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Chapter 1

Introduction

Econometrics could be defined as the combination of statistics, mathematics

and economics in order to give empirical support to different theoretical

models (Tintner (1968)). Samuelson et al. (1954) defined it as the quantitative

analysis of actual economic phenomena based on the concurrent development of

theory and observation, related by appropriate methods of inference. Thus, an

econometric model allows us to analyse how a dependent or explained variable

(Y) is influenced by other explanatory, independent or predictor variables (X).

Usually, the relationship between the dependent and independent variables is

expressed with the following linear regression:

Y = Xβ + u, (1.1)

where u is the random disturbance, and X is a n× p matrix (n observations

and p variables).

The expression above can be rewritten as follows:

Y = β1X1 + β2X2 + ...+ βpXp + u. (1.2)
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1. Introduction

Usually, X1 from model (1.2) is an all-ones matrix (X1
t =

(
1 1 ... 1

)
),

thus β1X1 = β1, which represents the intercept of the model. Hence, the

researcher is using p − 1 observed explanatory variables. The key here is

the definition of the matrix X of independent variables: is the researcher

considering the intercept, the constant of the model, as another explanatory

variable or not? There are authors who uphold both alternatives. Johnston

and Dinardo (2001); Wooldridge (2008); Stock and Watson (2012), among

others, do not contemplate the intercept as an explanatory variable, while

Uriel (1997); Novales (1993); Gujarati (2003), among others, consider that

the constant is another independent variable in the econometric model. With

the clarification above, the reader can see that the authors take the second

perspective.

The Ordinary Least Squares (OLS) estimator (β̂ = (XtX)−1XtY) is

commonly applied to estimate model (1.1). According to the Gauss-Markov

Theorem, the OLS estimator is the Best Linear Unbiased Estimator (BLUE)

if the random disturbance is considered spherical (homocedasticity and

incorrelation). Apart from the hypothesis imposed to the random disturbance,

it also needs to be verified that the range of the matrix X will be equal

to the number of explanatory variables of the model and, consequently, the

explanatory variables will not present any perfect linear relationship between

them. If this requirement is not satisfied, the determinant of XtX will be zero

and it will not be possible to obtain a unique solution for the estimates. This

problem is known as perfect multicollinearity.

It will be also possible that the explanatory variables have a strong but not

perfect relationship. This case is known as imperfect multicollinearity. With

this type of multicollinearity, the estimation by OLS will be unique but the
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determinant of matrix XtX will be very small. Additionally, large variances of

OLS estimators may arise, as well as greater confidence intervals, insignificant

t ratios and a high coefficient of determination, unstable results, wrong signs

for the estimated coefficients and difficulty in determining the individual effects

of the independent variables to the dependent variable and to the coefficient

of determination.

It is worth noting that collinearity refers to the relationship between

only two explanatory variables, while multicollinearity concerns more than

two variables, so collinearity can be interpreted as a particular case of

multicollinearity (Belsley (1991, 2004); Chennamaneni et al. (2011); Gujarati

(2010); Holland (2014); Leighton (1985)). From now, to simplify the reading, the

dissertation will henceforth use multicollinearity and collinearity as synonyms.

Some authors have stated that multicollinearity is a sample phenomenon

(see for example Gujarati (2010), Johnston (1972), Stock and Watson (2012) or

Wooldridge (2008)), but in many studies it is difficult or even imposible

to obtain “ideal” or experimental data, and this fact (the use of real

data) sometimes results in the presence of collinearity. Efforts to address

multicollinearity are usually limited to deleting variables or, at best, the model

is estimated with alternative traditional methods, such as ridge regression or

partial least squares, which are recommended by Wei (2011) for prediction

purposes but not for the analysis of causal effects. In any case, even if the

goal of the study were to predict, where collinearity is not a major issue, it

is highly recommended to mitigate the problem due to the continuity of the

relationships between explanatory variables in the future. If this continuity is

not verified, the forecast based on the initial model may be unreliable as well

(Gujarati (2010); Wooldridge (2008)).

In addition, it should be highlighted that in some cases the consequences
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1. Introduction

of multicollinearity may not be troubling but its mitigation could still be

recommended in order to analyse the causal effects between the variables.

Baird and Bieber (2016) proposed an alternative methodology to OLS, based

on ordered variable regression (Woolf (1951)), which resolves the issue of

related predictors by creating and using predictors that are perfectly unrelated.

Additionally, Shapley (2016) presents a different strategy for assessing the

contribution of regressor variables to the dependent variable. These are the

basis of regression with orthogonal variables (Novales et al. (2015); Salmerón

et al. (2016)), also known as residualization methodology, which is applied in

previous research articles published in major social science journals in many

different fields, such as linguistics (Ambridge et al. (2012); Cohen-Goldberg

(2012); Jaeger (2010); Kuperman et al. (2008, 2010); Lemhöfer et al. (2008)),

environmental issues (Jorgenson (2006); Jorgenson and Burns (2007); Jorgenson

and Clark (2009)) or economic development and policies (Bandelj and Mahutga

(2010); Bradshaw (1987); Kentor and Kick (2008); Mahutga and Bandelj (2008);

Walton and Ragin (1990)). Despite its application having been widespread,

the theoretical background of the method has not been developed fully in these

earlier works. The lack of specification of this methodology leads to different

criticisms, such as the one in York (2012).

In order to offer a brief explanation about the application of the

residualization procedure, let us consider a basic regression model with two

observed explanatory variables plus the constant. Starting from model (1.1),

the model will be Y = β1 + β2 X2 + β3 X3 + u. Let us also suppose that

variable X2 could be expressed as an approximate linear relationship of X3,

which implies near collinearity. This method allows the researcher to isolate

the effect of variable X2 from variable X3 by using the estimated residuals

from the auxiliary regression X2 = α1 +α2 X3 +v in the original model instead
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of the original variable X2. But why is variable X2 isolated from variable

X3? The answer is easy to understand: due to the OLS estimation properties,

the estimated residuals of any regression by OLS are orthogonal to all the

explanatory variables used in the analysis; therefore, the estimated residuals

from the auxiliary regression represent the part of variable X2 that has no

relationship with variable X3. It can be said that the principle ceteris paribus

is strictly fulfilled. As the reader may note, another type of interpretation of

the modified variable X2 is made. However, one important issue has to be

taken into account: not all variables are susceptible to having their effects

isolated from the others, so it is very important to choose the appropriate

variable or variables from the specific model. In addition, apart from isolating

the effect of variable X2, the method is simultaneously mitigating potential

collinearity problems due to the foregoing. Furthermore, it is interesting to

note that the method could be used more than once for a specific model.

With the above in mind and taking into account the residualization

procedure and its properties, which are going to be analysed throughout

this Thesis, it is clear that this method allows the researcher to deal

with multicollinearity problems and, furthermore, it also introduces another

interpretation of the modified variable(s). The main goal of this dissertation is

to undertake an in-depth exploration of residualization, not only theoretically

but also empirically. Regarding the empirical part of this Thesis, the focus

is centred on the environment from an economic point of view. Usually, the

purpose of environmental works is to study the impact of certain variables on

the environment, thus, the particular research covering this field is to estimate

the effects of the environmental impact factors. As has been shown earlier, in

empirical research real data are generally used and this results in the presence

of collinearity in many studies. That is the case with environmental studies: it
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1. Introduction

is likely that factors affecting environment will be strongly correlated. Variables

like population, GDP per capita, industry, technological development, policies,

etc., clearly influence environmental damage, but they influence each other as

well. This fact implies multicollinearity and, as has been shown earlier, the

presence of multicollinearity lead to distorted results. Despite the evidence

of the presence of collinearity in environmental studies, efforts to address

collinearity are usually disregarded or, at best, limited to eliminating variables,

to using first differences, or to applying partial least squares or ridge regression

(see Chapter 5). However, it may be considered necessary to analyse whether

residualization, which is focused not only on mitigating collinearity but also

on obtaining new interpretation of the variables, could be an alternative. This

idea can be extended in particular to social sciences, and sciences in general.

For that purpose, the remainder of the dissertation is organised as follows:

• Chapter 2 addresses in depth the problem of multicollinearity: it reviews

the concept and its causes and consequences. Furthermore, apart from

the concept, the reader is introduced to the principal methodologies

in the diagnosis and treatment of collinearity: the main measures for

detecting the problem in a specific model and some prior methodologies

for mitigating it.

• Chapter 3 introduces the reader to residualization. First, some

critical views of the method are reviewed, and then the methodological

preliminaries of residualization are presented. Then, the method for a

linear model with two and three standardized explanatory variables is

explained based on the work of Salmerón et al. (2016), developed by the

author of this dissertation, her supervisors, and Dr. José Garćıa Pérez

6



(University of Almeŕıa, Spain), and published in Bolet́ın de Estad́ıstica e

Investigación Operativa.

• Chapter 4 further explains the theoretical development of the

methodology for the case of p independent variables. This chapter

represents the main contribution of this Thesis, and it corresponds to

the work “Residualization: justification, properties and application”,

developed by the author of this dissertation, her supervisors, and Dr.

José Garćıa Pérez (University of Almeŕıa, Spain), and published in

Journal of Applied Statistics (JAS) (Garćıa et al. (2019c)).

• Chapter 5 introduces the empirical part. The well known STIRPAT

model, which primarily studies environmental degradation, is used for

three different examples. The first one is focused on the residualization

procedure and its use in mitigating strong collinearity problems: it

compares residualization with three other methodologies explained in

Chapter 2, concluding that residualization is a good alternative for dealing

with strong collinearity problems. The second one uses residualization

mainly to mitigate collinearity problems, but the residualization

procedure is applied in three different ways to show the applicability

of the method. Finally, the third example applies residualization to

show the reader the use of the method for empirical purposes. The first

example is based on the work of Garćıa et al. (2020) (which presents

updated data), the second uses data from the research of Apergis and

Garćıa (2019), and the third is one of the examples presented in Garćıa

et al. (2019c), all research developed by the doctoral candidate with her

supervisors and other academics during her PhD.
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1. Introduction

• Finally, Chapter 6 offers an overall conclusion and provides some

implications and future lines of research.
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Chapter 2

The problem of

multicollinearity

As stated by Gujarati (2010) or Novales (1988), the key question in an empirical

analysis is not to discuss the existence of multicollinearity because it always

exists (whatever the two economic variables, they are always correlated).

According to some authors like Gujarati (2010) or Novales (1988) above or

others like Johnston (1972) or Stock and Watson (2012), for empirical research

real data are generally used and, as has been stated in Chapter 1, the use

of real data results in the presence of collinearity in many studies. So, the

debate is the choice of whether or not to ignore the problem because it is or

not significant. Thus the dilemma is in fact the degree of multicollinearity that

exists in an empirical study, i.e. whether the existing multicollinearity is of

concern or not.

It was said in Chapter 1 that some authors have stated that multicollinearity

is a sample phenomenon (Fox (1984); Gujarati (2010); Johnston (1972);

Novales (1988); Schroeder (1990); Spanos and McGuirk (2002); Stock and
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2. The problem of multicollinearity

Watson (2012)), but let us look in-depth at the existing types of collinearity in

order to clarify the concept, causes and consequences of collinearity.

As Belsley and Klema (1974) reveal, there are three principal questions

about the multicollinearity problem which can be rewritten as follows:

1. What is multicollinearity, when does it appear, what are its consequences

and what are the causes of the problem?

2. How can we detect the presence of multicollinearity in a specified model?

3. Is it possible to mitigate the problem? How?

These three questions will be treated throughout this Chapter. Section 2.1

answers the first question, i.e. the concept and causes and consequences of the

problem. Section 2.2 takes an in-depth look at the second question and reviews

the main methods for detecting the problem. Finally, Section 2.3 presents the

most commonly-used methodologies that allow the researcher to deal with the

problem.

2.1 Concept, causes and consequences of

multicollinearity

With regard to the first question presented above, a general definition of

multicollinearity is that it is a problem that consists of a lack of independence

or presence of interdependence between explanatory variables, Farrar and

Glauber (1967). Novales (1988), Silvey (1969) or Paul (2006) among others,

distinguish between two main types of multicollinearity, paying special attention

to the nature of the relationship:
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2.1. Concept, causes and consequences of multicollinearity

• Perfect or exact multicollinearity: this occurs when one of the explanatory

variables is a perfect linear combination of the rest of the variables (or

only some of them), i.e. one of the explanatory variables can be expressed

as an exact linear relationship of other independent variables from the

initial model.

• Imperfect or near multicollinearity: this appears when one of the

explanatory variables is approximately equal to a linear combination of

at least one of the independent variables from the model.

Perfect multicollinearity usually indicates a logical error in the specification

of the model, but imperfect multicollinearity is essentially a characteristic of

the data. Therefore, if the variables included in the model are the only ones

the researcher can include, then high near multicollinearity implies difficulties

for obtaining accurate results (Stock and Watson (2012)), and it is desirable

to mitigate it.

As Gujarati (2010) reveals, in practice, we rarely encounter perfect

multicollinearity, but cases of near or very high multicollinearity where

explanatory variables are approximately linearly related frequently arise in

many applications. The following subsections will look in-depth these two

types of collinearity.

2.1.1 Perfect multicollinearity

In the case of perfect multicollinearity, the X matrix does not have complete

range and, consequently, the determinant of XtX will be zero, which means

it cannot be inverted, so it is a singular matrix (Lazaridis (2015); Novales

(1988)). With this, the Ordinary Least Squares (OLS) estimator does not

have a unique solution, and the results are not decisive (Gujarati (2010);
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2. The problem of multicollinearity

Stewart (1987)) because the estimation of the coefficients will have an infinite

number of solutions. In other words, the set of explanatory variables includes

duplicated information and involves mathematical problems.

To illustrate this issue, let us assume a model with two explanatory variables

and the constant1 (see Gujarati (2010)):

Y = β1 + β2 X2 + β3 X3 + u. (2.1)

Assuming variable X2 is an exact linear combination of variable X3. If

the researcher regresses X2 on X3, it will obtain that X2 = α̂1 + α̂2 X3 due

to e = 0 (the estimated residuals from this last regression are zeros), where

α̂1 and α̂2 ∈ R (these are the estimated values from the regression of X2 on

X3, so they are known values). For this particular case, it is assumed that X2

is an exact linear combination of variable X3, thus it is logical that R2 from

model X2 = α1 + α2 X3 + v has a value equal to one.

By substituting the previous results into the main equation (2.1), the

following is obtained:

Y = β1 + β2 (α̂1 + α̂2 X3) + β3 X3 + u,

= β1 + α̂1 β2 + α̂2 β2 X3 + β3 X3 + u,

= δ1 + δ2 X3 + u. (2.2)

where:

δ1 = β1 + α̂1 β2.

δ2 = α̂2 β2 + β3.

If the researcher estimates model (2.2), values δ̂1 and δ̂2 will be obtained.

With these, and bearing in mind the previous changes in variable, it is clear
1Based on the idea expressed in model (1.2) regarding the intercept.
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that there are three unknown parameters and only two equations, so there is

no way to calculate the unknowns:δ̂1 = β1 + α̂1 β2

δ̂2 = α̂2 β2 + β3

In conclusion, as has been shown earlier, the principal consequence of

perfect collinearity is that the OLS estimator does not have a unique solution,

thus estimation and hypothesis testing of individual regression coefficients in a

multiple regression is not possible, Gujarati (2010). What the researcher could

obtain are the estimates of the linear combination (δ̂1 and δ̂2), but not all the

“unknowns” individually (β1, β2 and β3).

This problem is not very usual because the first step to follow in every work

or study is to make decisions about the variables used and, hence, about the

model, with the aim of choosing the best option. It means making a further

diagnosis of a set of variables and to check and select the correct ones, in order

to avoid including either redundant or unnecessary information (duplicated

data) in the model. In any case, the appearance of perfect multicollinearity is

easy to solve by deleting the redundant variables from the model (Alauddin

and Nghiem (2010); Grewal et al. (2004); Leamer (1973)). Also, software can

be used to automatically detect the existence of this type of collinearity by

noticing any errors in the calculation.

2.1.2 Imperfect multicollinearity

Imperfect multicollinearity does not imply an exact linear relationship

between variables, but an approximate linear relationship between them.

This type is more difficult to manage because it usually persists due to the

own characteristics of the variables. In other words, approximate collinearity

13



2. The problem of multicollinearity

is difficult to delete because the researcher is modeling a reality in which,

generally, there is always a type of relationship between the empirical variables

(Gujarati (2010); Novales (1988)).

Starting from model (2.1), with two explanatory variables and the constant,

and assuming variable X2 is an approximate linear combination of variable

X3, now if the researcher regresses X2 on X3, a level of R2 near to 1 will

be obtained, X3 explains close to 100% of the variation of X2, so it could

be concluded that the explained and the explanatory variable (X2 and X3,

respectively) are closely related but not exactly related, Wooldridge (2008).

When variables are highly (not perfectly) correlated, OLS estimators still

remain BLUE [Best Linear Unbiased Estimator] even though one or more of

the partial regression coefficients in a multiple regression can be individually

statistically insignificant, Gujarati (2010). In this case, matrix X has a full

rank and is not singular, so the OLS estimator does have a unique solution but

the estimation of the coefficients will be unstable. Therefore, even though the

researcher may be able to estimate the model, high multicollinearity can lead to

the following practical consequences (Alin (2010); Farrar and Glauber (1967);

Gujarati (2010); Holland (2014); Leamer (1973); Leighton (1985); Meloun et al.

(2002); Murray (2005); Rockwell (1975); Stewart (1987); Wooldridge (2008)):

• Inflated variances of the estimators.

• Greater confidence intervals.

• Tendency to consider the estimated parameters as non-significant. For

the tests of individual significance, the null hypothesis is likely not to be

rejected.
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• High R2, which means there is a tendency to consider the model globally

significant and well determined.

• Difficulty in fixing the individual effects of the independent variables

to the explained variable, and hence, to the explained sum of squares

and to the coefficient of determination. It is not possible to separate the

individual effects of the explanatory variables: the related variables are

so highly collinear that when one moves the other moves with it almost

automatically, Gujarati (2010).

• Non-robust results. The estimates have a high sensitivity to small changes

in the initial data.

• A considerable possibility of the appearance of incorrect signs for the

estimated coefficients. The estimated parameters and their importance

in the model are distorted, so the outcome of the specific study will

show unrealistic results. In other words, it is likely that results will be

inconsistent with theory.

Bearing the above in mind, Paul (2006) affirms that if the goal is simply

to predict Y from a set of variables X, then [high] multicollinearity is not a

problem [because] the predictions will still be accurate, and the overall R2 (or

adjusted R2) quantifies how well the model predicts the Y values. But, this

work also says if the goal is to understand how the various X variables impact

Y, then multicollinearity is a big problem, so the researcher has to take it

into account the following implications: one problem is that the individual

p values can be misleading [...]. The second problem is that the confidence

intervals on the regression coefficients will be very wide [...], [and] excluding a

subject (or adding a new one) can change the coefficients dramatically and
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may even change their signs. The multicollinearity problem indeed affects

least squares estimations, but not residuals or predictions, e.g. Belsley et al.

(1980); Chatterjee and Hadi (1988); Giacalone et al. (2018); Gujarati (2010);

Lauridsen and Mur (2006); Wooldridge (2008). Multicollinearity is significant

when the aim of the study is to obtain reliable estimations but not to make

predictions. In any case, even if the goal of the study were to make predictions,

it is highly that the problem be mitigated since the researcher needs to be

very sure of the continuity of the relationships between explanatory variables,

because if the relationship changes in the future, the forecast based on the

initial model may be unreliable as well (Gujarati (2010); Wooldridge (2008)).

