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Abstract: A couple of isostructural coordination polymers with the general formula [Ln4(pymca)4(AcO)8]n

have been obtained from reactions between pyrimidine-2-carboxylate (pymca) ligand and rare-earth
ions (Ln = Dy (1), Nd (2)). These two-dimensional compounds have been characterized and the crystal
structures have been solved by single-crystal X-ray diffraction technique, resulting in layers along
the bc plane based on pymca and acetate anions that act as bridging ligands between metal atoms.
Given that pymca and acetate anions possess carboxylate and hetero-nitrogen groups, it is possible to
build a coordination polymer whose metal centers have a nine coordination. Furthermore, static and
dynamic magnetic measurements of compound 1 reveal the lack of single molecule-magnet (SMM)
behavior in this system due to the following two effects: (i) the ligand field does not stabilize magnetic
ground states well separated from excited states, and (ii) anisotropy axes are not collinear, according
to results with Magellan software. On another level, luminescent properties of compounds 1 and 2
are attributed to singlet π-π* transitions centered on pymca ligand as corroborated by time-dependent
density functional theory (TD-DFT) calculations.

Keywords: coordination polymer; pyrimidine-2-carboxylate; lanthanide; luminescence; magnetism

1. Introduction

Coordination polymers (CPs) are defined as infinite systems built up from metal ions and
organic ligands linked via coordination bonds and other weak chemical bonds such as hydrogen
bonds, π-π stacking, or van der Waals interactions [1]. These materials have gained considerable
attention in recent decades, in particular, lanthanide-based coordination polymers, due to their varied
structures [2,3], high coordination numbers, gas storage properties [4], biochemical and medical
applications [5], as well as interesting luminescent [6] and magnetic properties [7–9]. The key factor for
the synthesis of CPs is to choose appropriate metal centers and bridging ligands to obtain the desired
topologies and properties, although other factors can also have an influence such as metal-to-ligand
ratio, temperature, pH value, and solvents [10,11]. Among ligands, with the goal to achieve coordination
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frameworks based on f -block metal centers with local connectivity numbers larger than six, ligands
containing both carboxylate groups and hetero-nitrogen chemical functions have been extensively
used in the construction of these novel systems because both groups can coordinate to metal centers in
different ways [12–14].

Ligandssuchaspyridylcarboxylate, imidazolylcarboxylate, pyrimidylcarboxylate, or indolylcarboxylate
derivatives are used extensively in coordination chemistry based on lanthanide ions [15–17]. Specifically,
we chose the ligand pyrimidine-2-carboxylate (pymca), which contains both oxygen and nitrogen
coordination atoms (Scheme 1), because, to date, only a few structures based on rare-earth ions and this
ligand have been reported, all of them by Wang et al. [8]. Inspired by all the above-mentioned ideas, we
decided to react pymca and lanthanide ions with the objective of building coordination polymers with
interesting luminescent and magnetic properties, due to the fact that, fifteen years ago, we were the
pioneers to design and work with this novel ligand, which shows great ability to form two-dimensional
and three-dimensional coordination polymer compounds. In this way, we were able to obtain a
great variety of multidimensional coordination polymers with interesting magnetic and luminescent
properties effectively explained by density functional theory (DFT)-type calculations [18–21].
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Scheme 1. Pyrimidine-2-carboxylic acid (pymca) ligand.

In this paper, we reported the synthesis and characterization of two isostructural two-dimensional
coordination polymers based on lanthanide ions, mixed pyrimidine-2-carboxylate, and acetate anions
as ligands with the general formula [Ln4(pymca)4(AcO)8]n (Ln = Dy (1), Nd (2)). Their magnetic and
luminescent properties were also investigated and corroborated by theoretical calculations.

2. Materials and Methods

2.1. Synthesis

All starting reagents were purchased from commercial sources (Sigma-Aldrich) and were used as
received and without additional purification.

