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Abstract: This paper analyses Seville’s surface urban heat island (SUHI) phenomenon, comparing
spatial and temporal patterns of land surface temperature (LST) during July 1987, 2000 and 2017.
Landsat data captured throughout three July months were analyzed for the different years, techniques
of geographic information systems, ecological variables and geospatial approaches and used to carry
out the analysis. The results indicate that from 1987 to 2017, the averaged LST has increased by 9.1 ◦C
in the studied area. The urban areas are colder than their surroundings, suggesting the role of baresoil
and cultivated land in the reversal of the SUHI phenomenon. The results show that a fraction of green
space has a high unstandardized coefficient (β) through the three time periods. A decreasing trend
is also observed in the standardized β “fraction of impervious surface” in the three time periods.
The linear regression analysis shows a negative relationship of mean LST with impervious surface
fraction due to the presence of shadows projected by buildings, and a positive relationship with green
space fraction caused by the influence of baresoil and cultivated land that inverts the LST behavior
pattern. The study concludes that there is a need to implement SUHI mitigation strategies during the
initial phases of engineering projects where the origin of this problem can be acted upon, since the
process of creating streets and public space offers a valuable opportunity to restore the environmental
quality and diminish the effects generated by climate change.

Keywords: urban heat island; land surface temperature; impervious surface; greenspace; baresoil
and cultivated; land use/land cover; remote sensing; Seville City

1. Introduction

Climate change is the greatest environmental challenge facing humanity today due to its global
scale and profound social and economic implications. In 2015, during the United Nations Climate
Change Conference in Paris, the first balanced global agreement was adopted to address global
warming and the objective of limiting temperature increase to 2 ◦C by 2100 was agreed. In the words
of Laurent Fabius, “a global climate agreement is a universal necessity that must be undertaken by
all countries thus promoting climate solidarity and supporting the mobilization of financing and
technological development” [1].

Cities only represent the 2% of the earth´s surface [2]; however, 60% of the word´s energy
consumption and more than the 70% of carbon dioxide emissions take place in cities [2–4]. Therefore,
cities contribute significantly to climate change.
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Furthermore, there is a global trend to migrate from rural to urban areas. This migratory flow,
much more notorious in developed countries, represents a social, economic and technical challenge.
According the United Nations, by 2050, the population in cities will increase by 2.5 billion [5].

In recent decades because of rapid urbanization, biodiversity and several natural habitats [6,7],
as well as soils, destined to agriculture and forests have been lost. There has also been an increase in the
temperature in cities closely related to urban air quality, energy consumption and the health of at-risk
populations [8–15]. All this shows the conclusion of the important protagonist that human activities
play in the alteration and modification of the climate system [16–22]. In this situation, it is essential to
know and understand the role and impact of different land uses on the environmental system [23,24].

Urban heat island (UHI) is a thermal phenomenon in which the temperature of urban spaces
is higher than nearby rural zones [12,20,22,25–31]. In 1818, Luke Howard was the first researcher to
discover London’s thermal variation, pointing out that the temperature of the city centre was 3.7 ◦F
higher than the surrounding fields [25]. Subsequently, in 1958 Gordon Manley was the first to define
this thermal variation as an urban heat island [32]. The interest in the study of the urban heat island
is well justified, since urban areas constitute unique sectors within the climate of the region where
they are located. This interest responds not only to the need for knowledge to achieve a more pleasant
environment for city dwellers, but also to the need to analyze and anticipate the changes these entail
and the repercussions they may have on the climate.

There are two types of UHI: the first is based on the fact that air temperature is higher during the
night, while the second is based on the fact that land surface temperature (LST) tends to be higher
during the day due to solar radiation [27].

The formation of a surface urban heat island (SUHI) is principally caused by changes in the
landscape due to urban development, mainly in the reduction of vegetation in urban areas, the properties
of urban materials used, urban geometry, anthropogenic heat, and climate and location, all of which
generate an increase in LST [26,33–36].

LST is a key variable in SUHI generation and constitutes a determining factor in surface radiation
and energy exchange [37], as well as the control of heat distribution between the surface and
atmosphere [38,39]. Therefore, it is necessary to model and predict environmental changes, as well as
to analyze and comprehend the dynamics of the LST and its connection with changes of anthropogenic
origin [40].