On the other hand, Spanos and McGuirk (2002) revisit the traditional

account regarding near-multicollinearity in an attempt to reconsider its nature

and consequences. This work stated that the problem with near multicollinearity

could be summarise into two different issues that are usually mixed:

• The structural problem, which increases systematic volatility. Systematic

volatility is a parameter problem and it could be said to be predictable.

It is concerned with changes of the coefficient estimates associated

with high correlation among the regressors, therefore it is related to

the presence of high correlation among regressors. This is known as

systematic multicollinearity (Salmerón and Rodŕıguez (2017)).

• The numerical problem, which increases erratic volatility. This type of

volatility is due to the characteristics of the data and is unpredictable.

It is concerned with the sensitivity of the coefficient estimates to

proportional changes in XtX and XtY, so it is related to the presence
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of ill-conditioning in the regressor data matrix XtX. This is known as

erratic multicollinearity (Salmerón and Rodŕıguez (2017)).

Hence, in light of the above works, the reader could think that the

multicollinearity problem is not always a sample phenomenon, although many

authors (see, for example, Fox (1984) or Schroeder (1990) among others) state

that collinearity is commonly interpreted as a data problem rather than a

model-specification problem.

In closing, a very important classification of near collinearity is given

by the works of Marquardt (1980); Marquardt and Snee (1975); Snee and

Marquardt (1984). In light of these, the analyst can also distinguish between

essential collinearity and non-essential collinearity. The first one concerns

the relationship between explanatory variables, excluding the intercept, while

the second one regards the specific relationship between the intercept and

at least one of the observed independent variables of the model. So it could

be interpreted that both, taken individually, are measuring the relationships

among the real variables used in a specific model (the numerical problem) and

both of them together are measuring the structural problem of the model.

To sum up, near or imperfect multicollinearity can be split into two groups:

• Those regarding structure: data structure (erratic collinearity) or model

structure (systematic collinearity).

• Those regarding relationships: taking into account the relationship

between the constant of the model and the rest of independent

variables (non-essential collinearity) or considering only the relationship

between explanatory variables without considering the constant (essential

collinearity).

17



2. The problem of multicollinearity

Throughout this Thesis, the group that concerns us most is the one that takes

into account the relationship among explanatory variables.

Before reviewing the treatment of collinearity, it is important to further

illustrate how multicollinearity can be detected (Section 2.2). Once it is

discussed, in Section 2.3 the principal techniques and methodologies used in

earlier literature to deal with multicollinearity problems will be individually

explained.

2.2 Detection of multicollinearity in a model

Considering the general linear regression model for p explanatory variables

and n observations, model (1.1), the objective is to estimate β.

In the presence of multicollinearity there will be high instability in the

estimation of β: with small changes in the X matrix, there will be big changes

in the estimation of β and the regressors may have a high sampling variance, as

has been mentioned in Section 2.1. But, how the problem could be detected?

The distinction was made above between perfect and near multicollinearity.

Perfect multicollinearity is directly detected by observing the matrix X: if

it is singular, there is perfect multicollinearity. This section therefore deals

with near or imperfect multicollinearity. It has also been noticed that there

is always collinearity in empirical modelling, hence the issue that concerns us

here in that of detecting whether strong collinearity problems exist.

Imperfect collinearity can be detected in several ways. The researcher

may perform some informal checks to have an initial approach of the problem.

If the model has a high R2 and is globally significant, while the estimated

parameters are individually insignificant, there may be strong collinearity in
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the model. If the Pearson coefficient of correlation is higher than 0.8 (Farrar

and Glauber (1967); Grewal et al. (2004); Kumar (1975)), the problem is likely

to exist. Note that this threshold only measures the relationship between pairs

of variables and, in addition, this value does not ensure the existence of strong

collinearity in the model: it would better to use a value of 0.9 (see Garćıa et al.

(2017b) for more information). In any case, although these informal checks

may help the researcher to form an initial idea about the existence of strong

near multicollinearity in the model, there are formal checks. The following

sections take an in-depth look at this fact.

2.2.1 Farrar and Glauber tests

As stated by Neeleman (1973), Farrar and Glauber (1967) designed a test

on multicollinearity for detecting the problem, localising it, and finding the

multicollinearity pattern. In line with these authors, let us assume that x

is a standardized matrix of n observations and p − 1 explanatory variables.

From now, bold lowercase letters will represent standardized variables and

bold capital letters will represent non-standardized variables.

It is known that the determinant of xtx takes the value 0 when there is

complete dependency between variables and 1 when the variables are orthogonal,

so 0 ≤
∣∣∣xtx∣∣∣ ≤ 1. Based on this idea, the following test for checking if

variables are mutually independent (if multicollinearity does not exist) has

been developed:

χ2
|xtx| = −[n− 1− 1

6
(2(p− 1) + 5)] ln

∣∣xtx∣∣,
which is distributed approximately as a χ2 with

(
1
2 (p− 1) (p− 2)

)
degrees of

freedom.
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The second test developed by Farrar and Glauber (1967) is the one that

localises the problem:

Fi = (rii − 1)
n− p− 1

p− 2
, (2.3)

which has a Snedecor’s F -distribution with (n − p − 1) and (p − 2) degrees

of freedom. In this expression, rii = 1 − (1/R2
i ), where R2

i represents the

coefficient of determination of following regression (2.4):

xi = x−iα+ v, (2.4)

where v is spherical, x−i is the result obtained after eliminating column

(variable) i from matrix x and xi represent the variable i. That is, x = (x−i xi).

This previous test could be applied for each variable in order to detect the

collinear variables.

Finally, to identify the multicollinearity pattern, the last test developed by

Farrar and Glauber (1967) is the following:

tij =
ρij
√
n− p− 1√
1− ρ2

ij

,

which has a Student’s t-distribution with (n− p− 1) degrees of freedom, and

where ρij is the coefficient of correlation between variables xi and xj . This test

can be used to study the pattern of the mutual relationships in the collinear

subset detected with the F test above.

Although the set of these measures could be seen as a good tool for detecting

and identifying the multicollinearity pattern, the procedure has received a lot

of criticism. The principal disadvantage of the Farrar and Glauber technique

is that, in words of O’Hagan and McCabe (1975), they made a fundamental

mistake in interpreting their diagnostics: a very simple conceptual error. This

work refers to the missinterpretation of the use of a t statistic, by providing a
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fundamental measure of the severity of collinearity. Their statistic does not

provide any more information than |xtx| because it is simply some scalar times

log |xtx| and only has the relatively small advantage of being corrected from

sample to sample for degrees of freedom. Similarly, Haitovsky (1969) argues

that the only relevant requirement in the context of multicollinearity is the

so-called full rank requirement, and strong collinearity problems should be

shown by the singularity of the matrix xtx. Silvey (1969) claims that the most

important issue arising from multicollinearity is the imprecise estimations,

rather than seek to define the degree of the problem. Huang (1970) comments

that there is no analytical measure of the severity of multicollinearity on x

except for |xtx|. Wichers (1975) demonstrates that the third test developed

by Farrar and Glauber does not work. Finally, Smith and Campbell (1980), in

their criticism to ridge regression, state that the Farrar and Glauber criterion

is inadequate.

2.2.2 Variance Inflation Factor (VIF)

The VIF can be interpreted as a tool based on the correlation between

explanatory variables (Novales (1988)).

Starting from model (1.1) and supposing X can be decomposed as X =(
Xi X−i

)
, where Xi represents variable i and X−i is the matrix that includes

the rest of the explanatory variables. Then,

XtX =


Xt
iXi Xt

iX−i

Xt
−iXi Xt

−iX−i

 .

By using the inverse of a partitioned matrix, the important element to

obtain (XtX)−1 is the element (1, 1) of the same, that is:
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(
(Xt

iXi)−Xt
iX−i(X

t
−iX−i)

−1Xt
−iXi

)−1
=
(
Xt
i Mi Xi

)−1
,

where Mi = I − X−i(X
t
−iX−i)

−1Xt
−i, which is symmetric and idempotent,

and I is the identity matrix. So,

V̂ ar(β̂i) =
σ̂2

Xt
i Mi Xi

.

As Giacalone et al. (2018) say, the VIF studies the linear dependence

between variable Xi and the rest of explanatory variables of the original model

(1.1), hence the regression which concerns us at this point is the following:

Xi = X−iα+ v, (2.5)

where v is spherical.

The sum of square residuals from model (2.5), SSRi, is equal to Xt
i Mi Xi.

Thus,

V̂ ar(β̂i) =
σ̂2

SSRi
=

σ̂2

SSTi(1−R2
i )
,

where SSTi and R2
i are the total sum of squares and the coefficient of

determination from model (2.5), respectively. It is important to note that the

above expression is verified if the intercept is in the model (when it is verified

that SST = SSE + SSR).

In the above expression, it is known that σ̂2 is totally independent from

the correlation between explanatory variables, SST depends only on Xi, and

R2
i is influenced not only by Xi but also by the rest of explanatory variables

X−i. Hence, regarding multicollinearity, the only factor that affects V̂ ar(β̂i)

in these terms is R2
i . Furthermore, the lower value of this variance appears

when R2
i = 0, and this fact occurs when the explanatory variables are linearly
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independent each other, so V̂ ar(β̂i) when there is any relationship in X−i,

V̂ ar(β̂0
i ), is equal to σ2

/
SSTi.

Regarding the threshold that the researcher has to take into account when

testing the existence of collinearity, Marquardt (1970) states that a value lower

than 10 indicates no problematic collinearity, Kennedy (1992). For tighter

results, some authors set the VIF threshold to 4 (O’Brien (2007)).

If the VIF is defined as the percentage of the variance that is inflated for

each coefficient, so the VIF value shows the ratio between the actual situation

and the situation where there is no collinearity, then:

VIFi =
V̂ ar(β̂i)

V̂ ar(β̂0
i )

=
1

1−R2
i

. (2.6)

Note that expression (2.6) corresponds to rii from equation (2.3) of

Subsection 2.2.1.

Thus, the VIF is related to the R2
i (the coefficient of determination of

model (2.5)), and if the threshold of the VIF is situated at 10, then the R2
i will

be equal or higher than 0.9 if worrying near collinearity exists in the model,

and it will be equal or higher than 0.75 if the researcher takes the value of 4

as the VIF threshold.

On the other hand, the works by Curto and Pinto (2011) and Salmerón et al.

(2017b) developed a corrected version of the traditional VIF. Curto and Pinto

(2011) explain the corrected VIF (CVIF) is useful when explanatory variables

are not redundant and their importance increases due to the inclusion of

another explanatory variable in the regression equation. However, according to

Salmerón et al. (2017b), R2
0 is non-negative and could even be higher than one.

This implies that the CVIF will be negative since 1−R2
0 < 0 and 0 < R2 < 1.

Taking into account the rules of thumb proposed by Curto and Pinto (2011),

the final consequence of this fact is that the CVIF can take non-interpretable
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negative values. Salmerón et al. (2017b) proposed a modified CVIF (MCVIF)

that corrects the above one.

Although the VIF is one of the most commonly-used methods to detect

collinearity in a specified model, some inconveniences appear. First, the VIF

does not detect the non-essential collinearity because it ignores the role of the

intercept of the model (see Salmerón et al. (2018, 2019)). Second, as the VIF is

based on the calculation of R2
i , it is not appropriate when qualitative variables

are used in the model, specifically, it is not recommended when variable Xi is

binary.

2.2.3 Tolerance

It is known that the tolerance can be defined as TOLi = 1 − R2
i . So from

expression (2.6), the tolerance of variable Xi can be interpreted as the inverse

of the VIFi. Thus, the tolerance of a variable is related to the value of the

VIF.

If value 10 is taken as the threshold for the VIFs (see Hair et al. (1995);

Kennedy (1992); Neter et al. (1989)), then TOLi < 0.1. That is, if the

tolerance of variable Xi is lesser than 0.1, this is a problematic variable

regarding worrying multicollinearity of the model. In parallel, if a value of

4, following O’Brien (2007), is taken as the threshold for the VIFs (see, for

example, Pan and Jackson (2008)), then TOLi < 0.25, so the researcher can

have tougher requirements regarding collinearity problems.

As the tolerance is the inverse of the VIF, it presents the same disadvantages

as the original expression: it does not detect the non-essential collinearity and

it is not appropriate when qualitative variables are used in the model.
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2.2.4 Condition Number (CN)

The CN can be interpreted as a method based on the size of XtX (Novales

(1988)). It is known that the CN measures the sensitivity of the solution of

a linear equation model to changes in the original data, i.e. it measures the

sensitivity of an inverse matrix to changes in it.

As has been shown in the above section, the problem of multicollinearity

is caused by the matrix X. With near multicollinearity, this matrix is not

singular, but it could be said that it is approximately singular. Hence, one

possibility to detect the problem could be based on the size of this matrix.

The first idea that emerges is to use the determinant of this matrix. As in

Novales (1988), the determinant of a symmetric matrix is equal to the product

of the eigenvalues of it. Thus, analysing the eigenvalues of XtX, the problem

of multicollinearity could be examined by taking the size of this matrix as

the starting point. Small eigenvalues will produce a small determinant, and a

small determinant will mean that the variables are highly correlated, so the

model presents problematic collinearity. It is important to note that the value

of the determinant of XtX is sensitive to the units of measure employed for

the variables, and it is a considerable disadvantage. Because of this, it could

be interesting to examine the individual eigenvalues not the whole determinant

and, in particular, their relative values. For example, if the ratio between

the higher eigenvalue (µmax) and the lower one (µmin) is studied, and if the

value of the ratio is small, then it could be concluded that the minimum

value is relatively high compared to the maximum eigenvalue, indicating that

the collinearity problem will not be problematic. By contrast, if the ratio is

high, then the minimum eigenvalue will be relatively small regarding to the

maximum one, and multicollinearity will be a major problem.
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Bearing that in mind, the well-known CN will be calculated as:

CN =

√
µmax

µmin
. (2.7)

So, with a low condition number, XtX is considered well-conditioned, while

with a high condition number, XtX is considered ill-conditioned.

The minimum value of CN will be one, and it appears when all of the

explanatory variables are orthogonal to each other, which is the situation

where there is no relationship between independent variables. Following

Belsley et al. (1980), values lower than 20 imply light collinearity, between

20 and 30, moderate collinearity, and values higher than 30 imply strong

collinearity. Thus, a value of 30 is usually taken as the threshold for detecting

strong collinearity (see, for example, Midi et al. (2010); Myers (1990); Pesaran

(2015)).

In contrast to VIF, since the CN takes into account the constant of

the model, it can be used to detect not only essential collinearity, but also

non-essential collinearity. In any case, it presents a significant disadvantage,

explained in depth in Lazaridis (2007): sometimes the value of the CN delivers

inflated results even if the model does not present strong collinearity problems.

As this author reveals, this problem is usually, although not necessarily, created

by the intercept (non-essential collinearity), thus it is recommended to use

centred data where possible and some other tools together with CN to check

the existence of strong collinearity problems.

2.2.5 Stewart Index (SI)

Stewart (1987) defined the collinearity indices, whose purpose was to detect the

existing near collinearity in the econometric model. The Stewart index, usually

named as k2
i for variable Xi, is able to identify essential and non-essential
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collinearity in an econometric model, in contrast to VIF, for example. In this

dissertation, the index is going to be referred to as SIi to avoid any confusion

with the ridge factor, usually referred to as k (see Section 2.3.1).

The expression for the SIi is the following:

SIi =
Xt
iXi∣∣∣Xt

iXi −Xt
iX−i

(
Xt
−iX−i

)−1
Xt
−iXi

∣∣∣ ,
where X−i represent the matrix X by deleting variable Xi and Xi represents

variable i.

It is verified that if XiX−i = 0, then SIi is equal to 1. Furthermore,

as X−iX−i is a positive-definite matrix, then SIi ≥ 1, so this index is able

to capture the existing orthogonality between variable Xi and the rest of

explanatory variables.

For the intercept (i = 1), the index is:

SI1 =
1

1− 1
n ·X−1 ·

(
Xt
−1X−1

)−1 ·Xt
−1

,

where X−1 = Xt
1X−1 =

(∑
nXn2

∑
nXn3 ...

∑
nXnp

)
.

Here, the orthogonality of the constant with the rest of explanatory variables

is measured (the non-essential collinearity of the model). If the value of the

index is exactly 1, then, X−1 = 0, i.e. all the explanatory variables are centred,

there is no non-essential collinearity, and SI1 has its minimum value.

For the rest of explanatory variables (in this case, i = 2, . . . , p), the index

captures the orthogonality of the analysed variable with the rest of independent

variables:

SIi =
Xt
iXi

SSRi
,

where SSRi is the residual sum of squares of the regression (2.5).
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As Xt
iXi = n · (var(Xi) + X

2
i ) = SSTi + n ·X2

i , and VIFi = SSTi

/
SSRi,

then the index can be expressed as a function of the VIF:

SIi = VIFi + n · X
2
i

SSRi
.

If the explanatory variables are centred, Xi = 0, then SIi has exactly the

same value as VIFi. Thus, the values are related, but they give the same value

only when the researcher is using centred variables.

2.2.6 Coefficient of Variation (CV)

For testing the existence of non-essential collinearity problems, Salmerón et al.

(2019) demonstrate that the CV is a good measure of the problem. The authors

consider that strong non-essential collinearity appears due to a small variance

of the explanatory variable which is under analysis. With this purpose, they

determine how small this variance needs to be for collinearity becomes a serious

problem. Starting from the traditional CN, they obtained an expression that

links the variance of the variable under analysis with its mean. Following this

expression, they give a threshold that indicates when non-essential collinearity

becomes problematic, which is a value of CV less than approximately 0.07.

2.2.7 Red indicator

The Red indicator was presented by Kovács et al. (2005) as an alternative

to VIF or CN for measuring multicollinearity in a specified model. Basically,

this indicator quantifies the average correlation of the dataset. Following this

author, values close to one imply near collinearity problems, and values close

to zero indicate no strong collinearity.

As Garćıa et al. (2015) write, the Red indicator is related to the redundancy

between the variables and, in its simplest expression, the Red indicator is the
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quadratic mean of the elements outside the main diagonal of the correlation

matrix of exogenous variables, R. According to Kovács et al. (2005), the Red

indicator is though to measure the redundancy related to the proportion of

useful data in the database. The less useful data in the database the greater

redundancy and viceversa. With this, Garćıa et al. (2015) recommend the

Red indicator to measure the systematic volatility (high correlation between

explanatory variables).

For a standardized model, the expression of the Red indicator is the

following:

Red =

√√√√√√
p∑
i=2

p∑
j=2

ρ2
ij

(p− 1) (p− 2)
, i 6= j,

where ρij is the correlation between variables i and j, and there are p − 1

explanatory variables.

The value of the indicator will quantify the existing collinearity and the

useful data there are, compared to a database of the same size and with the

minimum redundancy, Garćıa et al. (2015). If there is no redundancy, the

value of the indicator will be zero, and if the maximum redundancy appears,

the value will be one2.

Finally, the Red indicator is related to the VIF when p = 3 (two observed

explanatory variables plus the intercept): VIF = 1
/

(1− Red), as Garćıa et al.

(2015) demonstrate. Thus, if the value 10 is taken as the threshold for the

VIF, then collinearity problems will appear if Red ≥ 0.9. Additionally, since

the Red indicator is based on correlations, it presents the same disadvantages

as the use of the coefficient of correlation for detecting collinearity problems.

2For example, if the value is Red= 0.3, then the proportion of useful data will be 70%,
Garćıa et al. (2015).
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2.2.8 Curto and Pinto indicators

Curto and Pinto (2007) develop two principal indicators to detect collinearity

problems. In this section, they are briefly explained.

The first indicator, the Direct Effects Factor (DEF) compares the direct

effects of explanatory variables on the dependent variable with the indirect

effects resulting from the intercorrelations between explanatory variables. This

indicator takes values from zero to one, and values close to one imply the

existence of collinearity problems.