2.1.1. Synthesis of [Dy4(pymca)4(AcO)8]n (1)

Compound 1 was obtained following a solvothermal route through the following procedure: First,
0.020 g (0.19 mmoL) of 2-pyrimidinecarbonitrile, in situ precursor of pymca ligand, was dissolved
in 1 mL of N,N-dimethylformamide (DMF). In a separate vial, 0.0215 g (0.063 mmoL) of Dy(AcO)3

was dissolved in 0.5 mL of distilled water. Metal solution was added dropwise to the ligand solution.
The resulting mixture was stirred and heated at 100 ◦C for 24 h. After this time, white crystals of 1 for
single crystal X-ray diffraction were obtained during the heating process under autogenous pressure.
Anal. Calcd. for C18H18Dy2N4O12: C, 26.76; H, 2.25; N, 6.94%. Found: C, 26.54; H, 2.13; N, 7.02%.
FT-IR: 1620 cm−1 (m), 1568 cm−1 (s), 1413 cm−1 (s), 1373 cm−1 (s).

2.1.2. Synthesis of [Nd4(pymca)4(AcO)8]n (2)

Compound 2 was synthesized following a similar procedure as follows: First, 0.015 g (0.142 mmoL)
of 2-pyrimidinecarbonitrile ligand was dissolved in 0.5 mL of DMF. In a separate vial, 0.0155 g
(0.047 mmoL) of Nd(AcO)3·H2O was also dissolved in 0.5 mL DMF. Metal solution was added to the
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ligand solution. The reaction solution was stirred and heated at 100 ◦C for 24 h. X-ray quality white
crystals of 2 were obtained. Anal. Calcd. for C18H18Nd2N4O12: C, 28.03; H, 2.35; N, 7.27%. Found: C,
27.96; H, 2.28; N, 7.33%. FT-IR: 1622 cm−1 (m), 1560 cm−1 (s), 1419 cm−1 (s), 1373 cm−1 (s).

2.2. Characterization Methods

2.2.1. Physico-Chemical Characterization

Elemental analyses (C, H, and N) were carried out at the “Centro de Instrumentación Científica”
(University of Granada) on a THERMO SCIENTIFIC analyzer model Flash 2000. The FTIR spectra
were recorded with a BRUKER TENSOR 27 FT-IR and OPUS data collection program.

2.2.2. Single-Crystal X-Ray Diffraction

Measured crystals were prepared under inert conditions immersed in perfluoropolyether as
protecting oil for manipulation. Suitable crystals were mounted on MiTeGen Micromounts™, and these
samples were used for data collection. Data for 1 and 2 were collected with a Bruker D8 Venture
diffractometer with a Photon detector equipped with graphite monochromated MoKα radiation
(λ = 0.71073 Å). The data were processed with APEX3 suite [22]. The data contain monoclinic
pseudo-translational symmetry. This results in a pseudo C-centered cell (Bravais centering), but the
data clearly show that the reflections with h + k = odd are weak but definitely not extinct, therefore,
P-centered cell was chosen. Looking at the systematic absences, there is clearly a 21 screw axis along the
crystallographic b-axis. Additionally, there are indications for the presence of a-, n-, and c-glide planes.
There are some violations of reflection conditions for the glide planes. The structures were solved in
space group P21 and refined as inversion twins. The packing consisted of two symmetry-independent
coordination planes parallel to the bc plane. The structures were solved by Intrinsic Phasing using
the ShelXT program [23], which revealed the position of all non-hydrogen atoms. These atoms were
refined on F2 by a full-matrix least-squares procedure using anisotropic displacement parameters [24].
All hydrogen atoms were located in difference Fourier maps and included as fixed contributions
riding on attached atoms with isotropic thermal displacement parameters 1.2 or 1.5 times those of
the respective atom. The OLEX2 software was used as a graphical interface [25]. As a consequence
of the pseudo-symmetries, the least-squares refinements of the structures were not stable, and the
use of restraints was required. Some ISOR and RIGU commands had to be used to obtain reasonable
displacement parameters for selected non-hydrogen atoms. The Addsym routine implemented in
the program PLATON [26] found a P21/c symmetry. The two symmetry-independent coordination
planes were maintained in the higher symmetry, but refinement in P21/c was not successful. Clearly,
the P21 solution describes the structure better than in the P21/c space group, being the inversion center
a pseudo-symmetry operator. The crystallographic data for the reported structures were deposited
with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC 2006485
and 2006486. Additional crystal data are shown in Table 1. Copies of the data can be obtained free of
charge at http://www.ccdc.cam.ac.uk/products/csd/request.