The composition of land use and land cover (LULC) is one of the key factors influencing LST [41–43].
LST generally has a positive correlation with an impervious surface and a negative correlation with
areas of vegetation [39,44].

Currently, it is still difficult to identify the distribution and spatial pattern of SUHI with temperature
data observed in situ because of the lack of total coverage of the studied zone and the limited spatial
resolution of the data [45–47].

Remote sensing provides a very promising approach for the generalized study of LST and therefore
makes it possible to monitor the spatial outline of the SUHI. The high spatial resolution thermal
satellite data obtained during the daytime have been extensively used to identify and evaluate SUHI at
the mesoscale, i.e., in the space occupied by the entire city that usually extends between 10 and 200
km [29,48–66].

Among the available satellite data, Landsat data have been widely used in numerous SUHI
case studies around the world thanks to their precision, such as the detection capability in terms of
the spatial and temporal resolutions with the uncertainties and due to the fact that data acquisition
is freely accessible with spatial and temporal coverage for most of the areas susceptible to develop
SUHI [60,63,67,68]. On the other hand, the integration of remote sensors and geographic information
systems (GIS) has been recognized as a powerful and effective tool to detect the different uses of urban
land and changes in its coverage which are decisive in the understanding of the relationship between
human activities and the SUHI [69–72].
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The aim of this research is to establish the relationship between the composition and pattern of the
urban landscape and the formation and evolution of the SUHI in the Seville City. Various landscape
variables are explored to analyze the spatial and temporal variations of the land surface temperature
in the analyzed area. The land cover groups considered in this analysis were: impervious surface
(including surfaces found in urban and suburban landscapes such roads, parking lots, drive ways,
sidewalks, roofs and industrial areas), green space (GS) (including land that is covered with grass, trees,
shrubs, or other vegetation), water (W) (including all bodies of water) and other (BSC) (including all
the lands not classified as green space, impervious surfaces, and water. This category mainly includes
baresoil and cultivated land).

The methodology and the results obtained from this research will constitute a powerful tool that
will allow researchers to know which zones are more vulnerable to the formation of the SUHI and
why. This research establishes the starting point of a wider and more ambitious study, in which the
factors that influence the formation of the SUHI for different cities in the world will be analyzed.
By means of the comparative analysis of the results obtained from each of the analyzed cities, it will
be determined to what extent the strategies carried out for the reduction and mitigation of the SUHI
have been effective, and to conclude that it is essential to implement these strategies in the design and
initial phases of the engineering projects to improve the adaptation of cities to the climate change and
increase their resilience.

2. Methodology

2.1. Study Area

Seville is the largest and most populated province in Andalusia, with an approximate area of
14,000 km2 and 1.9 million inhabitants [73]. It is bordered to the north by Badajoz, to the east by
Cordoba, to the south by Cadiz and Malaga, and to the west by Huelva. It is surrounded by the Sierra
Morena mountain range to the north, by the Sierras Subbéticas mountain range to the south-east and
between them is the Guadalquivir river in the middle and lower portion of the basin, where the valley
opens up towards the Atlantic forming a wide area of countryside and marshes [74]. The climatic
spectrum of Seville City is very broad, ranging from the subtropical climate in the Guadalquivir basin
to the temperate Mediterranean climate of humid winters and long hot summers, and to the areas
of the Sierra Norte to the south of the province with harsher climatic characteristics. The average
annual temperature is 18.6 ◦C; with July being the warmest month with an average of 27.8 ◦C and
January being the coldest month with an average of 10.3 ◦C. The average rainfall is 576 mm; July is
the driest month with an average of 1 mm and November is the wettest month with an average
of 87 mm [75]. The study area encompasses 40,000 ha, spanning the city of Seville and part of its
adjacent municipalities. The elevation of the study area varies between −9.97 m and 163.95 m, with an
average elevation of 30.96 m above sea level. The slope varies from 0 to 64.88 degrees, with an average
slope of 2.51 degrees (Figure 1). This study area includes built-up areas, arable land, grassland areas
and shrubland.

