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Abstract: Obesity is a growing health threat worldwide. Administration of probiotics in obesity
has also parallelly increased but without any protocolization. We conducted a systematic review
exploring the administration pattern of probiotic strains and effective doses for obesity-related
disorders according to their capacity of positively modulating key biomarkers and microbiota
dysbiosis. Manuscripts targeting probiotic strains and doses administered for obesity-related
disorders in clinical studies were sought. MEDLINE, Scopus, Web of Science, and Cochrane
Library databases were searched using keywords during the last fifteen years up to April 2020.
Two independent reviewers screened titles, abstracts, and then full-text papers against inclusion
criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines. From 549 interventional reports identified, we filtered 171 eligible studies, from which
24 full-text assays were used for calculating intervention total doses (ITD) of specific species and
strains administered. Nine of these reports were excluded in the second-step because no specific data
on gut microbiota modulation was found. Six clinical trials (CT) and 9 animal clinical studies were
retained for analysis of complete outcome prioritized (body mass index (BMI), adiposity parameters,
glucose, and plasma lipid biomarkers, and gut hormones). Lactobacillus spp. administered were
double compared to Bifidobacterium spp.; Lactobacillus as single or multispecies formulations whereas
most Bifidobacteria only through multispecies supplementations. Differential factors were estimated
from obese populations’ vs. obesity-induced animals: ITD ratio of 2 × 106 CFU and patterns of
administrations of 11.3 weeks to 5.5 weeks, respectively. Estimation of overall probiotics impact
from selected CT was performed through a random-effects model to pool effect sizes. Comparisons
showed a positive association between the probiotics group vs. placebo on the reduction of BMI, total
cholesterol, leptin, and adiponectin. Moreover, negative estimation appeared for glucose (FPG) and
CRP. While clinical trials including data for positive modulatory microbiota capacities suggested that
high doses of common single and multispecies of Lactobacillus and Bifidobacterium ameliorated key
obesity-related parameters, the major limitation was the high variability between studies and lack of
standardized protocols. Efforts in solving this problem and searching for next-generation probiotics
for obesity-related diseases would highly improve the rational use of probiotics.
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1. Introduction

1.1. Probiotics for Dietary Supplementation Interventions

Probiotics remain a major complementary intervention resource for modulating microbiota
dysbiosis, which is associated with several disorders and metabolic diseases [1,2].

Probiotics, according to the International Life Sciences Institute (ILSI), WHO, and the International
Scientific Association of Probiotics and Prebiotics (ISAPP), are defined as “live microorganisms, which
when administered in adequate amounts confer a health benefit on the host” [3]. Therefore, doses of
certain probiotic strains might effectively modify misbalanced microbiota to make them healthier or,
in other words, generate eubiosis [3,4].

Moreover, despite their numerous benefits, inadequate consumption of probiotics can even have
undesirable effects, such as harmful metabolic activities, alterations of the integrity of the intestinal
barrier, an inappropriate immune response, and the generation of antibiotic resistance genes and
systemic infections [5,6]. Currently, the evaluation process of health claims determines the benefit
of probiotics through clinical trials, which verify and demonstrate, in the last phase, the modulating
capacities for the control of dysbiosis in patients with certain pathological disorders or phenotypes
using omics complementary technologies [7]. It is also important to harmonize the knowledge on what
specific probiotics should be recommended for dysbiosis, in what doses, and for how long.

Importantly, to obtain demonstrated benefits, appropriate probiotic doses must be administered
under validated research intervention protocols. However, it is well known that an effective dose
of probiotics might be influenced by a multitude of variables, including the final beneficial effect
(objective), the specific probiotic strain used, and the vehicle and route of administration, which
also have a decisive impact [8]. Most probiotic assays pay more attention to the final outcomes or
modulated clinical parameters than to the establishment of a validated and harmonized protocol of
specific doses and administration patterns [9]. Clinical studies or open science would allow clinicians
and investigators to check trial outcomes and pursue interesting parallel uses of trial data, without
compromising scientific integrity [10]. However, many probiotics trials do not show details regarding
strains, doses, and patterns of administration. We believe that it is important to fill this gap since even
in the long term, it would facilitate clinical and translational effects.

However, a personalized intervention plan with probiotics, prebiotics, or symbiotics should
be applied to control the dysbiosis associated with obesity and metabolic disorders because of
the complexity of each individual clinical case [11,12]. The selection of the right complementary
treatment based on the probiotic formula is still far from being protocolized due to the discrete clinical
improvements achieved as a consequence of the complexity of metabolic diseases [13] and the lack of
integration data on probiotics, microbiota, and metabolites.

1.2. Microbiota Dysbiosis in Obesity-related Disorders: Obesogenic Substances

Microbiota is the microbial community that lives on and in the human body [14]. The composition
of the microbiota may suffer variations due to several factors, including age, lifestyle, drugs, diet,
antibiotics, and other environmental xenobiotics [15,16].

There exists demonstrated evidence of the association between gut microbiota and obesity in
animals and humans [15,17,18]. However, the causal relationship and the underlying mechanisms
remain unknown [19]. Importantly, recent data have highlighted the role of gut dysbiosis in the
etiology and pathogenesis of metabolic disorders, including obesity, metabolic syndrome, type 2
diabetes mellitus, and non-alcoholic fatty liver disease [20]. Moreover, numerous animal studies
and certain human studies suggest beneficial metabolic effects of microbial intestinal metabolites,
such as short-chain fatty acids (SCFAs), which are vital for metabolic functions and the regulation
of food intake and energy expenditure. Moreover, SCFA production from prebiotic consumption by
supplemented probiotics might contribute to the reduction of obesity risk [21].
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Furthermore, strong scientific evidence indicates that the gut microbiome not only reacts to diet
but to other external contaminant substances, such as antibiotics and other xenobiotics, in ways that
impact metabolic conditions, triggering obesity and other endocrine diseases, called obesogens [22].
They could also increase the energy harvest during obesity [16] or dysbiosis, referred to as an imbalance
of the bacterial population in a natural colonization site, which can result in immune and metabolic
diseases [17], diabetes mellitus type 2 [23], and/or metabolic syndrome. However, presently, very little
is known regarding the molecular mechanisms underlying these triggered obesogenic effects [24]. Some
groups of food xenobiotics or contaminants that have already been considered obesogens and modifiers
of gut microbiota are endocrine disruptors [25]. However, few alternative strategies have been tested
by now for counteracting, metabolizing, or neutralizing these xenobiotics and their body effects by
appropriate dietary supplementation probiotics BPA [26]; Parahydroxybenzoate [27]; Phthalates [28,29].
In that direction, more research about bacteria components of the intestinal microbiota that could become
new candidates for next-generation probiotics with specific biotherapeutic and detoxifying role could be
developed [30]. Moreover, this area of research is now evolving in parallel with omics methodologies [7],
improved identification, culturing, and next-generation sequencing technologies [31].

