Theories have been studied as the natural extensions to GR for some
years. They show up as corrections of String Theory to supergravity actions (see
ref. [7]) and, in ADS/CFT, Gauss-Bonnet term is used for computing corrections
for the viscosity in holographic hydrodinamics (see ref. [6]).

Moreover, in gravitation, they seem so natural that there is no reason for
not adding Lovelock terms of higher order in any dynamic theory of gravity. In
four dimensions, all terms are zero except zeroth (cosmological constant), first
(Einstein-Hilbert) and second (Gauss-Bonnet), and this last one is topological,
it does not contribute to dynamics, so we end up with the same action. In five
dimensions or more, this term becomes dynamic, it contributes to the equations of
motion, and we should add it to our action. Similarly, Lovelock term of order n is
zero in a dimension D < 2n, topological in D = 2n and dynamic in D > 2n. For
this very reason, Lovelock Theories seem to be corrections in extra dimensions,
and they actually appear as low-energy actions of String Theory, living in ten
or eleven dimensions. We know, since the 1920s, how to get effective theories in
a given number of dimensions from theories living in more, called dimensional
reduction, so we could finish up with truly measurable effects.

This thesis is structured as follows. In Chapter 1 we will introduce first-
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and second-order formalisms and point out the differences between them. In
Chapter 2 we will obtain the equations of motion corresponding to Einstein-
Hilbert action using both formalisms and compare the solutions. In Chapter 3
we will discuss some aspects about Lovelock Theories in general and the projective
symmetry in particular. Finally, in Chapter 4 we will find a solution of Gauss-
Bonnet in the first-order formalism and discuss its implications.



Chapter 1

First- and second-order
formalisms

The introduction of General Relativity ten years after Special Relativity was
groundbreaking. The purpose of this new theory was to include gravitation in
the new paradigm established by Special Relativity. To achieve that, Einstein
changed from an immutable time and space to a dynamic space-time modelled
by a manifold, where its curvature is related to the distribution of energy.

We can intuitively think of a manifold as a sheet floating in space. It is not
normally flat, it becomes curved influenced by different circumstances, but if you
look at it near enough, you can approximate it very well with its tangent plane at
every point (see figure 1.1). We call this the tangent space at a point p, Tp(M).
This is a vector space where all vector quantities related with our manifold at the
point p actually live, and its dimension coincides with what we call the dimension
of the manifold. The set of all tangent spaces is called tangent bundle, T (M).

The fact that tangent spaces are a local approximation of the manifold is
closely related with the equivalence principle, the base of General Relativity. It
says that it is impossible to distinguish, only with local experiments, between an
inertial observer in vacuum and another one in free fall in a gravitational field.
Essentially, that equivalence is related to the fact that we can take an orthonormal
basis in any tangent space and approximate the manifold locally with it.

We also have coordinates in a manifold. They are given by the fact that we
have a transformation from a neighbourhood of every point of the manifold to
RN , so we can use any coordinates in RN to build others inM.

One more essential structure that we have in a manifold is a topology, which
gives us a notion of neighbourhood or proximity. However, if we want to actu-
ally measure distances between points and angles between vectors (in the same

1



2 CHAPTER 1. FIRST- AND SECOND-ORDER FORMALISMS

M

p
Tp(M)

Figure 1.1: Manifold with some of its tangent spaces in several points.

tangent space), we need an additional mathematical structure. This structure is
called metric, gµν , and it may or may not be present in a manifold because it
is not fundamentally required. In this thesis, nevertheless, we will always work
with manifolds equipped with a metric.

1.1 Metric
As we are going to work with pseudo-Riemannian manifolds, we have to choose
between two conventions for the signature of the metric: mostly plus and mostly
minus. We will follow the mostly minus convention along all this thesis, giving
to all the spatial lengths a negative character, and a positive one to the temporal
ones. For example, in D = 4 Minkowski space, the metric would be

η =


1
−1

−1
−1

 . (1.1)

However, in general, we will call the metric g.
Once we have a pair (M, g), we can transform vectors to their dual space,

V σgµσ = Vµ, (1.2)

or, analogously, with the inverse metric, change the type of any tensor, for ex-
ample, from a (0, 2)-type tensor to a (1, 1)-type one,

Tµσg
νσ = T ν

µ . (1.3)
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A metric also allows us to compute the norm of a vector V ,

|V | =
√
VσV σ =

√
gσηV σV η (1.4)

and measure lengths of paths as

l =
∫
γ

√
gσηẋσẋηdτ, (1.5)

where xµ is our set of coordinates and the dot means derivation with respect to
the parameter of the curve, τ . We can also quantify angles between vectors in
the same tangent space,

α = arccos gσηV
σW η√

gθξV θV ξgϕχWϕWχ
, (1.6)

and we could even calculate the shortest line between two points by taking the
minimum of the distance between them as a functional of the trajectory γ,

s =
∫ 1

0

√
gση(γ)γ̇σγ̇ηdτ, (1.7)

where the parameter of the curve is again τ , γ = γ(τ), so that γ(0) = p1 and
γ(1) = p2. This is what we call ametric geodesic, and it will play a very important
role, as test particles follow geodesics in General Relativity. Metric geodesics are
the generalization of straight lines for curved spaces in the way that they are the
shortest curves between two given points. Let’s compute them.

Taking the extremum of (1.7) using the Euler-Lagrange equation (we will use
xµ for the coordinates of the curve, for simplicity), we get

d

dτ

∂L

∂ẋµ
− ∂L

∂xµ
= 0, (1.8)

where L =
√
gσηẋσẋη. Now we can multiply by 2L to get rid of the square root

and make things easier,

d

dτ

∂L2

∂ẋµ
− ∂L2

∂xµ
= 2dL

dτ

∂L

∂ẋµ
. (1.9)

If we focus on the first member of the equation,

d

dτ

∂L2

∂ẋµ
− ∂L2

∂xµ
= d

dτ
(2gµσẋσ)− ẋσẋη∂µgση

= 2ẋσẋη∂ηgµσ + 2gµσẍσ − ẋσẋη∂µgση
= 2gµσẍσ + ẋσẋη (∂ηgµσ + ∂σgµη − ∂µgση)

= 2gµσẍσ + 2gµθ
{
θ
ση

}
ẋσẋη, (1.10)
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where we have defined the Christoffel symbols as{
ρ
µν

}
= 1

2g
ρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (1.11)

If we now operate on the second member of (1.9),

2 ∂L
∂ẋµ

dL

dτ
= 2gµσẋ

σ

L

dṡ

dτ

= 2gµσẋσ
s̈

ṡ
, (1.12)

where we have used (1.7),
L = ds

dτ
= ṡ. (1.13)

So, finally, rising the µ index, the equation of the metric geodesic is

ẍµ +
{
µ
ση

}
ẋσẋη = s̈

ṡ
ẋµ. (1.14)

We could choose the canonical parameterization, where the parameter is the curve
length, τ = s,

ẍµ +
{
µ
ση

}
ẋσẋη = 0, (1.15)

to get this simpler and, in some cases, more useful equation, getting rid of the
last term.

As a quick introduction, that is the usefulness of a metric: measuring distances
and norms of vectors. Still, there are other quantities that we cannot measure
with a metric, for example, the curvature of the manifold. We will need another
tool (not necessarily in combination with the metric) for computing them: the
affine connection.

1.2 Affine connection
Apart from the metric, we can have other tools needed for other operations. For
instance, even if we had a metric, we would not be able to compare the angle
between vectors at different points of the manifold. For accomplishing that, we
would need another instrument for translating vectors from one tangent space to
another, that is, for translating vectors without changing their direction. We call
this procedure parallel transport, and it is carried out by an affine connection.
Once we have it in our manifold, (M,Γ), we can transport vectors along curves
in the manifold, keeping them parallel to themselves by solving

γ̇σ∇σV µ = 0, (1.16)
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where γ̇ is the vector tangent to the curve and the covariant derivative ∇ is
defined as

∇µV ν = ∂µV
ν + Γ ν

µσ V σ, (1.17a)
∇µVν = ∂µVν − Γ σ

µν Vσ, (1.17b)

being Γ the affine connection. This derivative transforms as a tensor under general
coordinate transformations thanks to the non-tensorial character of the affine
connection, that counteracts the one coming from the partial derivative. This
fact gives rise to (1.17) for vectors, but it is different when acting on scalars,

∇µφ = ∂µφ, (1.18)

or, in general, on tensors,

∇µSν1...νn
ρ1...ρm

= ∂µS
ν1...νn

ρ1...ρm

+ Γ ν1
µσ Sσν2...νn

ρ1...ρm
+ · · ·+ Γ νn

µσ Sν1...νn−1σ
ρ1...ρm

− Γ σ
µρ1

Sν1...νn
σρ2...ρm

− · · · − Γ σ
µρm

Sν1...νn
ρ1...ρm−1σ . (1.19)

If we start transporting vectors, we can get some surprises. For example, let’s
take a two-dimensional sphere, S2. There, we pick a vector in the equator (vector
V in figure 1.2) and transport it to the pole along two different curves: on the
one hand, directly along a meridian, while on the other hand, we first move along
the equator line and then to the pole. We will end up with two different vectors,
even though they were parallel to the first. This is a consequence of the curvature
of the manifold: parallelism depends on the trajectory followed.

Thanks to this phenomena, we can measure the curvature of a space without
having to embed it in a bigger one. The curvature tensor (also called Riemann
tensor) is given by the connection as

R λ
µνρ = ∂µΓ λ

νρ − ∂νΓ λ
µρ + Γ λ

µσ Γ σ
νρ − Γ λ

νσ Γ σ
µρ . (1.20)

Having a general connection, not the particular case of Levi-Civita that we will
discuss later, the only symmetry this tensor has is an antisymmetry in the first
two indices,

Rµνρλ = −Rνµρλ. (1.21)
Due to that, it has three independent contractions,

Rµν = gσηRµσνη, R̃µν = gσηRµσην , R̄µν = gσηRµνση, (1.22)

that we will call the Ricci tensor, the co-Ricci tensor and the a-Ricci tensor
respectively. The most useful one is the Ricci tensor, that can be computed
directly as

Rµν = R σ
µσν = ∂µΓ σ

σν − ∂σΓ σ
µν + Γ σ

µη Γ η
σν − Γ σ

µν Γ η
ησ . (1.23)
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V

Figure 1.2: Transport of vector V along two paths (indicated with small arrows)
to the pole of a sphere.

Contracting all these tensors (1.22), one can only find a single scalar, the
curvature scalar (also called Ricci scalar),

R = gσηRση. (1.24)

These contractions of the Riemann tensor are so important because they are the
quantities physically given by dynamics. We will see that in more detail later on.

There are other two important quantities related with the affine connection
that get a special name: the torsion tensor,

T ρ
µν = Γ ρ

µν − Γ ρ
νµ , (1.25)

and the non-metricity tensor,

Qµνρ = −∇µgνρ. (1.26)

And there is a relation between the curvature tensor, the torsion and the com-
mutator of two covariant derivatives acting on scalars,

[∇µ,∇ν ]φ = −T σ
µν ∇σφ, (1.27)

vectors,

[∇µ,∇ν ]V ρ = R ρ
µνσ V σ − T σ

µν ∇σV ρ, (1.28a)
[∇µ,∇ν ]Vρ = −R σ

µνρ Vσ − T σ
µν ∇σVρ, (1.28b)
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and, in general, over (n,m)-type tensors,

[∇µ,∇ν ]Sρ1...ρn

λ1...λm
= R ρ1

µνσ Sσρ2...ρn

λ1...λm
+ · · ·+R ρn

µνσ S
ρ1...ρn−1σ

λ1...λm

−R σ
µνλ1

Sρ1...ρn

σλ2...λm
− · · · −R σ

µνλm
Sρ1...ρn

λ1...λm−1σ

− T σ
µν ∇σS

ρ1...ρn

λ1...λm
, (1.29)

The affine connection also gives us one more thing: the other type of geodesics.
The affine geodesics are characterized as the paths whose tangent vector are
parallel. For calculating its expression, we have to impose that the tangent vector
of the curve is transported parallel (1.16) along the own curve,

0 = γ̇σ∇σγ̇µ

= γ̈µ + Γ µ
ση γ̇ηγ̇σ, (1.30)

where we have used the chain rule,

γ̇σ∂σγ̇
µ = d

dτ
γ̇µ = γ̈µ. (1.31)

It is very important to keep in mind that they do not necessarily coincide
with metric geodesics. If we think of a straight line as we have always thought,
we see that they have essentially two properties: they are the shortest paths
between two given points, and they are the paths whose tangent vectors are all
parallel. We can generalize these two properties, but, as we have different tools for
measuring distances and parallelism, we will arrive at different results, in general.
One remarkable exception to this is the Levi-Civita connection, for which both
geodesics are the same. Actually, this connection has a lot of properties that
make it very special, deserving to be studied in particular.

1.2.1 Levi-Civita connection
This specific choice of connection, which we will note with a ring Γ̊ but we
will define later with precision, is not only very used by physicists but also by
mathematicians because of several reasons. One of them is simplification, if we
want to simplify the expressions involving torsion and non-metricity, we choose
a connection with two properties: not having torsion,

0 = T̊ ρ
µν = Γ̊ ρ

µν − Γ̊ ρ
νµ , (1.32)

and being metric compatible,

0 = Q̊µνρ = −∇̊µgνρ. (1.33)
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This choice also simplifies the Riemann tensor (1.20), which gain more symme-
tries: antisymmetric in first two, last two, and symmetric by swapping first two
and last two indices,

Rµνρλ = −Rνµρλ, Rµνρλ = −Rµνλρ, Rµνρλ = Rρλµν . (1.34)

Due to that, its only independent contraction (1.22) is the Ricci tensor, as the
others are related with it or vanishes,

R̃µν = −Rµν , R̄µν = 0. (1.35)

It turns out that the only connection that fulfil those two conditions (torsion-
less and metric-compatible) is the Levi-Civita connection, and it is very easy to
get its expression from them. Let’s write (1.33) with cyclic permutations of the
indices,

0 = ∂µgνρ − Γ̊ σ
µν gσρ − Γ̊ σ

µρ gνσ, (1.36a)

0 = ∂νgρµ − Γ̊ σ
νρ gσµ − Γ̊ σ

νµ gρσ, (1.36b)

0 = ∂ρgµν − Γ̊ σ
ρµ gσν − Γ̊ σ

ρν gµσ, (1.36c)

and, if we add (1.36a) to (1.36b), and then subtract (1.36c), we end up with

0 = ∂µgνρ + ∂νgρµ − ∂ρgµν −
(

Γ̊ σ
µν + Γ̊ σ

νµ

)
gσρ + T̊ σ

ρµ gσν + T̊ σ
ρν gµσ, (1.37)

where, if we use absence of torsion (1.32), we get

0 = ∂µgνρ + ∂νgρµ − ∂ρgµν − 2Γ̊ σ
µν gσρ, (1.38)

or, equivalently,
Γ̊ ρ
µν = 1

2g
ρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (1.39)

As we can see, this coincides with Christoffel symbols (1.11), which can be de-
fined whether having a connection or not. As a consequence of this, metric (1.15)
and affine (1.30) geodesics also coincide: this is another reason to choose the
Levi-Civita connection.