2.2.3. Magnetic Measurements

Magnetic susceptibility measurements were performed on polycrystalline samples of the
complexes with a Quantum Design SQUID MPMS-7T susceptometer at an applied magnetic field of
1000 Oe. The susceptibility data were corrected for the diamagnetism, the temperature-independent
paramagnetism, and the magnetization of the sample holder. Ac measurements were performed on a
Quantum Design Physical Property Measurement System Model 6000 magnetometer under a 3.5 G ac
field and frequencies ranging from 60 to 10,000 Hz.

http://www.ccdc.cam.ac.uk/products/csd/request
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Table 1. Crystallographic data and structure refinement details of compounds 1 and 2.

Compound 1 2

Formula C18H18N4O12Dy2 C18H18N4O12Nd2
Mr (g moL−1) 807.36 770.84
Crystal system Monoclinic Monoclinic
Space group P21 P21
Temperature (K) 298(2) 100
a (Å) 15.0967(7) 15.1628(7)
b (Å) 9.3786(4) 9.5069(4)
c (Å) 16.4416(8) 16.6857(8)
α (◦) 90 90
β (◦) 103.8920(10) 104.791(2)
λ (◦) 90 90
V (Å3) 2259.81(18) 2325.56(18)
Z 4 4
ρ (g cm−3) 2.373 2.202
µ (mm−1) 6.635 4.487
Unique reflections 10,291 7722
Rint 0.057 0.088
GoF a 1.119 1.023
R1 b/wR2

c [I > 2σ(I)] 0.0590/0.1481 0.0750/0.1740
R1 b/wR2

c [all data] 0.0823/0.1624 0.1279/02049
a R1 = S||Fo| − |Fc||/S|Fo|; b values in parentheses for reflections with I > 2s(I); c wR2 = {S[w(Fo

2
− Fc

2)2]/S[w(Fo
2)2]}

1
2 .

2.2.4. Luminescent Measurements

Fluorescence emission spectra were recorded at room temperature using polycristalline samples
in a Varian Cary Eclipse fluorescence spectrofluorimeter equiped with a xenon discharge lamp
(peak power equivalent to 75 kW), Czerny–Turner monochomators, and an R-928 photomultiplier tube.
The emission spectra were recorded in the visible region (300–700 nm), the photomultiplier detector
voltage was fixed at 550 V, and the excitation and emission slits were set both at 5 nm.

2.2.5. Computational Details

The computational strategy adopted to calculate the magnetic coupling constant (Jcalc) values
corresponds to the broken symmetry strategy and has been described and validated elsewhere [27].
One calculation was performed to determine the high-spin state and another to determine the low-spin
broken symmetry state, using Gaussian 16 package [28]. The correctness of the latter state was ensured
by means of its spin density distribution. These calculations were performed using density functional
theory (DFT) with hybrid B3LYP functional and Gaussian-implemented 6-311G(d) basis set for all
non-metallic atoms, whereas the corresponding LANL2DZ pseudopotentials were used for the metal
atoms. Spin-density surfaces were plotted using GaussView 5 [29]. The anisotropy axis of the Dy3+ ions
was calculated with Magellan software [30]. Regarding the calculations of the PL spectrum of pymca
ligand, it was carried out by time-dependent density functional theory (TD-DFT) methodology with
Gaussian 16 package, using equivalent model chemistries detailed for broken symmetry calculations.
The 40 lowest excitation states were calculated by the TD-DFT method. Results were analyzed with
GaussSum program package [31] and molecular orbitals (MOs) plotted using GaussView 5.