Taken together, the present review arises from the evidence of interrelated microbiota dysbiosis
observed in obesity-related diseases and the possibility to prevent or palliate this misbalance with
improved practical know-how of probiotic clinical interventions. To achieve this, we performed an
extensive search strategy, review, extraction, and presentation of the most relevant and up-to-date
scientific literature on effective probiotics. An overview of key specifications data from probiotic
studies and their effective modulating role in gut microbiota dysbiosis in obesity were extracted,
compared, and recommended according to better-obtained outcomes.

2. Materials and Methods

Methods used for this systematic review were started on April 2019 with reference to the Preferred
Reporting Items for Systematic Reviews statement. The protocol and search strategy are shown in
Table S1 following the requirement of the International Prospective Register of Systematic Reviews
(PROSPERO).

2.1. Eligibility Criteria

All studies targeting probiotic strains and doses administered for obesity-related disorders in
relation to data showing microbiota dysbiosis modulation capacities in humans or animal models
were included. Two independent reviewers screened titles, abstracts, and then full-text papers
against inclusion criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines.

Specifically, to be included in the study, there were four mandatory inclusion criteria during
abstract revision: (1) the study was published within the last fifteen years (i.e., between 2005 and 2020)
and should specify (2) the probiotic strain used, (3) the dose, (4) the time/period of administration;
and (5) criteria for screening full text according to the availability of specific data on its modulation
microbiota capacity. Non-English-language manuscripts; documents containing no quantitative/obesity
biomarker-specific data; studies with results on other kinds of dysbiosis or that were not concerned
with diabetes, metabolic syndrome or obesity were excluded.

2.2. Search Strategy

Literature search and review of clinical studies were developed in collaboration with Granada
librarian support using medical subject headings (MeSH) and the keywords (see below) under a
stepwise procedure search and adapted to each database’s tutorials. The following electronic databases
were searched from 2005 to 15 April 2020: MEDLINE/PubMed [32], Web of Science (Thomson Reuters
Scientific), Scopus (Elsevier), and Cochrane Library [33]. Two independent reviewers (ALM and MA)
revised titles and abstracts, then full-text publications with reference to the inclusion criteria. Study
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selection inter-rater agreement between the two reviewers was calculated as the proportion of positive
agreement (PA) [34]. A PRISMA search on the topic of interest [35] flow diagram of the literature
search summarizes the selection of the studies involved in the two main screening phases as previously
explained (Figure 1).

Keywords: (Probiotic* AND microbiota AND obesity AND “endocrine disrupt*”); (Probiotic*
AND microbiota AND obesity AND obesogens, xenobiotic*); (Probiotic* AND microbiota AND obesity
AND hormon*); (Probiotic* AND microbiota AND obesity AND “drug metabol*”); (Probiotic* AND
microbiota AND “metabolic syndrome” AND “endocrine disrupt*”); (Probiotic* AND microbiota AND
“metabolic syndrome” AND xenobiotic*); (Probiotic* AND microbiota AND “metabolic syndrome”
AND hormon*); (Probiotic* AND microbiota AND “metabolic syndrome” AND “drug metabol*”);
(Probiotic* AND microbiota AND diabetes AND “endocrine disrupt*”); (Probiotic* AND microbiota
AND diabetes AND xenobiotic*); (Probiotic* AND microbiota AND diabetes AND hormon*); and
(Probiotic* AND microbiota AND diabetes AND “drug metabol*”) (Table S1).

2.3. Data Extraction and Analysis

Two independent reviewers (ALM and MA) extracted all relevant data in duplicate onto a
Microsoft Excel spreadsheet. Publication authors were contacted if clarifications or specific data were
missing. The following data were extracted for all studies meeting inclusion criteria: publication
year, study design, number of participants, characteristics of the population, including the sample
size (n = number of subjects) in the intervention group, gender, and age for animal and clinical
trials; microorganism probiotic strains; dose; pattern of administration; modulation of the microbiota;
modification of the clinical parameters, including (i) changes in body weight, BMI, waist circumference
(WC), fat mass, fat percentage, and any alteration in parameters relating to weight; (ii) biomarkers
related to metabolic changes: cholesterol levels (VLDL and LDL), triglycerides, glucose, insulin
resistance or alterations in diabetes-related parameters; and (iii) hormone-related modifications.

The main data results from CT were qualitatively synthesized into Table 1. Comparative data
extraction was done from animal studies having microbiota changes and relevant data were compiled
(Table S2). Similar data studies but without microbiota were used for analyzing and calculating
interventional total doses administered in obesity-related (Table S3). Moreover, further specifications
and key results were retrieved from the overall analysis of clinical studies in order to visualize the
relevance of the probiotics administered and the particular capacities in modulating microbiota and
obesity-related dysbiosis.