Also, with the Levi-Civita connection we can easily fulfil the requirements of
the equivalence principle because it can be set to zero at an arbitrary point, using
the locally inertial coordinates.

The expression for the Levi-Civita connection (1.39) shows the fact that we
can always construct the Levi-Civita connection corresponding to a metric. How-
ever, in principle, we are not forced to have a connection in our space, there exist
metric manifolds, (M, g), without the notion of parallelism. However, in general,
we will work with a metric-affine manifold, (M, g,Γ), where the connection ei-
ther can be the Levi-Civita connection or it can be completely unrelated to the
Levi-Civita connection of the chosen metric. We will have a look at the latter in
the following section.
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1.2.2 Other connections
If we choose a connection different from the Levi-Civita one, we have some strange
phenomena—strange in the sense that we are not used to it. However, it is
completely admissible from a mathematical point of view, so it deserves to be
studied.

First of all, expressions involving torsion (1.25) and non-metricity (1.26) get
harder, as they do not have to vanish, in general,

T ρ
µν 6= 0, Qµνρ 6= 0. (1.40)

It is important to notice that these two quantities are tensors, even though they
involve the connection in their definitions, so they cannot be set to zero at a
given point just by choosing appropriate coordinates, as we can do with the Levi-
Civita connection. This leads to the first problem when dealing with general
connections: the equivalence principle.

Basically, the equivalence principle tells us that we can choose some coordi-
nates so that we can recover the dynamics of free particles locally. This is easy
to carry out with metric geodesics (1.14), as we can always choose the correct
parameterization (to cancel last term of the equation) and coordinates (to cancel
Christoffel symbols) so that we end up with

ẍ = 0, (1.41)

recovering uniform linear motion.
However, with affine geodesics we can get in trouble. We will start by decom-

posing any connection in some useful parts to argue this,

Γ ρ
µν = Γ̊ ρ

µν + Ξ ρ
µν , (1.42)

where we will call Ξ the distortion tensor. We can split the distortion in several
different ways, for example, in its symmetric and antisymmetric parts,

Ξ ρ
µν = 1

2
(
S ρ
µν + T ρ

µν

)
, (1.43)

being T the torsion (1.25) and

S ρ
µν = S ρ

νµ = Ξ ρ
µν + Ξ ρ

νµ . (1.44)

This decomposition can be put into the affine geodesic (1.30) to get

0 = ẍµ + Γ̊ µ
ση ẋσẋη + S µ

ση ẋσẋη + T µ
ση ẋσẋη, (1.45)
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where the last addend is zero because the torsion is antisymmetric and contracted
with something symmetric. If we choose appropriate coordinates, we can again
cancel out Levi-Civita connection, but we end up with

0 = ẍµ + S µ
ση ẋσẋη, (1.46)

where the last term is proportional to the tensor S, that cannot be set to zero
at an arbitrary point with a change of coordinates due to its tensorial nature.
Then, we seem to have a problem with the equivalence principle and arbitrary
connections. Although questioning the equivalence principle has also been an
object of research [14], in our cases, these problems disappear thanks to a repa-
rameterization of the geodesics, as we will see in Chapter 2.

A new phenomenon is that the norm of a vector is not conserved when trans-
porting along a curve, even if the vector itself does not change. This is straight-
forward as the non-metricity is not equal to zero and the norm depends on the
metric,

γ̇σ∇σ|V | = γ̇σ∇σ
√
gηθV ηV θ = 1

2
√
gηθV ηV θ

V ηV θγ̇σ∇σgηθ. (1.47)

Other uncommon phenomena appear when we choose connection and met-
ric independently. For instance, we can define a two-dimensional surface whose
metric is the metric of a plane but whose connection is the one corresponding
to a sphere in stereographic projection. Then, we would have that all vectors
in figure 1.3 are parallel, so that the curvature of the manifold is the one of a
sphere. However, the pole of the sphere would be at infinite distance, as we are
using the metric of the plane for measuring distances.

As we mentioned before, due to the completely different nature of metric
and affine geodesics, when choosing general connections they do not coincide.
This can be a problem, as we would have to choose between one of them when
postulating the movement of a test particle. Both of them derive from very well
established physical principles: metric geodesics from the principle of least action,
and affine geodesics as the generalization of Newton’s second law. Rejecting any
of them would be a problem, so it would be desirable that they coincide somehow.
We will get more deeply into this in Chapter 2.

1.3 Second-order formalism
Now that we have a notion of what a connection is, let’s start introducing what
we call the second-order formalism.

In General Relativity, as in many theories, we apply the principle of least ac-
tion to get the equations of motion of our system. We have a manifold equipped
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Figure 1.3: Plane with the affine connection of a sphere: all vectors are parallel
transported along the dashed line.

with a metric and the Levi-Civita connection, being both dynamic, so the curva-
ture is determined by the distribution of energy-momentum. The action, hence,
will be of the form

S =
∫
d4xL(g,Γ(g)). (1.48)

Let’s get a closer look of how we obtain equations of motion. In the action, we
substitute the curvature tensors in terms of the metric and the affine connection,
using (1.24) and (1.23). After that, as we chose the Levi-Civita connection, we
write it in terms of the metric (1.39). Thus, we have an action that only depends
on the metric, and we can use Euler-Lagrange formula to get the conditions of
extrema,

δS

δgµν
= 0 ⇔ ∂L

∂gµν
− ∂σ

∂L
∂(∂σgµν) + ∂η

(
∂σ

∂L
∂(∂η∂σgµν)

)
= 0, (1.49)

this is what we call the second-order formalism or metric formalism.
It is worth noticing that, at first glance at (1.49) and having terms in the

action that are quadratic in second-order derivatives of the metric, one would
expect to get equations of motion with derivatives of order greater than two.
That, though, does not happen because, for this particular action, the sum of
all problematic terms vanishes. This does not occur by chance, Einstein-Hilbert
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action is a particular case of Lovelock Theories and, as we will see in Chapter 3,
they share this property.

The second-order formalism is very widely used, as it was the original pro-
cedure when General Relativity was developed and so it plays a role on its suc-
cess. Despite that, mathematically speaking, metric and affine connection are
not necessarily related, so it is more desirable to have a physical mechanism that
naturally selects Levi-Civita connection among others. Here is where first-order
formalism comes into play.

1.4 First-order formalism
In first-order formalism, also called metric-affine formalism, one does not assume
any relation between the metric and the connection: they are both degrees of
freedom of the theory. Accordingly, to get the extrema of the action, now it is
necessary to calculate the variation of the action with respect to both the metric
and the connection,

δS

δgµν
= 0, (1.50a)

δS

δΓ ρ
µν

= 0. (1.50b)

This formalism was first done by Einstein in 1925 in [15], although it is wrongly
called Palatini formalism sometimes [17], and it has been applied to several fields
in and out of gravitation. For example, solid-state physics using torsion and non-
metricity as a way to describe defects in crystals.

It has been gathering some research impetus for two decades, as we can see
in the reviews [19, 43, 36], being proposed as a more simple solution to explore
for solving dark matter and dark energy problems in cosmology [35] and different
extensions of gravity as f(R)-gravity [34, 9, 10].

From a practical point of view, the first advantage of this formalism is that
equations of motion are much easier to compute, as there are not any derivatives
of the metric in the action anymore—they all came from Levi-Civita connection.
Hence, Euler-Lagrange equation gets simplified to one single term and Einstein
equation is easily obtained from (1.50a) as

δS

δgµν
= 0 ⇔ ∂L

∂gµν
= 0. (1.51)

On the other hand, from a theoretical point of view, the advantage of this
formalism is that we can now justify the use of Levi-Civita connection if it is
a solution of (1.50b), as done in [5, 16, 13]. In fact, we could go further: we
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can take this formalism as fundamental and see if Levi-Civita connection is the
only solution of this, so its use is completely justified, or if actually there are
other solutions that deserve the same status. We will go deeper on this topic in
Chapter 2 and Chapter 4.

If first- and second-order formalism gave different results, we would have to
choose between one of them, and that is not desirable. We will see in Chapter 2
that, for the Einstein-Hilbert action, they are completely equivalent.
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Chapter 2

The Einstein-Hilbert action

At the beginning, when Einstein proposed General Relativity, he showed that the
dynamics of the system was governed by his equations of motion,

Rµν −
1
2gµνR = −κTµν , (2.1)

without having an action from which to derive them. At about the same time,
Hilbert presented the Einstein-Hilbert action as the base of the theory. Although
it was in four dimensions, we will generalize it for any number of dimensions from
now on,

S = 1
2κ

∫
dDx

√
|g|R, (2.2)

where R is the curvature scalar introduced in (1.24) and κ = 8πG, with G the
gravitational constant.

From this action, it is possible to derive the homogeneous Einstein equations.
As we will see later, we can also add interaction terms and get the Einstein
equations (2.1). This is traditionally done using the second-order formalism, the
one introduced with this action, as we mentioned in Chapter 1. However, there
are other ways to get the equations of motion, and we will introduce also the first
order formalism to the reader, after an explanation in detail of the traditional
one.

2.1 Second-order formalism
Conventionally, in General Relativity, the affine connection is already chosen and
cannot change, that is, the Levi-Civita connection,

Γ̊ ρ
µν = 1

2g
ρσ (∂µgσν + ∂νgµσ − ∂σgµν) . (2.3)

15
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From that, one could write the curvature tensors in terms of the metric. For now,
we will split the variation of the action (2.2) in the following manner,

δS = (δS)1 + (δS)2 + (δS)3, (2.4)

being

(δS)1 = 1
2κ

∫
dDx

√
|g|gσηδR̊ση, (2.5a)

(δS)2 = 1
2κ

∫
dDx

√
|g|R̊σηδgση, (2.5b)

(δS)3 = 1
2κ

∫
dDxR̊δ

√
|g|. (2.5c)

We would like to express all this in terms of the variation of the metric. However,
it is more convenient to express it in terms of the variation of the inverse metric.
As gµσgσν = δµν and the variation of the Kronecker delta is zero, we can relate
those two variations as

δgµν = −gµσgνηδgση, (2.6)

so they will share the extrema. Thus, we have (2.5b) ready.
For (2.5c), we will make use of the expression for the variation of the metric

determinant (A.12) (see Appendix A for a full derivation), so we can write this
part as

(δS)3 = 1
2κ

∫
dDx

√
|g|
(
−1

2gσηR̊
)
δgση. (2.7)

Finally, for (2.5a), we have to go step by step. First of all, we will take into
account that the Ricci tensor is given by

R̊µν = ∂µΓ̊ σ
σν − ∂σΓ̊ σ

µν + Γ̊ σ
µη Γ̊ η

σν − Γ̊ σ
µν Γ̊ η

ησ . (2.8)

We want to express the variation of the Ricci tensor with respect to the metric,
so we will start by expressing this variation in terms of the variation of the
connection,

Γ̊ ρ
µν → Γ̊ ρ

µν + δΓ̊ ρ
µν , (2.9)

and, later, we will write that variation in terms of the variation of the metric.
For the former, we will make use of the Palatini identity (B.4) (see Appendix B
for a full derivation),

δR̊µν = ∇̊µ(δΓ̊ σ
σν )− ∇̊σ(δΓ̊ σ

µν ). (2.10)
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Thus, the contribution (2.5a) can be written as

(δS)1 = 1
2κ

∫
dDx

√
|g|gση

(
∇̊σ(δΓ̊ θ

θη )− ∇̊θ(δΓ̊ θ
ση )

)
= 1

2κ

∫
dDx

√
|g|∇̊θ

(
gσθ · δΓ̊ η

ησ − gση · δΓ̊ θ
ση

)
, (2.11)

where we have used metric-compatibility. Nevertheless, this is an integral of the
divergence of a vector. By Stokes’ theorem, this is related with its boundary
evaluation. If we call V the integration volume, the integral becomes

(δS)1 = 1
2κ

∫
∂V

dΣθ
√
|g|
(
gσθ · δΓ̊ η

ησ − gση · δΓ̊ θ
ση

)
, (2.12)

where dΣ is the differential of surface vector, whose direction is normal to the
surface.

Now, we can compute the expression for the variation of the connection in
terms of the variation of the metric and its derivative,

δΓ̊ ρ
µν = 1

2δg
ρσ (∂µgσν + ∂νgµσ − ∂σgµν)

+ 1
2g

ρσ
(
∂µ(δgσν) + ∂ν(δgµσ)− ∂σ(δgµν)

)
. (2.13)

And, as a side note, we can write this variation in a manifestly covariant form,
due to its tensorial nature,

δΓ̊ ρ
µν = −1

2

(
gσµ∇̊ν(δgσρ) + gσν∇̊µ(δgσρ)− gµσgνη∇̊ρ(δgση)

)
, (2.14)

but it is not very useful for our current goal.
Putting (2.13) into (2.12) leads to several terms in the integral. We can

set a part of this contribution to zero by setting the variation of the metric to
vanish at the boundary, but one subtle contribution stays: the one coming from
the derivative of the variation of the metric. As a result, the final expression
for (2.5a) is

(δS)1|δg=0 = 1
2κ

∫
∂V

dΣθ
√
|g|gσθgηξ

(
∂σ(δgηξ)− ∂ξ(δgησ)

)
. (2.15)

Technically, in order to counteract this term and be able to obtain Einstein
equations for any volume V , we should add one more term to the action, the
Gibbons-Hawking-York term [50, 18],

SGHY = 1
2κ

∫
∂V

dD−1x

√
|h̄|nσh̄αβ ε̄ηαε̄θβ(∂σgηθ − ∂ηgσθ), (2.16)
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where y are the coordinates that describe the hypersurface ∂V , n is the orthogonal
vector pointing to the outside of this surface and h̄ is the induced metric. To
calculate it, we can compute the length element in this surface,

ds̄2 = gση dx
σdxη|∂V

= gση
∂xσ

∂yα
∂xη

∂yβ
dyαdyβ

= h̄αβdy
αdyβ , (2.17)

where
h̄αβ(y) = ε̄σαε̄

η
βgση(x). (2.18)

Considering this, we only get this boundary term from (2.5a). However, we
get all the necessary terms from (2.5b) and (2.5c),

δS = 1
2κ

∫
dDx

√
|g|
(
R̊ση −

1
2gσηR̊

)
δgση. (2.19)

Demanding the variation of the action to be zero for any symmetric variation of
the metric, the symmetric part of the term between parenthesis has to be zero.
As it is already symmetric,

R̊µν −
1
2gµνR̊ = 0, (2.20)

and we obtain the equations of motion of the metric (in vacuum): Einstein equa-
tions. These are second-order differential equations, as the curvature tensor and
scalar have second-order derivatives of the metric. This happens thanks to the
fact that the only term that could give higher-order derivatives, the term (2.5a),
only has an effect on the boundary term, but not on the equations of motion.