In turn, the Inter-Correlation Effect (ICE) is a relative collinearity measure

for testing how the estimated parameters are affected by the existing correlation

between explanatory variables. We will have as many ICE statistics as

explanatory variables in the model, so it is not an overall measure. It also

takes values from zero to one, and, as the authors said, if the value of a

reduced number of statistics is very small when compared to the others, the

estimated coefficients associated with the corresponding explanatory variables

can be strongly affected by the correlation among regressors.

2.3 How to mitigate collinearity: traditional

methodologies

Once the existence of high near multicollinearity is detected, it is time for

the researcher to apply a methodology that can mitigate the problem. This

section looks in depth at the most commonly-used ones in previous research.

First of all, it is important to note that no matter the origin of the problem,

it is an element with negative consequences in the model, as has been shown in
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Section 2.1, so it has to be dealt with in a way that ensures accurate conclusions

and robust results. This leads to the third question raised at the beginning: Is

it possible to mitigate the problem? How? In the literature, there have been

emerged some types of “solutions” to the problem3 (Alin (2010); Farrar and

Glauber (1967); Grewal et al. (2004); Wurm and Fisicaro (2014); York (2012)):

• Deleting one or more of the explanatory variables. Here, multicollinearity

constitutes a problem only if it undermines that portion of the independent

variable set that is crucial to the analysis in question, Farrar and Glauber

(1967). Otherwise, the problematic and non-crucial variables from the

study could be deleted and the results will improve. Pasha and Shah

(2004) comment that the procedure of selecting variables for a particular

model could not be performed well because of the high correlation between

predictor variables. In this line of argumentation, Hoerl and Kennard

(1970b) propose the following technique for deleting variables from a

specified model with collinearity:

1. The first variables to be deleted from the model will be those which

are stable but have a weak predicting power: the less significant

variables are deleted.

2. If the problem persists, from the remaining variables, those with

small coefficients will be eliminated.

• Introducing a priori information. Farrar and Glauber (1967) consider

that this is the first step in the treatment of collinearity once the problem

has been detected: [correction of multicollinearity] requires the generation

3The reader has to take into account that there are always some relationships among
variables in any empirical modelling, as has been said, and actually that is why there are no
solutions but rather methodologies that allow the researcher to deal with strong collinearity
problems.
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of additional information [...]. It may involve additional primary data

collection, the use of extraneous parameter estimates from secondary data

sources, or the application of subjective information through constrained

regression, or through Bayesian estimation procedures. Fabrycy (1973)

suggests that re-specifying the structure of the explanatory variables could

“solve” the problem: Frequently all variables are entered into economic

behavioral functions in the same form (e.g. linear in parameters) even

though, for some variables, this is in conflict with economic realism, and

the author states that multicollinearity can in some cases be overcome

by adopting nonlinear mathematical functions which comply more closely

with economic relationships.

• Adding new data or new variables to the model which could introduce

some degree of independency into it.

In practice, the previous solutions create new circumstances or new models

by deleting variables, introducing more information or increasing the sample

or the variables used. These procedures may be very difficult to build or

even very expensive to implement. Furthermore, these new circumstances

could produce other problems in the specified model like heteroscedasticity

or endogeneity. Additionally, these solutions may mitigate collinearity under

certain conditions. For example, in the case of erratic collinearity, to increase

the sample or to include a priori information could be an interesting choice.

Using alternative methodologies to OLS is another procedure considered

in earlier research to deal with multicollinearity problems. As distinguished

by Garćıa et al. (2011), there are two types of techniques that allow the

researcher to estimate a model with collinearity problems (Alin (2010); Farrar
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and Glauber (1967); Grewal et al. (2004); Wurm and Fisicaro (2014); York

(2012)): 1) methods that directly solve the algebraic problem: ridge regression,

or LASSO regression, and 2) methods that act on the sample by modifying

(or deleting) part of it: principal components analysis, raise regression or the

one that concerns this dissertation, which is residualization.

As Schroeder (1990) says, the advantage of these type of techniques, which

are biased methods, is that the theoretical model is not compromised. The

disadvantage is that the estimators are no longer unbiased as they are in the

commonly used OLS regression procedure. However, if the reduction in the

mean square error variance is greater than the magnitude of the bias induced

in the estimators, the trade-off seems warranted. [...] The tradeoff is between

using an unbiased model, such as OLS, with unstable regression coefficients

or using a biased model in an attempt to stabilise the regression coefficients,

reduce the error, and render the model more generalisable.

The following sections will review the main alternative techniques and

methodologies to OLS used in earlier literature to deal with strong essential

multicollinearity problems. Table 2.1 contains a summary of the characteristics

of the results obtained by each method, which are explained in following

subsections.

2.3.1 Ridge regression

Ridge regression was introduced by Hoerl and Kennard (1970a,b) and is a

common methodology used in the treatment of strong essential collinearity

(Alauddin and Nghiem (2010); Alin (2010); Grewal et al. (2004); Kiers and

Smilde (2007); Meloun et al. (2002)). It is one of the solutions to collinearity

known as shrinkage or regularisation, which basically consists in minimising
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Table 2.1: Comparison of methods.

Based on the
statistical
analysis of the
model

Ridge regression LASSO regression

Estimated
parameters

Original variables modified
in some way, depending on
the multicollinearity problem.
The inference may not be
interpreted.

Original variables modified
in some way, depending on
the multicollinearity problem.
The inference may not be
interpreted.

Global
robustness

The global significance may not
be interpreted.

The global significance may not
be interpreted.

Based on the
numerical
analysis of the
model

PCR Raise regression

Estimated
parameters

Different data: components
obtained from PCA.
Importance of the variables in
the model observed by using
the VIP values.

Original variables modified
in some way, depending on
the multicollinearity problem.
Individual significance of the
estimated parameters by using
t statistic.

Global
robustness

% cumulative variance
explained.

R2, F statistic and sum of
squares with the same values
as OLS estimation.

the influence of the less important predictors. Tibshirani (1996) affirms that

one of the reasons why the data analyst is often not satisfied with the OLS

estimates is prediction accuracy. According to this author, the OLS estimates

often have low bias but large variance; prediction accuracy can sometimes be

improved by shrinking or setting to 0 some coefficients. By doing so a little

bias is scarified to reduce the variance of the predicted values and hence may

improve the overall prediction accuracy. By introducing small changes in the

data, models will be unstable, as has been said throughout this chapter, so the

prediction accuracy is reduced. Ridge regression can be defined as a continuous

process that shrinks coefficients and hence is more stable: however, it does not

set any coefficients to 0 and hence does not give an easily interpretable model,
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Tibshirani (1996).

As is well-known, starting from model (1.1), the way to estimate β using

OLS leads to the formula β̂ = (XtX)−1XtY.

Basically, this ridge method consists in adding a reasonable amount of

bias into the model, which means that the mean square error of prediction

decreases. So, the ridge estimator will be:

β̂(k) = (XtX + kI)−1XtY, (2.8)

where k > 0 and I is the identity matrix.

As Holland (2014) says, this addition of the value k, named as ridge factor,

allows ridge regression to have enough flexibility to reduce the inflated variances

of OLS coefficients that arise from multicollinearity (Li et al. (2010)), and

thus increases the reliability of point estimates (Butler and McNertney (1991)).

By increasing the diagonal elements of XtX, the size of this matrix changes,

and the problem of approximate singularity is avoided, Garćıa et al. (2017b);

Novales (1988). The reliability and stability of the ridge regression estimation

are based on the selection of the k parameter, and numerous methodologies

have been proposed for this purpose. Hoerl and Kennard (1970a,b) found that

k must lie between zero and one, and it should be as small as possible to retain

the maximum amount of information. The traditional criterion to select k

proposed by Hoerl et al. (1975) is given as:

k =
p · σ̂2

k=0
p∑
i=0

[β̂i(k = 0)]2
, (2.9)

where σ̂
2

k=0 and β̂i(k = 0) are σ̂2 and β̂i from traditional OLS estimation

(k = 0).
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This value of k, as Hoerl et al. (1975) reveal, emerges with the purpose

of stabilising the estimations and obtaining a lower value of the mean square

error (MSE) than the OLS estimator.

As Pasha and Shah (2004) state, in general, there is an “optimum” value

of k for any problem, but it is desirable to examine the ridge solution for a

range of admissible values of k. Although the traditional k value used in the

literature is the one proposed by Hoerl et al. (1975), as noted above, many

authors have proposed different algorithms to obtain the biasing parameter

k (see Kibria and Banik (2016)). Nevertheless, these k values do not always

mitigate the existing collinearity and sometimes the indications of Marquardt

(1970), who argues that the maximum VIF must be lower than 10, are ignored.

With the purpose of proposing new k values with good properties, Garćıa

et al. (2019b) propose three new ridge factors based on the determinant of

correlation matrix. See this work and its references for an in-depth look at

ridge regression and its properties.

The main disadvantage of ridge regression is that the decomposition of

the sum of squares cannot be verified, and hence the calculation of R2 could

be questioned, thus using ridge regression, the global significance and also

the inference of the model may not be interpreted (see Jensen and Ramı́rez

(2008); Rodŕıguez et al. (2019)). Furthermore, the estimators obtained are

difficult to interpret because the procedure does not use the original variables

or some interpretable variation thereof. As Kidwell and Brown (1982) stated,

although ridge regression is presented as a good technique for dealing with

multicollinearity problems, it present some weaknesses: a ridge regression

solution can produce results that are different from the OLS solution when the

predictors are not orthogonal. The different solutions each suggest a different

interpretation of the data. [...] It should be noted that application of the
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ridge solution does not necessarily produce the correct answer. Hence, the

interpretation of the results is not a trivial issue. As Deegan Jr (1975) argues,

ridge regression is more suitable as an additional methodology than as the

principal methodology for interpreting the results. According to Kidwell and

Brown (1982), the use of ridge regression procedure can suggest directions

for further investigation and/or further theoretical development that may not

be apparent from least squares solution. Ridge regression penalises the least

squares regression with an additional value on the size of the regression weights,

but as Kiers and Smilde (2007) reveal, a mere shrinkage by itself may not solve

the problem of poor performance in data.

Finally, another widespread error when applying the ridge regression, is to

calculate the VIF with the expression proposed by Marquardt (1970) that can

lead to values of VIF lower than 1, which is inconsistent with the definition

of this diagnostic measure (see among others, Ma et al. (2017)). Due to this

issue, for the empirical part of this dissertation, the VIF in the case of the

application of ridge regression will be obtained from the expression proposed

by Garćıa et al. (2015), who solve this problem, instead of the widely applied

expression proposed by Marquardt (1970).

2.3.2 LASSO regression

The LASSO (Least Absolute Shrinkage and Selection Operator) regression

was proposed by Tibshirani (1996). As has been noted in the previous section,

this author affirms that one of the reasons why the data analyst is often not

satisfied with the OLS estimates is prediction accuracy. Prediction accuracy

can sometimes be improved by shrinking or setting to 0 some coefficients. Ridge

regression shrinks coefficients, however, it does not set any coefficients to 0
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and hence does not give an easily interpretable model, Tibshirani (1996). By

using subset selection, which refers to the technique of finding a small subset

of the set of well-functioning explanatory variables in predicting the dependent

variable, the models will be more interpretable but, because of the discrete

nature of this process, the results can be extremely variable. Because of these

deficiencies a new technique appears: the LASSO.

LASSO methodology seems to “delete” some observed explanatory variables

of the model. It shrinks some coefficients and sets others to 0, and hence

tries to retain the good features of both subset selection and ridge regression,

Tibshirani (1996). Thus, it could be interpreted as an alternative methodology

that solves the algebraic problem, like the ridge regression.

Assuming p− 1 explanatory variables and standardized data. The LASSO

problem, based on the `1-norm, is defined by:

β̂ = arg min

∑
n

(
Y −

p∑
i=2

βixi

)2


s.t.

p∑
i=1

|βi| ≤ t,

where t is a tuning parameter (t ≥ 0) and it controls the size of the shrinkage.

If
∑
|β̂

OLS
| is named as tOLS, then values of t < tOLS will cause shrinkage of

the solutions towards to 0, and some coefficients may be exactly equal to 0,

Tibshirani (1996).

The solution to the previous problem can be gained from the orthonormal

design case. Supposing that xtx = I, then:

β̂i = β̂OLS
i max

(
0 , 1− n ζ

|β̂OLS
i |

)
,

where ζ represents the Lagrange multiplier.
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As Tibshirani (1996) confirms, it is difficult to obtain the standard errors

because the LASSO is a non-linear and non-differentiable function of the

response values. In addition, this author says that ridge regression scales the

coefficients by a constant factor, whereas the LASSO translates by a constant

factor, truncating at 0. If the LASSO solution is approximated by the ridge

regression, for predictors with β̂i = 0, the estimated variance will also be zero.

Another important problem is that, as Lockhart et al. (2014) state, the

usual constructs like p-values, confidence intervals, etc., do not exist for LASSO

estimates, so it is not possible to make conclusions about the global significance

and inference.

As Hans (2009) states, the LASSO regression is a widely used alternative

to OLS estimation when regression problems are observed. It is another

shrinkage or regularisation solution but it differs from ridge regression: while

ridge regression approximates some estimated parameters to zero without

excluding any of them, LASSO regression can exclude some of them. LASSO

is recommended for models with a low number of predictors with substancial

standardized coefficients (there are differences between the values of the

estimated parameters), while ridge is recommended when there is no differences

between predictors, Zou and Hastie (2005). As Dormann et al. (2013) affirm,

depending on the form of the penalty, the regression coefficients are shrunk

and/or selected [...]. Ridge regression performs neither selection nor grouping,

while LASSO selects but does not group parameters, thus LASSO regression

and ridge regression may be interpreted, in some way, as similar methodologies.

Finally, as has been said regarding ridge regression, a mere shrinkage

by itself may not solve the problem of poor performance in data, Kiers and

Smilde (2007). In addition, these methods require the use of marginal statistics

to estimate regression coefficients or determine the relative importance of
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individual explanatory variables, and thus offer no refuge from associated

biases due to multicollinearity, Graham (2003).

2.3.3 Principal Component Regression (PCR)

PCR was developed by Pearson (1901) and Hotelling (1933). It consists,

basically, in converting a set of explanatory variables into a set of orthogonal

components, by deleting information from each variable or transforming it

(Mittelhammer et al. (1980)).

PCR is a technique that is based on principal component analysis (PCA).

Typically, it considers regressing the dependent variable on a set of explanatory

variables, indeed it is based on a standard linear regression model. As Geladi

and Kowalski (1986) say, PCA is a method that leads the researcher to rewrite

a matrix X of rank p as a sum of p matrices of rank 1. Each new matrix, can

be rewritten as a product of two vectors: the score, s, and the loading, d. The

final result will be an operator that projects the columns of X onto a single

dimension and an operator that projects the rows of X onto a single dimension,

s and d respectively (Geladi and Kowalski (1986)).

Nonlinear iterative partial least squares (NIPALS) can be used to obtain

the vectors s and d for each variable. This procedure calculates s1 and d1 from

X, then the residual (e1) is calculated as X− s1 d1
t, and this residual can be

used to obtain s2 and d2 as e2 = e1 − s2 d2
t (Geladi and Kowalski (1986)).

Thus, PCR uses the matrix S of scores, which is S = X ·D, where D is

the loadings matrix. The multiple linear regression that starts from the model

(1.1) can thus be rewritten as Y = Sβ + u. Note that the original matrix X is

replaced by S, which has better properties (orthogonality). So, PCR solves the

collinearity problem by substituting the original explanatory variables with
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orthogonal components, but it has the risk that useful (predictive) information

will end up in discarded principal components and that some noise will remain

in the components used for regression, Geladi and Kowalski (1986). Works like

Mardia et al. (1979) or Draper and Smith (1981) detail the PCR procedure.

One commonly-used method is Kendall method of regressing the dependent

variable on the subset of “significant” components obtained from PCA,

Haitovsky (1969). With regard to this method, Farrar and Glauber (1967)

comment that it is dangerous to reject or delete the non-significative

components because it is likely the researcher will miss important information

from each variable, and even the problem could be exacerbate. Furthermore,

these authors also state that the usefulness of this method is limited to the

situation in which the significant components may be interpreted directly as

economic phenomena. Indeed, Gimenez and Giussani (2018) highlight the

difficulty of interpreting the coefficients obtained with PCR.

Partial least squares (PLS) appears as a particular application of PCR.

PLS regression was presented by Wold (1966): is built on the properties of the

NIPALS algorithm and produces factor scores that are linear combinations of

the original independent variables, such that there is no correlation between

the new predictor factors. PLS is convenient when there are more predictor

variables than observations and when multicollinearity exists in the model. See

Geladi and Kowalski (1986) for a complete explanation of PLS procedure.

To observe the importance of each component in the model, the variable

importance in projection (VIP) coefficient needs to be studied. It reflects the

importance of each explanatory variable in fitting both X and Y, as Y is

predicted using X. Therefore, VIP enables the classification of the independent

variables according to their explanatory power for Y. Variables with VIP

scores close to or greater than one are considered to be important in a given
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model, making them the most relevant predictors for explaining Y. Variables

with VIP scores significantly less than one are less important, making them

good candidates for exclusion from the model (Chong and Jun (2005)).

These procedures have some disadvantages. The traditional PCA, which

is the basis of PCR and PLS, is a linear projection method, and it may not

be capable of efficiently capturing the non-linear features existing in real

data, as Liu et al. (2012) or Deng et al. (2013) affirm. Additionally, Yuan

et al. (2015) state that PCA is developed in a deterministic manner, which

lacks a probabilistic interpretation for modelling data. It should be taken into

account that the principal components are linear combinations of the original

variables and the method produces misleading results regarding the empirical

interpretation: the researcher is not measuring the original variables, but

artificial ones (Bitetto et al. (2016); Chatfield (1995); Dormann et al. (2013);

Graham (2003); Gimenez and Giussani (2018); Vigneau et al. (1997)). Hawkins

(1973) argues that, with the introduction of new components, each component is

identified with some part of the independent variables, but is there a guarantee

that the dependent variable is dependent on the [components] rather than on the

near multicollinearities which have been ignored? In addition, this author also

suggests that these techniques give no explicit information on the number or

composition of the alternative good subsets. Furthermore, Artigue and Smith

(2019) have recently revealed that the principal problem is the reliability of

the methodology in making predictions. This idea is also supported in Kiers

and Smilde (2007): PCA gives the poorest recoveries of regression weight in

conditions with relatively low noise and collinearity, and the authors stated

that prediction suffers far less from collinearity than recovery of the regression

weights. Finally, Artigue and Smith (2019) also demonstrate with Monte Carlo
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Simulations that the larger the number of potential explanatory variables, the

less effective and more likely to be misleading PCR will be.

2.3.4 Raise regression

Raise regression has been presented by Garćıa et al. (2011) and fully developed

in Salmerón et al. (2017a). It is an alternative methodology to estimate models

with multicollinearity, solving it from a geometrical point of view.

Instead of deleting data that may contain prior information, raise regression

maintains the available information and modifies the problematic variables. If

essential multicollinearity problems have not been completely mitigated after

raising one variable, it is possible to raise more variables of the model. This

particular procedure is known as successive raising (see Garćıa and Ramı́rez

(2017)).

Starting from the linear model (2.1), with two explanatory variables plus

the intercept (p = 3), the collinearity problem arises because vector X2 and

vector X3 are very close geometrically, i.e. the angle that determines both

vectors, θ1, is very small (see Figure 2.1).

The raise regression tries to separate both explanatory variables through

the auxiliary regression (2.5), whose estimation by OLS leads to the estimated

residuals e2. The raise vector is thus defined as:

X̃2 = X2 + λe2,

where λ > 0.