2.2. Satellite Data Used and Pre-Processing

For this study, Landsat satellite images captured in 1987; July 01; GMT 10:27:27 (Landsat 5 TM),
2002; July 02; GMT 10:50:59 (Landsat 7 ETM+) and 2017; July 03; GMT 11:02:20 (Landsat 8 OLI/TIRS)
have been used (http:/earthexplorer.usgs.gov/). For the selection of the satellite images, those that
were cloud-free or with minimum cloud coverage (less than 10%) were considered. The study area is
contained entirely within path 202 and row 34. All images were acquired in the same month, during the
dry season (Figure 2).

http:/earthexplorer.usgs.gov/
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In order to carry out land cover mapping, image classification, index derivation and LST retrieval,
all satellite images were subjected to two pre-processing procedures consisting of radiometric calibration
and atmospheric correction using ArcMap software. The atmospheric correction was performed using
the dark-object subtraction (DOS) model proposed by [76]. This model postulates that atmospheric
mist increases the digital number (DN) value in areas of clean, deep and calm water, where the physical
characteristics must have zero reflectance. The representative value of that difference is subtracted
in each band, in all the pixels of the scene. To estimate LST it is necessary to convert the DN from
each of the thermal bands to radiance values as a measure of the amount of energy that reaches the

htttp://glovis.usgs.gov
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satellite [37,77,78]. These radiance values are then used to perform the conversion to surface brightness
temperature (expressed in Kelvin degrees), considering emissivity, vegetation fraction, the normalized
vegetation index, and calibration constants.

2.3. Land Cover Mapping

For the years 1987, 2002 and 2017, the Landsat imageries were obtained in order to obtain
the classification of the land cover maps. For this purpose, the maximum likelihood supervised
classification process was used (Figure 3) [36,79]. The following land cover groups were considered in
this analysis:

i. Impervious surface (IS), including surfaces found in urban and suburban landscapes such
roads, parking lots, driveways, sidewalks, roofs and industrial areas.

ii. Green space (GS), including land that is covered with grass, trees, shrubs, or other vegetation.
iii. Water (W), including all bodies of water.
iv. Other (BSC), including all the lands not classified as green space, impervious surfaces, and

water. This category mainly includes baresoil and cultivated soil.
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Figure 3. Land cover maps of Seville City and its immediate surrounding areas derived from Landsat
imagery (1987, 2002, 2017).

The bodies of water and the impervious surfaces were extracted from the images using the modified
normalized difference water index (MNDWI) (Equation (1)) and the visible red and NIR-based built-up
index (VrNIR-BI) (Equation (2)), respectively [80–84].

The green spaces were extracted from the images via the normalized difference vegetation index
(NDVI) (Equation (3)) [85].

MNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
(1)

VrNIR− BI =
ρRed − ρNIR

ρRed + ρNIR
(2)

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(3)

where ρGreen, ρRed, ρNIR, and ρSWIR1 refer to the surface reflectance values of bands 2, 3, 4 and 5 for
Landsat 5 TM and Landsat 7 ETM+ and bands 3, 4, 5, 6 for Landsat 8 OLI/TIRS.

In order to verify the accuracy obtained in the classification of each of the land uses and land cover,
different bands were combined (Table 1) and the information obtained from the MNDWI, VrNIR-BI
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and NDVI indices was used as a reference. A total of 1000 reference points generated by the stratified
random sampling technique were used [86]. Finally, an overall accuracy of 86% was obtained.

Table 1. Composition of Bands for Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI/TIRS satellites.

Composite Bands Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI/TIRS

Vegetation 4, 3, 2 4, 3, 2 5, 4, 3
Urban areas 7, 5, 3 7, 5, 3 7, 6, 4
Agriculture 5, 4, 1 5, 4, 1 6, 5, 2

Water 4, 5, 3 4, 5, 3 5, 6, 4
Natural colour 3, 2, 1 3, 2, 1 4, 3, 2

2.4. LST Retrieval

To retrieve the LST from remote sensing satellite thermal bands, the NDVI were used to derive the
emissivity of the land surface. Subsequently, using these values, the at-satellite brightness temperatures
were scaled [87]. The pre-processed thermal bands created in Section 2.2 were used as follows in
Equation (4) [88,89]:

LST =
TB

1 +
(
λ ×

TB
ρ

)
× ln ε

(4)

where TB = at-satellite brightness temperature in degrees Kelvin; λ = wavelength of emitted radiance
(λ = 11.5 µm for Landsat 5 TM band 6 and Landsat 7 ETM+ band 6 [89,90], and 10.8 µm for Landsat 8
OLI/TIRS band 10 [77]; ρ = h ×c/σ (1.438 × 10−2 mK), σ = Boltz-mann constant (1.38 × 10−34 Js), and c
= velocity of light (2.998 × 108 m/s); and ε is the land surface emissivity estimated using the NDVI
method [87]. The resulting LST values were then changed from degrees Kelvin to degrees Celsius (◦C).