If we want to include matter or energy, we can add other terms to the action,

S = 1
2κ

∫
dDx

√
|g|R+ Sm, (2.21)

so when taking the variation of that, we get

δS = δSEH + δSm. (2.22)

Then, for example, if the matter action depends on the metric and a scalar field,
Sm = Sm(g, φ), we would get two terms from its variation,

δSm =
∫
dDx

(
δSm

δgση
δgση + δSm

δφ
δφ

)
. (2.23)
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Hence, the equation of motion of the metric will be

R̊µν −
1
2gµνR̊ = −κTµν , (2.24)

getting the first member of the equation as we have shown along this section, and
the energy-momentum tensor from the matter action as

Tµν = 2√
|g|

δSm

δgµν
, (2.25)

depending on its explicit form as a functional of the metric.
On the other hand, the equation of motion corresponding to the scalar field

would be computed as

0 = δSm

δφ
, (2.26)

also depending on the functional dependency of the action.

2.2 First-order formalism
As we have studied in detail the second-order formalism, the one developed orig-
inally with the theory and that remains widely used, we now are ready to under-
stand the change of paradigm that first-order formalism is.

As previously indicated, in first-order formalism, metric and connection are
not related because we do not choose Levi-Civita. Instead, we let the connection
vary freely, and we derive the equations of motion looking for an extremum of
the action.

2.2.1 Equations of motion
Again, we start with the Einstein-Hilbert action (2.2). However, this time we
consider the Riemann tensor to depend on the affine connection Γ as a variable
of movement independent of the metric. Analogously to (2.5), we get

(δS)1 = 1
2κ

∫
dDx

√
|g|gσηδRση, (2.27a)

(δS)2 = 1
2κ

∫
dDx

√
|g|Rσηδgση, (2.27b)

(δS)3 = 1
2κ

∫
dDxRδ

√
|g|. (2.27c)
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As these variations should be in terms of the variation of the (inverse) metric and
the variation of the connection, we can follow the previous procedure for (2.27c),
as in (2.7),

(δS)3 = 1
2κ

∫
dDx

√
|g|
(
−1

2gσηR
)
δgση. (2.28)

That way, the total contribution from the variation of the metric is

δS|δΓ=0 =
∫
dDx

√
|g| 1

2κ

(
Rση −

1
2gσηR

)
δgση. (2.29)

On the other hand, for (2.27a) we have to use again the Palatini identity (B.4)
to get, analogously to (2.11),

(δS)1 = 1
2κ

∫
dDx

√
|g|gση

(
∇σ(δΓ θ

θη )−∇θ(δΓ θ
ση ) + T ξ

σθ · δΓ
θ

ξη

)
. (2.30)

Note that, in contrast with (2.11), as the connection is not metric-compatible,
this is not a divergence. We will do integration by parts, eliminating derivatives
of any variation. Using (C.10) (in Appendix C there is a detailed explanation),

(δS)1 = − 1
2κ

∫
dDx

√
|g|
(
∇σgση + 1

2g
σηgξϕ∇σgξϕ + gσηT ξ

σξ

)
δΓ θ

θη

+ 1
2κ

∫
dDx

√
|g|
(
∇θgση + 1

2g
σηgξϕ∇θgξϕ + gσηT ξ

θξ

)
δΓ θ

ση

+ 1
2κ

∫
dDx

√
|g|gσηT ξ

σθ · δΓ
θ

ξη . (2.31)

Boundary terms do not appear as we can set the variation of the connection to
be zero in the boundary. If we factor out the variation, we get the total variation
of the action coming from the connection,

δS|δg=0 = − 1
2κ

∫
dDx

√
|g|
(
∇σgσβδαγ + 1

2g
σβgξϕ∇σgξϕδαγ + gσβT ξ

σξ δαγ

+∇γgαβ + 1
2g

αβgξϕ∇γgξϕ + gαβT ξ
γξ

+ gσβT α
σγ

)
δΓ γ

αβ . (2.32)

With all this, we are ready to write the equations of motion. For the metric,
from (2.29), we get

R(µν) −
1
2gµνR = 0 (2.33)
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where the parenthesis in subindices mean symmetrization (D.2) (see Appendix D
for a full explanation of this notation), and for the connection, from (2.32),

0 = ∇σgσνδµρ + 1
2g

σνgξϕ∇σgξϕδµρ + gσνT ξ
σξ δµρ

+∇ρgµν + 1
2g

µνgξϕ∇ρgξϕ + gµνT ξ
ρξ + gσνT µ

σρ . (2.34)

For adding minimally-coupled matter to the theory,

S = 1
2κ

∫
dDx

√
|g|R+ Sm(g), (2.35)

we proceed in the same way we did in the second-order formalism, as in (2.22),
to get the equation of motion

R(µν) −
1
2gµνR = −κTµν , (2.36)

or, if it also depends on a scalar field, we get (2.26), too.
Note that, as the variation of the metric is restricted to be symmetric, the

equation of motion of the metric (2.33) involves only the symmetric part of the
Ricci tensor, not the whole tensor. However, for the connection equation (2.34),
we do not have any restrictions as the variation is a completely unconstrained
tensor.

These two equations involve the metric and the connection simultaneously, so
one should choose wisely how to proceed to obtain the general solution for them.
First of all, we will simplify the connection equation.

2.2.2 Simplification
Following the steps in [3], we will simplify the equation of motion of the connec-
tion, as it is difficult to solve it in its current form.

This form gives us a hint of how to proceed, though. If we take a deeper look
at (2.34), it seems that the first line is the trace of the second except for the last
addend, so we think about subtracting that trace and check if we are getting an
equivalent equation.

We will start by taking the δρµ trace,

0 = (D − 1) · ∇σgσν + (D − 1) · 1
2g

σνgθξ∇σgθξ + (D − 2) · gσνT η
ση . (2.37)

From there, we can find the non-metricity trace,

∇σgσν = −1
2g

σνgθξ∇σgθξ + D − 2
D − 1g

σνT η
ση . (2.38)
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If we substitute that back in (2.34),

0 = − 1
D − 1g

σνT η
ση δµρ +∇ρgµν + 1

2g
µνgση∇ρgση + gµνT σ

ρσ + gσνT µ
σρ , (2.39)

we get a simpler equation. To see that this new equation is equivalent to (2.34),
we can take the trace again. We will also obtain (2.37), so we can revert the
steps, getting the equivalence.

Below, we will simplify it even more. Let’s start by taking gµν trace,

0 = − 1
D − 1T

σ
ρσ + gση∇ρgση +D · 1

2g
ση∇ρgση +D · T σ

ρσ + T σ
σρ . (2.40)

Considering that

gση∇ρgση = ∇ρ(gσηgση)− gση∇ρgση
= −gση∇ρgση, (2.41)

the trace results

0 =
(
D − 1− 1

D − 1

)
T σ
ρσ +

(
D

2 − 1
)
gση∇ρgση

= D(D − 2)
D − 1 T σ

ρσ + D − 2
2 gση∇ρgση. (2.42)

Hence, we can now write the last addend in terms of the trace of the torsion,

1
2g

ση∇ρgση = − D

D − 1T
σ

ρσ . (2.43)

Substituting back in (2.39),

0 = ∇ρgµν −
1

D − 1g
σνT η

ση δµρ −
1

D − 1g
µνT σ

ρσ + gσνT µ
σρ . (2.44)

Here, again, we can retake the trace to recover (2.40), so the equivalence with
the equation of motion is still guaranteed.

As the last simplification, we will lower all the indices. For the first addend,
we should notice that

gµσgνη∇ρgση = ∇ρ(gµσgνηgση)− gσηgµσ∇ρgνη − gσηgνη∇ρgµσ
= ∇ρgµν − δηµ∇ρgνη − δσµ∇ρgµσ
= −∇ρgµν . (2.45)
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Then, changing the sign, lowering the indices, and rearranging them, the simplest
equation that we can obtain is

0 = ∇ρgµν + 1
D − 1gµρT

σ
νσ − 1

D − 1gµνT
σ

σρ − gµσT σ
νρ , (2.46)

which is much more easy to solve, even though it depends on the number of
dimensions.

2.2.3 Particular solutions

In this subsection we will show some solutions and some properties of the so-
lutions. First of all, it is straightforward to see that Levi-Civita connection is
a solution, as every addend in (2.46) is proportional to the torsion or the non-
metricity tensors.

Also, it is easy to see that absence of torsion implies metric compatibility
from (2.46), as only the first term is not proportional to the torsion,

T µ
νρ = 0⇒ 0 = ∇ρgµν . (2.47)

Similarly, metric compatibility implies absence of torsion,

∇ρgµν = 0⇒ 0 = 1
D − 1gµρT

σ
νσ − 1

D − 1gµνT
σ

σρ − gµσT σ
νρ (2.48)

⇒ 0 = T µ
νρ . (2.49)

These two results mean that if we impose that our connection is either metric-
compatible or torsionless, we get the other property from the equation of motion
and, then, the only solution is Levi-Civita connection.

2.2.4 General solution

After seeing some partial results or properties of the equation of motion of the
connection, we will solve it generally.

As a naive thought, we would suspect Levi-Civita to be the only solution. We
have already seen that this is a solution, but we will see that it is not the only
solution.

We will follow a similar procedure than in (1.36) for Levi-Civita, that is, we
will write the equation of motion (2.46), expanding the covariant derivative and
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the last torsion in terms of the connection, three times, permuting the indices,

0 = ∂ρgµν − Γ σ
ρµ gσν − Γ σ

νρ gµσ + 1
D − 1gµρT

σ
νσ − 1

D − 1gµνT
σ

σρ , (2.50a)

0 = ∂µgνρ − Γ σ
µν gσρ − Γ σ

ρµ gνσ + 1
D − 1gνµT

σ
ρσ − 1

D − 1gνρT
σ

σµ , (2.50b)

0 = ∂νgρµ − Γ σ
νρ gσµ − Γ σ

µν gρσ + 1
D − 1gρνT

σ
µσ − 1

D − 1gρµT
σ

σν , (2.50c)

then, adding (2.50a) and (2.50b), and subtracting (2.50c),

0 = ∂ρgµν + ∂µgνρ − ∂νgρµ − 2Γ σ
ρµ gσν −

2
D − 1gµνT

σ
σρ . (2.51)

Raising the ν index and finding Γ,

Γ ν
ρµ = 1

2g
νσ (∂ρgµσ + ∂µgσρ − ∂σgρµ)− 1

D − 1gµνT
σ

σρ

= Γ̊ ν
ρµ −

1
D − 1T

σ
σρ δνµ. (2.52)

That way, we have written the connection in terms of the Levi-Civita connec-
tion and the irreducible elements of the torsion: in this case, only the trace of
the torsion. Then, if we name this trace A,

Γ ρ
µν = Γ̊ ρ

µν +Aµδ
ρ
ν , (2.53)

we can see that, substituting it back in the equation of motion (2.46), it is au-
tomatically solved for any vector field A, so that the trace of the torsion is
completely undetermined by the equations of motion. We have found the most
general solution to them (2.53), that we will call Palatini connections follow-
ing the nomenclature of [3], and we will denote the quantities related with this
solution with a bar.

We have not shown yet what is the meaning of that vector field, but we will
find it out shortly. Before that, let’s check what happens with the equations of
motion of the metric.

2.2.5 Curvature tensors
Below we will see some properties of the solution. We will start by calculating
torsion and non-metricity of this solution, and the curvature tensors, as that will
let us see what happens with the equation of motion of the metric (2.33).

It is a short calculation to get torsion and non-metricity of this solution,

T̄ ρ
µν = Aµδ

ρ
ν −Aνδρµ, Q̄µνρ = −∇̄µgνρ = 2Aµgνρ, (2.54)
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which are both non-zero. Thus, the curvature tensors have less symmetries, as
we will see in a moment.

If we put our solution (2.53) into the definition of the Riemann tensor (1.20),
an easy calculation let us see that it yields

R̄ λ
µνρ = R̊ λ

µνρ + Fµνδ
λ
ρ , (2.55)

where
Fµν = ∂µAν − ∂νAµ. (2.56)

This Riemann tensor does not have the same symmetries as the Levi-Civita one,
it is just antisymmetric in the two first indices by definition.

From the expression for the Riemann tensor (2.55), contracting the second
and fourth indices, as in (1.23), we get the Ricci tensor,

R̄µν = R̊µν + Fµν , (2.57)

which only differs with the Levi-Civita one in F , an antisymmetric tensor. That
way, the symmetric part is the same as Levi-Civita, while the new antisymmetric
part is F . It follows that the Ricci scalar is the same as in Levi-Civita,

R̄ = R̊. (2.58)

If we put these results into the equation of motion of the metric (2.33), we
obtain

R̊µν −
1
2gµνR̊ = −κTµν , (2.59)

as the matter field is minimally coupled, so the energy-momentum tensor does not
change. Then, we get the same equation of motion of the metric, the Einstein
equation and, as a consequence, the dynamics is the same. However, we will
continue studying the dynamics to understand the meaning of A. The next thing
that we will do is checking what happens with geodesics.

2.2.6 Geodesics
First of all, remember that there are two types of geodesics that in Levi-Civita
match: metric and affine geodesics. As the metric is the one that satisfies the Ein-
stein equation, metric geodesics remain the same in this formalism. Nevertheless,
affine geodesics change. If we use the definition (1.30), we see

0 = ẋσ∇̄σẋµ

= ẍµ + Γ̊ µ
ση ẋσẋη +Aσẋ

σẋµ. (2.60)
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Figure 2.1: Same pregeodesics: geodesics with the same trajectory parameterized
with different parameters, each marker representing an equal increment of it (top:
parameterized with a general parameter; bottom: parameterized by arc length).

Now, we can compare this result with the metric geodesic (1.14), so we see that
the difference can be understood as a change of parameterization,

−Aσẋσẋµ = s̈

ṡ
ẋµ. (2.61)

In this case,

s(λ) =
∫ λ

0
e−G(λ′)dλ′, G(λ) =

∫ λ

0
ẋρAρdλ

′, (2.62)

and taking into account that the dot represents derivation with respect to the
parameter of the curve, λ in this case.

We can now understand the degree of freedom introduced by A in this the-
ory: it can be absorbed reparameterizing geodesics. Geodesics have the same
trajectory, but they are not parameterized with the arc length (proper time),
but with another parameter (see figure 2.1). This does not affect physics, as the
parameterization does not play any role. Also, in Section 3.6, we will see that
there is a symmetry of the Einstein-Hilbert action of which A is a parameter, and
hence its absence of physical effect. We will also see other theories that do not
have this Palatini connections as a solution, although there is always freedom to
reparameterize.

As an interesting fact, without being a solution of the equations of motion,
there are also other connections that give same pregeodesics as Levi-Civita. In
fact, all the connections that have the same pregeodesics are called projectively
related, and all the connections projectively related with Levi-Civita have the
form [44]

Γ ρ
µν = Γ̊ ρ

µν +Aµδ
ρ
ν +Bνδ

ρ
µ. (2.63)
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However, this kind of connections leads to much more complicated curvature
tensors,

R λ
µνρ = R̊ λ

µνρ + Fµν(A)δλρ + (∇µBρ −BµBρ)δλν − (∇νBρ −BνBρ)δλµ, (2.64)

except when
∇µBν = BµBν . (2.65)

Apart from this highly exceptional case, the symmetric part of the Ricci tensor
does not coincide con Levi-Civita any more, so we cannot recover the Einstein
equation from it and then we cannot recover the dynamics.