3. Results and Discussion

Pyrimidine-2-carboxylic acid ligand allowed the formation of two isostructural coordination polymers
by varying the metal center. Thus, the solvothermal reaction of the pymca with dysprosium(III) and
neodymium(III) acetate hydrate in DMF/H2O mixture with a 3:1 molar ratio afforded two-dimensional
metal-organic frameworks.
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3.1. Crystal Structure of [Ln4(pymca)4(AcO)8]n (Ln = Dy (1), Nd (2))

Compounds 1 and 2 are isostructural with the monoclinic space group P21, therefore,
just compound [Dy4(pymca)4(AcO)8]n (1) is described in detail.

The crystal structure of complex 1 consists of a two-dimensional coordination polymer with
mixed acetate and pymca bridging ligands. The asymmetric unit is based on two units with two Dy3+

cations, two pymca ligands, and four acetate anions each one (Figure 1). Dy1, Dy3, and Dy4 atoms are
coordinated with five oxygen atoms from four acetate anions and two nitrogen and two oxygen atoms
belonging to two pymca ligands to complete a nine-coordination environment DyN2O7 that resembles
a muffin polyhedron (see Figure S1 in Supplementary Materials). Instead, the coordination number
drops to eight for the Dy2 atom despite its equivalent environment, hence showing a less distorted
square antiprism, owing to the fact that one of the Dy–Oacetate bond distance is too large (ca. 2.98 Å) as
to be considered a coordination bond (see Section S3 in Supplementary Materials).
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Figure 1. View of the asymmetric unit of compound 1.

The structure consists of two similar layers parallel to the bc plane. They are not equal, since
each one contains two chemically equivalent but crystallographically different Dy atoms (one layer
is composed of Dy1 and Dy2 atoms, meanwhile the other one is made up of Dy3 and Dy4 atoms)
(Figure 2). Selected bond lengths and angles of coordination spheres are not the same in the two layers,
so they are all included in Tables S1–S4 for compounds 1 and 2.Crystals 2020, 10, x FOR PEER REVIEW 6 of 13 
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Figure 2. Perspective view along the b-axis of the two independent two-dimensional layers present in
compound 1.

Within the structure, both pymca and acetate anions act as bridging ligands by joining metal atoms,
resulting in two different distance ranges of 6.472(2)–6.480(2) and 3.952(2)–4.087(2) Å, respectively.
The shorter range of distances corresponds to inequivalent metal bonds, e.g., Dy3–Dy4 bond, and the
largest one belongs to bonds between equal metal atoms, e.g., Dy3–Dy3 bond. The anionic pymca
ligands coordinate in a bisbidentate form to metal atoms. In contrast, the acetate anions show two
different coordination modes. Those two anions that lie out perpendicular to the bc plane show a
µ-κO:κO′, while the other two acetate anions arrange parallel to the bc plane and create a µ-κ2O,O′:
κO coordination between two Dy3+ atoms [32].
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This arrangement of the ligands produces mesh shaped two-dimensional layers in the bc plane
whose holes are occupied by acetate ligands (Figure 3a). A summary of the structure refinements of
compounds 1 and 2 is given in Table 1.
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Figure 3. View of layers along the a-axis extended in the bc plane of compound 1. (a) One layer in
which it is possible to see the voids occupied by two acetate ligands; (b) Layers superimpose in a
zig-zag arrangement, so there are no pores in the three-dimensional structure.

3.2. Magnetic Properties of Compound 1

3.2.1. Static Magnetic Measurements

The static magnetic properties of compound 1 were investigated by direct current (dc) magnetic
susceptibility measurements in the 2–300 K temperature range under an applied field of 1000 Oe
(Figure 4).Crystals 2020, 10, x FOR PEER REVIEW 7 of 13 
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Figure 4. Temperature dependence of the χMT product (colour black) and 1/χM (colour blue) versus
T for 1 in the 2–300 K range. The solid line represents the best fitting with the Curie–Weiss law.
Inset: Magnetization vs. H plot recorded at 2.0 K.