2.5. Spatial Analysis

2.5.1. Urban-Rural Gradient Analysis

This analysis determines the spatial variability of LST, the spatial distribution of impervious
surface, green space and baresoil and cultivated soil across the urban-rural gradient of the study area.
Firstly, Seville’s city centre was located and called kilometre 0. Multiple ring buffer zones were then
created around the centre of each study area defined by the time period analyzed, with an interval of
300 m distance. Mean LST and the density of impervious surface, green space, baresoil and cultivated
land were obtained for each of the rings. For each of the rings, the number of pixels of each of the land
uses was counted, and each pixel had dimensions of 30 × 30. Multiplying the number of pixels by the
area of each pixel, we obtained the total area of each land uses in each of the rings. The fraction of each
of the uses was obtained by establishing the relationship between the total area of each of the land uses
in each ring and the total area of the ring. Finally, mean LST and the density of impervious surface,
green space, baresoil and cultivated land were obtained for each of the rings.

2.5.2. Multiresolution Grid-Based Analysis

This study focuses on determining the effect of impervious surface, green space and baresoil and
cultivated land on LST. For this purpose, a set of polygonal grids adjusted to LST raster maps was
generated, considering Seville’s city centre calculated in Section 2.5.1. The size of each grid was 210
m × 210 m [33,77,91]. Finally, the mean LST and the density of impervious surface, green space and
baresoil and cultivated land were obtained for each of the grids.

2.5.3. Statistical Analysis

By means of bivariate correlation analysis and scatter diagrams, the correlation between mean
LST and the density of impervious surface, green space, baresoil and cultivated areas measured in
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each buffer zone (urban-rural gradient analysis) and grid (analysis based on multiple resolution grid)
were determined.

To regress the correlation between mean LST and the independent variables considered, in each
of the 9216 polygonal grids a multiple linear regression (MLR) by ordinary least squares (OLS) method
was used [92–95].

The OLS MLR model is given as Equation (5):

Y = β0 + β1X1 + β2X2 + . . .+ βkXk + ε (5)

where Y is the dependent variable (mean LST), β0 is the intercept coefficient, β1 + β2, . . . , βk are
the regression coefficients or slopes, X1 + X2, . . . , Xk are the explanatory variables, and ε is the
standard error.

Seven explanatory parameters were selected based on the hypothesis of the significant influence
they have on the variations of LST in the study area. These variables include the fractions of IS, GS,
and BSC; mean elevation, mean slope, mean aspect and mean hill shade. Both the dependent variable
(mean LST) and the seven explanatory parameters were estimated on the set of polygonal grids used
for the analysis described in Section 2.5.2. The fractions of impervious surface, green space and baresoil
and cultivated areas that were considered were obtained from the land cover maps developed in
Section 2.3. The remaining four explanatory topographic variables were obtained from the digital
elevation model using ArcMap software. It has been obtained by the interpolation of the land class
obtained from LIDAR flights 1st Coverage of the National Plan for Aerial Orthophotography (PNOA).

3. Results

3.1. Impervious Surface, Green Space and Baresoil and Cultivated vs. LST

Land cover classification maps indicate that the study area has undergone rapid urbanization
(Figure 3). Between 1987 and 2002, the IS area remained practically constant, even declining by 130 ha.
It was between 2002 and 2017 that the IS area saw the largest increase of 3727 ha, equivalent to a total
increase of 3597 ha in 30 years. The GS area has decreased by 2260 ha in 30 years. For BSC, between
1987 and 2002, the area decreased by 4575 ha, whilst between 2001 and 2017 this area increased by 3057
ha. In the 30 years analyzed, the BSC area decreased by 1519 ha.