2.2.7 Geodesic deviation
As geodesics are the same, we are going to take a look at the geodesic deviation.
We look at this because in geodesic deviation we can see contributions of the
Riemann tensor itself, not through its contraction, the Ricci tensor. As the
Riemann tensor of the Palatini connections has a greater discrepancy of its Levi-
Civita equivalent than the Ricci tensor, this is an interesting case.

First of all, we should derive the formula for a general connection, which was
first done in [3]. Let γη(λ) be a family of geodesics such that η identifies different
geodesics of the family and λ parameterizes the points of the geodesic. This
describes a surface x(λ, η) where we can use λ and η as coordinates.

Hence, we can define two vectors tangent to the surface:

uµ = ∂xµ

∂λ
, sµ = ∂xµ

∂η
, (2.66)

so that u gives a notion of the velocity along the geodesic and s of the distance
between geodesics. As they form a basis of the surface x(λ, η), it is followed that

[u, s]µ = 0⇔ uσ∂σs
µ − sσ∂σuµ = 0 (2.67)

⇔ uσ∇σsµ − sσ∇σuµ = T µ
ση uσuη. (2.68)

We can define two more vectors,

V µ = uσ∇σsµ, Aµ = uσ∇σV µ, (2.69)

which represents the change of separation between geodesics at first and second
order. We can identify V with the recessional velocity and A with the relative
acceleration between geodesics.
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The geodesic deviation is the relation between this relative acceleration A and
the curvature of the manifold, and can be written as

Aµ = uσ∇σ(uη∇ηsµ)
= uσ∇σ(sη∇ηuµ + T µ

ηθ uηsθ)

= uσ∇σ(sη∇ηuµ) + uσ∇σ(T µ
ηθ uηsθ), (2.70)

where we have used (2.68). If we also use the Leibniz rule, we get

Aµ = (uσ∇σsη)∇ηuµ + uσsη∇σ∇ηuµ + uσ∇σ(T µ
ηθ uηsθ)

= (sσ∇σuη + T η
σθ uσsθ)∇ηuµ + uσ∇σ(T µ

ηθ uηsθ)

+ uσsη(∇η∇σuµ +R µ
σηθ u

θ − T θ
ση ∇θuµ), (2.71)

and we have used again (2.68) in addition to (1.28a). If we expand the products,
we realize that there are two terms than cancel each other,

Aµ = (sσ∇σuη)∇ηuµ + uσ∇σ(T µ
ηθ uηsθ)−R µ

σηθ s
σuηuθ

+ uσsη∇η∇σuµ. (2.72)

If now we try to use the Leibniz rule again to write the last addend in a similar
way to the first,

Aµ = (sσ∇σuη)∇ηuµ + uσ∇σ(T µ
ηθ uηsθ)−R µ

σηθ s
σuηuθ

+ sη∇η(uσ∇σuµ)− (sη∇ηuσ)∇σuµ, (2.73)

we can see that the first addend cancel with the last one, and the second last one
is identically zero because of the geodesic equation. Hence, we end up with

Aµ = uσ∇σ(T µ
ηθ uηsθ)−R µ

σηθ s
σuηuθ. (2.74)

We have done this calculation for a family of geodesic parameterized by just
one parameter, but we can generalize it to a congruence of geodesics, where we
call ẋ the vector parallel to the geodesics and δx the displacement vector. Thus,
the general formula is

ẋσ∇σ(ẋη∇σδxµ) +R µ
σηθ δx

σẋηẋθ − ẋσ∇σ(T µ
ηθ ẋηδxθ) = 0. (2.75)

There are discrepancies with respect to the expression for the Levi-Civita con-
nection: the last addend is new and the Riemann is different. As A cannot be
physical, we should be able to get rid of these differences. To do that, we are
going to reparameterize this surface analogously as we did for each geodesic.
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In fact, writing explicitly the parameters, in our case, we can see that this
expression for the geodesic deviation,

∂xθ

∂λ
∇̄θ
(
∂xξ

∂λ
∇̄ξ

∂xµ

∂η

)
+ R̄ µ

θξϕ

∂xθ

∂η

∂xξ

∂λ

∂xϕ

∂λ
− ∂xθ

∂λ
∇̄θ
(
T̄ µ
ξϕ

∂xξ

∂λ

∂xϕ

∂η

)
= 0,

(2.76)
can be mapped to the expression for Levi-Civita connections,

∂xθ

∂τ
∇̊θ
(
∂xξ

∂τ
∇̊ξ

∂xµ

∂σ

)
+ R̊ µ

θξϕ

∂xθ

∂σ

∂xξ

∂τ

∂xϕ

∂τ
= 0, (2.77)

under the reparameterization

∂xµ

∂λ
= ∂τ

∂λ

∂xµ

∂τ
,

∂xµ

∂η
= ∂τ

∂η

∂xµ

∂τ
+ ∂xµ

∂σ
, (2.78)

being

τ = τ(λ, η) =
∫ λ

0
e−G(λ′,η)dλ′, G(λ, η) =

∫ λ

0

∂xθ

∂λ′
Aθdλ

′. (2.79)

Thus, Palatini and Levi-Civita connections have the same geodesic deviation,
as the expressions (2.76) and (2.77) are equivalent, and we have seen that this
change of parameter is completely defined by A.

2.2.8 Homothety
Another remarkable property of Palatini solutions is that the parallel transport
of a vector under any trajectory is homothetic to the Levi-Civita one. In fact, if
we calculate the difference between the parallel transport under these two,

ẋσ∇̄σV µ − ẋσ∇̊σV µ = ẋσAσV
µ, (2.80)

we can see that it is proportional to the vector itself. This means that when
parallel transporting a vector using Levi-Civita connection or any of the Palatini
connections, the result is different, but the difference is only a proportionality
coefficient. In particular, if we call V̊ the result of transporting along a curve
xµ(λ) with Levi-Civita connection, then the result along the same curve according
to Palatini connections is given by

V̄ µ(λ) = e−G(λ)V̊ µ(λ), (2.81)

where G was defined in (2.62). As we can see, the proportionality coefficient
depends on the curve, but it does not depend on the vector itself. Then, we
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can say that Palatini transport is the same as Levi-Civita transport composed
with a homothety. In other words, the vector changes, but only because its norm
changes, the direction does not change.

Thus, the variation of the norm under parallel transport was expected as
Palatini connections are not metric compatible. When a connection is not metric
compatible, the scalar product is not conserved when transporting along a curve.
In our case,

ẋθ∇̄θ (gσηV σW η) = ẋθ∇̄θgσηV σW η = 2ẋθAθgσηV σW η = 2G′(λ)VσWσ, (2.82)

where we have taken into account that V and W are transported along x or, in
other words,

ẋσ∇σV µ = ẋσ∇σWµ = 0. (2.83)
As a curiosity, we can demonstrate that the Palatini connections are the only

connections yielding this homothety property when transporting any vector along
any curve. Let Γ be an arbitrary connection that we will decompose as in (1.42).
Then, it yields homothetic parallel transport with respect to Levi-Civita if and
only if

ẋσΞ µ
ση V σ = f(λ)V µ (2.84)

for some function f(λ) that may depend on the curve followed. If we want this
to be true for all vectors, then it must be

ẋσΞ µ
σν = f(λ)δµν . (2.85)

This can also be written as

ẋσΞ µ
σν = ẋσAσδ

µ
ν , (2.86)

and if we want this to be true for every curve, it has to be

Ξ ρ
µν = Aµδ

ρ
ν (2.87)

or, in other words, the connection has to be a Palatini connection.
The meaning of this fact is that if we measure distances with the metric and

directions with the affine connection, we do not need the Levi-Civita connection,
but any of the Palatini connections to get the correct result.

2.2.9 Interpretation
We have seen that the most general connection allowed by the first-order for-
malism in the Einstein-Hilbert action, even allowing minimally coupled matter
terms, is given by the non-symmetric and non-metric compatible connection

Γ̄ ρ
µν = Γ̊ ρ

µν +Aµδ
ρ
ν , (2.88)
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with A an arbitrary but non-dynamical vector field. We will argue more about
the nature of this vector A in Section 3.6.

We have shown some properties of this connection. First of all, it is the only
connection, apart from the exceptional case of (2.65), that has the same pre-
geodesics as Levi-Civita and at the same time conserves the form of the Einstein
equations. On the other hand, its parallel transport is very similar to the Levi-
Civita one, only differing in the resulting norm, due to non-metricity. Lastly, they
preserve the dynamics of the second-order formalism with Levi-Civita connection.

Summing up, the answer to our original problem, whether the Levi-Civita
connection was the only solution in the first-order formalism or not, is a bit
subtler than expected: not only the Levi-Civita connection, but the entire family
of Palatini connections are singled out by the variational principle and, from a
mathematical point of view, there is no reason to assign a preferred status to
Levi-Civita. However, since all Palatini connections lead to the same physics,
the Levi-Civita connection has the virtue of being the simplest representative of
a class of physically indistinguishable connections.
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Chapter 3

Lovelock Theories

As we know that General Relativity cannot be the final answer, people are trying
to find other theories. As we already said, there are several options, but the path
followed by this thesis will be to find acceptable corrections to General Relativity.

However, Lovelock’s theorem [32] says that, in four dimensions, the only pos-
sible second-order differential equations of motion coming from an action are the
Einstein equations. That implies a kind of uniqueness in the Einstein-Hilbert
plus the cosmological constant action, where only total derivatives can be added
to modify it. An interesting case in four dimensions of a total derivative is the
Gauss-Bonnet term.

This term is known since 1938, when Lanczos [30] tried to add more terms to
the Einstein-Hilbert action. He discovered that the second-order curvature term
given by

αR̊2 + βR̊σηR̊
ση + γR̊σηθξR̊

σηθξ (3.1)

yields second-order differential equations if and only if (α, β, γ) = (1,−4, 1). With
those coefficients, it is called nowadays the Gauss-Bonnet term,

R̊2 − 4R̊σηR̊ση + R̊σηθξR̊
σηθξ. (3.2)

This is expected because this term is a total derivative in four dimensions. We
are going to demonstrate it in the following section.

3.1 Gauss-Bonnet as a total derivative
As can be seen in [49], it is not difficult to write Gauss-Bonnet Lagrangian as
a total derivative in four dimensions. We will work with vielbein formalism as
it is especially easy to demonstrate it. In this formalism, the metric degrees of

33
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freedom are represented by the vielbeins, eaµ. These are the components of a local
orthonormal coframe. Thus, the metric become locally the Minkowski metric,
ηµν , in any point of the manifold. The affine connection is then substituted by
the components of the spin connection one-form, ω̊ b

µa using the appropriate basis
transformation (called Vielbein Postulate).

We will also write the Gauss-Bonnet Lagrangian with delta notation, which
is equal to (3.2) except for a proportionality coefficient, hence the actions are
equivalent:∫

d4x
√
|g|δσηθξϕχψωR̊

ϕχ
ση R̊ ψω

θξ ∝
∫
d4x
√
|g|(R̊2−4R̊σηR̊ση+R̊σηθξR̊σηθξ), (3.3)

where we have used the completely antisymmetrized delta (D.5).
With this conventions, in the tangent space, we would write the Gauss-Bonnet

Lagrangian as∫
d4x
√
|g|δσηθξϕχψωR̊

ϕχ
ση R̊ ψω

θξ =
∫
dxϕdxχdxψdxωδσηθξϕχψω

√
|g|εabcdR̊ ab

ση R̊ cd
θξ ,

(3.4)
where ε is the Levi-Civita symbol (there is more information about it in Ap-
pendix E). From there, we can expand the expression of the Ricci tensor in terms
of the spin connection,√
|g|εabcdR̊ ab

ση R̊ cd
θξ = 4

√
|g|εabcd(∂[σω̊

ab
η] − ω̊ ae

[σ ω̊ b
η]e )(∂[θω̊

cd
ξ] − ω̊ cf

[θ ω̊ d
ξ]f )

= 4∂[σ

(√
|g|ε|abcd|ω̊ ab

η ∂θω̊
cd

ξ]

)
− 8
√
|g|εabcd∂[σω̊

ab
η ω̊ cf

θ ω̊ d
ξ]f

+ 4
√
|g|εabcdω̊ ae

[σ ω̊ b
η|e| ω̊

cf
θ ω̊ d

ξ]f . (3.5)

We can transform the second addend into a total derivative as follows. First,
we try to transform it into a total derivative using the Leibniz rule and subtracting
all the terms that appear,√

|g|εabcd∂[σω̊
ab
η ω̊ cf

θ ω̊ d
ξ]f =

√
|g|εabcd∂[σ(ω̊ ab

η ω̊ cf
θ ω̊ d

ξ]f )

−
√
|g|εabcdω̊ ab

[η ∂σω̊
cf
θ ω̊ d

ξ]f

−
√
|g|εabcdω̊ ab

[η ω̊ cf
θ ∂σω̊

d
ξ]f (3.6)

Thanks to the antisymmetrization of the Levi-Civita symbol, we can switch two
spin connections to transform one term into the other and operate to get√

|g|εabcd∂[σω̊
ab
η ω̊ cf

θ ω̊ d
ξ]f = ∂[σ

(√
|g|ε|abcd|ω̊ ab

η ω̊ cf
θ ω̊ d

ξ]f

)
− 2
√
|g|εabcd∂[σω̊

d
η|f | ω̊

ab
θ ω̊ cf

ξ] . (3.7)
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Then, since the spin connection is antisymmetric, we can be sure that the index
f cannot be equal to c or d, so we can split that summation as follows (there is
one summation over every repeated index, no matter how many times repeated),√

|g|εabcd∂[σω̊
ab
η ω̊ cf

θ ω̊ d
ξ]f = ∂[σ

(√
|g|ε|abcd|ω̊ ab

η ω̊ cf
θ ω̊ d

ξ]f

)
− 2
√
|g|εabcd∂[σω̊

d
η|a| ω̊

ab
θ ω̊ ca

ξ]

− 2
√
|g|εabcd∂[σω̊

d
η|b| ω̊

ab
θ ω̊ cb

ξ] . (3.8)

Now, we are going to operate to get√
|g|εabcd∂[σω̊

ab
η ω̊ cf

θ ω̊ d
ξ]f = ∂[σ

(√
|g|ε|abcd|ω̊ ab

η ω̊ cf
θ ω̊ d

ξ]f

)
+ 2
√
|g|εabcd∂[σω̊

ab
η ω̊ da

θ ω̊ c
ξ]a

+ 2
√
|g|εabcd∂[σω̊

ab
η ω̊ db

θ ω̊ c
ξ]b . (3.9)

Finally, we write the summation with the index f again, going back to standard
Einstein summation convention and switch indices to get the same term that we
started with,√

|g|εabcd∂[σω̊
ab
η ω̊ cf

θ ω̊ d
ξ]f = ∂[σ

(√
|g|ε|abcd|ω̊ ab

η ω̊ cf
θ ω̊ d

ξ]f

)
− 2
√
|g|εabcd∂[σω̊

ab
η ω̊ cf

θ ω̊ d
ξ]f . (3.10)

Thus, we can conclude that√
|g|εabcd∂[σω̊

ab
η ω̊ cf

θ ω̊ d
ξ]f = 1

3∂[σ

(√
|g|ε|abcd|ω̊ ab

η ω̊ cf
θ ω̊ d

ξ]f

)
, (3.11)

so we have written it as a total derivative.
Regarding the last addend of (3.5), as ε is antisymmetric in all its indices and

all of them are summation indices, we can calculate, for simplification,

ε1234ω̊
1e

[σ ω̊ 2
η|e| ω̊

3f
θ ω̊ 4

ξ]f , (3.12)

where you can see that, giving any value to indices e and f , you get a repeated
spin connection ω in that product and, then, every term of the summation is
zero.