The raise model will be obtained by substituting vector X2 by the raise

vector X̃2 in the original model. This is to say:
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X3

X2

e2λe2

X̃2

θ1

θ2

Figure 2.1: The raise method.

Y = γ1 + γ2X̃2 + γ3X3 + w,

or in its matrix form:

Y = X̃γ + w.

All the global characteristics of the original model are maintained. In

summary, the following values do not change:

• The square sums of the residuals of the original model.

• The estimated variance of the random disturbance.

• The coefficient of determination, R2.

• The global significance test.

• Prediction.
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Chapter 3

Residualization: some

criticism and methodological

preliminaries

To briefly explain the general concept of the method, it might be said that by

residualizing one of the explanatory variables, its effect is being isolated from

the rest of the variables of the model. Thus, the part of this variable that has

no relationship with the rest of independent variables is being included in the

model, leading to a new interpretation of the residualized variable.

This and next chapter fully develop the residualization procedure and

justifies its application not only for dealing with multicollinearity but also for

separating the individual effects of the predictor variables.

It is important to point out that the application of residualization leads

to conclusions about a model different to the original even though they have

several identical characteristics (such as the variance estimation of the random

perturbation, the coefficient of determination or the significance statistics).
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To sum up, the main contributions when applying this technique are:

• The new interpretations of the coefficients. The residualized model

can answer questions that could not be answered with the initial model.

However, it is relevant to note that residualization is not always applicable

because the interpretations of the new estimated coefficients are not

always possible. This fact will be further analysed in the coming chapters.

• The isolation of the individual effect of the explanatory variables (the

fulfillment of the principle ceteris paribus).

• The possibility of reducing the degree of near collinearity in the initial

model.

The present chapter provides a first overview of the methodology: how it

works and what are the results obtained. The estimation and inference of the

multiple linear regression model using the residualization procedure will be

considered exhaustively in Chapter 4.

The structure of this chapter is as follows: Section 3.1 examines some

criticism of the residualization procedure. Section 3.2 introduces the reader to

the methodology, explaining the procedure of centring explanatory variables

and the link between this and residualization. Sections 3.3 and 3.4 explain

the application of the residualization procedure focusing on the mitigation of

the existing collinearity problem in a model with two and three standardized

explanatory variables, respectively, and finally, Section 3.5 takes an in-depth

look at the new interpretations of the coefficients, which will be also shown in

coming chapters. Sections 3.3 to 3.5 are based on the work by Salmerón et al.

(2016).
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3.1 Criticism of residualization

Residualization has been briefly explained by Hill and Adkins (2003), who

based their research on works by Kennedy (1982) and Buse (1994).

The first criticism to residualization that deserves to be mentioned is the

one in the work by Buse (1994). The author states that the residualization

procedure is a cure for collinearity that is potentially worse than the disease.

The author concludes that there is no guarantee that insignificant coefficients

will become significant after orthogonalization and he also concludes that the

estimated variances may increase. However, the decrease in the estimated

variances when the residualization is applied is demonstrated in this dissertation

(see Section 4.2.1 for more details). It is true that there is no guarantee that

non-significant coefficients (as a result of the presence of strong collinearity)

might not become significant after the residualization procedure, but it is

demonstrated that the individual significance of unaltered variables of the

model change (see Section 4.1.3 for more details). In any case, as Kennedy

(1982) states, residualization should be applied with the aim of isolating the

individual effect of the explanatory variables, not only to avoid multicollinearity

problems. The application of the procedure leads to new interpretations of

the residualized variables, which imply the fulfillment of the principle ceteris

paribus, as has been noted.

On the other hand, Wurm and Fisicaro (2014) state that residualization of

predictor variables is not the hoped-for panacea to collinearity. As the authors

comment, residualization creates an analysis that is neither simultaneous nor

hierarchical in terms of the original variables, but which blends aspects of

both. Specifically, residualizing exaggerates the statistical importance of the

non-residualized predictor in a region of Redundancy or Suppression, and
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underestimates it in a region of Enhancement (as defined by Friedman and

Wall (2005)). Although non-residualized variables change their estimations

with regard to the original model, it will be demonstrated in following chapters

that these new results correspond to the model without the problematic

variable. Hence, the new model does not exaggerate the statistical importance

of the non-residualized variables because it operates as if the problematic

variable had been deleted, which is the solution proposed in, for example,

York (2012). Wurm and Fisicaro (2014) also state that residualizing replaces

the problem of collinearity (to the extent that it is a problem) with one that

is less obvious and less well-understood. For these reasons, residualizing

sometimes creates conceptual difficulty and leaves the researcher unable to

draw any firm conclusions. In this dissertation, the authors fully explain

the new interpretations of the new residualized variables, showing that these

new interpretations are sometimes more suitable for the research in progress.

Additionally, Wurm and Fisicaro (2014) note that residualization does not

create an improved, purified, or corrected version of the original predictor,

which is not actually true because the residualized variable represents the part

of the variable that has no relationship with the rest of independent variables

of the model (it is a purified version of the original variable).

Another criticism of the procedure is the one in York (2012). As this

work states, collinearity reduces the amount of information we have about [the

problematic variable] isolated from other factors. A point that is frequently

missed is that it is the absolute amount of information that matters, not the

proportion; in any case, although this author comments that the absolute

amount of information is what is important, if it is distorted due to the

presence of multicollinearity, it is appropriate to mitigate the problem, and

thus, pay more attention to the proportion of information which is isolated from
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the other factors. Furthermore, in this work, York states that residualization

biases the coefficient estimate and standard error of the residualizer, thereby

creating a problem rather than solving one. It is true that residualization is a

biased method, but it is controversial to disclose that it will create a problem:

the researcher must determine whether is better to use a distorted model,

which will provide unstable results, or to use a biased model; and it depends

on the degree of the existing multicollinearity in the model.

These earlier works named other solutions (ridge regression, PCA, deleting

variables, etc.), also concluding that they might not solve the problem or they

might include other problems in the results. The key point that has not been

taken into consideration until now is that residualization provides an alternative

interpretation for the estimated parameters, apart from the mitigation of

collinearity. This could be seen as a limitation since the methodology is not

always applicable, but it can be also seen as an opportunity to obtain new

interpretations that cannot be obtained from the initial model.

3.2 Centring explanatory variables

The basic idea of centring explanatory variables consists on subtracting a

constant from each value they take. This constant is the mean of each

explanatory variable. With this procedure, the researcher is redefining the

origin of the modified variables. The slope between the modified explanatory

variables and the explained variable does not change, but the interpretation of

the intercept of the model does. With the modification, the intercept will be

the mean of the explained variable (the result when the explanatory variables

are equal to zero).

As has been shown above, there is a type of near multicollinearity that
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regards the relationship between the constant and the explanatory variables:

non-essential collinearity. According to Dalal and Zickar (2012); Iacobucci et al.

(2016); Marquardt (1980); Marquardt and Snee (1975); Smith and Campbell

(1980); Snee and Marquardt (1984), which offer the idea that the constant

is an explanatory variable, centring predictor variables is a good method to

mitigate non-essential collinearity, because the researcher is isolating the effect

of the constant from the rest of independent variables, i.e. the researcher will

mitigate the collinearity that involves the constant from the model.

Salmerón et al. (2019) state that the idea of centring explanatory variables

is similar to residualization, so it can be interpreted as a special case of

residualization. The authors use the simple linear regression to demonstrate

the fact. Let us define the following model:

Y = β1 + β2X2 + u,

where u is spherical and there are n observations. Let us also define an auxiliary

regression where the dependent variable is X2 and the independent variables

would be the rest of explanatory variables from the previous model; in this

case, as only the constant is taken into account (i.e. a matrix of ones with

dimension n× 1, noted as 1), the auxiliary regression will be:

X2 = α · 1 + v.

By applying the OLS estimation, α̂ = (1t1)−11tX2 = 1
n

∑n
i=1X2i = X2, and

it is verified that the estimated error is e = X2 −X2.

As was briefly explained in Chapter 1, residualization consists in replacing

the problematic variables in the model with their estimated residuals (from

an auxiliary regression). In the case of simple linear regression, the estimated
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residuals are e = X2 −X2, so the final residualized model will be:

Y = γ1 + γ2e + w

= γ1 + γ2(X2 −X2) + w.

With this, it is demonstrated that in the simple linear regression,

residualization coincides with centring variable X2, which mitigates

non-essential collinearity.

3.3 Residualization for two standardized

explanatory variables (p = 2)

Residualization was presented in Novales et al. (2015) for the linear model

with two standardized explanatory variables (i.e. the standardized version of

model (2.1)):

Y = β2x2 + β3x3 + u. (3.1)

The reason of using standardized variables is to obtain expressions easy to

interpret from the correlations among the explanatory variables of the model.

Therefore, the use of standardized variables makes the constant disappears.

Suppose that x3 is the variable to be residualized. The auxiliary model will

be x3 = α2x2 + v, whose estimation by OLS leads to the estimated residuals

e3, which are orthogonal to x2. Thus the final model (the residualized one)

will be: Y = γ2x2 + γ3e3 + w.

Table 3.1 presents all the relevant characteristics of the original model and

the residualized model. Note that the residualization procedure makes the

estimated variances of the parameters diminish, while the global characteristics

of the model remain unchanged (σ̂2, R2 and Fexp). Furthermore, the estimated
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Table 3.1: Main characteristics of the original model and the residualized
model, with two standardized explanatory variables.

Original model Residualized model

Y = β2x2 + β3x3 + u Y = γ2x2 + γ3e3 + w

β̂ =

(
%2−ρ%3
1−ρ2
%3−ρ%2
1−ρ2

)
γ̂ =

(
%2

%3−ρ%2
1−ρ2

)
=

(
β̂2 + ρβ̂3

β̂3

)

V̂ ar(β̂) = σ̂2

(
1

1−ρ2 − ρ
1−ρ2

− ρ
1−ρ2

1
1−ρ2

)
V̂ ar(γ̂) = σ̂2

O

(
1 0
0 1

1−ρ2

)

σ̂2 =
1−ρ2−%22−%

2
3+2ρ%2%3

(n−2)(1−ρ2) σ̂2
O =

1−ρ2−%22−%
2
3+2ρ%2%3

(n−2)(1−ρ2) = σ̂2

R2 =
%22+%

2
3−2ρ%2%3
1−ρ2 R2

O =
%22+%

2
3−2ρ%2%3
1−ρ2 = R2

β̂i ± tn−2

(
1− α

2

)
σ̂
√

1
1−ρ2 ∀i γ̂2 ± tn−2

(
1− α

2

)
σ̂

γ̂3 ± tn−2

(
1− α

2

)
σ̂
√

1
1−ρ2

Fexp =
(n−2)·(%22+%

2
3−2ρ%2%3)

1−ρ2−%22−%
2
3+2ρ%2%3

> F1,n−2(1− α) Fexp,O =
(n−2)·(%22+%

2
3−2ρ%2%3)

1−ρ2−%22−%
2
3+2ρ%2%3

= Fexp > F1,n−2(1− α)

VIFi = 1
1−ρ2 ∀i VIFi,O = 1 ∀i

CN =
√

1+ρ
1−ρ CNO = 1

ρ corresponds to the correlation between variables x2 and x3, and %i corresponds to the correlation
between xi and Y, for i = 2, 3.
α represents the significance level.
The subindex O regards to the residualized model.

parameter for the modified variable also has the same value in the original model

and in the residualized model, which is not the case of the other explanatory

variable (β̂2 6= γ̂2 while β̂3 = γ̂3).

On the other hand, although this technique allows the researcher to deal

with strong near collinearity problems, the new estimation of the variables

has a different interpretation. In particular, the researcher is able to address

non-analysed questions in the original model, i.e. even when there is no strong
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3.4. Residualization for three standardized explanatory variables (p = 3)

collinearity in the model, the researcher may implement the method to obtain

new interpretations of the explanatory variables. This fact is explained in

depth in Section 3.5.

3.4 Residualization for three standardized

explanatory variables (p = 3)

Suppose three standardized predictor variables (in order to obtain similar

conclusions as in Table 3.1) and n observations. Assume also that there is high

or strong essential collinearity. The steps to follow are:

1. Select the variable that is going to be residualized (the dependent variable

in the auxiliary regression).

2. After residualizing the chosen variable, it is necessary to check whether

the problem has been mitigated. To this end, this chapter uses the VIF.

3. If the problem persists, it is necessary to select another explanatory

variable to be residualized (successive residualization).

3.4.1 Step 1: residualization

Suppose the following model:

Y = xβ + u = β2x2 + β3x3 + β4x4 + u, (3.2)

with:

xtx =


1 ρ23 ρ24

ρ23 1 ρ34

ρ24 ρ34 1

 , xtY =


%2

%3

%4

 , (3.3)

53



3. Residualization: some criticism and methodological preliminaries

where ρij is the coefficient of correlation between variables xi and xj (i, j =

2, 3, 4, i 6= j), and %i is the coefficient of determination between variables Y

and xi (i = 2, 3, 4).

The OLS estimator of model (3.2) will be:

β̂ = C


(1− ρ2

34)%2 − (ρ23 − ρ24ρ34)%3 + (ρ24 − ρ23ρ34)%4

−(ρ23 − ρ24ρ34)%2 + (1− ρ2
24)%3 − (ρ34 − ρ23ρ24)%4

(ρ24 − ρ23ρ34)%2 − (ρ34 − ρ23ρ24)%3 + (1− ρ2
23)%4

 , (3.4)

where C = 1
1+2ρ23ρ24ρ34−ρ223−ρ224−ρ234

.

Suppose x4 is the variable to be residualized. The auxiliary regression will

be x4 = α2x2 + α3x3 + v, which implies x4 = α̂2x2 + α̂3x3 + e4, where x2 is

orthogonal to e4 and x3 is orthogonal to e4 (x2 ⊥ e4, x3 ⊥ e4), and:

α̂ =

 1 ρ23

ρ23 1

−1 ρ24

ρ34

 =
1

1− ρ2
23

 ρ24 − ρ23ρ34

ρ34 − ρ23ρ24

 . (3.5)

Then, the OLS estimator of the residualized model:

Y = xOγ + w = γ2x2 + γ3x3 + γ4e4 + w, (3.6)

with:

xtOxO =


1 ρ23 0

ρ23 1 0

0 0 et4e4

 , xtOY =


%2

%3

et4Y

 , (3.7)

will be:

γ̂ =


%2−ρ23%3

1−ρ223
%3−ρ23%2

1−ρ223
et4Y

et4e4

 . (3.8)
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Taking into account results of A.1 from Appendix A:

et4Y = %4 −
%2 − ρ23%3

1− ρ2
23

%2 −
%3 − ρ23%2

1− ρ2
23

%3,

et4e4 =
1 + 2ρ23ρ24ρ34 − ρ2

23 − ρ2
24 − ρ2

34

1− ρ2
23

,

it is clear that:

γ̂ =


%2−ρ23%3

1−ρ223
%3−ρ23%2

1−ρ223
(ρ24−ρ23ρ34)%2−(ρ34−ρ23ρ24)%3+(1−ρ223)%4

1+2ρ23ρ24ρ34−ρ223−ρ224−ρ234

 . (3.9)

As in the case of Section 3.3, the estimated parameter for the residualized

variable remains unchanged:

C · β̂4 = γ̂4 =
(ρ24 − ρ23ρ34)%2 − (ρ34 − ρ23ρ24)%3 + (1− ρ2

23)%4

1 + 2ρ23ρ24ρ34 − ρ2
23 − ρ2

24 − ρ2
34

,

while the parameters of the rest of the explanatory variables have changed and

they are the same as those in the model Y = β2x2 + β3x3 + u (see Table 3.1).

Furthermore, taking into account that:

(
xtx
)−1

= C


1− ρ2

34 −(ρ23 − ρ24ρ34) ρ24 − ρ23ρ34

−(ρ23 − ρ24ρ34) 1− ρ2
24 −(ρ34 − ρ23ρ24)

ρ24 − ρ23ρ34 −(ρ34 − ρ23ρ24) 1− ρ2
23

 ,

(
xtOxO

)−1
=


1

1−ρ223
− ρ23

1−ρ223
0

− ρ23
1−ρ223

1
1−ρ223

0

0 0
1−ρ223

1+2ρ23ρ24ρ34−ρ223−ρ224−ρ234

 ,

the inference of the parameters from both models (through both confidence

intervals and significance tests) does not change for the residualized variable:

(
xtx
)−1

(3,3)
=
(
xtOxO

)−1

(3,3)
= C · (1− ρ2

23) =
1− ρ2

23

1 + 2ρ23ρ24ρ34 − ρ2
23 − ρ2

24 − ρ2
34

,
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where
(
xtx
)−1

(3,3)
and

(
xtOxO

)−1

(3,3)
represent the element (3, 3) of each matrix.

For the rest of explanatory variables, the inference of the parameters coincides

with those in the model Y = β2x2 + β3x3 + u (see Table 3.1).

On the other hand, the total sum of squares from both models is the same

(due to the explained variable is the same in both models), as well as the

explained sum of squares (see A.2 from Appendix A), the residual sum of

squares, the estimated variance of the random disturbance, the coefficient of

determination and the global significance test.

3.4.2 Step 2: check if the problem persists

It is clear that in model (3.6) there is no relationship between variable e4 and

the other two explanatory variables, but what if another relationship exists

between the other two variables that makes the problem of strong collinearity

persist? To answer this question, this chapter is going to use the VIF. To

determine the values of the VIF, it is necessary to obtain the coefficient of

determination from the following auxiliary regressions:

x2 = α2x3 + α3e4 + v,

x3 = α2x2 + α3e4 + v,

e4 = α2x2 + α3x3 + v. (3.10)

For the first two auxiliary models from (3.10), it is obtained that:

α̂ =

 1 0

0 et4e4

−1 ρ23

0

 =

 ρ23

0

 ,

thus SSE = (ρ23 0)

 ρ23

0

 = ρ2
23. As the total sum of squares is equal to

one, the coefficient of determination has the same value as the explained sum
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of squares, i.e. it is equal to ρ2
23. Hence, the VIF will be:

VIFi,O =
1

1− ρ2
23

, i = 2, 3. (3.11)

As the reader may observe, the obtained results coincide with those in the

model Y = β2x2 + β3x3 + u (see Table 3.1).

Regarding the third auxiliary regression from (3.10), it is clear that its

coefficient is zero, due to e4 being orthogonal to x2 and x3 so its VIF is equal

to one (the minimum value of the VIF).

Therefore, from (3.11), if ρ23 > 0.9 then VIFi,O > 10 (i = 2, 3) meaning

the problem of strong collinearity persists.

On the other hand, the VIFs from model (3.2) would be obtained after

calculating the coefficient of determination in the following auxiliary regression:

xi = α2xj + α3xq + v, (3.12)

with i, j, q = 2, 3, 4 i 6= j, i 6= q, j 6= q. As the coefficient of determination

of the two first models from (3.10) is the same as that from the regressions

xi = αxj + v (i, j = 2, 3 i 6= j), it is verified that it will be less than the one

from the regressions in (3.12) because the introduction of new variables in a

multiple regression implies a higher coefficient of determination. In the third

regression from (3.10) this fact is trivial since the coefficient of determination

is always higher or equal to zero.

To sum up, when residualizing the model, it is certain that the VIFs will

decrease, with the one from the residualized variable being equal to one (the

minimum value).
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3.4.3 Step 3: successive residualization

If the problem has not been mitigated by residualizing one variable, it is

necessary to residualize another one.

The following auxiliary regression is proposed:

x3 = α2x2 + v,

thus x3 = α̂2x2 + e3 with α̂2 = ρ23 and e3 ⊥ x2. As e4 ⊥ x2 and e4 ⊥ x3, it

is verified that e3 ⊥ x4.