The LST maps of the study area for 1987, 2002 and 2017 are shown in Figure 4. The average
temperature for July 1987 was 29.92 ◦C, rising to 31.86 ◦C in 2002 and 39.02 ◦C in 2017. It can be
observed that from 1987 to 2017 the land surface temperature has increased by 9.1 ◦C, the most notable
increase being 7.16 ◦C in the time interval between 2002 and 2017; this coincides with the period in
which the urbanization process intensified, whereas the increase for the interval between 1987 and 2002
was 1.94 ◦C. In general, the highest values were found in the city center, in the areas destined for the
characteristic cultivation and baresoil. Figure 4 shows that urban areas are colder than the surroundings,
suggesting the role of baresoil and cultivated land in the reversal of the SUHI phenomenon.

Figure 5 shows mean LST of the LULC classes for 1987, 2002 and 2017. In the three years analyzed,
the urban class (impervious surface) together with baresoil and cultivated land had the highest mean
LST. The temperature difference between both (impervious surface and baresoil and cultivated land)
was 1.13 ◦C for 1987, 1.22 ◦C for 2002 and 0.63 ◦C for 2017, being the highest mean LST in the three
years studied for baresoil and cultivated land than for the urban class.

As for green space and water classes, there were no changes in LST during the first study period
(1987 to 2002). Nevertheless, mean LST increased considerably in the period of 2002–2017; 6.65 ◦C for
the green space class and 9.37 ◦C for the water class. Therefore, the results indicate that urban areas
along with baresoil and cultivated land have influenced the spatial pattern of LST.
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Figure 5. Mean LST of the LULC classes in Seville City (1987, 2002 and 2017).

3.2. Impervious Surface, Green Space and Baresoil and Cultivated vs. LST along Urban-Rural Gradient

Regarding the urban-rural gradient, mean LST remains practically constant (Figure 6). The results
indicate that there was a downturn of the SUHI singularity (i.e., surface urban cool island).
The agricultural land used for the cultivation of flowers, cereals and fruits does not fit with the normal
spatial-temporal patterns of cultivation, but rather the requirements of the market. The differing
cultivation on agricultural area and the varying phenology of vegetation in the area of urban green
spaces causes seasonal variations in the spatial layout of vegetation that influence the spatial distribution
of LST [96,97]. This is why there is no similar pattern of behavior between fraction of IS and mean LST
alongside the rural urban gradient.
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Figure 6. Mean LST and fractions of impervious surface (IS), green space (GS) and baresoil and
cultivated land (BSC) along the urban-rural gradient.

Across the three time periods analyzed, fraction of IS decreased while fraction of GS increased and
then remained practically constant along the rural urban gradient. As for fraction of BSC, this followed
a similar evolution to the fraction of GS with the difference in that it increases as the distance to the city
center gets higher. In the studied time, the linear correlation analysis presents a negative relationship of
mean LST with fraction of IS caused by the shadows projected by buildings, and a positive correlation
with the fraction of GS caused by the influence of barren and cultivated lands that inverts the LST
behavior pattern. In all cases, the correlation between mean LST and fraction of IS and GS is weak
(Figure 7). The sample number varies according to the year and the land use/cover. Thus, for the year
1987 the sample size was 131,824, 105,495 and 194,022 for GS, IS and BSC, respectively. For the year
2002 it was 188,195 for GS, 104,149 for IS and 143,138 for BSC. Finally, for the year 2017 the sample size
was 106,710, 145,565 and 177,150 for GS, IS and BSC, respectively.
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Figure 7. Scatter plots and statistical relationships (GS and IS).

On the other hand, the linear regression analysis between mean LST and baresoil and cultivated
land is shown in Figure 8, where a positive relationship between them is observed with a stronger
correlation with mean LST.
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Figure 8. Scatter plots and statistical relationships (baresoil and cultivated).

3.3. Impervious Surface, Green Space and Baresoil and Cultivated vs. LST at Multiple Resolution

Across grid sizes in Seville City, the correlation is stronger between mean LST, green space and
baresoil and cultivated density than between mean LST and impervious surface density over the three
years. From this three-year analysis, the strongest correlation between mean LST and green space
density occurred in 1987, while 2002 was the year with the strongest correlation between mean LST
and baresoil and cultivated land. In the case of impervious surface density, this correlation occurred in
2002 and 2017, with both being very similar (Figures 9 and 10).