Summing up, we have transformed this term into a total derivative,√
|g|εabcdR̊ ab

ση R̊ cd
θξ = 4∂[σ

(√
|g|ε|abcd|

(
ω̊ ab
η ∂θω̊

cd
ξ] − 2

3 ω̊
ab
η ω̊ cf

θ ω̊ d
ξ]f

))
,

(3.13)
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so that ends our demonstration.
Note that we have used that we are in four dimensions in two steps: writing the

Levi-Civita symbol with four indices and saying that in (3.12) there are repeated
indices. However, in more dimensions, this does not hold and Gauss-Bonnet is
not a total derivative.

3.2 Lovelock’s theorem
Now that we have demonstrated that Gauss-Bonnet is a total derivative in four
dimensions, we can think about how can we extend our theory regarding the re-
strictions of the Lovelock’s theorem. We have several options: focus on equations
of motion that do not come from an action, let the equations be of order greater
than two, or change the dimension we are working on.

We are not interested in emergence in this thesis, so we discard the idea of
equations of motion that do not come from an action.

On the other hand, if we let the equations of motion to be of order greater
than two, we will find problems eventually. Ostrogradsky’s theorem [37] tells us
that a non-degenerate Lagrangian dependent on time derivatives higher than the
first, that is, a Lagrangian whose equations of motion are of order higher than
two, corresponds to a linearly unstable Hamiltonian. The consequence is that
there are some degrees of freedom that can reach arbitrarily negative energies.
This, on its own, is not a problem, the instability appears when interacting with
other degrees of freedom that are bounded from below. As there exist a vast
phase space where the Hamiltonian is negative, by entropic argument, the modes
will begin to populate them alone, while creating an equal amount of positive
modes in the interacting degree of freedom by conservation of energy. Besides,
while being this a classical instability, negative energy modes are particularly
problematic in quantum physics, as they lead to negative norm states or negative
energy states. As they are referred to as ghosts in quantum theory, higher-order
derivative theories are often called ghost-like.

The only way to evade these problems is using degenerate Lagrangians [11, 48],
that is, Lagrangians that give second-order derivative equations of motion al-
though they depend on higher than first derivatives of the dynamical variable.
Lovelock Theories are one example of these. Nevertheless, all Lovelock Theo-
ries vanish in four dimensions except cosmological constant, Einstein-Hilbert and
Gauss-Bonnet, being this last one a total derivative, so we do not get anything
new.

Finally, we could change the dimension we are working on. This seems rea-
sonable as more general theories that are explored nowadays, like String Theory,
seem to live in a greater number of dimensions. They connect with the four-
dimensional world we live in through what is called dimensional reduction. In
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other words, they reduce to effective theories in four dimensions. The easiest
method to achieve this is the Kaluza-Klein theory [27, 29, 28], which assumes that
one coordinate is compact and very small, hence not observed directly. There
are, however, more sophisticated methods, like Randrall-Sundrum model [41, 40],
which describe the universe as a warped-geometry higher-dimensional universe
where the interaction particles (except the graviton) are confined to a (3 + 1)-
dimensional brane.

Summing up, we think that the most reasonable choice is working with the-
ories in higher dimensions and study their properties. If we look for a term of
arbitrary order in the curvature that also yields second-order differential equa-
tions, we will find Lovelock Theories.

It is particularly explanatory to demonstrate this fact for the Gauss-Bonnet
term because we can see, as Lanczos did, that it is the only combination of
second-order curvature terms that fulfils this condition. We are going to do it in
the following section.

3.3 Equations of motion of Gauss-Bonnet
As this calculation is independent of the number of dimensions, we are going to
do it in D dimensions. Thus, we are going to start with the following action,

S =
∫
dDx

√
|g|(αR̊2 + βR̊σηR̊

ση + γR̊σηθξR̊
σηθξ) (3.14)

and we will deal with every addend separately. Starting with the first as an
example of how to proceed, we can follow the same decomposition than in equa-
tion (2.4),

δR̊2 = δ

(∫
dDx

√
|g|gσηgθξR̊σηR̊θξ

)
= (δS)1 + (δS)2 + (δS)3, (3.15)

where

(δS)1 = 2
∫
dDx

√
|g|R̊gσηδR̊ση, (3.16a)

(δS)2 = 2
∫
dDx

√
|g|R̊R̊σηδgση, (3.16b)

(δS)3 =
∫
dDxR̊2δ

√
|g|. (3.16c)

Using (A.12), we can write the variation of the square root as a function of the
determinant of the inverse metric (see Appendix A for a detailed derivation), then
we have (3.16b) and (3.16c) ready. However, we need to compute some variations
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to write (3.16a) in terms of the variation of the inverse metric. First, we will use
the Palatini identity (B.4),

(δS)1 = 2
∫
dDx

√
|g|R̊gση

(
∇̊σ(δΓ̊ θ

θη )− ∇̊θ(δΓ̊ θ
ση )

)
. (3.17)

Next, we can make integration by parts (C.11) to get

(δS)1 = −2
∫
dDx

√
|g|
(
∇̊σR̊gσηδΓ̊ θ

θη − ∇̊θR̊gσηδΓ̊ θ
ση

)
. (3.18)

Here, we can see some higher-order derivatives appearing, as we have derivatives
of the Ricci tensor and the Ricci tensor has second derivatives of the metric.
Afterwards, we can use the variation of the connection (2.14) to write it in terms
of the variation of the inverse metric, getting

(δS)1 = 2
∫
dDx

√
|g|
(
∇̊σR̊gσηgθξ∇̊η(δgθξ)− ∇̊θR̊∇̊ξ(δgθξ)

)
. (3.19)

We have to integrate by parts again to get the final expression

(δS)1 = −2
∫
dDx

√
|g|
(
∇̊2R̊gθξ − ∇̊ξ∇̊θR̊

)
δgθξ. (3.20)

Adding the other variation terms in equations (3.16), we get the variation
coming from the first of the three addends in Gauss-Bonnet action (3.14),

δR̊2 =
∫
dDx

√
|g|
(

2R̊σηR̊−
1
2gσηR̊

2 − 2gση∇̊2R̊+ 2∇̊η∇̊σR̊
)
δgση. (3.21)

It is important to see that we get terms with fourth-order derivatives of the metric
in the last two addends, as we have second derivatives of the curvature and the
curvature has already second-order derivatives of the metric.

If we follow the same procedure for the other two addends, we will end up
with the total variation as follows,

δS =
∫
dDx

√
|g|

(
− 1

2gϕχ(αR̊2 + βR̊σηR̊
ση + γR̊σηθξR̊

σηθξ)

+ α

(
2R̊ϕχR̊− 2gϕχ∇̊2R̊+ 2∇̊ϕ∇̊χR̊

)
+ β

(
−2R̊ η

σϕχ R̊ σ
η −

1
2gϕχ∇̊

2R̊+ ∇̊ϕ∇̊χR̊− ∇̊2R̊ϕχ

)
+ γ

(
−4R̊ϕσR̊ σ

χ − 4R̊ η
σϕχ R̊ σ

η + 2R̊ϕσηθR̊ σηθ
χ

+ 2∇̊ϕ∇̊χR̊− 4∇̊2R̊ϕχ

))
δgϕχ. (3.22)
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We can see there very clearly that choosing (α, β, γ) = (1,−4, 1) is the only
way of cancelling the higher-order metric derivatives, getting the Gauss-Bonnet
variation,

δSGB =
∫
dDx

√
|g|
(
− 1

2gϕχ(R̊2 − 4R̊σηR̊ση + R̊σηθξR̊
σηθξ)

+ 2R̊ϕχR̊− 4R̊ϕσR̊ σ
χ + 4R̊ η

σϕχ R̊ σ
η + 2R̊ϕσηθR̊ σηθ

χ

)
δgϕχ. (3.23)

So that ends our demonstration.
Note that we will have boundary terms appearing after the first integration

by parts, as we had for Einstein-Hilbert. For the first addend, we have done
the integration by parts in (3.18), but it happens for every addend. The final
combination of boundary terms, with the coefficients of Gauss-Bonnet, should
be cancelled adding the Myers term [33] (in general, it should be added to every
Lovelock action), but as its computation is analogous to the Gibbons-Hawking-
York term, we skipped the derivation.

3.4 Lovelock Theories
Once we have seen that the only possible combination of second-order terms in
the curvature that gives second-order equations of motion is the Gauss-Bonnet
term, we are ready to generalize this fact for any order in the curvature thanks
to Lovelock Theories.

Lovelock Theories are a set of extensions to General Relativity proposed by
Lovelock in 1971 [31]. They appeared as a very straightforward generalization of
Einstein-Hilbert action, as they are a sum of terms increasing in curvature order,

LN = a0L0 + a1L1 + · · ·+ aNLN , (3.24)

whose zeroth-, first- and second-order terms are the cosmological constant, the
Ricci scalar and Gauss-Bonnet, respectively,

L0 =
√
|g|Λ, L1 =

√
|g|R̊, L2 =

√
|g|
(
R̊2 − 4R̊σηR̊ση + R̊σηθξR̊

σηθξ
)
.

(3.25)

This property makes these theories an ideal candidate for a generalization of Gen-
eral Relativity, because when we are in four dimensions, the equations of motion
of these three terms are the ones of standard General Relativity. Moreover, the
following terms are identically zero, so we end up with standard General Rela-
tivity, but only when D = 4. There is no reason for not adding them when we
are in more than four dimensions.
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The fact of vanishing after a critical term does not only happen in four di-
mensions. In fact, it happens for every dimension and depends on the dimension
we are working on. If we call n the curvature order, terms with n < D/2 are
dynamical, terms with n = D/2 (if D is even) are topological and terms with
n > D/2 vanish. We can see this last statement trivially if we write the general
formula for the n-th Lovelock term with delta notation,

Ln =
√
|g|δσ1...σ2n

η1...η2n
R̊ η1η2
σ1σ2

· · · R̊ η2n−1η2n
σ2n−1σ2n

. (3.26)

There, we can see that all terms with n > D/2 vanish because we have repeated
antisymmetrized indices.

The fact of always having second order differential equations of motion and
reducing to standard General Relativity in four dimensions make Lovelock Theo-
ries very good as a generalization of standard General Relativity. We do not have
any reason not to include these terms in a theory with more than four dimensions.
Nevertheless, they also seem to introduce some changes that could lead to some
phenomenological problems.

On the one hand, it is known that in these theories gravity does not propa-
gate at the speed of light. Instead, the speed depends on the curvature of the
spacetime, possibly leading to causality inconsistencies [1, 12].

Besides, it is known that solutions of Gauss-Bonnet or higher do not have a
Newtonian limit. This happens because there is no linear term in the action to
which one should take the limit. One could take the limit to second-order terms,
but the term obtained does not decay as a Newtonian potential. Thus, we think
that a1 should not be zero in order to be able to take the classical limit of our
new theory.

On the other hand, as can be noticed in (3.24), there are some proportionality
coefficients not determined by the theory. This happens because the properties of
these theories are accomplished for any coefficients. They should be determined
using other theoretical methods, as gauging (A)dS [45], checking about stability
or consistency of solutions [42, 39], or, in the future, experimental measurements.

The important thing to remark here is that the advantages of Lovelock The-
ories are mathematical, formal, and the problems are purely phenomenological.
They might be fixed or, at least, minimized with the appropriate choice of coef-
ficients, probably decaying fast enough.

3.5 Levi-Civita in metric-affine formalism
As we have seen, there are a lot of properties that make Lovelock Theories a very
good candidate for expanding General Relativity. However, we would also like
to have a sort of equivalence between metric and metric-affine formalisms. As
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a requisite to that, Levi-Civita should be a solution for every Lovelock Gravity
in metric-affine formalism. That is what we are going to demonstrate in this
section.

Before we begin, we should clarify that the definition of Lovelock Theories in
metric-affine formalism remains invariant if we use the delta notation,

Ln =
√
|g|δσ1...σ2n

η1...η2n
R η1η2
σ1σ2

· · ·R η2n−1η2n
σ2n−1σ2n

. (3.27)

However, if we expand this summation, we will find differences with the expression
that we introduced as Gauss-Bonnet (3.2) at the beginning of this chapter, as
that expression was only valid for metric formalism. In particular, the expression
reduces to

L2 =
√
|g|δσ1...σ4

η1...η4
R η1η2
σ1σ2

R η3η4
σ3σ4

= 1
6
(
R2 −RσηRησ + 2RσηR̃ησ − R̃σηR̃ησ +RσηθξR

σηθξ
)
, (3.28)

where R̃ is the co-Ricci, one of the independent contractions of the Riemann
tensor, defined in (1.22).

We should also introduce some notation, so we get some expressions that will
be very useful later. We will deal with a general action that depends on the metric
and on the connection through the Riemann tensor. We want to get properties
about the connection equation, so we can skip the variation of the metric and
write

δS|δg=0 =
∫
dDx

√
|g|ΣσηθξδR

ξ
σηθ , (3.29)

where we have defined the tensor

Σµνρλ = 1√
|g|

δS

δR λ
µνρ

. (3.30)

With this definition, we can get the connection equation in terms of Σ following
the same procedure as in Einstein-Hilbert, step by step, using the Palatini identity
and integrating by parts, getting

0 = ∇σΣσµνρ + 1
2g

ση∇θgσηΣθµνρ −
1
2T

µ
ση Σσηνρ + T η

ση Σσµνρ. (3.31)

As this is a completely generic calculation, we can see that this equation is valid
for any action, even for Lovelock Theories, for which the tensor Σ is particularly
simple.