Further data analysis of probiotic strains, effective doses, and pattern of administrations in
obesity-related disorders were also retrieved from all collated data from clinical studies (15 selected
studies and 9 overall analyzed reports that were none selected at the third step of the review because
they did not fulfill microbiota modification criteria but contain primary and secondary relevant
outcomes). Graphs depict preferent probiotic species, doses, and a pattern of administration in
humans and animals and systematic narrative specifications are complementary for appropriate
qualitative descriptions.

2.4. Risk of Bias (Quality) Assessment for the Selected Clinical Trials

Two independent reviewers (ALM and MA) assessed the risk of bias for each clinical trial selected
using the Cochrane collaboration’s methodology [33]. In case of discrepancies, a third reviewer
participated in this evaluation (AS). The risk of bias was tabulated for each study. Each item evaluated
was classified as low risk (−; green cycle), high risk (+; red cycle), or unclear risk (?; yellow cycle),
according to the quality recommendations described in Chapter 8 of the Cochrane Handbook of
Systematic Reviews of Interventions [33]. This analysis and the corresponding figures were generated
in RevMan 5.3 Review Manager (RevMan Computer program) Version 5.3. Copenhagen: The Nordic
Cochrane Centre, the Cochrane Collaboration, 2019. Available at revman.cochrane.org.
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2.5. Statistical Analysis

To calculate overall effect size for each study, the following steps were undertaken: (1) Baseline
value in treatment group, baseline value in placebo group, endpoint in treatment group and endpoint
value in placebo group were extracted. If baseline values were not reported in a study, only endpoint
values were used; (2) Change ± SD from baseline was calculated for the treatment group and placebo
group, separately; (3) Mean difference between changes from baseline in probiotics treatment group vs.
changes from baseline in placebo group was calculated and used as overall effect size. When BMI,
total cholesterol, LDL, HDL, TAG, glucose, CRP, leptin, adiponectin, and related parameters were
reported in different units across the studies, alignment calculations or Hedges’s adjusted was used to
calculate effect size. A random-effects model was used to pool calculated effect sizes. The I2–squared
test to explore the heterogeneity, where an I2 > 75% is considered high heterogeneity and an I2 < 25%
is considered low heterogeneity. Heterogeneity between subgroups was evaluated using a fixed effect
model. Sensitivity analysis was performed by omitting one study at a time, to detect any significant
changes in the results obtained. We used Begg’s rank correlation test and Egger’s regression asymmetry
test to evaluate publication bias.

3. Results

The literature search focused on the selection of relevant data from probiotic studies, such as
specific detailed microbial strains, doses, and patterns of administration during clinical interventions
to effectively modulate dysbiotic microbiota in obesity and related endocrine and metabolic diseases.

3.1. Research and Scientific Evidence on the Probiotic Strains and Doses Administered for
Obesity-Related Disorders

Obesity-related diseases are a worldwide concern and there is urgency to apply synergistic and
multidisciplinary plans. Therefore, the initial overall search using the keywords “probiotics and
obesity” showed an exponentially increasing trend of related studies carried out (Figure S1). Research
and scientific evidence are summing data from different types of clinical studies especially during the
last fifteen years. Consequently, after applying the specific searches and screening titles and abstracts,
from 549 articles reviewed were eligible 171 for full-text revision (Figure 1). There was substantial
PA between the reviewers of titles (PA = 0.78) and abstracts (PA = 0.84). Twenty-four articles met the
inclusion criteria when Title and Abstract were revised; these were Clinical Trials (n = 6) and animal
studies (n = 9). No papers reported for humans with xenobiotic obesogens (Figure 1). After applying
the inclusion criteria, relevant outcomes from the studies fulfilling criteria and comparative data
extraction from animal studies were presented in Table 1 and Table S2, respectively.

The main extracted data from the selected studies were the following: sample (human or animal
models), population size, probiotic strain/s, doses, administration pattern, individual microbiota
modulation data, and common clinical and biochemical parameters related to weight, lipids and
specific hormones related to weight gain, glucose, and lipid metabolisms (Table S1, Table S2, and
Table S3).

We found 24 reports resultant from the first-step selection focusing on probiotics species and
strains used to effectively modulate parameters and biomarkers clinically relevant in obesity-related
diseases. These documents were thoroughly analyzed for estimating the more common probiotic
species used in obesity (Figure 2), calculating average doses (Figure 3) and pattern of administrations
(Figure 4) to obtain comparative conclusions from human and animal clinical studies (Table 1 (6 CT),
Table S2 (9 animal studies)). In order to obtain a more robust outcome, we included also data retrieved
from nine reports containing a total of 47 suitable studies for the pursued analysis, summarized in the
Table S3, 5 clinical studies [36–40] and 4 systematic reviews providing 12 studies from Cerdó et al. [41],
4 from Tenorio et al. [13], 7 from Sanz et al. [42], 20 studies from Koutnikova et al. [43]. None of
these studies contained specific information on microbiota modulation capacities, so they could not be
directly included for the main final microbiota analysis.
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Figure 1. PRISMA flow diagram: Preferred Reporting Items for Systematic Reviews and
Meta-Analyses [35].

3.2. Probiotic Strains, Daily Doses and Intervention Total Doses in Obesity-related Clinical Studies

Probiotic strains: There is a trend of probiotics species and strains used in obesity-related human
and animal clinical studies. There were more studies using a larger number of lactic acid bacteria (LAB)
and specifically Lactobacillus species, comparing to Bifidobacterium species in humans and animal studies
(Figure 4). It can be seen a higher arsenal of different probiotics species used for humans than for animals.
Lactobacilli and Bifidobacteria formulations administered in human clinical trials were prepared
mainly as monostrain (Lactobacillus reuteri, and L. gasseri), bistrains (L. curvatus), and multistrains
(L.acidophilus, L.brevis, L. salivarius, L. delbruecki, L. casei, L. plantarum, L.rhamnosus, L. paracasei).
However, Bifidobacteria strains administered to animals were mainly administered by multistrain
preparation, in the VSL#3*commercial product mixture of 8 probiotics strains: Lactobacillus acidophilus
DSM24735, Lactobacillus plantarum DSM24730, Lactobacillus paracasei DSM24733 and Lactobacillus
delbrueckii subsp. bulgaricus DSM24734; Streptococcus thermophilus DSM2473; Bifidobacterium breve
DSM24732, Bifidobacterium longum DSM24736, Bifidobacterium infantis DSM24737 [44]; or in a common
multispecies preparation with 9 strains: Bifidobacterium bifidum W23, Bifidobacterium lactis W51,
Bifidobacterium lactis W52, Lactobacillus acidophilus W37, Lactobacillus brevis W63, Lactobacillus casei W56,
Lactobacillus salivarius W24, Lactococcus lactis W19, and Lactococcus lactis W58 [45].
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Figure 2. Probiotics formula administered in interventional obesity-related diseases in (A) humans
(B) animal clinical studies.