3.4. Landscape Variables Influencing Surface Temperature Spatial Variations

Table 2 reviews the results of the OLS MLR analysis. In respect to the variance inflation factor (VIF)
values for all variables used in this study at the three periods, there was a low multicollinearity between
explanatory or independent variables. Additionally, the results of the OLS MLR analysis present that,
together, the explanatory variables considered in the analysis were significant in explaining a relevant
number of spatial variations in mean LST at the three time periods (R2 = 0.55 (1987); R2 = 0.46 (2002);
R2 = 0.43 (2017)) (ρ < 0.001). The individual regression coefficients β of the explanatory variables were
also statistically significant.
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Figure 9. Graphical illustration of the polygon grid (210 m × 210 m), showing the maps of mean LST,
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As for the standardized regression coefficients, the results present that a fraction of GS has a high
β through the three time periods, while mean hillshade and slope had the lowest β for 1987, 2002
and 2017. A decreasing trend is also observed in the standardized β “Fraction of IS” in the three time
periods (Table 2). This is consistent with the influence of baresoil and cultivated land on mean LST,
which shows an increasing trend.
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Figure 10. Scatter plots between impervious surface, green space density and mean LST in Seville City.

Table 2. Result of the OLS MLR analysis (Dependent Variable: Mean LST; N = 9216).

1987 OLS MLR Analysis

Variables
Unstandardized Coefficient

Standardized Coefficients (β) Sig. VIF
β Std. Error

(Constant) 33.005 1.048 0.000
Fraction of GS −0.065 0.001 −0.762 0.000 1.423
Fraction of IS −0.016 0.001 −0.176 0.000 1.257

Fraction of BSC 0.042 0.001 0.523 0.000 1.323
Mean Elevation 0.007 0.001 0.066 0.000 1.247

Mean Slope 0.040 0.012 0.028 0.001 1.288
Mean Hillshade −0.008 0.006 −0.011 0.001 1.459

Mean Aspect 0.001 0.001 0.018 0.000 1.377
R2 = 0.545; Adjusted R2 = 0.545

2002 OLS MLR Analysis

Variables
Unstandardized Coefficient Standardized Coefficients (β) Sig. VIF

β Std. Error

(Constant) 34.802 1.108 0.000
Fraction of GS −0.052 0.001 −0.644 0.000 1.372
Fraction of IS −0.007 0.001 −0.074 0.000 1.269

Fraction of BSC 0.032 0.001 0.342 0.000 1.240
Mean Elevation 0.011 0.001 0.109 0.000 1.233

Mean Slope 0.100 0.012 0.071 0.000 1.268
Mean Hillshade −0.010 0.006 −0.015 0.001 1.457

Mean Aspect 0.003 0.001 0.047 0.000 1.370
R2 = 0.457; Adjusted R2 = 0.456

2017 OLS MLR Analysis

Variables
Unstandardized Coefficient

Standardized Coefficients (β) Sig. VIF
β Std. Error

(Constant) 45,289 1.008 0.000
Fraction of GS −0.055 0.001 −0.642 0.000 1.284
Fraction of IS −0.004 0.001 −0.046 0.000 1.236

Fraction of BSC 0.038 0.001 0.456 0.000 1.280
Mean Elevation 0.007 0.001 0.081 0.000 1.176

Mean Slope 0.016 0.011 0.013 0.001 1.257
Mean Hillshade −0.035 0.006 −0.058 0.000 1.454

Mean Aspect 0.007 0.001 0.109 0.000 1.371

R2 = 0.429; Adjusted R2 = 0.429
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4. Discussion and Conclusions

Seville is the political and economic capital of the autonomous region of Andalusia which has
played a very important role in its economic growth. In 2017, Seville generated a wealth of 39,500
million euros, 4% more than the previous year and above the Andalusian average (3%). The gross
domestic product (GDP) generated by Seville was 24.50% of the Andalusian total, estimated at 161,111
million euros. In the province of Seville, 336 companies were founded in 2017, representing 25.03% of
all the companies founded in Andalusia and almost 4.26% of those created in Spain [73]. Its population
has also experienced considerable growth, rising from 1.4 million in 1987 to 1.9 million in 2017.