From this expression we can already see some interesting facts. For example,
all addends cancel trivially when choosing Levi-Civita, except the first. In order



42 CHAPTER 3. LOVELOCK THEORIES

to see if this particular addend vanishes or not, we have to know the expression
of Σ. Let’s begin with an example. For Gauss-Bonnet,

Σµνρλ = 2δµνσηρλθξ R
θξ

ση . (3.32)

If we want to see if Levi-Civita is a solution of (3.31), we can compute the
divergence of these expressions to get the result of the first addend. In this case,
we would get

∇̊σΣ̊σµνρ = 2δσµθξηρϕχg
νη∇̊σR̊ ϕχ

θξ , (3.33)

where we can see that the summation over the indices σ, θ, ξ gives us something
proportional to the Bianchi identity, so it vanishes. Same happens with the
(n+ 1)-th Lovelock term. Using (3.27),

Σµνρλ = (n+ 1)δµνσ1...σ2n

ρλη1...η2n
R η1η2
σ1σ2

· · ·R η2n−1η2n
σ2n−1σ2n

, (3.34)

and from that expression we can also see the proportionality to the Bianchi
identity,

∇̊θΣ̊θµνρ = n(n+ 1)δθµσ1...σ2n

ξρη1...η2n
gνξ∇̊θR η1η2

σ1σ2
R η3η4
σ3σ4

· · ·R η2n−1η2n
σ2n−1σ2n

.
(3.35)

Thus, we can now be sure that Levi-Civita is a solution of metric-affine for-
malism for every Lovelock theory, and this puts Lovelock Theories in a privileged
status among other generalizations of General Relativity, as they are the only the-
ories that have Levi-Civita as a solution in metric-affine formalism. We have men-
tioned its importance when we talked about metric and metric-affine formalisms
and the justification of Levi-Civita connection: we have a reason for choosing
Levi-Civita now. The solutions of metric formalism are included in metric-affine
formalism, so when choosing Levi-Civita they are equivalent [16, 5, 13]. However,
we would like them to be equivalent without the condition of choosing Levi-Civita
in metric-affine formalism. We have discussed that the physics seem to remain
the same for Einstein-Hilbert in Chapter 2. We will conclude that discussion
in the next section and we will also answer that question for Gauss-Bonnet in
Chapter 4.

3.6 Projective invariance
When we talked about Einstein-Hilbert in Chapter 2, we studied the effect of the
vector A in the dynamics. In this section, we will present the final justification
about why A is not physical at all.

It is related with transformations at the level of the action, so we will start
reminding an example of action that is invariant under particular transformations.
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If we take the action
S = 1

2

∫
dDx

√
|g|(∂φ)2

, (3.36)

we can see that we could transform the matter field as

φ −→ φ′ = φ+ c (3.37)

and, given that c does not depend on any coordinate, the action remains invariant.
If we calculate the equations of motion of the matter field, we get

∇2φ = 0, (3.38)

which is the scalar wave equation. If we find any solution of it, φ0, we can see that
applying the transformation (3.37) to that solution, we get a set of solutions, due
to the symmetry that the action had. All the solutions are equivalent physically,
we cannot determine the value of that constant using physical measurements, but
they can be distinguished mathematically by that constant.

In our case, in Lovelock Theories, we also have a symmetry that plays an
important role. Consider the following transformation to an arbitrary connection,

Γ ρ
µν −→ Γ̂ ρ

µν = Γ ρ
µν +Aµδ

ρ
ν . (3.39)

To see its effect on Lovelock Theories, we have to calculate the variation of the
curvature tensor,

R λ
µνρ −→ R̂ λ

µνρ = R λ
µνρ + Fµνδ

λ
ρ , (3.40)

with F already defined in (2.56). We have already seen an example of this
transformation, when taking Levi-Civita as the starting connection, in (2.55).
When contracting it to get the Ricci tensor, we get

Rµν −→ R̂µν = Rµν + Fµν , (3.41)

where we can see that this only affects the antisymmetric part of the Ricci tensor.
The symmetric part remains invariant. Due to that, the Ricci scalar remains
invariant,

R −→ R̂ = R, (3.42)
hence, that is why in Einstein-Hilbert we had this symmetry in the action.

Once we have calculated this, we can see what happens in the general Lovelock
action,

S =
∫
dDx

√
|g|δσ1...σ2n

η1...η2n
R̂ η1η2
σ1σ2

· · · R̂ η2n−1η2n
σ2n−1σ2n

=
∫
dDx

√
|g|δσ1...σ2n

η1...η2n

(
R η1η2
σ1σ2

+ Fσ1σ2g
η1η2

)
· · · R̂ η2n−1η2n

σ2n−1σ2n

=
∫
dDx

√
|g|δσ1...σ2n

η1...η2n
R η1η2
σ1σ2

· · ·R η2n−1η2n
σ2n−1σ2n

. (3.43)
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They remain invariant due to the antisymmetrization of δ, which cancels with
the metric in every factor.

Thus, we have seen that we have a symmetry in our action, the one presented
in (3.39). This means that if we have a solution, we have a set. It is not difficult
to see it right at the equation of motion of the action (3.31) as the tensor Σ,

Σ̂µνρλ = (n+ 1)δµνσ1...σ2n

ρλη1...η2n
R̂ η1η2
σ1σ2

· · · R̂ η2n−1η2n
σ2n−1σ2n

= Σµνρλ, (3.44)

also remains invariant for the same reason.
With all this information, we can now completely understand why Palatini

connections (2.53) are a solution of the equation of motion of the connection, as
Levi-Civita was a particular solution and the transformation induces the complete
set. Besides, this also happens in every Lovelock theory, for the same reasons.

Even though this transformation and the F tensor reminds us of the gauge
transformations of the electromagnetic field, this has nothing to do with that.
The difference is that, in this case, we can change the vector A in any way, being
able to completely cancel the tensor F . The tensor F is not physical at all.

Thus, we have found the meaning of the vector A: it is the result of a symme-
try in the Lagrangian. That is why we can now be absolutely sure that there are
no physical meaning of A in Einstein-Hilbert or in any Lovelock theory. More-
over, from now on, we can ignore this part of the solution completely, as we know
it does not contribute to the physics. We can always generate any solution of the
set adding the arbitrary vector A again.

Also, in this chapter, we have also explained why Lovelock Theories are a very
good proposal for extending General Relativity, explaining in detail the properties
they have and demonstrating them. In the next chapter, we will try to find more
solutions for Gauss-Bonnet and we will discuss its physical implications and the
differences with respect to the Palatini solutions.



Chapter 4

Gauss-Bonnet

In previous chapters we showed what is metric-affine formalism and which prop-
erties should we expect from applying it to Lovelock Theories. We also talked
about Levi-Civita as a solution and the projective invariance that all Lovelock
Theories have.

In this chapter, we are going to apply all this knowledge to find a solution
of Gauss-Bonnet, different from a projective transformation, and we are going to
discuss its implications. This research is mainly published in [24].

4.1 The Weyl connection as a solution
We are going to consider the D-dimensional Gauss-Bonnet action in the metric-
affine formalism,

SGB =
∫
dDx

√
|g|δσ1...σ4

η1...η4
R η1η2
σ1σ2

R η3η4
σ3σ4

, (4.1)

and we are going to calculate the equations of motion for this action.
We will take benefit of the general connection equation that we calculated

in (3.31), valid for any action,

∇σΣσµνρ + 1
2g

ση∇θgσηΣθµνρ −
1
2T

µ
ση Σσηνρ + T η

ση Σσµνρ = 0, (4.2)

where, for Gauss-Bonnet,

Σµνρλ = gρσ
1√
|g|

δS

δR λ
µνσ

= 2δµνσηρλθξ R
θξ

ση . (4.3)

45
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Besides, the connection can be decomposed into its Levi-Civita part and its
distortion,

Γ ρ
µν = Γ̊ ρ

µν + Ξ ρ
µν . (4.4)

Thus, if we substitute this decomposition into the connection equation, we get
the equivalent equation

∇̊σΣσµνρ + Ξ ν
ση Σσµηρ − Ξ η

σρ Σσµνη = 0 (4.5)

which is still valid for any action, not just for Gauss-Bonnet, as we have not used
the expression for the Σ tensor.

Furthermore, using the antisymmetry of the Lovelock Σ tensor in the last
two indices, it is easy to show that one can deduce the necessary (though not
sufficient) condition for the connection,

(Ξσην + Ξσνη)Σσµηρ + (Ξσηρ + Ξσρη)Σσµην = 0, (4.6)

valid for any Lovelock and, in particular, for Gauss-Bonnet.
It is very straightforward to get the equation of motion for the metric,

δσηαβµξγδ R
ξ

σην R
γδ

αβ + δσηαβνξγδ R
ξ

σηµ R
γδ

αβ − 1
2gµνδ

σηαβ
θξγδ R

θξ
ση R γδ

αβ = 0. (4.7)

It can be written in a more compact way using the value of the Σ tensor,

R ξ
σηµ Σσηνξ +R ξ

σην Σσηµξ −
1
2gµνR

θξ
ση Σσηθξ = 0. (4.8)

We will try to find a non-trivial connection, that is, not of the form of the
Palatini connections (2.53), that solves the metric and connection equations. Our
starting point will be the generalized Weyl connection,

Γ ρ
µν = Γ̊ ρ

µν +Aµδ
ρ
ν +Bνδ

ρ
µ − Cρgµν , (4.9)

characterized by the three arbitrary vector fields A, B and C. Strictly speaking,
A represents the projective symmetry of the action and can be gauged away
completely. However for future reference, we prefer to maintain the calculation
general for the moment. The Riemann for this connection is then given by

R λ
µνρ = R̊ λ

µνρ + Fµν(A)δλρ + (∇̊µBρ −BµBρ)δλν − (∇̊νBρ −BνBρ)δλµ
− (∇̊µCλ − CµCλ)gνρ + (∇̊νCλ − CνCλ)gµρ −BσCσ(δλµgνρ − δλν gµρ),

(4.10)

where F was already defined in (2.56), and the Σ tensor is given by

Σµνρλ = Σ̊µνρλ + 1
2(D − 3)δµνσρλη (∇̊σBη −BσBη + ∇̊σCη − CσCη)

+ 1
6(D − 2)(D − 3)δµννλBσC

σ. (4.11)
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Using the necessary condition (4.6), we find that

0 = 2(Bσ − Cσ)Σ νσ
(µ ρ) + (B(µ − C(µ)Σσνρ)σ, (4.12)

which is satisfied only when B = C. If we then gauge fix the projective symmetry
by choosing also A = B, so that we can write the connection (4.9) as a non-
integrable Weyl connection,

Γ ρ
µν = Γ̊ ρ

µν +Bµδ
ρ
ν +Bνδ

ρ
µ −Bρgµν , (4.13)

with B for the moment an arbitrary vector field, whose precise form should
be determined by the equations of motion. Filling in this expression into the
connection equation (4.5) yields

0 = ∇̊σΣσµνρ + ΞσηνΣσµθρg
ηθ − ΞσρηΣσµνθg

ηθ

= 1
12(D − 4)(2B[ρR̊δ

µ
ν] + 4BσR̊σ[νδ

µ
ρ] − 2BσR̊ µ

νρσ )

+ 1
6(D − 4)(D − 3)(2Bσ∇̊[νB

σδµρ] − 2B[ν∇̊|σ|Bσδµρ] + 2B[ν∇̊ρ]Bµ)

− 1
6(D − 4)(D − 3)(D − 2)BσBσB[νδ

µ
ρ], (4.14)

which is satisfied for an arbitrary vector field B in D = 4. On the other hand,
the metric equation (4.8) becomes

0 = R̊ ξ
σηµ Σ̊σηνξ + R̊ ξ

σην Σ̊σηµξ −
1
2gµνR̊

θξ
ση Σ̊σηθξ

+ 1
3(D − 4)Λ(1)

µν + 1
3(D − 4)(D − 3)Λ(2)

µν + 1
12(D − 4)(D − 3)(D − 2)Λ(3)

µν ,

(4.15)

where the expression for Λ(1) is

Λ(1)
µν = ∇̊(µBν)R̊+ 2∇̊σBσ

(
R̊µν −

1
2gµνR̊

)
+ 2∇̊σBηR̊σ(µν)η − 2∇̊(µB

σR̊ν)σ

− 2∇̊σB(µR̊ν)σ + 2∇̊σBηR̊σηgµν + (D − 5)BσBσ
(
R̊µν −

1
2gµνR̊

)
−BµBνR̊− 2BσBηR̊σηgµν + 4(D − 3)BσB(µR̊ν)σ − 2BσBηR̊σ(µν)η,

(4.16)

the expression for Λ(2) is given by

Λ(2)
µν = 2∇̊(µBν)∇̊σBσ − 2∇̊σB(µ∇̊ν)B

σ − ∇̊σBσ∇̊ηBηgµν + ∇̊σBη∇̊ηBσgµν
+ (D − 4)∇̊(µBν)BσB

σ − 2∇̊σBσBµBν + 2∇̊σB(µBν)B
σ

+ 2BσB(µ∇̊ν)Bσ − 2BσBη∇̊σBηgµν + (D − 4)BσBσ∇̊ηBηgµν (4.17)
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and Λ(3) can be written as

Λ(3)
µν = 4BσBσBµBν + (D − 5)BσBσBηBηgµν . (4.18)

However, independently of the value of these Λ tensors, the equation of motion
reduces to the equation of motion of the metric in the second-order formalism
when D = 4,

R̊ ξ
σηµ Σ̊σηνξ + R̊ ξ

σην Σ̊σηµξ −
1
2gµνR̊

θξ
ση Σ̊σηθξ = 0. (4.19)

In other words, the Weyl connection (4.13) is a solution of four-dimensional
metric-affine Gauss-Bonnet gravity for any metric that satisfies the equations of
the metric formalism, which are all metrics since Gauss-Bonnet is a topological
term in four dimensions in metric formalism, as we demonstrated in Section 3.1.

4.2 A vector symmetry in four dimensions
In Section 3.6 we have seen that the existence of the nontrivial Palatini connec-
tions (2.53) as a solution in any metric-affine Lovelock theory is a consequence
of the projective symmetry. In this section we will argue that our new solu-
tion (4.13) is also related to a symmetry, namely the conformal invariance of the
four-dimensional Gauss-Bonnet action.

Conformal invariance and Weyl transformations have not been studied much
in the context of metric-affine gravity. In [8] conformal rescalings of the metric
are used to discuss the relations between the metric and Palatini formalism of
f(R) gravity in both the Einstein and the Jordan frame. More recently, in [20] a
detailed classification was given of the metric-affine theories in terms of their scale
invariance under rescalings of the metric, the coframe and/or the connection.

It is well known that the metric Gauss-Bonnet theory in D = 4 is invariant
under conformal transformations of the metric,

gµν −→ ĝµν = e2φgµν , (4.20)

which on its turn change the Christoffel symbols as

Γ̊ ρ
µν −→ Γ̂ ρ

µν = Γ̊ ρ
µν + ∂µφδ

ρ
ν + ∂νφδ

ρ
µ − ∂ρφgµν . (4.21)

On the other hand, as any metric-affine quadratic curvature term [4], the four-
dimensional metric-affine Gauss-Bonnet theory is easily seen to have conformal
weight zero, that is, to be invariant under the conformal transformations (4.20)
of the metric, though in this context without a accompanying transformation in
the affine connection, as the latter is independent of the metric.
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The invariance of theD = 4 metric-affine Gauss-Bonnet term under the metric
transformation (4.20) shows that in the metric formalism the transformation of
the metric (4.20) and of the connection (4.21) are in fact quite independent
of each other: the former acts effectively only on the explicit metrics in the
contraction of the Riemann tensors and the effect of (4.21) remains constrained to
the curvature tensors. One could therefore ask the question whether the metric-
affine Gauss-Bonnet action is also invariant under (something similar to) the
transformation (4.21), independently of a metric transformation.