Probiotic doses and intervention total doses: In terms of the total intervention doses, the average
and duration of probiotics intervention studies were 3.2 × 1016 CFU and 11.3 weeks in humans studies,
which is equivalent to an average daily dose of 4 × 1014 CFU/day (Figure 4; Figure 5); oscillating
between the maximum total dose of 3 × 1017 CFU and minimum dose of 2.2 × 1011 CFU for human CT.
Additionally, the daily minimum and maximum doses varied 1 × 108 CFU/day 1.35 × 1015 CFU/day,
and the time of administration varied from 4 to 24 weeks.
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Figure 3. (A) Lactobacillus and Lactic Acid Bacteria (LAB) species and (B) Bifidobacterium species used
in obesity-related disorders from human clinical trials.

On the other hand, the average doses and duration of probiotics intervention studies in
obesity-induced animal models were 1.5 × 1011 CFU and 5.5 weeks, which equivales to a daily
dose of 4 × 109 CFU/day (Figure 6); varying from maximum dose of 7 × 1011 CFU and minimum dose
of 1.7 × 109 CFU. Additionally, in the animal studies, the daily minimum and maximum doses varied
from 2 × 106 CFU/day to 1 × 1010 CFU/day, and the time of administration was also variable from 2.5
to 10 weeks.

None of the probiotic strain used in the obesity-related disorders triggered any safety concerns.
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Figure 4. (A) Lactobacillus and LAB species and (B) Bifidobacterium and next-generation probiotics
(NGP) species used in obesity-related disorders from selected animal clinical studies.

The analyses showed a trend that allow calculating a probiotics ITD extrapolation factor of
2 × 106 CFU in average between human and animal clinical studies (Figure 5). The specific values for
this ratio were of 1.2 × 107 CFU for Lactobacillus delbruecki and Streptococcus thermophilus; 1.2 × 106 CFU
for Lactobacillus plantarum; 7.7 × 105 for Lactobacillus acidophilus; 5.2 × 105 for Lactobacillus paracasei;
4.2 × 105 for Lactobacillus casei; 1.9 × 103 for L.rhamnosus; 1.9 × 103 for L. gasseri; 9 × 10-1 for L. curvatus;
and for Bifidobacteria the ratio was of 5.3 × 105 for Bifidobacterium longum; 3.6 × 105 for B. breve; 1.8 × 105

for B.infantis; 3.4 for B. animalis; and 2.2 for B. bifidum.
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3.3. Probiotic Modulation Capacity on Individual Autochthony Microbiota and Clinical Parameters

3.3.1. Impact of Probiotics on Individual Autochthony Microbiota

The studies analyzed showed more comprehensive data on the modulation of microbiota in
animal studies (9) than in clinical trials (6), however they were not part of quantitative analysis because
the extrapolation could not be done for comparisons between animals and humans.

In regard to human studies with impacting microbiota composition, no specific modulation
pattern was shown within the selected probiotics supplementation CT (Table 1). Interestingly, three
clinical trials did not register any change in the microbiota composition [46–48], which were all in line
with a negative impact on BMI modifications. Conversely, [49] clinical trials performed in women
showed microbiota modification capacities that were associated with positive effects on BMI.

In regard to probiotic formulas preferentially administered in human studies impacting microbiota
composition (Table 1), the commercial multistrains VSL#3 product was used in two clinical trials
with completely different administration patterns [46,50], both in terms of the doses (highest 1015

doses and normal dose 1011, respectively) and durations (18 and 6 weeks, respectively). Additionally,
Jones et al. [46] did not find any changes in the composition of the microbiota after probiotics treatment,
whereas Rajkumar et al. [50] showed an increase of total bacteria, specifically the total anaerobes.

We also found suitable results for 4 clinical trials with monostrain probiotic formula administered
through different intervention total doses (ITD) from 8.4 × 109 to 4 × 1012 CFU and heterogenous
populations. Simon et al. [48] and Mobini et al. [47] administered two different strains of Lactobacillus
reuteri to targeting different patient populations, and they found diverse results for the same clinical
parameters. In the case of Mobini et al. [47], the patients had also diabetes type 2. Brahe et al. [51]
studied the administration of one strain of L. paracasei and they did not find any changes in the clinical
parameters of the patients (obese postmenopausal women). Finally, Sánchez et al. [49] administered a
Lactobacillus rhamnosus strain and found significant differences between genders. While a decrease in
the Subdoligranulum genus, coupled to weight loss and decreasing leptin levels were found in women,
no significant differences were found in microbiota or any clinical biomarker in men treated.