The χMT vs. T plot (Figure 4, black dots) reveals a value of 28.37 cm3 K moL−1 at room temperature,
which is in good agreement with the expected value of 28.34 cm3 K moL−1 for two non-interacting
Dy3+ ions in the free-ion approximation (4f9, J = 15/2, S = 5/2, L = 5, g = 4/3 6H15/2). Upon cooling down
from room temperature, the χMT value remains almost unchanged until nearly 50 K, where it starts to
fall abruptly reaching a minimum value of 16.04 cm3 K moL−1 at 2.0 K. This drop could be associated
with diverse effects. On the one hand, the thermal depopulation of the Stark sublevels resulting from
crystal-field effects provoke this decrease in χMT but, on the other hand, there could also be weak
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antiferromagnetic interactions between the two Dy3+ ions provided by carboxylate bridges of the
pymca ligands. The strong spin-orbit coupling present in the Dy3+ ions complicates the treatment of
the data in order to obtain the coupling exchange constant J. However, with the aim of shedding some
light regarding the nature of the metal–metal interactions, we opted to follow the next approach. First,
we studied the magnetic data in the same temperature range by using the Curie–Weiss law, namely
1/χ = (T − θ)/C (Figure 4, blue dots and line). The fitting afforded C and θ values of 28.69 cm3 K moL−1

and −2.9 K, respectively. The low negative value of θ indicates the presence of weak intramolecular
antiferromagnetic interactions suggesting that the lowering of the χMT value is not solely influenced
by the depopulation of the Stark sublevels. In addition, with the purpose of supporting these results
and better estimating the nature of the magnetic exchange interactions, we conducted DFT calculations
with the broken symmetry methodology [33]. In order to do that, two different dimeric fragments were
considered separately with the aim of evaluating the two possible superexchange pathways found in
the compound. The first selected dinuclear entity evaluates the interactions within the paddle-wheel
shaped fragment involving four bridging acetate groups (inside it a short Ln· · ·Ln distance of ca.
4.0 Å is established), whereas the second entity involves the bisdidentate pymca bridging ligand
(this establishes a longer Ln· · ·Ln distance about 6.5 Å). As mentioned, the strong spin-orbit coupling
of the Dy3+ ions complicated the calculation, thus, the anisotropic ions were replaced by isotropic
Gd3+ ones in order to have a good estimation of the J parameter. In both superexchange pathways,
a negligible coupling constant was calculated (Figure 5). Therefore, we conclude that the decay in
the χMT value arises mainly from the depopulation of the Stark sublevels and besides intramolecular
interactions insignificantly contribute to it.Crystals 2020, 10, x FOR PEER REVIEW 8 of 13 

 

 

Figure 5. Broken symmetry DFT based calculation on an isostructural model grown with Dy3+ centers 

to account for the value of the exchange parameter. Spin densities are shown for ground and excited 

states involving the two superexchange pathways. 

The M(H) plot was also recorded at 2 K, which is shown in the inset of Figure 4. The 

magnetization value rapidly increases with field strength up to 1 T, above it a gradual increase is 

observed reaching a maximum value of 11.54 NµB, at 5 T. This gradual increase and the low 

“saturation” value, which is far lower than the expected value of 19.9 NµB expected for two Dy3+ ions 

suggests significant magnetic anisotropy. 

3.2.2. Dynamic Magnetic Properties 

In view of the fact that highly anisotropic lanthanides such as Dy3+ are potential candidates to 

present slow relaxation of the magnetization [34], dynamic magnetic properties of 1 were studied by 

alternating current (ac) magnetic measurements. Firstly, measurements were carried out applying an 

oscillatory field of 3.5 Oe and under zero dc field. However, the out-of-phase component of the 

susceptibility (χM″) did not show any signal (Figure S1). The lack of single molecule-magnet (SMM) 

behavior in this case could be attributed to the fast quantum tunneling of the magnetization (QTM). 

It is well known [35] that the use of an external magnetic field could be a good technique in order to 

overcome this undesired phenomenon. Nonetheless, in this case the Dy3+ based compound did not 

show any χM″ signal even when applying an external magnetic field of 1 kOe. This fact indicates that 

either there is still a strong QTM process that the field is not able to quench, or that the system is 

actually a common paramagnet. 