In [2, 25, 26] it was already observed that actions with Gauss-Bonnet-like
quadratic curvature invariants (that is, general combinations of quadratic con-
tractions of the Riemann tensor, that reduce to the metric Gauss-Bonnet action
when the Levi-Civita connection is imposed), when equipped with the (non-
integrable) Weyl connection (4.13), can be written as the standard (Levi-Civita)
Gauss-Bonnet action plus a series of non-minimal coupling terms for the Weyl
field B, plus a kinetic term Fση(B)Fση(B). Curiously enough, the non-minimal
couplings vanish precisely in D = 4 and the kinetic term is multiplied by a coeffi-
cient that vanishes when the parameters of the extended Gauss-Bonnet term are
chosen such that the action is the actual metric-affine Gauss-Bonnet term (3.28).
In other words, the metric-affine Gauss-Bonnet action (3.28) does not see the
difference between the substituting the Weyl or the Levi-Civita connection.

Inspired by this and by the fact that in the previous section we found that the
integrable Weyl connection (4.13) is a solution to the metric and the connection
equation, it seems logical to check the invariance of the Gauss-Bonnet action in
metric-affine formalism (4.1) under the transformation

Γ ρ
µν −→ Γ̂ ρ

µν = Γ ρ
µν +Bµδ

ρ
ν +Bνδ

ρ
µ −Bρgµν , (4.22)

not just as a deformation of the Levi-Civita connection (as in [2, 25, 26]), but
as a transformation acting on general connections in the action (4.1), much in
the same way as the projective transformations (3.39). Note that the Bµδρν term
can be undone by a projective transformation with parameter −Bµ, so we can
actually simplify the transformation (4.22) to

Γ ρ
µν −→ Γ̂ ρ

µν = Γ ρ
µν +Bνδ

ρ
µ −Bρgµν . (4.23)

Up to boundary terms coming from integrating by parts, the four-dimensional
action then transforms as

LGB(g,Γ) −→ L̂GB(g, Γ̂) = LGB(g,Γ)− 4BσBη(Rση + R̃ση)

− 2QσηθΛ(1)
σηθ − 2Q(1)σΛ(2)

σ + 2Q(2)σΛ(3)
σ , (4.24)

where R̃ is the co-Ricci tensor (1.22), Q(1)
µ = Q σ

µσ and Q(2)
µ = Qσσµ are the two
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traces of the non-metricity tensor (1.26), the expression for Λ(1) is

Λ(1)
µνρ = Bµ(Rνρ + R̃νρ) +Bσ(Rσνµρ +Rσνρµ)

−BσBν(Qσµρ − 2Qρσµ)−BµBν(Q(1)
ρ −Q(2)

ρ )
+ 2Bµ∇νBν + 4Bν∇ρBµ + 2BµBσTσρµ + 2BµBνT σ

ρσ , (4.25)

the expression for Λ(2) is given by

Λ(2)
µ = Bσ(Rσµ − R̃σµ − gσµR)− 2BµBσBσ

− 2Bµ∇σBσ + 2Bσ∇σBµ + 3BµBσQ(2)
σ (4.26)

and Λ(3) can be written as

Λ(3)
µ = Bσ(Rσµ +Rσµ) + 2Bµ∇σBσ + 2Bσ∇σBµ + 2BµBσT η

ση . (4.27)

We can see then that in fact the four-dimensional metric-affine Gauss-Bonnet
term (4.1) with a general connection is not invariant under this simplified Weyl
transformation (4.23). However, taking into account that the Ricci and the co-
Ricci tensor are in general related to each other as

R̃µν = −Rµν + gση∇µQσνη + gση∇σQµνη + gσηT θ
µσ Qθνη, (4.28)

it is clear that the difference between LGB(g,Γ) and L̂GB(g, Γ̂) is proportional
to the non-metricity tensor, its derivatives and its traces. In other words, the
simplified Weyl transformation (4.23) is indeed a symmetry, not of the full four-
dimensional metric-affine Gauss-Bonnet action, but of the restriction of this the-
ory to the subset of metric-compatible connections, which turns out to be a con-
sistent truncation of the full theory [24]. The symmetry transformation (4.23)
not only generalizes the results of [2, 25, 26], but also explains why the Weyl
connection (4.13) appears as a solution to the Palatini formalism in the four-
dimensional Gauss-Bonnet action: it arises by acting on the Levi-Civita solution
first with the new vector symmetry (4.23) and then with a projective transforma-
tion (3.39) with the same parameter. Note that the order of these transformations
is important, as the vector transformation is only a symmetry on the subset of
metric-compatible connections. This subset itself is not invariant under projec-
tive transformations, since any projective transformation necessarily induces a
non-trivial non-metricity:

Qµνρ −→ Q̂µνρ = Qµνρ + 2Aµgνρ. (4.29)

4.3 Solution space and interpretation
While looking for solutions of the connection equation of metric-affine Gauss-
Bonnet theory (4.1), we have identified a number of transformations in the theory.
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Besides the invariance under projective transformations (3.39), present in any
dimension, we also found a vector transformation, the simplified Weyl transfor-
mation (4.23), which is a symmetry specifically in four-dimensions and only if we
consider the theory to be restricted to metric-compatible connections (LGB|Q=0).
However, this vector transformation will play an important role in the full (four-
dimensional) theory LGB.

To our knowledge, this vector symmetry (4.23) of the truncated theory is
new, although a special case was already observed in [2, 25, 26]. Both the A and
B vector transformations seem somehow to be related to the conformal invari-
ance of the four-dimensional Gauss-Bonnet action in the metric formalism (4.20)
and (4.21).

Note that the conformal weight of the four-dimensional Gauss-Bonnet term
is zero, both in the metric as in the metric-affine formalism. Therefore, in the
metric case, the ∂φ terms that come from the transformation of the Levi-Civita
connection cancel out among each other, and hence the transformation rules for
the metric (4.20) and the connection (4.21) do not interfere with each other
in the variation of the Gauss-Bonnet action (4.1). Moreover, in the metric-
affine formalism, where the metric and the affine connection are independent
variables, one can separate both transformations completely, finding that the
action is invariant under both of them separately, at least in the subset of metric-
compatible connections. The remarkable thing is that the metric-compatible
Gauss-Bonnet term allows not only for integrable Weyl vectors Bµ = ∂µφ, but
also for non-integrable ones, Bµ 6= ∂µφ, as the transformation is no longer related
to a conformal transformation of the metric.

To understand the mathematical structure of the space of solutions of the
full four-dimensional Gauss-Bonnet action (4.1), it is necessary to see how pro-
jective transformations (3.39) and simplified Weyl transformations (4.23) act on
the connections. It is straightforward to see that the projective transformation
changes both the trace of the torsion and the non-metricity, but that the B vector
transformation only acts on the trace of the torsion and leaves the non-metricity
invariant:

T ρ
µν −→ T ρ

µν + 2(A[µ +B[µ)δρν], Qµνρ −→ Qµνρ + 2Aµgνρ. (4.30)

There is a certain similarity, although also mayor differences, between our simpli-
fied Weyl transformation (4.23) and the torsion/non-metricity duality discussed
in [21]. There it was shown that in f(R) gravity the same physical situation
can be described by different geometrical descriptions, either in terms of the
torsion or in terms of the non-metricity, due to the fact that the projective sym-
metry of these theories interchanges the degrees of freedom of the torsion and
the non-metricity (see also [3] for a similar observation in the context of the
Einstein-Hilbert action). As can be seen from (4.30), this property is not lim-
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ited to four-dimensional f(R) gravity, but is present in any projectively invariant
theory that allows the Weyl connection as a solution. However, an important
difference between our case and [21] is that the B vector transformation in gen-
eral is not a duality that relates physically equivalent situations, but, as we will
show, a solution generating transformation, that maps certain connections onto
other physically nonequivalent ones.

As we mentioned before, the B transformation is a symmetry when the theory
is restricted to the subset of metric-compatible connections, but not of the full
theory. This means that the connection space in the truncated theory LGB|Q=0
can be divided into equivalence classes, which are the orbits of the B transfor-
mations. Two connections in the same orbit differ by the trace of the torsion
and are physically indistinguishable, as the B transformation is a symmetry in
LGB|Q=0. Two connections in distinct orbits differ also in the traceless parts of
the torsion.

However, from the point of view of the full theory LGB, the B transforma-
tion is not a symmetry, but a solution-generating transformation, as different
solutions of the (consistently) truncated theory LGB|Q=0 are guaranteed to be
also solutions of the full theory. Within the Q = 0 subset of the full theory,
the B transformation hence maps solutions of the connection equation in other,
physically nonequivalent solutions. On the other hand, outside the Q = 0 subset,
the flow of the B transformations also exists, but possibly map solutions of the
theory into connections that do not satisfy the equations of motion.

Finally, the projective transformation (3.39) does not maintain solutions in-
side the Q = 0 subset, as it changes the trace of the non-metricity (as well as the
trace of the torsion). The orbits of the A transformation that cross the Q = 0
subset have a pure-trace non-metricity,

Qµνρ = 1
4Q

σ
µσ gνρ, (4.31)

while the connections that have additional non-trivial parts of non-metricity lay
on orbits of A that do not intersect the Q = 0 subset. Since the projective
transformation is a symmetry of the full action, all connections on the same orbit
of A are indistinguishable and hence physically equivalent. We can get a visual
idea of this space of solutions in figure 4.1.

With this structure in mind, we can see that the two-vector family of solutions
we have found for the metric-affine Gauss-Bonnet action is of the general form

Γ ρ
µν = Γ̊ ρ

µν +Aµδ
ρ
ν +Bνδ

ρ
µ −Bρgµν (4.32)

These solutions span a subset that is generated on the one hand by the B orbit
in the Q = 0 subset that contains the Levi-Civita connection and on the other
hand by the A flow intersecting precisely this Γ̊ orbit. As far as we know, these
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Q = 0

Γ
A

B

Γ̊

Γ̄

Γ̂

Figure 4.1: An outline of the structure of solution space.

are the only connections that are known to be solutions to Gauss-Bonnet in first-
order formalism. But it should be clear that if a new solution Γ̆ were to be found
on another one of the B orbits in the Q = 0 subset, the flows of the A and B
transformations would generate a new two-vector family of solutions,

Γ ρ
µν = Γ̆ ρ

µν +Aµδ
ρ
ν +Bνδ

ρ
µ −Bρgµν . (4.33)

It seems therefore reasonable to expect a (connected or disconnected) family of
non-intersecting subsets of solutions, each one characterized by the orbits of the
B transformation that form the intersection with the Q = 0 plane.

At the moment of writing [24], we believed this structure not to be unique for
the four-dimensional Gauss-Bonnet action, but for any Lovelock theory in critical
dimensions (that is, for the n-th order Lovelock term in D = 2n dimensions). We
also believed the existence of the non-trivial solutions was an indication of the
non-topological character of Lovelock theories in critical dimensions, in the pres-
ence of non-metric-compatible connections. Later, it was demonstrated in [23]
that the solution (4.32) was present in every Lovelock Theory in its critical di-
mension and that the cause of the non-topological character of Einstein-Hilbert
in two dimensions was the traceless part of the non-metricity. This last statement
was proven for every Lovelock theory in its critical dimension.

On the other hand, not much is known about the solutions of the four-
dimensional Gauss-Bonnet action that are not generated through the flows of
the A and B transformations from the Q = 0 subset, that is, that have at least
one part of the non-metricity that is not pure trace, Qµνρ 6= 1

4Q
σ

µσ gνρ (besides
the general property that they can be divided in the equivalence classes formed
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by the A orbits). Similarly, to our knowledge, there are no connections, other
than Palatini connections (2.53), known to be a solution of the Gauss-Bonnet
action in dimensions higher than four.

However, the fact that we have found non-trivial (that is, non-equivalent)
solutions for the specific four-dimensional case, disproves the commonly accepted
statement that the metric and the Palatini formalism are equivalent for general
Lovelock Lagrangians. Indeed, even though the Levi-Civita connection is always
a solution to the metric-affine Lovelock actions, it is now clear that in general,
higher-order Lovelock theories can allow for physically distinct connections. It
would be interesting to find explicit non-trivial solutions for Lovelock theories in
non-critical dimensions.



Chapter 5

Conclusions

Prior to this thesis, the idea that metric and metric-affine formalisms were equiva-
lent for Lovelock Theories was claimed by some authors (see, for example, papers
citing [5] or [13]). The confusion arises from the fact that Levi-Civita is a solu-
tion of the connection equation in the metric-affine formalism only for Lovelock
Theories. However, we have proven in this thesis that it is not the only possible
solution, hence the non-equivalence.

First of all, it is worth noting that there are two types of equivalence. We
could speak about mathematical equivalence if we compared the sets of solutions
and check if they have exactly the same elements. However, the equivalence that
we have focused on in this thesis is physical equivalence, where solutions are
called equivalent if there is no physical difference measurable between them.

Keeping that criteria in mind, although we have seen that Palatini connec-
tions (2.53) are mathematically different from the Levi-Civita connection (1.39),
along this thesis we have seen that there is a complete physical equivalence be-
tween both solutions for all projective-invariant theories, being indistinguish-
able one from another. In fact, we have seen that, for every Lovelock Theory
in any number of dimensions, we can add the projective term to any solution,
Γ ρ
µν → Γ ρ

µν + Aµδ
ρ
ν , getting an equivalent solution due to projective symme-

try. We have also discussed the interpretation of this symmetry in terms of the
reparameterization of the geodesics.

This fact is very important in the first case that we studied: Einstein-Hilbert.
To be more clear, we have studied Einstein-Hilbert in any number of dimensions
greater than two and with minimal coupling. With this constraints, we have
proven the complete equivalence between metric and metric-affine formalisms,
as the most general solution in metric-affine formalism are Palatini connections,
that is, Levi-Civita plus the term coming from the projective symmetry, hence

55
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non-measurable.
On the contrary, for Gauss-Bonnet in four dimensions, we have found a solu-

tion (4.32) of the metric-affine formalism that is different from Levi-Civita and
not equivalent to it. Therefore, this refutes the equivalence between both for-
malisms for Gauss-Bonnet. It is also refuted for every Lovelock theory in critical
dimensions in [23], being our result a particular solution. This solution also
made us suspect that Gauss-Bonnet in metric-affine formalism was not a total
derivative, which has been later demonstrated for every Lovelock Theory in crit-
ical dimensions in [23], where this solution was also extended to every Lovelock
Theory in its critical dimension.