Complementary results were obtained in regard to probiotics supplementation in obesity-induced
animal studies (6 in mice, 2 in rats, and 1 in zebrafish) with impacting microbiota composition
(Table S2). Monostrain formulas were successfully used: Bifidobacterium animalis subsp. lactis BB–12 [52]
modulating the Firmicutes/Bacteroides ratio and decreasing glucose biomarkers and hormone related
values but without changes in body weight; Lactobacillus casei CCFM419 [53] increasing Bifidobacterium,
Allobaculum, Bacteroidetes, and Lactobacillus genera, SCFA-producing bacteria decreasing cholesterol
biomarkers and hormone related values; Lactobacillus rhamnosus CNCM I-3690 [54] reducing Bilophila
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wadsworthia and increasing the presence of Lactobacillus rhamnosus, also decreasing glucose and insulin
biomarkers but without changes in body weight; Lactobacillus paracasei subsp. paracasei (W8) [55]
increasing Lentisphaerae, Prevotella, and Lactobacillus genera, also adiposity, energy intake and insulin
levels were increased too; Lactobacillus rhamnosus BMI 501 [56] increasing Rothia, and allowing the
appearance of genera such as Mesorhizobium, Gordonia, and Oxalobacteraceae family and decreasing
biomarkers of obesity; Or bistrains well-known formula Lactobacillus curvatus HY7601 and Lactobacillus
plantarum KY1032 [57] reducing bacteria diversity, weight, cholesterol and hormone biomarkers;
L. rhamnosus LS8; L. crustorum MN047 [58] increasing the Firmicutes/Bacteroides ratio, decreasing body
weight, and cholesterol levels and augmenting insulin tolerance.

Moreover, we found only two effective next generation probiotics in monostrain preparation
belonging to Bacteroides uniformis [59,60] and Hafnia alvei HA4597 [61] for animal clinical studies
exerting a positive clinical impact on the microbiota and obesity biomarkers.

3.3.2. Impact on Obesity-related Clinical Parameters

The most significant modulation capacities of the clinical parameters were qualitatively extracted
and shown in Table 1, choosing the variability of the three main clinical features linked to (i) weight
parameters: BMI, waist circumference, fat, and/or adiposity; (ii) Biomarkers: plasma glucose, total
cholesterol, TAG, LDL, VLDL, and liver glycogen levels; and (iii) hormone data levels: leptin,
adiponectin, GLP-1, and Insulin indexes.

The studies were disaggregated if they presented multiple study groups with different results.
This was the case of Mobini et al. [47] divided into Mobini a: low dose (group 1) and Mobini b: high
dose (group 2); Sanchez et al. [49] divided into Sanchez a1: all subjects at 12 weeks, Sanchez a2: all
subjects at 24 weeks, Sanchez b1: male at 12 weeks, Sanchez b2: male at 24 weeks, Sanchez c1: female
at 12 weeks and Sanchez c2: female at 24 weeks.

The comprehensive method applied in selecting the final interventional documents and their
outcomes guaranteed the quality of these clinical studies to obtain useful conclusions, both in animals
and CT. Moreover, the possibilities in assessing the risk of biases of the 6 CT designs, execution, and
outcomes increased the categorization of the applied quality standards. It gave added value to the
evaluated CTs and allowed the reviewed results to be validated (Figures 6 and 7).

We further reviewed, extracted, and highlighted the relevant information from the selected studies.
Moreover, quantitative analysis through forest plot evaluations showed the statistical impact on each
clinically relevant parameter and revealed the most significant changes and capacities of modulation of
probiotics administered on BMI (Figure 8); Lipidic profile (Figure 9); Glucose and CRP levels (Figure 10)
and Adiponectin and Leptin hormones (Figure 11).
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Analyses through forest plots graphs showed the effects of probiotics in human studies in
relation to BMI and microbiota modulation capacities and clinical parameter modifications were
done. Black diamonds indicate the outcome for different probiotic formulas administered in each
population studied.

The studies were disaggregated if they presented multiple study groups with different results.
This was the case of Mobini et al. [47] divided into Mobini a: low dose (group 1) and Mobini b: high
dose (group 2); Sanchez et al. [49] divided into Sanchez a1: all subjects at 12 weeks, Sanchez a2: all
subjects at 24 weeks, Sanchez b1: male at 12 weeks, Sanchez b2: male at 24 weeks, Sanchez c1: female
at 12 weeks and Sanchez c2: female at 24 weeks.

Interestingly, this meta-analysis showed that probiotics slightly improved lipid metabolism,
specifically through modifying HLD-cholesterol levels and total cholesterol. While LDL-cholesterol
and TAG levels seemed not to be modified by the probiotic supplements.

Remarkably, this meta-analysis showed that placebo group favored the glucose and CRP levels,
which are correlated negatively with obesity-related symptoms and inflammatory responses.

The two obesity-related hormones, adiponectin (regulates glucose and lipid metabolisms) and
leptin (regulates food intake and energy expenditure), may have a small but significant effect to decrease
body weight and fat mass. This meta-analysis found that adiponectin and leptin concentrations were
slightly decreased by supplementation with probiotics administered, however the trend of the outcome
could not be correlated to glucose, lipid metabolism, but could be associated with the same tendency
of the body weight (BMI) modifications by the probiotic supplementation groups. Heterogeneity
percentages data were highly different for the two hormones, 90% for adiponectin and 42% for leptin.
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Table 1. Summary of the probiotic strain’s effects in obesity and related metabolic disorders from selected clinical trials.

Report
Reference

Population
Characteristics

Probiotic Strain Probiotic Doses
CFU/day

Pattern
Administration

ITD (CFU)

Microbiota Modulation
Capacities

Clinical Impact and Parameter Modifications

Weight Biomarkers Gut Hormones

Jones et al. [46] 19 Obese Latino
adolescents

VSL#3*
(Multispecies) 1.35 × 1015 16–18 Weeks

1.5–1.7 × 1017

No microbiota modification
↔ Firmicutes
↔ Bacteroides

↑BMI
↑Adiposity ↑Fat

mass
↔ Glucose

↔ Leptin, GLP-1
and GLP-2

↔ Insulin levels

Rajkumar et al.
[50]

60 Overweight
(30 women and 30 men)

VSL#3*
(Multispecies)

VSL#3*+ Omega-3
1.1 × 1011 6 weeks

4.6 × 1012

↑ Total bacteria
↑ Total anaerobes

↑ Lactabacillus, Bifidobacteria,
Streptococcus and Bacteroides.