The dynamic magnetic properties of SMMs are very sensitive to the crystal field. In general, Ln3+ 

ions are divided into the following two main groups: ions with an oblate (Dy3+ and Tb3+, for example) 

or prolate (Er3+ and Yb3+, for example) electron density. The qualitative design principles proposed 

by Rinehart and Long [36] indicate that in order to enhance the single ion anisotropy of Dy3+, and 

thus the SMM behavior, the negatively charged ligands are preferred to be axially coordinated. This 

has been proved for a wide number of Dy3+ systems, such as for dysprosium metallocenes or systems 

with pentagonal-bipyramid geometry [34,37], where the strong electron donating groups are axially 

coordinated to the metal ions. We believe that the lack of SMM behavior in this compound arises 

from the inappropriate ligand field established around the metal ions, as well as the weak exchange 

coupling between them. On the one hand, as mentioned in the crystal structure description, the 

Figure 5. Broken symmetry DFT based calculation on an isostructural model grown with Dy3+ centers
to account for the value of the exchange parameter. Spin densities are shown for ground and excited
states involving the two superexchange pathways.

The M(H) plot was also recorded at 2 K, which is shown in the inset of Figure 4. The magnetization
value rapidly increases with field strength up to 1 T, above it a gradual increase is observed reaching a
maximum value of 11.54 NµB, at 5 T. This gradual increase and the low “saturation” value, which is
far lower than the expected value of 19.9 NµB expected for two Dy3+ ions suggests significant
magnetic anisotropy.
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3.2.2. Dynamic Magnetic Properties

In view of the fact that highly anisotropic lanthanides such as Dy3+ are potential candidates to
present slow relaxation of the magnetization [34], dynamic magnetic properties of 1 were studied by
alternating current (ac) magnetic measurements. Firstly, measurements were carried out applying
an oscillatory field of 3.5 Oe and under zero dc field. However, the out-of-phase component of the
susceptibility (χM”) did not show any signal (Figure S1). The lack of single molecule-magnet (SMM)
behavior in this case could be attributed to the fast quantum tunneling of the magnetization (QTM).
It is well known [35] that the use of an external magnetic field could be a good technique in order to
overcome this undesired phenomenon. Nonetheless, in this case the Dy3+ based compound did not
show any χM” signal even when applying an external magnetic field of 1 kOe. This fact indicates
that either there is still a strong QTM process that the field is not able to quench, or that the system is
actually a common paramagnet.

The dynamic magnetic properties of SMMs are very sensitive to the crystal field. In general, Ln3+

ions are divided into the following two main groups: ions with an oblate (Dy3+ and Tb3+, for example)
or prolate (Er3+ and Yb3+, for example) electron density. The qualitative design principles proposed by
Rinehart and Long [36] indicate that in order to enhance the single ion anisotropy of Dy3+, and thus
the SMM behavior, the negatively charged ligands are preferred to be axially coordinated. This has
been proved for a wide number of Dy3+ systems, such as for dysprosium metallocenes or systems
with pentagonal-bipyramid geometry [34,37], where the strong electron donating groups are axially
coordinated to the metal ions. We believe that the lack of SMM behavior in this compound arises from
the inappropriate ligand field established around the metal ions, as well as the weak exchange coupling
between them. On the one hand, as mentioned in the crystal structure description, the coordination
environments around the four Dy3+ centers are quite distorted. Noteworthy, Dy2 displays the lowest
SHAPE value (see SI, Tables S5 and S6) for a square antiprism polyhedron, which has been proved to
be a suitable geometry in order to stabilize the highly magnetic mJ = ±15/2 states as ground state [21].
However, in this compound, Dy2 displays nearly nine coordination and, moreover, there are not
remarkably short and negatively charged Dy–O bonds that provide axiality to the system. On the
other hand, in a previously Dy3+ based MOF reported by us [38], it was shown that even in weakly
exchange coupled systems, when anisotropy axes are parallel, a slower relaxation of the magnetization
is enhanced. In our case, considering the dinuclear entity where both of the lanthanide ions possess
the same coordination environment, the lack of an inversion center between both ions provokes a
lack of parallelism between the axes (calculated by Magellan software, Figure 6). Hence, both of the
mentioned effects probably account for the lack of SMM behavior in this system.
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3.3. Luminescence Properties