As shown in Figure 3, Seville has experienced rapid urban growth, as indicated by the substantial
increase in the area classified as impervious surface (urban class). In 2017, the urban class increased by
37.87% with respect to the year 1987. In the first period analyzed (1987–2002), Seville underwent various
changes such as the conversion into the administrative and political capital of the new autonomous
region of Andalusia, and the celebration of the 1992 Universal Exposition (EXPO 92). During this
period the construction of communication infrastructures, bridges, the elimination of railway barriers,
as well as the urbanization of La Cartuja, was completed. There was a major urban expansion,
especially towards the north (Pino Montano) and southeast (East Seville and Bermejales) of the city.
Urban regeneration was also undertaken in historical sectors, which gave rise to a clear gentrification,
causing a population migration and certain economic activities to move towards more suburban
areas [98]. The growth observed in the second period analyzed (2002–2017) was to a certain extent
caused by the urban development of Seville in the previous period. The area of impervious surface
increased by 39.80% in this period of time.

In relation to green spaces, these are mainly distributed between the northern and southern zones
of the Guadalquivir, corresponding to the fertile lowlands and marshes, respectively (Figure 3). In 1987
the percentage of green spaces in the analyzed area was 30.55%, while in 2017 this percentage decreased
by 24.85%.

In the province of Seville, 864 km2 of the total area is farmland; 134 km2 of which is made up of
meadows and pastures and 265 km2 is forest land. In the area studied, the percentage of cultivated land
in 1987 was 44.97%. In 2002 this percentage fell to 32.88% as a consequence of the urban development
of the area and increased to 41.25% in 2017 at the expense of green space area.

As for LST, the highest values were found in the city center as well as in baresoil and cultivated
land (Figure 4). This is due to the fact that surface characteristics, such as constructions, streets
and other impervious surfaces, absorb more heat (solar radiation) than surfaces where the cover
is vegetal (Figure 5) [33,77,79,99,100]. The fact that baresoil may have an LST similar to or even
higher than that of the urban class (constructed or impervious surfaces) has been reported by other
researchers [101,102]. In bare and dry soil, cities may have more vegetation than their environs,
reversing the most common urban scenario in which relative lack of breathable vegetation and available
moisture, as well as soil “waterproofing,” are among the reasons of UHI formation. The phenomenon
of a “cool island,” which can result from the aforementioned, has been reported by several authors
as being a predominantly daily phenomenon [79,103–106]. In this study, Landsat data capture three
July months analyzed for different years. The satellite images were obtained between 10:27 and 11:02
AM, which may justify the fact that the city center had a lower LST than the nearby zones. Similarly,
it has also been found that the characteristics of dry soil [107] and bare soil [108] produce high thermal
values which, if part of the non-urban environment, might help an urban heat dissipation effect [109].

The date and time of acquisition of the satellite images would justify the existence of this heat
dissipating effect found in the study area.

On one hand, the satellite data were obtained in the morning, which increases the possibility
of detecting a weakened or dissipated urban heat island. The reversal (an urban heat sink) that
happened in the day in the zone under study depends on certain surface situations. For any superficial
material, specific internal properties, such as heat capacity, thermal conductivity and inertia, have a
big importance in the control of the temperature of a body in balance with its environment [110].
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These properties change according to the type of soil and its moisture content [111]. Dry, bare and
low-density soils have been associated with high LST as a result of fairly low thermal inertia [112,113].
Soil emissivity depends on soil moisture situations and soil density [113]. Thus, for areas characterized
by partial vegetation cover, the thermal surface properties can have a great influence in the measurement
of LST through the thermal courses of conduction, convection and radiation.

In addition, satellite images were captured in early July, revealing additional surface features that
would help in the creation of an urban heat sink. The crops were largely pre-emergent, and the satellite
images used resulted in baresoil. As mentioned above, this baresoil state can strongly contribute to an
increase in surface temperatures [108].

Therefore, there seems to have occurred a series of temporal and superficial characteristics favorable
to the development of the heat sink within the study area and that would tend, consequently, to increase
the temperature of the surface of the predominant agricultural land in the non-urban environment.