↓ Coliform, E.coli

↓ BMI

↑ HDL
↓ LDL, VLDL, TAG

↓ Glucose
↓hsCRP

↓ Insulin levels

Brahe et al. [51]
58 Obese

postmenopausal
women

L. paracasei
subsp. paracaseiF19 9.4 × 1010 6 weeks

4 × 1012
↑Eubacterium rectaleand

Ruminococcus torques ↔ BMI
↔ LDL, VLDL,

TAG, Cholesterol,
↑hsCRP

↔ ISI↔ Leptin

Simon et al. [48] 10 Obese and 11 lean,
all glucose-tolerant

Lactobacillus reuteri
SD5865 2 × 1010 4 weeks

5.6 × 1011

No microbiota modification
↔ Total bacterial

↔Enterobacteria↔Lactobacilli,
↑Lactobacillus reuteri

↑ BMI obese,
↔ Ectopic fat ↔ Glucose

↑ Insulin levels and
C-peptide secretion
↑ GLP-1 and GLP-2

Mobini et al.
[47]

46 (11 women and
36 men) Obese/diabetes

Lactobacillus reuteri
DSM 17938

Group 1:
1 × 108

12 weeks
8.4 × 109

No microbiota modification
Euryarcheota was initially elevated

↑Methanobacteria

↑ BMI
↑Weight

↔ LDL, VLDL,
TAG and Total

Cholesterol
↔ Leptin levels.

Group 2:
1 × 1010 8.4 × 1011 No microbiota modification ↔ BMI

↔Weight ↔Lipid metabolism ↔ Leptin levels.
↑ ISI

Sánchez et al.
[49]

125 Healthy overweight
men and women

Lactobacillus
rhamnosus

CGMCC1.3724
3.2 × 108

12 weeks
2.7 × 1010

24 weeks
5.4 × 1010

↓Subdoligranulum sp. in women
No microbiota modification in men

↓Weight in women
↔Weight in men ↔Total Cholesterol ↓Leptin levels in

women.

* VSL#3 (Lactobacillus acidophilus DSM24735, Lactobacillus plantarum DSM24730, Lactobacillus paracasei DSM24733 and Lactobacillus delbrueckii subsp. bulgaricus DSM24734;
Streptococcus thermophilus DSM2473; Bifidobacterium breve DSM24732, Bifidobacterium longum DSM24736, Bifidobacterium infantis DSM24737); ISI: Insulin sensibility Index; GLP-1:
Glucagon-like peptide-1; GLP-2: Glucagon-like peptide-2; hsCRP: high sensitivity C-reactive protein; BMI: body mass index; aGLP-1: active Glucagon-like peptide-1; TAG: triglycerides;
ALT: liver toxicity biomarker alanine transaminase; CFU: colony-forming unit; NAFLD: nonalcoholic fatty liver disease; LDL: low-density lipoprotein; HDL: high-density lipoprotein;
VLDL: very low density lipoprotein. ↑Higher; ↓ Lower;↔ Equal
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4. Discussion

There is an exponential increase in the attention paid to the potential modulation of gut dysbiotic
microbiota through dietary probiotics supplementation to prevent and/or improve metabolic diseases,
such as obesity, diabetes, metabolic syndrome, and their comorbidities [62–64]. On the one hand,
the use of the specific probiotic supplementation formulas was well substantiated through activity
results in modifying key clinical biomarkers and safety demonstration [41,46,50]. On the other hand,
discrete and sometimes unspecific outcome reported on the probiotics for obesity and especially scarce
data focused on human microbiota modulation, make difficult to establish clear health assumptions
and protocolization [65]. The beneficial effects of many probiotics, such as LAB, have been defended
by its history of safe use [66], but currently scientific evidence demonstrating their benefits are
available for many probiotics, such as the commercial multispecies VSL3 [67], and for monostrain
e.g., Lactobacillus casei Shirota [43], L. rhamnosus GG [41], Bifidobacterium breve B-3 [68]. However,
most of these strains are administered through unharmonized pattern or clear effects due also to
heterogeneous disorders treated [68]. Therefore, after identifying this redundant lack of information,
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the present work compiled the most commonly used probiotic strains, administration patterns, daily
doses, and intervention total doses in human and animal studies (Figures 4–7) in obesity-related
disorders that showed modulation on key biomarkers. The majority of cited and collected probiotic
strains were from genera Lactobacillus and Bifidobacterium giving heterogeneous clinical results. Several
other species, such as Saccharomyces boulardii or S. cerevisiae, Enterococcus faecium, Bacillus coagulans,
B. clausii commonly used in other GIT disorders, were not administered for these obesity-related studies.
The choice of these probiotic species and strains to be administered in clinical studies seemed based
on their previously proven beneficial effects, stronger activity or function, and safety aspects [69,70].
It was interesting to highlight the use in human studies of the most commonly combined probiotic
formula, such as VSL#3 (Streptococcus thermophilus, Bifidobacteria (B. breve, B. infantis, B. longum),
Lactobacillus acidophilus, L. plantarum, L. paracasei, and L. delbrueckii subsp. bulgaricus), which has also
been demonstrated to exert an impact in obesity, liver fat, steatosis, liver fibrosis, NAFL/NASH, NAFLD
and other metabolic markers and gut hormones (GLP-1) [71,72]. We have no found definite clinical
trials about the effect of VSL#3 on diabetes mellitus. However, the efficacy of VSL#3 on diabetes
has been researched in obesity and non-obesity murine models [73]. Curiously, in two CTs [47,48],
supplementation with different single strains of L. reuteri increased BMI but maintained the levels of
lipid profiles and glucose, improving insulin sensitivity and insulin secretion in healthy and obese
populations [74,75]. L. paracasei ssp. paracasei F19 administration [51] maintained the stability of all
clinical parameters, although some authors described a modification of Ruminococcus torques and
Eubacterium rectale, and the latter is usually considered to belong to a group of beneficial bacteria [76].
As previously described, the Lactobacillus species are predominantly used, and they are consequently
historically better described at strain level, such as L. curvatus HY7601 and L. plantarum KY1032 [77],
which positively controlled all obesity parameters and slightly increase the Firmicutes/Bacteroides
ratio. Moreover, species of different strains of L. rhamnosus [54,56] were administered, promoting
modifications in microbiota, together with beneficial effects, such as in controlling inflammation [78]
and lipid metabolism dietary parameters. However, other genera were also administered in obesity,
such as Bifidobacterium spp. [79–81], Streptococcus thermophilus, and Akkermansia muciniphila [82,83].