The double residualized model will be:

Y = δ2x2 + δ3e3 + δ4e4 + ς. (3.13)

Being xOO = (x2 e3 e4), then:

xtOOxOO =


1 0 0

0 et3e3 0

0 0 et4e4

 , xtOOY =


%2

%3 − ρ23%2

et4Y

 ,

where et4Y and et4e4 have been calculated in A.1 from Appendix A, and

et3e3 = (x3 − ρ23x2)t(x3 − ρ23x2) = 1− ρ2
23.

By estimating model (3.13) with OLS:

δ̂ =
(
xtOOxOO

)−1
xtOOY

=


%2

%3−ρ23%2
1−ρ223

(ρ24−ρ23ρ34)%2−(ρ34−ρ23ρ24)%3+(1−ρ223)%4
1+2ρ23ρ24ρ34−ρ223−ρ224−ρ234

 . (3.14)

The estimated parameter of the first residualized variable (x4) is the same as

the one from the original model (3.2), the estimated parameter from the second

residualized variable (x3) is the same as the one from the residualized model
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(3.6) and it is also the same as the one from the model Y = β2x2 + β3x3 + u.

Also, the estimated parameter of the unchanged variable (x2) is the same as

the one from the model Y = β2x2 + u. And ditto with the inference of that

coefficients:

(
xtOOxOO

)−1
=


1 0 0

0 1
1−ρ223

0

0 0
1−ρ223

1+2ρ23ρ24ρ34−ρ223−ρ224−ρ234

 .

On the other hand, it is clear that SSTOO = 1 = SST, and as:

SSEOO = δ̂
t
xtOOY = %2

2 +
(%3 − ρ23%2)2

1− ρ2
23

+
(et4Y)2

et4e4

=
%2

2 + %2
3 − 2ρ23%2%3

1− ρ2
23

+
(et4Y)2

et4e4
= SSE,

it is verified that SSROO = SSR, thus, R2
OO = R2, σ̂2

OO = σ̂2 and the global

significance test is Fexp,OO = Fexp. All the characteristics of the original model

still remain unchanged.

3.5 Interpretation of the coefficients: partial and

total effects

One of the objetives of residualization is to mitigate multicollinearity problems

in a model, without eliminating any explanatory variables. However, by

substituting one variable from the corresponding estimated residuals, the

understanding of the pertinent estimated parameter has another interpretation.

This new interpretation can be very interesting for the researcher, and even

when collinearity is not significant, the researcher might want to obtain that

new interpretation, which might not be obtained from the original model.
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For example, in model (3.6), the parameter γ4 will be interpreted as the

effect on Y of the part of x4 unrelated with x2 and x3. Similarly, regarding

model (3.13), the parameter δ3 will be interpreted as the effect on Y of the

part of x3 that has no relationship with x2 and x4 (the interpretation of δ4

will be the same as γ4).

The interpretation of the modified variable is clear, but what is the

interpretation of the unchanged variables? Following the concepts of partial

and total effect from Novales (2010):

• What is the total impact on Y of a unitary variation on xi, while keeping

the rest of the explanatory variables unchanged? Answer: partial effect

(multiple regression).

• What is the total impact on Y of a unitary variation on xi if the rest

of explanatory variables change, given the observed correlations of the

sample? Answer: total effect (simple regression).

Additionally:

• As is shown in Table 3.1, one consequence of residualization is that

the estimated parameter of the unchanged variables coincides with the

coefficient of correlation between variables Y and x2, i.e. it coincides

with the one from the model Y = β2x2 + u.

• The estimations of γ2 and γ3 in model (3.6) are the same as the

estimations from the model Y = β2x2 + β3x3 + u.

• The estimation of δ2 in model (3.13) is the same as the estimation from

the model Y = β2x2 + u.
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In light of the above, the partial and total effects regarding the unchanged

variable are the same as the ones from the residualized model, which was

expected because it is logical to think that the variations of the unchanged

variable do not affect the rest due to the existing orthogonality between

variables.
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Chapter 4

Generalization of the method:

residualization for p

explanatory variables

As has been stated throughout the earlier chapters, explanatory variables of

an econometric model can imply strong near collinearity problems. Even when

collinearity diagnostic measures consider that the problem is not of concern, it

is possible that the individual effects of the variables may not be separated

or displayed clearly. This idea resembles the objective of the Shapley value

regression, Shapley (2016), which presents an entirely different strategy for

assessing the contribution of predictor variables to the dependent variable and

owes its origin to the theory of cooperative games. The value of R2 obtained by

fitting a linear regression model is regarded as the value of a cooperative game

played by the independent variables (each variable is a member) against the

dependent variable (thus explaining it). The analyst does not have sufficient

information to disentangle the contributions made by the individual members,
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only their joint contribution R2 is known. The Shapley value decomposition

imputes the most likely contribution of each individual member. On the other

hand, Baird and Bieber (2016) proposed an alternative methodology to OLS

based on ordered variable regression (OVR), originally presented by Woolf

(1951), which fully resolves the issue of related predictors by creating and using

variables that are perfectly unrelated.

These antecedents lead to residualization, which is a procedure applied in

previous research articles published in major social science journals in many

different fields, such as linguistics (Ambridge et al. (2012); Cohen-Goldberg

(2012); Jaeger (2010); Kuperman et al. (2008, 2010); Lemhöfer et al. (2008)),

environmental issues (Jorgenson (2006); Jorgenson and Burns (2007); Jorgenson

and Clark (2009)) or economic development and policies (Bandelj and Mahutga

(2010); Bradshaw (1987); Kentor and Kick (2008); Mahutga and Bandelj (2008);

Walton and Ragin (1990)). This method has been also applied in previous

research under the name of regression with orthogonal variables (see Novales

et al. (2015); Salmerón et al. (2016)). However, this method has not been

fully developed in prior works and we consider that this lack of specification

can lead to different criticisms such as the one in York (2012) or in Wurm

and Fisicaro (2014). The key point not taken into consideration until now is

that this methodology provides an alternative interpretation for the estimated

parameters, apart from the mitigation of collinearity. This could be seen as a

limitation since the methodology is not always applicable but it can be also

seen as an opportunity to obtain new interpretations which are not possible

from the initial model (see Section 3.5 for more details).

The structure of this chapter is as follows: Section 4.1 presents the

estimation and main properties of residualization showing that the estimation

of the variance of the random disturbance, the global significance test, the
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individual significance test of the residualized variable and the goodness of fit

obtained by the residualization will be similar to that of the original model.

Section 4.2 analyses how residualization mitigates collinearity, demonstrating

the decrease in the estimated variance and focusing on the value of the variance

inflation factor (VIF) and the condition number (CN) for checking whether the

collinearity has been mitigated after the application of residualization. Section

4.3 compares the residualization procedure with OLS and other well-known

techniques, such as ridge regression, principal component regression (PCR)

or partial least squares regression (PLSR). Finally, Section 4.4 presents the

successive residualization procedure for the general case.

This chapter corresponds to the work Garćıa et al. (2019c).

4.1 Estimation and properties

Starting from model (1.1), Y = Xβ+ u, the first step is to define the auxiliary

regression (2.5), Xi = X−iα+ v, i = 2, . . . , p.

By applying the OLS estimation of the auxiliary regression (2.5), it will be

obtained the corresponding estimated residuals, ei. They will represent the

part of variable i that has no relationship with another explanatory variable

of the initial model (1.1) since the residuals ei are orthogonal to X−i (that is,

etiX−i = 0, with 0 being a zero vector of appropriate dimensions).

In light of the above, residualization procedure consists in replacing variable

Xi with the estimated residuals from model (2.5), ei, in the original model

(1.1). Hence, the residualization procedure uses the following regression1:

Y = XOγ + w, (4.1)

1The subindex O regards to the residualized model.
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where XO = (X−i ei).

Once the basic procedure is explained, the results of model (1.1) and model

(4.1) are compared in following sections.

4.1.1 Estimation

From X = (X−i Xi), the OLS estimator of model (1.1), β̂, will be:

β̂ =
(
XtX

)−1
XtY =

 Xt
−iX−i Xt

−iXi

Xt
iX−i Xt

iXi

−1

·

 Xt
−iY

Xt
iY


=

 A B

Bt C

 ·
 Xt

−iY

Xt
iY

 =

 (
Xt
−iX−i

)−1
Xt
−iY − α̂ ·

etiY

etiei
etiY

etiei


=

 β̂−i

β̂i

 , (4.2)

taking into account that:

C =
(
Xt
iXi −Xt

iX−i
(
Xt
−iX−i

)−1
Xt
−iXi

)−1

=
(
Xt
i

(
I−X−i

(
Xt
−iX−i

)−1
Xt
−i

)
Xi

)
=
(
etiei

)−1
,

B = −
(
Xt
−iX−i

)−1
Xt
−iXi ·

(
etiei

)−1
= −α̂ ·

(
etiei

)−1
,

A =
(
Xt
−iX−i

)−1
+
(
Xt
−iX−i

)−1
Xt
−iXi ·

(
etiei

)−1
Xt
iX−i

(
Xt
−iX−i

)−1

=
(
Xt
−iX−i

)−1
+
(
etiei

)−1 · α̂α̂t,

where α̂ and etiei are, respectively, the OLS estimator and the sum of square

residuals from the auxiliary regression (2.4).
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4.1. Estimation and properties

Likewise, since etiX−i = 0, the OLS estimator of model (4.1), γ̂, will be:

γ̂ =
(
Xt
OXO

)−1
Xt
OY =

 Xt
−iX−i Xt

−iei

etiX−i etiei

−1

·

 Xt
−iY

etiY


=

 (
Xt
−iX−i

)−1
Xt
−iY

etiY

etiei

 =

 γ̂−i

γ̂i

 . (4.3)

Therefore, it is possible to compare the OLS estimator of the residualized

model (4.1), expression (4.3), with the OLS estimator of model (1.1), expression

(4.2). The following conclusions are obtained:

• The estimation of the coefficient of the residualized variable does not

change in model (4.1), i.e. β̂i = γ̂i. However, the interpretation of

both estimates is different: γ̂i represents the variation produced in the

dependent variable Y, given an increase in ei, i.e. the part of the

independent variable Xi unrelated with the rest of the independent

variables X−i. Hence, due to the new interpretation of the residualized

variable, the procedure can be applied to obtain conclusions that

otherwise may not be possible.

• The orthogonality between ei and X−i verifies the principle ceteris

paribus, i.e. when ei increases, the other variables remain unchanged.

• The estimation of the non-residualized variables in model (4.1) changes:

β̂−i = γ̂−i − α̂ ·
etiY

etiei
. (4.4)

However, the interpretation is the same as that in model (1.1).

In addition, it is interesting to take into consideration that:
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• For convenience purposes, all of the independent variables of the model

(1.1) are included in the auxiliary regression (2.5). However, it is possible

to include only some of the independent variables, depending on the

interest of the researcher (for example, trying to obtain interpretable new

variables). In this case, the estimations of the explanatory variables which

are not included in the auxiliary regression do not change their value.

The constant is included in the auxiliary regression, hence non-essential

collinearity is mitigated because the residuals are orthogonal to the

constant (see Section 3.2 for more details).

• The estimation of the non-residualized variables of model (4.1) coincides

with the estimation obtained from model Y = X−iβ + u, i.e. the

estimation and interpretation of the non-residualized variables is the

same as that obtained in a regression in which the residualized variable

is eliminated. Nevertheless, this coincidence only occurs when all the

rest of the explanatory variables of the original model are included in the

auxiliary regression. Furthermore, since the two models have different

residuals, the inference associated with these coefficients will be different.

Remark 1. An interesting issue is how to select the variable to be residualized.

The chapter presents different criteria that can be applied, or a combination

thereof, depending on the goal of the research. If the goal is to look for new

interpretations, the variable to be residualized will be the one that leads to

the new interpretation desired by the researcher since the only interpretation

that changes is that of the residualized variable.

Remark 2. It may be also interesting to rank the independent variables of

the model (1.1) according to their relevance to avoid residualizing variables

considered to be relevant maintaining the original interpretation of these
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coefficients. This fact was already proposed in the work by Baird and Bieber

(2016), which uses OVR models.

4.1.2 Goodness of fit, estimation of the variance of the

random disturbance and joint significance

The estimated residuals of the original model (1.1) will be:

e = Y − Ŷ = Y −X · β̂ = Y − (X−i Xi) ·

 (
Xt
−iX−i

)−1
Xt
−iY − α̂ ·

etiY

etiei
etiY

etiei


= Y −X−i

(
Xt
−iX−i

)−1
Xt
−iY + X−iα̂ ·

etiY

etiei
−Xi

etiY

etiei

= Y −X−i
(
Xt
−iX−i

)−1
Xt
−iY − ei

etiY

etiei
, (4.5)

since ei are the residuals of the auxiliary regression (2.5), it is verified that

ei = Xi −X−iα̂.

The estimated residuals of the residualized model (4.1) will be:

e = Y − ŶO = Y −XO · γ̂

= Y −X−i
(
Xt
−iX−i

)−1
Xt
−iY − ei

etiY

etiei
. (4.6)

It is evident that expression (4.6) coincides with expression (4.5), i.e. the

estimated residuals of the original model (1.1) and the residualized model (4.1)

are the same. Therefore, it is possible to conclude the following:

• The sum of square residuals from both models coincides and consequently,

both models yield the same estimation of the variance of the random

disturbance.

• Since the two models employ the same dependent variable, the total

sum of squares will be the same and consequently, the coefficient of

determination from both models will also coincide.
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• Since the F statistic of the global significance test can be expressed as a

function of the coefficient of determination, it is evident that the global

significance test from both models will also be the same.

• It is clear that Ŷ = ŶO, i.e. the original model and the residualized

model provide the same prediction.

4.1.3 Individual inference

Since the random disturbances are spherical, the individual inference will be

given by the main diagonal of matrix
(
XtX

)−1
, i.e. by (see expression (4.2)): (

Xt
−iX−i

)−1
+
(
etiei

)−1 · α̂α̂t −α̂ ·
(
etiei

)−1

−α̂t ·
(
etiei

)−1 (
etiei

)−1

 . (4.7)

Taking into account the following expression:

(
Xt
OXO

)−1
=

 (
Xt
−iX−i

)−1
0

0
(
etiei

)−1

 , (4.8)

it is evident that the main diagonal of both matrices is different, except for

the i element. Since the estimation of the variance of the random disturbance

is the same, considering the estimation of the coefficients, it is possible to

conclude the following:

• The inference related to the individual significance (Student’s t-test) of

the unchanged variables differs between models (1.1) and (4.1).

• The inference related to the individual significance (Student’s t-test) of

the residualized variable coincides in models (1.1) and (4.1).

Consequently, the residualization of the initial model does not affect

the estimation of the variance of the random disturbance, the coefficient
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4.2. Collinearity

of determination, the global significance test or the individual significance

test of the residualized variable. It only changes the individual significance of

unaltered variables.

Remark 3. Another option to select the variable to be residualized is to choose

a variable with a coefficient that is significantly different from zero in the

original model since the individual significance test of the residualized variable

is maintained in the residualized model.

4.2 Collinearity

In addition to the new interpretation of the coefficient of the residualized

variable, another result of interest in the residualized model is the effect on

the linear relationship between the independent variables of the initial model.

To verify that collinearity is mitigated after the residualization of the initial

model, the estimated variances of the estimated coefficients, the VIF and the

CN are analysed in the residualized model.

4.2.1 Decrease in estimated variance

Considering that the estimation of the variance of the random disturbance of

the original model is the same as that of the residualized model, the estimated

variances of the coefficients will be determined by the main diagonal of the

matrices
(
XtX

)−1
and

(
Xt
OXO

)−1
, respectively. As noted above, the element

corresponding to the residualized variable is the same in both matrices, and

thus, the estimated variance will be also the same, i.e. V̂ ar
(
β̂i

)
= V̂ ar (γ̂i).

For the rest of the variables, given expressions (4.7) and (4.8), it is possible
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to obtain that:

V̂ ar
(
β̂j

)
= σ̂2·

(
wjj + (etiei)

−1αjj
)
, V̂ ar (γ̂j) = σ̂2·wjj , j = 1, . . . , p, j 6= i,

where wjj and αjj = α2
j are the elements (j, j) of the matrices

(
Xt
−iX−i

)−1
and

α̂α̂t, respectively. Since (etiei)
−1α2

j ≥ 0, it is verified that V̂ ar
(
β̂j

)
≥ V̂ ar (γ̂j)

for j = 1, . . . , p, with j 6= i. In consequence, the estimated variances of the

residualized model will be always lower than or equal to those in the original

model. This result is relevant since it demonstrates that the residualization

implies a decrease in the estimated variances of the estimated coefficients

(which are assumed to be inflated due to the presence of collinearity). Note

that this result is contrary to the conclusions presented by Buse (1994).

The linear relationship between the coefficients of the model (1.1) given

in (4.4) can also be used to reduce the variance of the estimated coefficients

only by estimating the model with restricted least-squares. In this case, the

residualization could be used to mitigate this particular consequence of the

existence of severe collinearity in the multiple linear regression model.

4.2.2 Variance Inflation Factor (VIF)

Each explanatory variable of model (1.1) has an associated VIF given by

expression (2.6) for i = 2, . . . , p.

As was said in Section 2.2.2, it is generally accepted that values of VIF

higher than 10 indicate severe collinearity.

Being ei the dependent variable of the auxiliary regression, its coefficient of

determination will be zero and the associated VIF will be one (the minimum

value possible). In other case, R2
j will be obtained from the following auxiliary

regression:

Xj = XO−j ξ + ε, j = 2, . . . , p, j 6= i, (4.9)
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where XO−j is the result obtained after eliminating column (variable) j from

matrix XO.

Due to the orthogonality between ei and X−i,−j (matrix X after eliminating

columns (variables) i and j from the same), the residuals of (4.9) coincide with

the residuals of the following model2:

Xj = X−i,−j η + ε, i, j = 2, . . . , p, i 6= j. (4.10)

Then, models (4.9) and (4.10) have the same coefficient of determination since

the dependent variable is the same in both models.

However, the coefficient of determination from model (4.10) will be lower

than that of the following model:

Xj = X−jθ + ω, j = 2, . . . , p, j 6= i, (4.11)

since this latter model contains an additional independent variable, Xi. Then,

the coefficient of determination from model (4.9) is lower than that of model

(4.11).

Therefore, since the VIF associated with variable j in the original model

(1.1) is obtained from the coefficient of determination of the auxiliary regression

given by (4.11) and in the residualized model (4.1) is obtained from the

coefficient of determination of model (4.9), it is clear that the VIF is decreased

after residualizing the model, i.e. the existing collinearity of the model is

diminished.

2 With ea being the residuals of the auxiliary regression (4.9) and eb being the residuals
of the regression (4.10) and given that ei is orthogonal to Xj and X−i,−j , it is obtained that

ea = Xj − (X−i,−j ei) ξ̂ = Xj − (X−i,−j ei) ·
( (

Xt
−i,−jX−i,−j

)−1
Xt
−i,−jXj

0

)
= Xj −X−i,−j

(
Xt
−i,−jX−i,−j

)−1
Xt
−i,−jXj = Xj −X−i,−j η̂ = eb.
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Remark 4. If the goal is to mitigate the existing collinearity in the model, one

suggestion may be to residualize the variable with the highest VIF because, after

the residualization, the VIF will be equal to one. In this case, all independent

variables should be included in the auxiliary regression (2.5) to mitigate the

essential and non-essential collinearity in the most efficient way.

4.2.3 Condition Number (CN)

Starting from model (1.1), the CN is given by expression (2.7). Note that the

matrix X should be transformed to be unit length by columns, i.e. data should

be divided by the square root of the sum of its square elements (see Belsley

(1991)).