Summing up, first- and second-order formalisms are not equivalent. They
happen to be equivalent for Einstein-Hilbert with some restrictions: more than
two dimensions and minimal coupling. We have not studied the theory without
those restrictions, so they remain as open questions for future work. The case
of two dimensions is already well discussed in [23] as a particular case of critical
Lovelock. On the other hand, without minimal coupling, Palatini connections
can become measurable, so the equivalence is no longer valid. This happens,
for example, for Einstein-Maxwell or when introducing fermions. In those cases,
we can measure some quantities related with torsion, measuring the value of the
(previously nonphysical) vector A. The coupling with fermions has been discussed
in [22].

There are more open questions related to this research. An interesting ques-
tion that we did not look at when checking the non-measurability of the Palatini
connections was the second clock effect. This effect happens when measuring
time along trajectories. The first clock effect says that the elapsed time will be
different due to the fact that the length of the curves will be different, therefore
it is due to the metric. However, the second clock effect says that the elapsed
time will be different because the rate at which time goes by is affected by the
non-metricity due to the change of the norm of the tangent vector; it is an effect
related to the connection. This could be a way for measuring A but, as we know
that it comes from a symmetry and cannot be measured, there has to be a way of
making this two facts consistent. Maybe, the fact that the non-metricity induced
by projective transformations is pure trace is related to the solution, but we have
not done a complete demonstration.

From a phenomenological point of view, it would be interesting to see the
effects induced in four dimensions by using the metric-affine formalism and Gauss-
Bonnet plus a known theory, for example, Einstein-Hilbert or a phenomenological
theory. No one has investigated in this direction because it was thought that
Gauss-Bonnet was a total derivative, but now we know that when using the
metric-affine formalism, it is not. There should be corrections to the Levi-Civita
connection and they might explain things as dark matter or dark energy.
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It would be also very nice to find the general solution for the connection
for all critical Lovelock Theories, as there are less degrees of freedom than in
more dimensions. Finding the general solution to the connection equation in an
arbitrary number of dimensions seems to be impossible, though, as all equations
of motion are coupled. As a first step in this direction, it would be useful to find
some other connections nonequivalent to Levi-Civita in an arbitrary number of
dimensions.

Concluding, we think that this thesis has made several improvements to the
field, clarifying some aspects apparently mistaken by the community, and it has
also led to some other improvements by other people, like [22] and [23], and
opened more interesting questions to follow.
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Appendix A

Derivatives of the metric
determinant

First of all, we will demonstrate

1√
|g|
∂µ
√
|g| = 1

2g
ση∂µgση. (A.1)

We will switch temporarily to intrinsic notation. Let A be an invertible matrix
that depends on a parameter t. There are three options:

• It is diagonal.

• It is diagonalizable.

• It is not diagonalizable.

Let’s recall that even when a matrix is not diagonalizable, we can transform it
to its normal Jordan form, so let M be the diagonal or normal Jordan form,
respectively, of A. Then, the following will hold,

log(detA) = tr(logA), (A.2)

due to

log(detA) = log(detM) = log
(∏

mii

)
=
∑

logmii = tr(logM) = tr(logA),
(A.3)

where mii are the diagonal elements of M . The second last equality is derived
from the diagonal or normal Jordan form ofM , and the last equality is guaranteed

59



60 APPENDIX A. DERIVATIVES OF THE METRIC DETERMINANT

by the properties of the trace of the logarithm after a change of base (see [47] for
further reference).

Thus, we can derive the right side of (A.2) with respect to the parameter t,

d

dt
tr(logA) = tr

(
A−1 dA

dt

)
= tr

(
A−1A′

)
, (A.4)

where it is possible that A−1 and A′ do not commute, but it does not matter in
this case due to the cyclic property of the trace. Deriving the left side of (A.2),

d

dt
log(detA) = 1

detA ·
d

dt
detA. (A.5)

So, joining these two results,

1
detA

d

dt
detA = tr

(
A−1 dA

dt

)
, (A.6)

or, applied to the metric, in index notation,

1
g
∂µg = gση∂µgση. (A.7)

From that, one could derive the expression with the square root (given that
the determinant is positive),

d

dt

√
detA = 1

2
√

detA
· d
dt

detA

= 1
2
√

detA
· detA · tr

(
A−1 dA

dt

)
= 1

2
√

detA · tr
(
A−1 dA

dt

)
, (A.8)

and, so, equivalently,

1√
detA

· d
dt

√
detA = 1

2 tr
(
A−1 dA

dt

)
. (A.9)

If we apply this to the metric and write it in index notation, we get (A.1), as
we wanted to demonstrate. We added the absolute value because the determinant
of the metric can be negative as we are using mostly-minus convention.

We can also follow the same steps until (A.7) to get the relation

1
g
δg = gησδgση, (A.10)
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as the variation and the derivative share all properties with respect to linearity
and product.

Here, we can use (2.6),

δg = ggησδgση

= −ggησδgση, (A.11)

and, finally,

δ
√
|g| = 1

2
√
|g|
δ|g|

= − |g|
2
√
|g|
gσηδg

ση

= −1
2
√
|g|gσηδgση, (A.12)

which is another useful relation that we will use.
Lastly, we will demonstrate

1
|g|
∇µ|g| = gση∇µgση. (A.13)

First of all, we should take into account that |g| is a tensor density (see [46]
for further reading on tensor densities) of weight −2, so its covariant derivative
has the form

∇µ|g| = ∂µ|g| − 2Γ σ
µσ |g|. (A.14)

Using (A.7), we can write it as

∇µ|g| = |g|
(
gση∂µgση − 2Γ σ

µσ

)
. (A.15)

Independently, let’s compute

gση∇µgση = gση∂µgση − gσηΓ θ
µσ gθη − gσηΓ θ

µη gσθ

= gση∂µgση − Γ θ
µσ δ

σ
θ − Γ θ

µη δ
η
θ

= gση∂µgση − 2Γ σ
µσ , (A.16)

and, as we can see, that is what we had in (A.15) between parenthesis. Then, it
is straightforward to get (A.13).
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Appendix B

Palatini identity

The Palatini identity was stated by Attilio Palatini in 1919 [38]. It describes
the relation between the variation of the Ricci tensor and the variation of the
connection. We will deduce it in this appendix.

We start taking into account that the variation of a connection, as it is the
difference between two connections, is a tensor, so we can write its covariant
derivative as

∇µ(δΓ λ
νρ ) = ∂µ(δΓ λ

νρ )− Γ σ
µν (δΓ λ

σρ )− Γ σ
µρ (δΓ λ

νσ ) + Γ λ
µσ (δΓ σ

νρ ). (B.1)

We can then calculate the variation of the Ricci tensor as

δRµν = ∂µ(δΓ σ
σν )− ∂σ(δΓ σ

µν ) + (δΓ σ
µη )Γ η

σν + Γ σ
µη (δΓ η

σν )
− (δΓ σ

µν )Γ η
ησ − Γ σ

µν (δΓ η
ησ ), (B.2)

or, rearranging addends,

δRµν = ∂µ(δΓ σ
σν )− Γ σ

µν (δΓ η
ησ )

− ∂σ(δΓ σ
µν ) + Γ η

σµ (δΓ σ
ην ) + Γ η

σν (δΓ σ
µη )− Γ σ

ση (δΓ η
µν )

+ T η
µσ · δΓ σ

ην . (B.3)

That is, according to (B.1),

δRµν = ∇µ(δΓ σ
σν )−∇σ(δΓ σ

µν ) + T η
µσ · δΓ σ

ην , (B.4)

which is called the Palatini identity.
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Appendix C

Integration by parts in
curved space

We will deal with a very simple example of integration by parts in curved space.
It will be useful for seeing how it works and that new terms will appear.

Let’s start by remembering how to do integration by parts in flat space in
Cartesian coordinates,∫

dDxSαβ∂αVβ = −
∫
dDxVβ∂αS

αβ , (C.1)

plus a term evaluated at the boundary, where we will suppose the tensor fields
to vanish.

If we change it to the most similar integral in curved space, let’s call it I,

I =
∫
dDx

√
|g|Sαβ∇αVβ , (C.2)

then it is not so trivial how to proceed, especially when not using the Levi-Civita
connection. We will do it step by step.

One should start by expanding the covariant derivative into its parts,

I =
∫
dDx

√
|g|
(
Sαβ∂αVβ − SαβΓ σ

αβ Vσ
)

=
∫
dDx

√
|g|Sαβ∂αVβ −

∫
dDx

√
|g|SαβΓ σ

αβ Vσ. (C.3)

Then, it is possible to integrate by parts in the first integral, as if we were in flat
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space,

I = −
∫
dDxVβ∂α

(√
|g|Sαβ

)
−
∫
dDx

√
|g|SαβΓ σ

αβ Vσ

= −
∫
dDxVβS

αβ∂α
√
|g| −

∫
dDx

√
|g|Vβ∂αSαβ −

∫
dDx

√
|g|SαβΓ σ

αβ Vσ,

(C.4)

and, taking into account (A.7), we obtain

I = −
∫
dDx

√
|g|VβSαβ ·

1
2g

ση∂αgση

−
∫
dDx

√
|g|Vβ∂αSαβ −

∫
dDx

√
|g|SαβΓ σ

αβ Vσ. (C.5)

Now, we can use (A.16) to change the partial derivative to a covariant derivative,

I = −
∫
dDx

√
|g|VβSαβ ·

1
2g

ση∇αgση −
∫
dDx

√
|g|VβSαβΓ σ

ασ

−
∫
dDx

√
|g|Vβ∂αSαβ −

∫
dDx

√
|g|SαβΓ σ

αβ Vσ. (C.6)

and the same for the other partial derivative,

I = −
∫
dDx

√
|g|VβSαβ ·

1
2g

ση∇αgση −
∫
dDx

√
|g|VβSαβΓ σ

ασ

−
∫
dDx

√
|g|Vβ∇αSαβ +

∫
dDx

√
|g|VβΓ α

ασ Sσβ +
∫
dDx

√
|g|VβΓ β

ασ Sασ

−
∫
dDx

√
|g|SαβΓ σ

αβ Vσ. (C.7)

Now, let’s group all the connections conveniently,

I = −
∫
dDx

√
|g|
(
Vβ∇αSαβ + VβS

αβ · 1
2g

ση∇αgση
)

−
∫
dDx

√
|g|
(
VβS

αβΓ σ
ασ − VβSαβΓ σ

σα − VβSασΓ β
ασ + VβS

ασΓ β
ασ

)
.

(C.8)

As we can see, the last two addends cancel, and from the others we get a torsion,

I = −
∫
dDx

√
|g|
(
Vβ∇αSαβ + VβS

αβ · 1
2g

ση∇αgση
)

−
∫
dDx

√
|g|VβSαβ (Γ σ

ασ − Γ σ
σα ) . (C.9)
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So, the general formulation, for a general connection, results∫
dDx

√
|g|Sαβ∇αVβ

= −
∫
dDx

√
|g|
(
Vβ∇αSαβ + VβS

αβ · 1
2g

ση∇αgση + VβS
αβ · T σ

ασ

)
.

(C.10)

However, if we take the connection to be the Levi-Civita one,∫
dDx

√
|g|Sαβ∇̊αVβ = −

∫
dDx

√
|g|Vβ∇̊αSαβ , (C.11)

all the extra terms disappear and the procedure is very similar to doing it in
flat space simply ignoring the invariant volume element and taking the covariant
derivative as the partial derivative.
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Appendix D

Symmetrization and
antisymmetrization

Sometimes, we will need to take the symmetric or the antisymmetric part of a
tensor. We will notate it with a parenthesis for the symmetric part:

Q(µ1...µn) = 1
n!
∑
σ∈Sn

Qσ(µ1)...σ(µn), (D.1)

where Sn is the group of permutations of n elements. Then, this tensor would
be invariant under any exchange of two of these indices. An example that will
appear in this thesis is

R(µν) = 1
2 (Rµν +Rνµ) . (D.2)

For the antisymmetric part, we will notate it with square brackets,

Q[µ1...µn] = 1
n!
∑
σ∈Sn

sgn(σ)Qσ(µ1)...σ(µn), (D.3)

so this tensor would change its sign under any exchange of two of those indices.
An example of that is the field strength in electromagnetism,

Fµν = 2∂[µAν] = ∂µAν − ∂νAµ, (D.4)

and the completely antisymmetrized delta that we use along this thesis,

δσ1...σn
η1...ηn

= δσ1
[η1
· · · δσn

ηn]. (D.5)
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For any of those notations, if there are any indices that should not be sym-
metrized or antisymmetrized, they will be enclosed within vertical bars. For
example,

Q(µ|νρ|λ) = 1
2 (Qµνρλ +Qλνρµ) , (D.6)

or
Q(µ|ν|ρ)λ = 1

2 (Qµνρλ +Qρνµλ) . (D.7)



Appendix E

The Levi-Civita symbol

The D-dimensional Levi-Civita symbol is defined as

ε1...D = 1, (E.1)

being completely antisymmetric, such that

εµ1...µD
= D! · δ1

[µ1
· · · δDµD]. (E.2)

The Levi-Civita symbol is a fundamental symbol: it has the same value in
every coordinate system. Thus, it transforms as a pseudo-tensor density of weight
1 under general coordinate transformations,

εµ1...µD
= sgn

(
∂y

∂x

) ∣∣∣∣∂y∂x
∣∣∣∣ ∂xα1

∂yµ1
· · · ∂x

αD

∂yσD
εα1...αD

. (E.3)

As these are the transformations, the invariant volume element is given by√
|g|dDx =

√
|g|εσ1...σD

dxσ1 · · · dxσD . (E.4)

We can also define a completely contravariant symbol as

εµ1...µD = gµ1σ1 · · · gµDσDεσ1...σD
. (E.5)

Then, evaluating it, we get

ε1...D = det(g−1) = (−1)D−1|g|−1. (E.6)

It is also a pseudo-tensor density of weight 1, by construction.
The contraction of two Levi-Civita symbols is given by

εσ1...σpµ1...µD−p
εσ1...σpν1...νD−p = (−1)D−1

p!(D − p)! · |g|−1δν1
[µ1
· · · δνD−p

µD−p], (E.7)
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being two useful particular cases

εσ1...σD
εσ1...σD = (−1)D−1

D! · |g|−1, (E.8)

εµ1...µD
εν1...νD = (−1)D−1

D! · |g|−1δν1
[µ1
· · · δνD

µD]. (E.9)

Finally, the derivatives of these symbols are

∇µεν1...νD
= 0, ∇µεν1...νD = gση∇µgσηεν1...νD . (E.10)

When working in the vielbein formalism, the symbol is written as

εa1...aD
= eσ1

a1
· · · eσD

aD
εσ1...σD

. (E.11)

Thus, when calculating the value of the components of this symbol, we obtain
the inverse of the determinant of the vielbein,

ε1...D = eσ1
1 · · · e

σD

D εσ1...σD
= e−1, (E.12)

and, hence,
∂µ

(√
|g|εa1...aD

)
= ∂µ (|e|εa1...aD

) = 0, (E.13)

as all the components are constant.
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