One of the major hurdles for an accurate CT trial is to comprehend the operative dose of a
probiotic at a strain-specific level. The beneficial role of putative probiotics is both strain-specific and
dose-related or dose-dependent. It is expected that higher doses gave the most favorable (significant)
biomarker-related metabolic effects with regard to e.g., adiposis, cholesterol, and triglyceride reduction.
Our study has confirmed the differences in a strain-specific approach when selecting functional
strains suitable for clinical studies. The importance of this issue has been emphasized in recent
papers with regard to pre-clinical physiological studies on putative probiotic strains of LAB and
Bifidobacterium administered.

In this review, we found significant differences in the probiotic doses of the interspecies assayed,
where the minimum / maximum doses used in the CT, compared to the animal studies, ranged from
8.4 × 109 CFU / 1.5–1,7 × 1017 CFU to 5.6 × 107 CFU/ 7 × 1011 CFU, respectively. Despite this variation,
at least one or several key clinical data (BMI, lipid parameters) were modulated, thus discretely
improving the outcome pursued in the metabolic disease targeted subjects. In any case, the doses
used in CT obesity-related patients were higher than the recommended nutraceutical formulas, which
usually contains between 109 and 1010 CFU/g or CFU/ml per day [9,84]. Different results were obtained
through long-term vs. short-term oral supplementation of probiotics that seem also to exert differential
effects on diversity and community structure of microbiota. In other studies, authors showed that
short-term and long-term clinical studies alter the diversity and community structure of intestinal
microbiota in mice with different physiological effects [85]. Long-term oral of L. caseisy13 enhanced the
ability of colonization in the intestinal tract, however, a single time of oral dose had a greater effect
on gut microbiota structure at phylum and genus. The impact in obesity patients should be different
from the needs of stably colonizing the intestinal tract of the host. Therefore, doses establishment for
Lactobacillus spp. and Bifidobacterium spp. requires extended validation methods, culturing [86] or
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molecular methods [87] to evidence the correlation of probiotics-microbiota-BMI modifications [88];
however, it remains controversial whether detection of this species is associated with the microbiota
modification [89].

Although BMI is an indicator of the amount of body fat, it does not differentiate adiposity
types, function, or metabolic implications [90]. Interestingly, we observed a correlation between the
modification of the BMI and the microbiota. In cases where the microbiota is modified by probiotics,
they obtain a decrease in BMI, however, in studies where the administered probiotic does not modify
the microbiota, it produces an increase in BMI. In addition, we have observed differences between
changes in BMI and the dose of probiotics administered the weeks of treatment and the gender of the
study group.

In the present study, lipid metabolism parameters and concretely, triglyceride levels were not
modified, while total cholesterol serum levels were slightly improved for the probiotics group (Figure 9).
Other extensive probiotics studies have been reported to affect serum lipid levels in humans [91].
The same altered tendency profile of glucose (FPG) and CRP was observed through the meta-analysis,
being favored for the placebo group. Therefore, the probiotics group seemed not to affect these metabolic
and inflammatory interconnected biomarkers (Figure 9). Other studies showed that abnormal glucose
hemostasis was associated with altered serum CRP concentrations [92]. Moreover, an association
between obesity, insulin resistance, and inflammation needs prospective studies to better understand
the mechanisms of the mediation of these relations by obesity. Several hypotheses showed that the
effects of probiotics on metabolic endotoxemia and chronic inflammation seem to be accompanied
by obesity [93]. Moreover, low-grade inflammation is also an important factor in the pathogenesis of
diabetes, dyslipidemia, and comorbidities. Interestingly, other studies showed a positive correlation
between BMI and CRP levels in obese patients. Moreover, CRP can be stimulated by leptin levels and
CRP seemed to bind leptin receptor exerting modulations in both adipose tissue physiology as well
as pathogenesis of obesity-related diseases [94]. Furthermore, leptin and adiponectin levels obtained
through our meta-analysis were lower in the probiotic group than the placebo group. Furthermore, we
could see a relationship between adiponectin and BMI, as in the case of Mobini et al. [47], whereas in
Mobini a (low-dose probiotics) a decrease in adiponectin levels and an increase in BMI is observed,
however in Mobini b (high-dose probiotics) they obtained higher levels of adiponectin and a reduction
in BMI. In contrast to the other adipokines, circulating concentrations of adiponectin concentrations
decrease in obesity and diabetes, as weight reduction increases plasma adiponectin concentrations [95].
Probiotics also change leptin levels, more specifically the duration of the treatment and the gender
such as in Sánchez et al., not only the group of females had better results, but all groups during the
longer treatment obtained better results.