The CN associated with the model (4.1) is obtained by using the minimum

and maximum eigenvalue of Xt
OXO, where:

XO =

(
X1

||X1||
· · · Xi−1

||Xi−1||
Xi+1

||Xi+1||
· · · Xp

||Xp||
ei
||ei||

)
=

(
X−i

ei
||ei||

)
,

being ||Xk|| =
√

n∑
j=1

X2
kj for k = 1, . . . , i− 1, i+ 1, . . . , p and ||ei|| =

√
n∑
j=1

e2
ij .

Then:

Xt
OXO =

 Xt
−iX−i 0

0 1

 .

Hence, one of the p eigenvalues of Xt
OXO will be equal to one and the

rest will coincide with the eigenvalues of matrix Xt
−iX−i. Supposing that the

eigenvalue equal to one is the first one, µ1,O = 1, it is verified that:

• If this is the minimum eigenvalue of Xt
OXO, the rest of eigenvalues will

be equal or higher than one (µi,O ≥ 1, i = 2, . . . , p) and consequently,

its sum will be equal or higher than p− 1

(
p∑
i=2

µi,O ≥ p− 1

)
. However,

this sum will be equal to p − 1 since the trace of Xt
−iX−i is equal to
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p − 1. Then, all the eigenvalues will be equal to one (µi,O = 1 with

i = 1, 2, . . . , p), i.e. Xt
OXO will be the identity matrix and then, all the

variables will be considered orthogonal to each other.

• If this is the maximum eigenvalue of Xt
OXO, the rest of eigenvalues will

be equal or lesser than one (µi,O ≤ 1, i = 2, . . . , p), and, consequently,

its sum will be equal or lesser than p− 1

(
p∑
i=2

µi,O ≤ p− 1

)
. However,

this sum is equal to p − 1. Then, all the eigenvalues will be equal to

one (µi = 1 with i = 1, 2, . . . , p) and all the variables will be considered

orthogonal to each other.

If the eigenvalue equal to one cannot be the minimum or maximum

eigenvalue of Xt
OXO, they will have to be found on the rest of the eigenvalues

of Xt
−iX−i. Thus, the CN of model (4.1) coincides with that of the auxiliary

regression (2.5):

CN(Xt
OXO) = CN(Xt

−iX−i).

On the other hand, according to the Cauchy’s Interlace Theorem for

Eigenvalues of Hermitian Matrices3, since Xt
−iX−i is a submatrix of order p−1

of XtX, it is verified that:

CN(Xt
OXO) = CN(Xt

−iX−i) ≤ CN(XtX).

Thus, the CN of the residualized model (4.1) has to be lower than or equal to

the CN of the original model (1.1).

Remark 5. If the goal is to mitigate the collinearity in the model, one suggestion

could be to residualize the variable i whose auxiliary regression (where the

3Given a matrix A with order p and eigenvalues ξ1 ≤ ξ2 ≤ · · · ≤ ξp and given its
submatrix B with order p − 1 and eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µp−1, it is verified that
ξ1 ≤ µ1 ≤ ξ2 ≤ µ2 ≤ ξ3 ≤ · · · ≤ ξp−1 ≤ µp−1 ≤ ξp.
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variable i is the dependent variable) presents the lowest CN since it coincides

with the CN of the residualized model that will always be equal to or lower

than the CN of the original model.

4.3 Comparison of the residualization method

with other existing methods

This section presents a Monte Carlo simulation to compare the residualization

methodology with other existing methods such as ridge regression, PCR and

PLSR in relation to the mean square error (MSE) and prediction error. Firstly,

the obtention of the MSE of the residualization method is presented, as well

as the way to compare it with the MSE obtained by OLS. Secondly, the

metrics used to measure the prediction capability of each methodology are also

presented.

4.3.1 Mean Square Error (MSE)

Note that the original model is different from the residualized model, and for

this reason, both models should be analysed separately and the comparison

may not be convenient. However, some publications have not considered this

divergence (see, for example, York (2012)). Bearing this in mind, given that γ̂

is a biased estimator of β:

γ̂ = (XOXO)−1 ·Xt
OY = (XOXO)−1 ·Xt

OX · β + (XOXO)−1 ·Xt
O · u,

E[γ̂] = (XOXO)−1 ·Xt
OX · β 6= β since Xt

O 6= X,

it could be interesting to calculate the MSE of the residualization and to

compare it with the MSE of the OLS estimator.

Given an estimator β̃ of β, its MSE is expressed as:
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MSE
(
β̃
)

= trace
(
var

(
β̃
))

+
(
E
[
β̃
]
− β

)t (
E
[
β̃
]
− β

)
.

In the case of the OLS estimator, β̂ is an unbiased estimator (E
[
β̂
]

= β)

and, taking into account expression (4.7), the following is verified:

MSE
(
β̂
)

= trace
(
var

(
β̂
))

= σ2 ·
[
trace

(
Xt
−iX−i

)−1
+ (etiei)

−1 · trace
(
α̂α̂t

)
+ (etiei)

−1
]
. (4.12)

For the estimator γ̂, taking into account expression (4.8), it is verified

that4:

MSE (γ̂) = trace (var (γ̂)) + (E [γ̂]− β)t (E [γ̂]− β)

= σ2 ·
[
trace

(
Xt
−iX−i

)−1
+ (etiei)

−1
]

+ βi · α̂tα̂ · βi. (4.13)

From expressions (4.12) and (4.13), it is clear that:

MSE (γ̂) = MSE
(
β̂
)
− σ2 · (etiei)−1 · trace

(
α̂α̂t

)
+ β2

i · α̂
tα̂,

so γ̂ has a lower MSE than β̂ if:

β2
i · α̂

tα̂ < σ2 · (etiei)−1 · trace
(
α̂α̂t

)
. (4.14)

4Based on expressions (4.2), (4.3) and (4.4), it is obtained that γ̂ = β̂ + s, where:

s =

(
α̂ · etiY

etiei

0

)
. Thus, as:

etiY = etiXβ + etiu = [0 etiXi] · β + etiu = etiXiβi + etiu = etieiβi + etiu,

it is obtained that:

E [γ̂] = E
[
β̂
]

+ E [s] = β +

(
α̂ · βi

0

)
⇒ (E [γ̂]− β)t (E [γ̂]− β) = β2

i · α̂tα̂.
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4.3.2 Metrics

The root mean square error (RMSE) and the mean absolute error (MAE) will

be applied to measure the fit capability of each model while the prediction

capability will be measured by the root mean square prediction error (RMSPE)

and the mean absolute prediction error (MAPE).

Given a sample with n observations and assuming it is divided into two

subsamples: the first with m observations and the second with h observations,

verifying that m + h = n. Then, the first subsample is applied to measure

the fit capability calculating the RMSE and MAE. The second subsample is

applied to evaluate the prediction capability obtaining the RMSPE and MAPE.

The following expressions are obtained:

RMSE =

√√√√ 1

m
·
m∑
i=1

(Yi − Ŷi)2, MAE =
1

m

m∑
i=1

|Yi − Ŷi|,

RMSPE =

√√√√1

h
·

n∑
i=m+1

(Yi − Ŷi)2, MAPE =
1

h
·

n∑
i=m+1

|Yi − Ŷi|.

4.3.3 Simulation

The simulation performed to compare residualization with other existing

methods is described below.

Given the model (2.1), Y = β1+β2 X2+β3 X3+u, the following simulation

is performed in order to establish the behavior of condition (4.14):

1. It is considered that µ2×1 = (µ1, µ2)t with µ1, µ2 ∈

{−10,−9,−8, . . . , 10}.

2. Additionally, it is also considered that a1, a2 ∈ {0, 1, 2, 3, 4} and b1, b2 ∈

{0.1, 0.2, 0.3, . . . , 2}, so ci5×1 ∼ N(ai, b
2
i ) is generated. Thus, given matrix
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C = [c1 c2], a symmetric positive-definite matrix, Σ2×2 = CtC, is built.

3. X2 and X3 are generated from N2

(
µ2×1,Σ2×2

)
.

4. The random perturbance, u, is generated as u ∼ N(0, d2), where d ∈

{1, 2, 3, 4}, from which is calculated Y = β1 + β2 X2 + β3 X3 + u, where

βi ∈ {−5,−4,−3, . . . , 5}.

5. A comparison of both models (OLS and residualization) is conducted

with different sample sizes, n ∈ {25, 50, 75, 100, 125, 150}, such that 60000

simulations are performed in this experiment.

First, once the previous model and the corresponding auxiliary regressions

are estimated, condition (4.14) is calculated from the obtained estimations

of βi, σ
2 and α. In Table 4.1, two types of situations can be observed: one

where essential collinearity does not imply strong collinearity problems (the

mean correlation is equal to 0.4877, which leads to a VIF value of 1.31208)

and another where essential collinearity implies strong collinearity problems

(the maximum and minimum correlations lead to VIF values of approximately

50.2512). It can also be observed that there are two types of situations in

relation to non-essential collinearity: one where it is not worrisome (the mean

value of the coefficient of variation (CV) is approximately 6, which implies

the data have enough variability) and another where non-essential collinearity

is worrisome (the minimum values of CV for each variable are close to zero,

which implies slight variability of the data and indicates that the data may be

considered almost constant and hence related to the intercept).

The first and second rows of Table 4.1 show the percentage of cases in which

MSE (γ̂) < MSE
(
β̂
)

(condition (4.14) is verified), considering that variables

X2 and X3 are residualized, respectively. Note that both results are similar
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4.3. Comparison of the residualization method with other existing methods

and there are no material differences for different sample sizes. The results

show that in only 7.159% of the cases the condition MSE (γ̂) < MSE
(
β̂
)

is

verified.

Second, Table 4.2 is obtained from 60000 more simulations performed

dividing the sample as was described in Subsection 4.3.2 and considering

h = 0.15 ·n. R’s package pls (Mevik et al. (2019)) was applied to obtain values

of PCR and PLSR considering one and two components. For ridge regression,

the value of k was selected in order to mitigate the collinearity considering

that it is not worrying for values of CN lower than 20, as showed in the work

by Salmerón et al. (2018). This idea was also applied in Garćıa et al. (2019b)

by using the VIF instead of the CN. In this section it was considered more

appropriate to use the CN since the VIF ignores the non-essential collinearity,

Salmerón et al. (2018).

From the results of the first sample, it is obtained that residualization and

OLS lead to the same values of RMSE and MAE due to Ŷ = ŶO being verified.

These values are slightly lower than those of other techniques.

From values of RMSPE and MAPE obtained from the second sample, it

is possible to conclude that the residualization method presents the lowest

prediction capability. However, the fact that the rest of methods do not

improve the results obtained by OLS could indicate that, when the purpose is

prediction, the best way to proceed is to do nothing. These results support

the idea provided by Gujarati (2004): if the goal is simply to predict [...], then

multicollinearity is not a problem [because] the predictions will still be accurate.
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4.4. Successive residualization

4.4 Successive residualization

It is possible that the goal of the researcher (to mitigate collinearity or obtain

a new interpretation for the estimated coefficients) has not been achieved after

residualizing the first variable. In that case, it is necessary to residualize a

second variable.

In Chapter 3 (Section 3.4), the successive residualization for three

standardised explanatory variables was presented together with general

properties of this procedure. The goal of this section is not to obtain the

estimated inference of this model (4.15) but to generalize the successive

residualization.

For p independent variables, the double residualized model will be:

Y = XOOδ + ς, (4.15)

where XOO = (X−i,−j ei ej) with ej being the residuals of the auxiliary

regression (4.10).

The residuals ei and ej will be orthogonal since it is verified that:

etiej = eti (Xj −X−i,−jη̂) = etiXj − etiX−i,−jη̂ = 0.

The previous relationship between the residuals will still hold if more variables

are residualized, i.e. the degree of multicollinearity will continue decreasing.

Note that if the process is repeated p− 1 times, all the explanatory variables

of the initial model will be orthogonal to each other.

4.5 Overview of the methodology

To sum up the results of this chapter (and the one before it), it has been

demonstrated that with residualization it is possible not only to alleviate
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4. Generalization of the method: residualization for p explanatory
variables

multicollinearity problems in the econometric model but also to obtain different

interpretations of the modified variables.

To sum up, the characteristics of the methodology are the following:

• Estimations and inference:

– The coefficient of the residualized variable does not change, but

the interpretation of the variable does: it will represent the part

of the original variable that has no relationship with the rest of

explanatory variables of the model (the principle ceteris paribus is

strictly fulfilled) if the rest of the independent variables are included

in the auxiliary regression.

– The inference related to the individual significance of the residualized

variable is still the same.

– The coefficients of the non-residualized variables change, however

the interpretations are still the same.

– The inference related to the individual significance of the

non-residualized variables is different.

– The value of the estimated parameters of the non-residualized

variables are the same as in the model which does not include

the modified variable.

– If only some of the independent variables are included in the auxiliary

regression, then the estimations of the parameters of the explanatory

variables not included in it also remain unchanged.

• Global properties:

– The sum of square residuals of the original model and the

residualized model are the same.
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4.5. Overview of the methodology

– The estimate of the variance of the random disturbance does not

change.

– The coefficient of determination, R2, is still the same.

– The global significance test remains unchanged.

– The original model and the residualized model provide the same

prediction.

• With regard to other methodologies:

– A Monte Carlo simulation was performed to conclude that ridge

regression, principal component regression (PCR) or partial least

squares regression (PLSR) present a prediction capability better

than residualization but not better than ordinary least squares

(OLS). Note that the original model estimated by OLS is different

from the residualized model, and for this reason, both models should

be analysed separately and the comparison may not be convenient.

The fact that the rest of methods do not improve the results obtained

by OLS could indicate that, when the purpose is prediction, the

best way to proceed is to do nothing.
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Chapter 5

Empirical part:

environmental applications

The debate between Ehrlich-Holdren and Commoner (Ehrlich and Holdren

(1970, 1971, 1972); Commoner et al. (1971)) regarding the factors that influence

environmental damage, resulted in the IPAT identity, which states that the

environmental impacts of a country (I) can be decomposed into the product

of three principal factors: population (P), affluence (A) and technology (T),

York et al. (2003). The main limitations of the IPAT identity are that the

number of factors is limited and the impact of the factors is proportional as all

of them affect the environment equally. Moreover, it does not allow hypothesis

testing. Due to these problems, the STIRPAT model emerged as the stochastic

version of the IPAT identity (STochastic Impacts by Regression on Population,

Affluence and Technology) to analyse the influence of these three factors on the

environment of a region, Dietz and Rosa (1994, 1997). More complex models

have used additional variables such as behaviour (Schulze (2002); Kilbourne and

Thyroff (2020)) or alternative specifications separating the technology factor
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5. Empirical part: environmental applications

into parts: energy consumption and technological improvement (Waggoner and

Ausubel (2002)) or industry value added and CO2 intensity (Mart́ınez-Zarzoso

et al. (2007); Mart́ınez-Zarzoso and Maruotti (2011)), for example.

Regardless of the selected variables, it is possible to consider that the

factors affecting CO2 emissions may be strongly correlated. Fan et al. (2006)

conclude that P, A and T clearly influence environmental damage, although

the impact can vary at different levels of development of a country. This idea

supports the dependence between the explanatory variables of the STIRPAT

methodology (i.e. technical enhancement depends on the structure of the

country, the economy, the population and so on). Indeed, Ehrlich and Holdren

were aware of the problem of the relationship between variables in the IPAT

identity but, as noted by Chertow (2000), expanded their first equation

ignoring the interdependence of the variables: they only note the relationship

between explanatory variables, but they do not treat the potential problem of

multicollinearity.

Despite the likely presence of near collinearity and its consequences, most

STIRPAT applications have disregarded this possibility and its analysis.

Henceforth, in order to simplify the reading of the chapter, distinctions

between different types of collinearity will only be made if necessary.

Additionally, the reader has to take into account that there are always

relationships among real variables, thus to also simplify, if the reader comes

across expressions such as “there is no collinearity” they refer to strong or

troubling collinearity problems.

Tables 5.1 to 5.3 present a compilation of some empirical studies from

1997 to 2020 summarising the data, the variables used and the treatment

of collinearity in each paper. Table 5.4 synthesises the different treatments

given to collinearity in STIRPAT applications in Tables 5.1 to 5.3. Note that
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5. Empirical part: environmental applications

Table 5.4: Reviews of the different treatments given to collinearity in
STIRPAT applications.

Treatment of
collinearity

References

Disregarded

Azam and Khan (2016), De Bruyn et al.
(1998), Coondoo and Dinda (2002),

Fernández et al. (2015), Gassebner et al.
(2011), Hashmi and Alam (2019), Kumar
(2006), Li et al. (2019b), Mart́ınez-Zarzoso
and Maruotti (2011), Pablo-Romero and

De Jesús (2016), Pao and Tsai (2010),
Rafindadi (2016), Rasool et al. (2019),
Roberts and Grimes (1997), Roca and

Padilla (2003), Torras and Boyce (1998),
Yang and Chen (2019), Kilbourne and

Thyroff (2020)

Tested and not
detected

Khan et al. (2016), Xu et al. (2019), York
et al. (2003)

Detected and not
treated

Büchs and Schnepf (2013), Harbaugh et al.
(2002), Zhang and Zhao (2019)

Treated by deleting
or transforming data

Mart́ınez-Zarzoso et al. (2007), Shuai et al.
(2018), Xie and Liu (2019)

Treated by Principal
Component

Regression (and
variants)

Fan et al. (2006), Jia et al. (2009), Li et al.
(2019a)

Treated by Ridge
regression

Dong et al. (2016), Lin et al. (2009), Liu
et al. (2019), Roy et al. (2017), Uddin

et al. (2016), Wen and Shao (2019), Zhang
et al. (2019)

collinearity is commonly neglected in the vast majority of the studies and efforts

to address collinearity in STIRPAT models are usually limited to eliminating

variables, the application of first differences or, more commonly, the application

of partial least squares (PLS) or ridge regression as alternatives to ordinary

least squares (OLS) estimation. Regarding the alternative methodologies to

OLS, the scientific literature applies these methods to analyse the influence of

environmental driving forces although Wei (2011) recommended ridge regression

and PLS when the goal is prediction and the estimated parameters are not
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interpreted as causal effects. On the other hand, the two methods differ and

they are not comparable each other: while ridge regression is a biased method

that tries to decrease the mean square error (MSE), PLS modifies the original

variables of the data, transforming them into orthogonal components whose

interpretation is questionable, as has been expressed in Subsection 2.3.3. In

light of the foregoing, the traditional method used in STIRPAT applications

that is going to be analysed in this chapter together with other techniques is

ridge regression.

The main goal of biased methods is to decrease the mean square error of

prediction by introducing a reasonable amount of bias into the model. Although

ridge regression has been widely applied to estimate models with collinearity,

it presents some disadvantages as explained in Section 2.3.1.

Throughout this chapter, the STIRPAT model is studied using different

datasets: Section 5.1, whose starting point was the work by Garćıa et al.

(2017a), analyses the model for 124 countries around the world, Section 5.2

uses data from the UE-28 countries focusing on four similar countries (see the

corresponding section for more information) and Section 5.3 focuses on China,

the most polluting country in the world. Regarding the methodology applied

in each section: Section 5.1 compares residualization with three additional

methodologies which lead the researcher to deal with worrying near collinearity

problems: ridge regression, LASSO regression and raise regression; Section

5.2 uses residualization to mitigate collinearity problems, but this procedure

is applied in three different ways as the reader will note; Section 5.3 applies

residualization to show the reader the use of the method with empirical

purposes; finally, Section 5.4 provides a summary of the chapter. The first

example (Section 5.1) is based on the work by Garćıa et al. (2020)1, the second

1The work by Garćıa et al. (2020) presents updated data.
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(Section 5.2) is based on the research by Apergis and Garćıa (2019), and the

third (Section 5.3) is one of the examples used in Garćıa et al. (2019c).