As can be seen in Figure 8, for the three years analyzed there is a positive relationship between the
baresoil and cultivated land and the mean LST, similar to that obtained by other authors for impervious
surface and mean LST [33,77]. The mixture of urban expansion, crop rotation, poorly managed cropland
and vegetation degradation might have caused increases in bare/semi-baresoil, especially in the latter.
The highest temperature found on desolate and cultivated land in the city contributes to the generation
of a cool, urban island surface. Dry, barren soil has a low heat conductivity capacity and warms up
quickly at dawn, while urban areas save solar energy. This phenomenon justifies the fact that the LST
remains practically constant along the rural urban gradient and that the typical correlations obtained
by other authors between IS and GS with mean LST are reversed [89,114]. This is demonstrated in
Figure 6 where there is no decrease in LST as the distance to the city center gets higher. Although a
temperature difference is observed between the three years analyzed, it remains practically constant
along the urban gradient and even increases after 15 km which coincides with the beginning of the
baresoil and cultivated land category [115]. The temperature of the urban class (impervious surface)
follows a pattern consistent with that obtained by other authors [77]. It decreases as the distance to
the city center increases, i.e., as a fraction of IS decreases, mean LST decreases. However, this is not
followed by a decrease in mean LST as a consequence of the temperature reached by baresoil and
cultivated land. This would justify the negative correlation of the fraction of IS and mean LST. The same
happens with green space, although in Figure 6 there is an increase in the GS along the urban gradient,
which translates into a decrease in temperature. If we observe Figure 7, we see that the correlation of
fraction of GS with mean LST is positive due to the increase in baresoil and cultivated land.

From Figure 10, it is detected that impervious surface had the greatest influence on the average
LST for the year 2002 with a slope value of 0.0188, followed by the year 2017 (slope = 0.0177) and the
year 1987 (slope = 0.0143). It is also observed that green space had the greatest impact on mean LST for
1987 (slope = −0.0608), followed by 2017 (slope = −0.0546) and 2002 (slope = −0.0529). This confirms
the urban growth experienced in the period 2002–2017 as a consequence of the changes implemented
in the period 1987–2002.

The results show that in the case of fraction of IS, the correlations with mean LST are noticeably
positive and increase as time goes by, taking a value from 0.0256 in the year 1987 to 0.0527 for 2017,
which is consistent with the increase in baresoil and cultivated land. Conversely, the fraction of GS
maintains a negative correlation with mean LST which decreases over time, from 0.5132 in 1987 to
0.4114 in the year 2017. This reinforces the fundamental role played by green space and baresoil and
cultivated land in the formation of the UHI.

Cities are adopting an urban disperse model in that they tend to occupy increasingly larger areas
with the removal of certain sectors outside the city limits (office parks, industrial activities, low-density
residences, university institutions, etc.) for the creation of dormitories, etc. This is partly motivated
by the emergence of a series of factors such as the increase in land prices, changing perceptions on
the quality of life that influence the construction of new housing (the building of closed residential
complexes with private gardens and the high value of being in close contact with nature, among others),
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the dominance of the car over the city, and so on. All of this means that cities need an ever-increasing
consumption of energy and materials; therefore, making them less sustainable.

The solution to this problem is closely linked to efficient urban planning, in which measures
that are based on an exhaustive territorial, economic and sociological analysis are adopted, aimed at
restoring the cities’ environmental quality and reducing the effects generated by climate change.

In summary, it is vital to introduce an assessment planning culture in the framework of climate
change [115–118]. The control of urban expansion, the increase of green areas (including roofs and
building façades) as well as the percentage of permeable soil, the modification of the albedo of materials
and pavements (increasing the degree of reflection of incoming solar radiation), the integration of
artificial water bodies, the promotion of urban ventilation, the layout of buildings and, in general,
the composition of urban morphology in order to facilitate air circulation, generates urban canyons
and eases temperatures [119]. These are all elements that must be included in the daily practices of
urban and land planning [120].

It concludes that there is a need to implement UHI mitigation strategies during the design and
initial phases of the engineering project, from where the origin of this problem can be acted upon,
since the process of creating streets and public space offers a valuable opportunity to restore the
environmental quality of our cities and to diminish the effects generated by climate change.
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