Finally, we highlighted and claim the importance of including data related to the microbiota
modulation capacities exerted by administered probiotics, together with clinical parameters and obesity
modulation outcomes. Our searching strategy and extraction of data on microbiota were conducted
on clinical trials and animal studies, in order to compare more available experimental data [96,97]
that could improve the progress of the microbiome-obesity research field. Importantly, there was
certain heterogeneity within the methodologies used to analyze changes in the microbiota (Table 1).
Most researchers used metagenomic technologies for determining bacterial diversity focusing on V4
region of the 16S rRNA [46,47], V5—V6 region [48] and V123 and V456 region [49] through similar
technologies, Illumina Miseq [46–48], SOLiD 5500xl [51] and 454 FLX [49] sequencers, except for one
study that determined bacterial diversity through culturing methods [50]. This is in line with the results
of several authors, who revealed that there still exist several technical and methodological limitations,
which, together with the non-harmonized advances in microbiome-targeted interventions, make
obesity prevention and standardized treatment through probiotic supplements more difficult [19,98].
Moreover, probiotic modulation capacities and the influence of gut microbiota status on the risk of
obesity and intervention management had been better studied in animal models, in which experimental
premises cannot be directly extrapolated to intervention in humans. Therefore, studies in humans
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still necessitate further robust and extensive investigations [99]. Furthermore, some innovative
clinical interventions have shown that the modulation of the intestinal microbiota through fecal
microbiota transplant (FMT) is clinically viable. Similarly, specific consortia of microbiota probiotics
administration may also reduce several negative effects of metabolic diseases [100,101]. We also
tried, to some extent, to envisage the available data on probiotics used to palliate the microbiota
dysbiotic effects, such as the reduction of beneficial bacteria linked to the cumulative exposure to
xenobiotic substances categorized as obesogens [102,103]. However, there were no direct clinical trials
when analyzing the combined term strategy with xenobiotics. The absence of probiotics, metabolic
diseases, and xenobiotic obesogens studies may indicate a new area of probiotic research for the future.
Similarly, toximicrobiomics seem to be an emerging field of research. It integrates data on microbiology,
bioinformatics, and toxicology, expanding the scope of personalized medicine [104,105]. However, we
consider it important to highlight that current human exposure to xenobiotics is much more extensive
through diet, food biotech, water, and pollution contaminants. Particular attention should be paid to
obesogens and other manufactured products that are consumed daily [106]. Several authors focused
on the underestimated exposure to xenobiotics, which could also be linked to microbiota dysbiosis, and
its impact on obesity prevalence, which carries with it a high risk of cardiovascular disease, diabetes,
and premature death worldwide [16]. Health concerns regarding the deleterious physiological effect of
these obesogenic substances necessitate the characterization of the potential mechanisms of potential
detoxifying probiotics [107–110].

In any case, all the selected probiotics showed marginal beneficial effects, which were extremely
dependent on the administration patterns. Therefore, commercial probiotics for the future must be
personalized according to the population group, specific microbiota dysbiosis, metabolic disorder
to be treated, and the specific clinical status in order to limit all possible unwanted or unexpected
effects. This systematic review suggests thorough microbiota analysis with complementary laboratory
techniques (molecular methods; qPCR of specific taxa [111], culture methods [112]), beyond the
common microbiota determination (V3—V4 16S RNA taxometagenomics), may be contributing to
better determine variation in microbial populations; however, there are few data relating to these
taxa determination.

Limitations of the current literature. First, the number of eligible studies was small and most
chosen trials were performed in small sample size population; Second, analyzed studies used vastly
different doses and strains of probiotics, and the selected trials were also heterogeneous in terms of
disease states of populations, age, and other lifestyle factors. Further, usual dietary intakes were
not checked in terms of possible probiotics consumption through the normal dietary patterns ç or
concomitant treatments for obesity, diabetes type 2, metabolic syndrome that could also affect the
gut microbiota composition and to be a cofounder of metagenomic studies; The current literature
is also limited by methodological heterogeneity, in methods used for microbiota determination and
the obesity-related biomarkers defining diagnostic, changes and evolution.; Moreover, there are
documented controversies in obesity burden and prevalence of microbiota dysbiosis between obese,
diabetes, and metabolic syndrome patients and even hormonal and/or pro-inflammatory disorders
triggered by chemicals related to obesity [113,114]. And, some inconsistencies in metabolic syndrome
data, reflecting the absence of internationally accepted definitions [13].

Future directions. To further our understanding of the preventive and improved role of probiotics
in obesity-related disorders and to build upon a harmonized and standardize protocols or international
guidelines for administration. Intensive and further research is required to investigate the effect
of probiotics in human microbiota and how they relate to biomarkers levels modifications to cause
improvements through high throughput methodologies. There is an urgent need to elucidate how
probiotic administration and action would integrate the impact of multifactorial diseases according to
precedent evaluations of the specific patient features, pathophysiological status, clinical and genetic
factors, predispositions for developing metabolic diseases, and history of dietary xenobiotic obesogens
exposure. Moreover, a joint effort to incentivize the publishing of accomplished probiotic clinical
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studies as open access (OA) literature [115] will make available more data for robust comparisons.
New species of next-generation probiotics (NGP) [116] will constitute new standardized preventive
and therapeutic tools for the near future.

5. Conclusions

The present systematic review has achieved and served to compile key data on the probiotic strains
preferentially used for obesity-related metabolic disorders, effective doses, administration patterns,
and the expected clinical benefits connected to microbiota dysbiosis modulation. Net beneficial trends
could be interpreted from the meta-analysis, beyond the difficulties faced in aligning the heterogeneous
data. Microbiota positive modulation capacity by probiotics seemed to be correlated with BMI and lipid
biomarkers. However, due to the small number of studies that investigated the effects of probiotics in
relation to the microbiota, it was unclear if they correlate with all the other glycemic, inflammation,
and gut hormone parameters. Therefore, while higher doses of probiotic supplementations appear to
be a useful adjuvant therapy for obesity-related patients comparing to other diseases, the role of the
effective single species, e.g., L. reuteri, L. rhamnosus, and L. paracasei and multispecies probiotic formula
(VSL3) would also require further investigation and efforts for standardization during intervention
and determination of appropriate dose-dependent effects.

More standardization efforts and research intervention strategies should focus on modulatory
microbiota capacities and envisage the development and use of next-generation probiotics whose
formulation requires competent preclinical studies to show their efficacy and safety status. In overall
terms, such advances and directions could help researchers, clinicians, dietitians, and nutritionists for
using harmonized probiotics supplementary recommendations and targeted effects.
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