5.1 Model 1: the STIRPAT model in the world.

Multicollinearity and residualization

In order to compare the results of the application of different methodologies,

the following STIRPAT model is analysed:

ln I = β1 + β2 ln P + β3 ln A + β4 ln T1 + β5 ln T2 + u, (5.1)

where u is the random disturbance, which is supposed to be spherical.

The dataset is obtained from the World Bank website2. It includes data

on 124 countries (n = 124) for the year 2014. Information regarding the four

variables is shown in Table 5.5. Note that the traditional component T has

been separated into two factors according to Mart́ınez-Zarzoso et al. (2007)

and Mart́ınez-Zarzoso and Maruotti (2011): T1, which measures the industry

value added, and T2, which measures the CO2 intensity.

Regarding the expected sign of the different variables (see Table 5.5),

starting with population (P), there is strong empirical evidence that it is

a relevant factor in explaining the environmental impact of a country but

there are different theories about its sign: followers of Malthus (1973) propose

a positive sign due to the pressure that the population puts on resources,

whereas followers of Boserup (1981) propose a negative relationship because

population growth leads to technological innovation, diminishing the negative

impact on the environment, Sherbinin et al. (2007) and Uddin et al. (2016).

Note that this same idea can be extended to the interpretation of industry

2https://databank.worldbank.org
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5. Empirical part: environmental applications

value added (T1): the traditional interpretation would be that more industry

would imply more pollution, but with the latest technology, this would not

necessarily be the case. It is important to remark that a positive sign of P

does not go hand-in-hand with a positive sign of T1. In the case of variable A,

if the researcher is studying a group of countries with different characteristics

(which is the case of this example), the GDP will show the level of development

or wealth of each one; the higher GDP, the greater possibilities of devoting

resources to climate targets, and the expected sign for the parameter will be

negative. Finally, regarding variable T2, the expected sign of its parameter

will be positive because it is a variable that is directly related to emissions:

higher CO2 intensity implies more CO2 emissions into the atmosphere.

By paying attention to the expected signs regarding the correlation matrix

(5.2), in the case of P the idea of Malthus (1973) is supported, and in the case

of T1 the perception of Boserup (1981) is sustained. In any case, according to

the theory, both signs are acceptable.

ln I ln P ln A ln T1 ln T2

ln I 1.000

ln P 0.065 1.000

ln A −0.337 −0.257 1.000

ln T1 −0.128 0.659 0.530 1.000

ln T2 0.466 −0.079 0.441 0.289 1.000


. (5.2)

After this first introduction to the model, it has been validated. Results of

heteroscedasticity and multicollinearity tests are explained below.

In relation to heteroscedasticity, the White test has been applied concluding

in not rejecting the null hypothesis of homoscedasticity (p value higher than

0.05).
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In the case of collinearity, by observing the correlation matrix (5.2), it

is possible to see that the correlation coefficients are generally lower than

0.7. This fact indicates that there is not a strong correlation between pairs of

variables. However, it is possible to note that population (ln P) and industry

(ln T1) are the most closely related variables. It would be logical to consider

that the country’s population affects the value added of the industry as larger

population implies more production (in all sectors). In addition, it could be

considered that affluence may be also correlated to industry value added and

CO2 intensity.

Although the correlation matrix gives the reader a first approximation

about the existence of collinearity in the model and about the relationships

between pairs of variables, a more in-depth analysis is required.

To test the presence of collinearity in the model, the variance inflator factor

(VIF) is obtained (see Appendix B). From Table 5.7 presented in Subsection

5.1.2, it can be observed that VIFs for all variables (except ln T2) are greater

than 10. This implies that population, affluence and the industry value

added are all related to each other. By obtaining the coefficients of variation

(CV) of each variable of the model (CV(ln P) = 0.097, CV(ln A) = 0.158,

CV(ln T1) = 0.079, CV(ln T2) = 1.000), it is clear that there are no strong

non-essential collinearity problems.

As stated at the beginning of the chapter, this section treats the

existing essential collinearity of the STIRPAT model by using three different

methodologies together with residualization, and compares them to make

conclusions about the residualization procedure. Therefore, before analysing

the results, each methodology is briefly explained for this particular example.
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5.1.1 Methodologies

In this section, residualization, raise regression, ridge regression and LASSO

regression are adapted for their applicability to the STIRPAT model (5.1).

After applying these methodologies, the mitigation of collinearity needs to be

analysed. In the case of residualization, raise and ridge regression, this fact

is verified, while it is not the case for LASSO regression. Regarding LASSO

regression, it is not possible to corroborate directly whether the problem has

been mitigated, but only to make assumptions about the fact (see Section

2.3.2), based on prior literature. Research in the future may develop tools to

measure the existing collinearity when using LASSO regression. After that,

the MSE is quantified for ridge, raise and residualization methods but not

for LASSO regression. LASSO regression is excluded from the calculation

of the MSE because this is done to compare these methods in terms other

than mitigation of multicollinearity, and since multicollinearity may not be

checked after the application of LASSO it is therefore excluded. Ridge and

residualization procedures are already compared in terms of MSE in Chapter

4, but here the raise regression MSE is also included in the comparison and, in

addition, the MSE is calculated by using real data.

Appendix B presents VIFs and MSEs of residualization, raise and ridge

regression, together with traditional OLS. Results of the methods explained

below are presented in Tables 5.6 and 5.7.

5.1.1.1 Residualization

Although the variable ln T1 has the highest VIF, the variable that will

be residualized is ln A because the methodology provides an alternative

interpretation of the residualized variable. Therefore, it is important to
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highlight that the application of the method is only possible if the effect

of the residualized variable can be interpreted. In this case, residualizing the

factor affluence (ln A) makes sense from an interpretative point of view as its

effect is analysed regardless of the population, the value added of the industry

sector and CO2 intensity. Indeed, the following auxiliary regression is specified:

ln A = α1 + α2 ln P + α3 ln T1 + α4 ln T2 + v. (5.3)

From this model, the obtained estimated residuals eA will substitute

variable ln A in the original model (5.1) to obtain the following residualized

model:

ln I = γ1 + γ2 ln P + γ3eA + γ4 ln T1 + γ5 ln T2 + w. (5.4)

Owing to the properties of OLS, eA is orthogonal to the other independent

variables. Hence, the principle ceteris paribus will be strictly fulfilled.

5.1.1.2 Raise regression

Considering model (5.1) as the starting point, and modifying variable ln A to

make comparisons with the previous method (residualization), ln A is replaced

by the new variable:

Ã = ln A + λeA, (5.5)

where eA is the estimated residuals vector from model (5.3). The value of λ is

selected to obtain VIFs lower than 10 (λ = 0.719). Note that for λ = 0, the

OLS estimations of the initial model (5.1) are recovered.

In light of the foregoing, the raise regression for the STIRPAT model will

be:

ln I = γ1 + γ2 ln P + γ3Ã + γ4 ln T1 + γ5 ln T2 + w. (5.6)
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5. Empirical part: environmental applications

5.1.1.3 Ridge regression

Ridge regression estimates the parameters using the expression (2.8), β̂(k) =

(XtX + kI)−1XtY.

Note that when k = 0, the initial model (5.1) is estimated by the traditional

OLS method. Usually, the criterion for choosing k when ridge regression is

applied in the STIRPAT model is to consider a step length within the interval

(0, 1). For example, Dong et al. (2016) adopt a set size of 0.005, which yields a

value of k = 0.02, and Lin et al. (2009) and Uddin et al. (2016) obtain k = 0.05

for step lengths of 0.01 and 0.05. In this case, the k value proposed by Hoerl

et al. (1975) (see expression (2.9)), k = 0.093, is considered, and also the k

value that makes the VIFs for all variables less than 10: k = 0.029.

The results of this method were obtained by using the library lmridge of

R (Imdad and Aslam (2018)).

5.1.1.4 LASSO regression

In this particular case, the results of the LASSO regression are presented in

Tables 5.6 and 5.7 and they were obtained by using the library HDCI of R (Liu

et al. (2017)).

5.1.2 Comparison of the methods

Paying attention to Tables 5.6 and 5.7, regarding the obtained signs of the

estimated parameters with each method, in all cases they are consistent with

theory and expectations.

The estimation of model (5.1) by OLS indicates that affluence (ln A) and

population (ln P) have a negative impact on CO2 emissions per unit of GDP

while industry value added (ln T1) and CO2 intensity (ln T2) have a positive
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5.1. Model 1: the STIRPAT model in the world. Multicollinearity and residualization

impact on CO2 emissions per unit of GDP. Regarding the relevance of the

factors in the OLS estimation (i.e. the ranking of the absolute values of the

correspondent parameters), it can be concluded that the most important (the

highest parameter in absolute value) is CO2 intensity (ln T2), followed by

affluence (ln A), population (ln P) and industry value added (ln T1). Another

interesting result is that the effect of population (ln P) and affluence (ln A) is

almost offset by the effect of industry value added (ln T1) and CO2 intensity

(ln T2), respectively: while a 1% increase in population will diminish emissions

by 0.521%, a 1% increase in industry value added will increase emissions by

0.489%, then the effect is almost balanced, and the same conclusion could be

reached for affluence (ln A) and CO2 intensity (ln T2).

Note that ridge, LASSO and OLS estimators present very similar values.

Ridge regression mitigate collinearity (see Table 5.7) practically keeping the

same values of the estimators obtained in the initial model that were considered

to be unstable. However, with the results obtained it is not possible to reach any

conclusions about the individual significance of the estimated parameters nor

the global significance of the model in the case of ridge and LASSO regressions,

hence the study of the influence and importance of each parameter on the

dependent variable makes no sense. Furthermore, in the case of LASSO, it

is not possible to verify whether multicollinearity problems have been mitigated.

On the other hand, the raise regression for λ = 0.719 provides estimators

that differ from the OLS and ridge estimators. Although the signs of the

parameters of each independent variable are the same as in the OLS estimation

and the most important factor continues to be CO2 intensity (ln T2), followed

by affluence (ln A), the impact of population (ln P) on emissions is much lower

(-0.184), but it is also almost offset by the influence of industry value added
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5. Empirical part: environmental applications

(ln T1) on emissions (0.164). However, the effect of affluence and CO2 intensity

is not offset in raise regression.

When residualization is applied, the most relevant variable continues to be

CO2 intensity (ln T2), the second most relevant variable is the residualized

variable eA, followed by industry value added (ln T1) and population

(ln P). Note that the signs of population (ln P) and industry (ln T1) have

also changed. Although both signs are acceptable regarding theory and

expectations, residualization is the only methodology that obtains these

signs. This methodology provides an alternative interpretation by using the

estimated residuals eA instead of the original variable ln A: the part of the

affluence that is not related to the population of the country, the value added

of the industrial sector and the CO2 intensity is analysed. The new variable

is fully uncorrelated with the economic structure and ecological efficiency,

with eA representing the real impact of the wealth of each country on the

environment. Hence, following the idea of Boserup (1981) expressed previously,

an interesting question for future research arises: when the explanatory

variables of this model are not related to the wealth of the countries, does the

level of technology play a key role in determining the influence of the rest of

the variables?

Finally, as stated earlier, ridge regression has mechanically mitigated the

collinearity and, in addition, it provides the smallest MSE, but the influence

of factor k on the interpretation of the estimators is uncertain. Furthermore,

according to Jensen and Ramı́rez (2008); Rodŕıguez et al. (2019), the t statistic

of the individual significance tests, the R2 and the F statistic of the global

significance test are not included in Table 5.7 and, according to Lockhart et al.

(2014), the same applies for LASSO.
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Raise regression also mitigates collinearity: VIFs less than 10. The MSE

obtained by the raise regression is higher than that obtained by ridge regression

but in this case the estimated coefficients are geometrically interpretable (the

same variable, separated from the others geometrically, is analysed) and the

calculation of R2 and the F statistic is possible (see references from Subsection

2.3.4).

As regards residualization methodology, it has clearly mitigated collinearity

(VIFs less than 4) but the MSE is the highest.

Additionally, the reader may note an important relationship between raise

regression and residualization: starting from expression (5.5), if λ tends to

infinity, variable Ã will tend to eA, and model (5.6) will turn into model (5.4).

This fact is a very interesting issue for future research.

To conclude, besides the mitigation of strong essential collinearity problems,

residualization provides an alternative interpretation of the original variables,

as was explained above. The researcher has to choose first between introducing

more or less bias into the model. If it is worth sacrificing the unbiased

estimations in support of reducing the variance of the predicted values and

improving the overall prediction accuracy, then the researcher has to choose

between obtaining interesting and interpretable results as well as mitigating

collinearity problems (residualization) or using traditional methodologies

such as ridge regression that obtain findings that are difficult to interpret.

From the perspective of this dissertation, the application of residualization

is very substantial for empirical purposes because of the different and direct

interpretations of the variables together with the mitigation of multicollinearity

problems. According to Schroeder (1990), the advantage of the use of a biased

method is that the theoretical model is not compromised and this biased
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method has to stabilise the regression coefficients, reduce the error and render

the model more generalisable, if not, it is better to use the initial model,

so the idea supported by Schroeder (1990) seems to be closer to the use of

residualization than to the use of ridge regression.

5.2 Model 2: the STIRPATE model in the

European Union. Different uses of the

residualization procedure

Nowadays, environmental policies are a significant cornerstone of a developed

economy. In connection with this fact, the concept of “environmental risk”

emerges, defined as the probability of damages to any community, due to the

vulnerability of its environmental components exposed to human activities. For

Greenpeace3 or NASA4, the solution comes from the energy sector with the

use of renewable energy sources. In the context of the European Union (EU),

the Europe 2020 strategy is a policy for the years 2010-2020 which includes

environmental objectives regarding the climate change and energy targets. Its

principal actions can be summarised into two main methods: diminishing the

emissions to the atmosphere and increasing the energy efficiency of the countries.

Although the strategy ends this year 2020, for this study the framework is

relevant because it concerns one part of the studied years (1995-2014). For

future research of interest, it is important to remark that the EU has extended

the targets to 2030.

In light of the foregoing, it is clear that environmental efficiency and energy

targets go together, and this fact is even more notable for the case of the EU.

3https://es.greenpeace.org/es/trabajamos-en/cambio-climatico/
4https://climate.nasa.gov
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For the STIRPAT model defined in previous section, one important variable

is technology. This variable has been divided (Section 5.1) into two: industry

value added and CO2 intensity. The last one could be interpreted as a measure

of the efficiency of a country: when an economy is environmentally efficient,

the CO2 intensity, i.e. the number of kilograms of CO2 emissions per kilograms

of oil-equivalent energy use, will be lower. The first objective of this section is

to define a variable that directly measures the environmental efficiency of a

country. To that end, Data Envelopment Analysis (DEA) is used to determine

this variable.

On the other hand, although this chapter focuses on the particular case

of four countries (Portugal, Spain, Italy and Greece) due to their economic

characteristics, it is important to remark that the efficiency scores are obtained

for the EU as a whole to further study this particular variable and because of

the characteristics of the methodology (it raises a relative measure). The four

chosen countries are known as PIGS, which is an acronym originally referred,

usually derogatorily, to the economies of the Southern European countries. The

term was often used in reference to the growing debt and economic vulnerability

of the Southern EU countries, and it was popularised during the European

sovereign debt crisis.

Once the efficiency is obtained, the STIRPAT model is redefined as the

STIRPATE model, using environmental efficiency scores instead of CO2

intensity. It is going to be applied for the four Southern members of the EU, as

it has been remarked. Predictably, the authors have found strong collinearity

in the model and the residualization procedure has been implemented.
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5.2.1 Data Envelopment Analysis (DEA) and energy

efficiency sustainable index

The first objective is to measure the energy efficiency sustainable index. To that

end, the authors employ the DEA approach, proposed by Charnes et al. (1978).

It is a well-established non-parametric frontier approach that assesses and

measures the relative efficiency of a set of comparable entities (called Decision

Making Units or DMUs) featured with multiple factors grouped into two

categories: inputs and outputs. Classical DEA models rely on the assumption

that inputs have to be minimised and outputs have to be maximised (Vencheh

et al. (2005)). Thus, in the standard DEA model, decreases in outputs are

not allowed, only inputs are allowed to decrease and, similarly, increases in

inputs are not allowed while only outputs are allowed to increase (Seiford and

Zhu (2002)). However, the production process can also generate undesirable

outputs (pollutants).

There are several approaches for incorporating undesirable outputs in

the DEA modelling approach. These models can also be classified into two

groups: the ones that take an indirect perspective and the ones that take a

direct approach. As Scheel (2001) argues, indirect approaches transform the

values of the undesirable outputs through a monotone decreasing function,

such that the transformed data can be included as desirable outputs in the

technology set; direct approaches can use the original output data set, but

modify the assumptions about the structure of the technology set in order

to treat the undesirable outputs appropriately. As Scheel (2001) remarks,

the indirect approaches assume that the transformed data have their own

meaning; for instance, if we transform the undesirable output mortality rate,

we can then study the desirable output survival rate. In contrast, the direct
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approach employs the original output set, but changes the assumptions adopted.

The direct approach, suggested by Färe et al. (1989), replaces the strong

disposability of outputs with the assumption that outputs are weakly disposable,

while only the subvector of desirable outputs is strongly disposable. The direct

approach is preferable, meaning that it is not necessary for researchers to make

any changes to the main dataset, while it is not necessary to reinterpret the

results obtained in terms of the “new” variables (e.g. mortality and survival

rates).

The analysis in this chapter makes use of the DEA method, focusing on the

direct approach, to calculate the energy efficiency sustainability index among

the EU-28 members. It considers one of the models developed by Zhou and Ang

(2008), who measure the energy efficiency performances of 21 OECD countries.

The reason of using this particular model is due to the fact the analysis focuses

on the technical efficiency of energy consumption. The technical efficiency is

defined as the ability of a DMU to obtain maximum outputs (or minimum

inputs) from a given set of inputs (or outputs), Robaina-Alves et al. (2015);

Moutinho et al. (2017).

The principal advantage of using the DEA method is its flexibility in

incorporating factors which a priori are not comparable (both inputs and

outputs). That makes the results easily interpretable. As Balk et al. (2017)

illustrate, the DEA method searches for the most favourable weight when

evaluating a production unit, by constructing a virtual aggregate input to

output productivity ratio, each constructed as a linear combination of observed

values.

Assume that the set of DMUs consists of DMUk, k = 1, 2, . . . ,K. Let

xnk = (x1k,x2k, . . . ,xNk), elk = (e1k, e2k, . . . , eLk), ymk = (y1k,y2k, . . . ,yMk)

and ujk = (u1k,u2k, . . . ,uJk) are the vectors of non-energy inputs, energy
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inputs, desirable outputs and undesirable outputs, respectively. The efficiency

score of DMUi can be obtained by solving model (5.7) below:

min θi

s.t.

K∑
k=1

zk xnk ≤ xni , n = 1, . . . , N

K∑
k=1

zk elk ≤ θi eli , l = 1, . . . , L

K∑
k=1

zk ynk ≥ ymi , m = 1, . . . ,M

K∑
k=1

zk unk = uji , j = 1, . . . , J

zk ≥ 0 , k = 1, 2, . . . ,K (5.7)

It can be seen that [model (5.7)] attempts to proportionally contract the

amouns of energy inputs as much as possible for a given level of non-energy

inputs, desirable and undesirable outputs. It provides an aggregated and

standardized index for measuring energy efficiency performance (Zhou and

Ang (2008)). The higher the value, the better the situation for each DMU.

The maximum possible value is one, which implies that the DMU is relatively

efficient, regarding the rest of DMUs. In contrast, if the value of the index

is zero (the minimum possible value), it implies that the DMU is relatively

inefficient.