As it is well-known, lanthanide-based emissions are characterized by very narrow and pure
emission bands derived from the shielding of valence f shell, although, at the same time, their emission
brightness tends to be low because of the low coefficients of their absorption bands [39]. Therefore,
in order to obtain a luminescent compound, a ligand-to-metal charge transfer process (between ligands
triplet state and excited inner states of the lanthanide(III)) must take place, which is denoted as antennae
effect [40]. In this work, the luminescence properties of compounds 1 and 2 were investigated in solid
state, at room temperature. Figure 7 shows the emission spectra of both complexes at λex = 240 nm.
Compounds 1 and 2 show similar emission spectra compared to that of free pymca ligand, with only
one intense peak at 400 nm, which allows one unequivocally attributing the emission as ligand-centered
in both compounds. The absence of any lanthanide(III)-based characteristic emission in the visible
spectra, mainly for the Dy3+ atom in compound 1 means that the pymca ligand is not able to transfer the
energy gained during the excitation process to the lanthanide atoms (i.e., there is no efficient antennae
effect happening in these compounds), pymca ligand does not sensitize the lanthanide(III) ions in these
compounds in such a way that only the ligand-centered emission is observed. Time-dependent DFT
(TD-DFT) calculations conducted on a suitable model of the ligand reveals that the main transition
occurs from the LUMO + 1 to the HOMO − 2, which can be regarded as a π← π* transition in view of
the shape of the molecular orbitals involved.Crystals 2020, 10, x FOR PEER REVIEW 10 of 13 
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4. Conclusions

Two isostructural coordination polymers with the general formula [Ln4(pymca)4(AcO)8]n were
obtained from reactions between pyrimidine-2-carboxylate (pymca) ligand and rare-earth ions
(Ln = Dy (1), Nd (2)). These two-dimensional compounds were characterized resulting in layers
along the bc plane based on pymca and acetate anions that act as bridging ligands between metal
atoms. Regarding the magnetic properties, although highly anisotropic lanthanide ions such as
Dy3+ were employed, we concluded that the ligand field provided by the carboxylate groups and
nitrogen donor atoms was not suitable to stabilize high magnetic ground states well separated from
excited states. Moreover, we find out that the anisotropy axes calculated by Magellan software are not
collinear, a fact that even in weakly exchange coupled systems negatively affects the SMM behavior.
Under UV excitation, both compounds exhibit a pymca ligand-centered emission based on a main
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π← π* transition, confirming the null capacity of pymca to sensitize the selected lanthanide(III) ions in
the present structures. New studies in these directions are currently being carried out in our laboratory
focusing, for instance, on the possible use of 3s-4f materials in electronic devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/7/571/s1,
Crystallographic Data: Table S1: Selected bond lengths (Å) for complex 1, Table S2: Selected bond lengths (Å)
for complex 2, Table S3: Selected bond angles (◦) for complex 1, Table S4: Selected bond angles (◦) for complex
2, Figure S1. Perspective views of the Dy3+ ions in the crystal structure of 1. Hydrogen atoms are omitted
for clarity. IR spectra: Figure S2. IR spectrum of 2-pyrimidinecarbonitrile ligand, precursor of pymca ligand,
Figure S3. IR spectrum of [Dy4(pymca)4(AcO)8]n (compound 1), Figure S4. IR spectrum of [Nd4(pymca)4(AcO)8]n
(compound 2). Continuous Shape Measurements for compounds: Table S5. Continuous Shape Measurements for
compounds 1 and 2 considering a coordination number of 9, Table S6. Continuous Shape Measurements for Dy2 in
compound 1, considering its eight-coordination. Magnetic Measurements: Figure S5. Temperature dependence of
in-phase (red) and out-of-phase (blue) components of the ac susceptibility in a zero (top) and under 1 kOe applied
dc field (down) for 1. Photoluminescence measurements: Figure S6. Excitation spectrum for the ligand sample.
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