It is important to remark that the DEA approach has certain limitations,

despite the attractiveness of its application. More specifically, the flexibility

in weight explained above can lead to implausible results, inconsistent with

any prior knowledge of the production process (Balk et al. (2017)); in that
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sense the results must be analysed carefully and comparing them with the

theoretical framework and previous research. In this case, the problem is not

encountered and the results are consistent. In addition, it does not allow the

comparison of different results “externally”; the results of the analysis can be

only compared “internally”, i.e. it is not possible to compare the findings with

any other dataset which would offer other different scores. DEA measures the

relative efficiency of DMUs that perform similar types of functions and have

identical goals and objectives; for instance, if we analyse a particular group of

countries, we may not compare these results with any other groups, even in

the case of introducing only one additional country. Apart from this minor

inconvenience, the use of DEA provides the flexibility of the application: it is

not necessary to explicitly specify a priori a production function that explains

how the inputs and outputs of the production units are linked to each other

(Cecchini et al. (2018)). Furthermore, DEA has emerged in recent years as a

highly sophisticated method for assessing efficiency measures, and particularly,

environmental efficiency across countries and economic sectors (Robaina-Alves

et al. (2015)).

Once the methodology is clarified, the index is obtained. The data used

to obtain it are grouped into the following categories: two types of inputs

(non-energy and energy inputs) as well as two types of outputs (desirable and

undesirable outputs). The data are available on the World Bank website5. The

factors are measured as follows:

• Non-energy inputs:

– Labour force (total, people ages 15 and older).

– Gross capital formation (% of GDP).

5https://databank.worldbank.org
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5. Empirical part: environmental applications

• Energy inputs:

– Group 1: Energy use (kg of oil equivalent per capita).

– Group 2:

∗ Fossil fuel energy consumption (% of total).

∗ Renewable energy consumption (% of total).

• Desirable output: GDP per capita, PPP (constant 2011 international $).

• Undesirable output: CO2 emissions (kt).

In the case of energy inputs, we have two groups of variables: first, we

obtain the efficiency scores using group 1 (with only one energy input: energy

use) and then using group 2 (with two energy inputs: energy consumption

distinguishing between fossil and non-fossil energies). The final variable is

the average of these two energy efficiency scores. The reason for building the

variable as above is to balance the energy efficiency results for dealing with

the weight flexibility problem previously mentioned.

The analysis will provide the results for the energy efficiency sustainable

index (E) across the different members of EU-28 (excluding Malta because of

the unavailability of data) for each year, from 1995 to 2014 (last data available

for CO2 emissions). Variable E is called as sustainable or environmental energy

efficiency because of the incorporation of the undesirable output, CO2 emissions,

which allows to obtain the energy efficiency scores taking into account the

ecological effect of the economy on the environment. The results are reported

in Tables 5.8 and 5.9. In addition, Figures 5.1 and 5.2 display the average of

the period for each country and the average of each year for the total EU-28

(excluding Malta), respectively.
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5.2. Model 2: the STIRPATE model in the European Union. Different uses of the
residualization procedure
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Figure 5.1: Average of Energy Efficiency Scores for each member: EU-28
(excluding Malta), 1995-2014.
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Figure 5.2: Average of Energy Efficiency Scores for each year: EU-28
(excluding Malta), 1995-2014.
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5. Empirical part: environmental applications

The results of this section indicate that the most energy efficient countries

are Germany and Luxembourg, followed by the Netherlands, the UK and

Belgium. By contrast, the least energy efficient member state is Bulgaria,

followed by Slovak Republic, Lithuania and Latvia. Therefore, it is obvious

that there are two groups of countries with regard to the efficiency of their

energy sector, so it may be thought that there is a nexus between energy

efficiency and income. In other words, while the most efficient countries are

in the group of the countries with higher GDP per capita on average, the

inefficient energy economies are in the group with smaller GDP per capita.

With a lower GDP per capita, the country has fewer available resources to

invest in new energy technologies and environmentally friendly technologies.

The findings also indicated that the energy efficiency scores did not change

dramatically through the time span under consideration (they took values

between 0.6 and 0.7), but it could be seen that the most efficient years were

those of 2007, 2008 and 2009, while the worst values were at the beginning

of the time period. The controversial issue here is the most efficient years,

because we do not have an increasing trend regarding the efficiency scores:

the results present an increasing trend until 2009, when the values started to

decrease again. A potential explanation could be the economic (both financial

and sovereign debt) crisis in Europe during those years.

5.2.2 The STIRPATE model for Portugal, Spain, Italy and

Greece

The dataset, except E, which has been calculated in previous subsection, is

obtained from the World Bank website6, and it includes data on each particular

6https://databank.worldbank.org
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5.2. Model 2: the STIRPATE model in the European Union. Different uses of the
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country of the EU (Portugal, Spain, Italy and Greece) for the period 1995-2014.

The information regarding the variables used in this example is shown in Table

5.10.

The STIRPAT model that is going to be used in this section is the following:

I = β1 + β2P + β3A + β4T + β5E + u, (5.8)

where u is the random disturbance, which is supposed to be spherical.

Because of the introduction of variable E, the model has been renamed

as the STIRPATE to differentiate it from the original STIRPAT model. As

Kilbourne and Thyroff (2020) suggest, future research on the STIRPAT should

consider expanding the model to add renewable energy to the equation, and this

new variable E includes not only the use of renewable energy but also other

interesting variables that lead to the reaching of conclusions about a complex

environmental variable.

Regarding the expected signs of each variable, those of variables P and T

are controversial, and this idea has already been expressed in Section 5.1.

In the case of affluence (variable A), in Section 5.1 above it was argued that

if the researcher is studying a group of countries with different characteristics,

the GDP will show the level of development or wealth of each one; the higher

the GDP, the greater the possibilities of devoting resources to climate targets

and the expected sign for the parameter will be negative. But in the case of

the European Union and, particularly, in the case of Portugal, Spain, Italy and

Greece, this fact cannot be applied. Because of their similarities, the GDP

does not show the level of development of each one (they have similar level of

development), but shows the real production of the country analysed: higher

production implies more pollution going into the atmosphere; the attitudes

in each country are similarly environmentally friendly, indeed this group
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5.2. Model 2: the STIRPATE model in the European Union. Different uses of the
residualization procedure

of countries invest similar resources on the preservation of the environment.

Hence, the expected sign of the parameter will be positive. Additionally, in this

example variable A is not per capita GDP but the absolute value of the GDP.

The use of GDP instead of GDP per capita as variable A aims to overcome

the following: from an interpretative point of view, a very important issue of

the economy is ignored when using the GDP per capita since the distribution

of income and the level of development of each region are disregarded when all

people are considered equal in terms of earnings, thus it would be better to

use GDP instead of GDP per capita. This fact is explained in depth in Section

5.3 below.

Finally, the efficiency scores (variable E) obtained in Subsection 5.2.1

are expected to have a negative parameter: environmental efficiency may be

interpreted as a variable that will influence negatively to emissions (more

environmental energy efficiency implies less pollution). This example uses

variable E instead of T2 from Section 5.1 above to provide a new important

variable for the STIRPAT model, redefining it as the STIRPATE model.

The minimum posible value (zero) represents the less environmentally energy

efficient countries, and the higher possible value of this variable (one) represents

the higher environmentally energy efficient countries, hence it is clear that the

obtained efficiency is related to the CO2 intensity (kg per kg of oil-equivalent

energy use). As was said in Subection 5.2.1, the higher efficient countries,

the less polluting countries, therefore T2 from Section 5.1 above could be

interpreted as the opposite of variable E. This idea confirms the negative

expected sign of the corresponding parameter of variable E.

The results of the estimation of model (5.8) for the four countries are

presented in Tables 5.11 to 5.14. Additionally, with regard to the validation of
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5. Empirical part: environmental applications

the model of each country:

• In the case of Portugal, the model does not present heteroscedasticity:

the White test concludes in not rejecting the null hypothesis of

homoscedasticity (p value higher than 0.05).

Regarding collinearity, there is non-essential collinearity for variables A

and E (CV(A) = 0.060 and CV(E) = 0.054), hence, these variables are

centred: A′ = A −A and E′ = E − E, where A and E represent the

mean of each particular variable. Paying attention to the VIF values

in the case of Portugal, the reader will note that the model presents

worrying essential collinearity, and the problematic variables are, in this

case, P and T.

• In the case of Spain, the model does not present heteroscedasticity as

well: the White test concludes in not rejecting the null hypothesis of

homoscedasticity (p value higher than 0.05).

Regarding collinearity, there is non-essential collinearity for variable E

(CV(E) = 0.030), hence, this variable is centred: E′ = E − E. Paying

attention to the VIF values, it is clear that the model for Spain presents

strong essential collinearity, and the problematic variable is T.

• In the case of Italy, there is no heteroscedasticity problems: the White

test concludes in not rejecting the null hypothesis of homoscedasticity (p

value higher than 0.05).

Regarding collinearity, there is non-essential collinearity for variables

A, T and E (CV(A) = 0.045, CV(T) = 0.059 and CV(E) = 0.031),

hence, these three variables are centred: A′ = A−A, T′ = T−T and
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Table 5.11: Results of model (5.8). Portugal.

ORIGINAL MODEL VIFi

Intercept
Estimator 69.06

-
(s.d.) (18400)

P
Estimator 10500 *

11.379
(s.d.) (4082)

A′
Estimator -1301000000

5.360
(s.d.) (795500000)

T
Estimator 1101 *

11.646
(s.d.) (391.3)

E′
Estimator -110900 ***

2.451
(s.d.) (22120)

CN 2.751
Determ. corr. matrix 0.038

R2 0.942
F statistic 61.03 ***

***, * Statistically significant at 0.001 (99.9% confidence level) and at 0.05 (95% confidence level),
respectively.

E′ = E − E. Paying attention to the VIF values, there is no strong

essential collinearity: all values are lower than 10.

• In the case of Greece, the model does not present heteroscedasticity:

the White test concludes in not rejecting the null hypothesis of

homoscedasticity (p value higher than 0.05).

Regarding collinearity, there is no non-essential collinearity. Paying

attention to the VIF values, the model presents essential collinearity, and

here there is only one problematic variable: A.

As stated earlier, in the cases of Portugal, Spain and Greece the model

presents worrying essential collinearity, which is not the case for Italy. Therefore,
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5. Empirical part: environmental applications

Table 5.12: Results of model (5.8). Spain.

ORIGINAL MODEL VIFi

Intercept
Estimator -30180

-
(s.d.) (39850)

P
Estimator 21010 *

9.197
(s.d.) (88295)

A
Estimator 1237000000

9.870
(s.d.) (2362000000)

T
Estimator 802.6 **

23.337
(s.d.) (242.4)

E′
Estimator -477000 **

2.783
(s.d.) (151700)

CN 87.921
Determ. corr. matrix 0.011

R2 0.967
F statistic 109.5 ***

***, **, * Statistically significant at 0.001 (99.9% confidence level), at 0.01 (99% confidence level)
and at 0.05 (95% confidence level), respectively.

Table 5.13: Results of model (5.8). Italy.

ORIGINAL MODEL VIFi

Intercept
Estimator 441300 ***

-
(s.d.) (6374)

P
Estimator -40140 *

1.221
(s.d.) (14440)

A′
Estimator -1219000000

3.975
(s.d.) (5164000000)

T′
Estimator 1145 **

6.303
(s.d.) (365.3)

E′
Estimator 171400

2.754
(s.d.) (267000)

CN 4.875
Determ. corr. matrix 0.092

R2 0.853
F statistic 21.74 ***

***, **, * Statistically significant at 0.001 (99.9% confidence level), at 0.01 (99% confidence level)
and at 0.05 (95% confidence level), respectively.
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Table 5.14: Results of model (5.8). Greece.

ORIGINAL MODEL VIFi

Intercept
Estimator 50630 ***

-
(s.d.) (8265)

P
Estimator 11160 **

4.161
(s.d.) (3300)

A
Estimator 831400000

10.742
(s.d.) (636200000)

T
Estimator 636.4 **

7.339
(s.d.) (200.9)

E
Estimator -23590

4.993
(s.d.) (26080)

CN 56.641
Determ. corr. matrix 0.033

R2 0.934
F statistic 52.74 ***

***, ** Statistically significant at 0.001 (99.9% confidence level) and at 0.01 (99% confidence level),
respectively.

residualization is going to be applied for the cases of Portugal, Spain and Greece.

In particular, the procedure is going to be applied in three different ways:

• For the case of Portugal, the typical procedure is applied: variable

T (which is the one with highest VIF) will be residualized from the

rest of explanatory variables of the model, using the following auxiliary

regression:

T = α1 + α2P + α3A
′ + α4E

′ + v, (5.9)

whose OLS estimation leads to residuals eT.

• For the case of Spain, only one of the explanatory variables will be used

in the residualization procedure to isolate the effect of T (which is the
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5. Empirical part: environmental applications

one with highest VIF) from it, using the following auxiliary regression:

T = α1 + α2A + v, (5.10)

whose OLS estimation leads to residuals eT.

• For the case of Greece, one external variable will be used to isolate the

effect of variable A (which is the variable with highest VIF), using the

following auxiliary regression:

A = α1 + α2 Population + v, (5.11)

where Population is the absolute value of people living in Greece for

each year7. Its OLS estimation leads to residuals eA.

Therefore, model (5.8) for each country will be modified in the following

ways:

PORTUGAL → I = γ1 + γ2P + γ3A
′ + γ4eT + γ5E

′ + w. (5.12)

SPAIN → I = γ1 + γ2P + γ3A + γ4eT + γ5E
′ + w. (5.13)

GREECE → I = γ1 + γ2P + γ3eA + γ4T + γ5E + w. (5.14)

The reason of using the residualization procedure in three different ways is

to show the reader the possibilities of the methodology. Apart from mitigating

strong essential collinearity, the use of variations of the procedure leads to

different interpretations of the variables, depending on the goals and interests

of the researcher. For this example:

• In the case of Portugal, the original method is applied. All the rest of the

explanatory variables have been included in the auxiliary regression. This

7Note that, in this section, variable P is the population growth.
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5.2. Model 2: the STIRPATE model in the European Union. Different uses of the
residualization procedure

makes sense from an interpretative point of view because technology will

be isolated from GDP (the level of wealth), the population growth and the

environmental energy efficiency (which could be related to technological

improvements); hence, variable eT will represent the real and isolated

influence of the level of the industry on the environment.

• In the case of Spain, variable T is isolated only from the effect of the

GDP, to show the influence on the environment of the part of industry

not related to the wealth of the country.

• In the case of Greece, an interesting alternative is applied. Although the

use of an external variable in the auxiliary regression does not ensure

the mitigation of essential collinearity in the model (the problem appears

among the explanatory variables used in the original model), in this case

the total population and population growth are closely interrelated, so if

the variable P (population growth) is related to some other explanatory

variable, it could be interpreted that the total population is also related

to it. This fact is demonstrated by applying residualization: in the

auxiliary regression, the variable “total population” is used instead of

P (population growth), and the residuals obtained from the auxiliary

regression allow mitigation of the problem in the model (see Table 5.17).

Tables 5.15, 5.16 and 5.17 display the results of the estimation of models

(5.12), (5.13) and (5.14), respectively.

Now, regarding strong collinearity problems, the reader will see that they

are mitigated: the VIFs indicate there are no problematic variables, the

determinant of the correlation matrix as well, and the condition number is

lower than 30 in all cases.
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5. Empirical part: environmental applications

Table 5.15: Results of model (5.12): Portugal.

RESIDUALIZATION
VIFiModel (5.12)

Intercept
Estimator 51810 ***

-
(s.d.) (523.5)

P
Estimator 21270 ***

1.375
(s.d.) (1419)

A′
Estimator 561400000

1.649
(s.d.) (441200000)

eT
Estimator 1101 *

1.000
(s.d.) (391.3)

E′
Estimator -134200 ***

2.108
(s.d.) (20510)

CN 2.407
Determ. corr. matrix 0.447

R2 0.942
F statistic 61.03 ***

***, * Statistically significant at 0.001 (99.9% confidence level) and at 0.05 (95% confidence level),
respectively.

Regarding the final results of each country:

• In the case of Portugal (Table 5.15):

– For population, the corresponding parameter is positive and

individually significant. It has been said that both signs (positive or

negative) are consistent with theory. The conclusion that could be

reached here is that the traditional perspective of Malthus (1973)

(expressed in Section 5.1), who proposes that the population exerts

pressure on the environment, is more consistent with the results

obtained than the theory of Boserup (1981) (also expressed in

Section 5.1).

– Regarding affluence, the corresponding parameter is positive (as
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Table 5.16: Results of model (5.13): Spain.

RESIDUALIZATION
VIFiModel (5.13)

Intercept
Estimator -60380

-
(s.d.) (44420)

P
Estimator 21010 *

9.197
(s.d.) (8295)

A
Estimator 11460000000 ***

4.944
(s.d.) (1672000000)

eT
Estimator 802.6 **

6.463
(s.d.) (242.4)

E′
Estimator -477000 **

2.783
(s.d.) (151700) )

CN 7.433
Determ. corr. matrix 0.039

R2 0.967
F statistic 109.5 ***

***, **, * Statistically significant at 0.001 (99.9% confidence level), at 0.01 (99% confidence level)
and at 0.05 (95% confidence level), respectively.

expected) but is non-significant, hence the conclusion that could be

reached here is that affluence is not a relevant factor.

– The parameter of eT is positive and individually significant. As for

variable P, both signs are acceptable, and a positive sign agrees

with the perspective of Malthus (1973).

– Finally, the corresponding parameter for variable E is negative,

which is consistent with expectations and with the correlation matrix
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Table 5.17: Results of model (5.14): Greece.

RESIDUALIZATION
VIFiModel (5.14)

Intercept
Estimator 34810 **

-
(s.d.) (11720)

P
Estimator 9541 ***

2.061
(s.d.) (2282)

eA
Estimator -1159000000

6.257
(s.d.) (764700000)

T
Estimator 999.1 ***

3.486
(s.d.) (135.6)

E
Estimator 13520

2.792
(s.d.) (19220)

CN 20.605
Determ. corr. matrix 0.056

R2 0.936
F statistic 54.73 ***

***, ** Statistically significant at 0.001 (99.9% confidence level) and at 0.01 (99% confidence level),
respectively.

(5.15), and it is individually significant.

I P A′ T E′

I 1.000

P 0.765 1.000

A′ 0.206 −0.239 1.000

T 0.893 0.704 0.449 1.000

E′ −0.094 0.512 −0.621 −0.047 1.000


. (5.15)

• In the case of Spain (Table 5.16), the results are very similar to those of

Portugal:

– For population, the corresponding parameter is positive and

individually significant, so the traditional perspective of Malthus
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(1973) is supported.

– Regarding affluence, the corresponding parameter is positive, as it

was expected, and it is individually significant.

– The parameter of eT is positive and individually significant.

– Finally, the parameter of variable E is negative (as expected) and

individually significant as well, although in the case of Spain it is not

consistent with the correlation matrix (5.16). However, although the

expected sign (paying attention only to the correlation matrix) was

positive, it makes no sense to argue that environmental efficiency

has a positive impact on the environment, therefore the theoretical

interpretation of the parameter carries more weight.

I P A T E′

I 1.000

P 0.923 1.000

A 0.715 0.538 1.000

T 0.950 0.865 0.850 1.000

E′ 0.551 0.527 0.791 0.727 1.000


. (5.16)

• In the case of Italy (Table 5.13):

– For population, the corresponding parameter is negative and

individually significant. As it has been said, both signs are

accepted. The conclusion that could be reached here is that for

Italy, population affects pollution negatively, which supports the

idea of Boserup (1981) expressed in Section 5.1; thus, Italy could

be interpreted as more technologically innovative. This sign is

consistent not only with expectations but also with the correlation
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matrix (5.17).



I P A′ T′ E′

I 1.000

P −0.431 1.000

A′ 0.629 0.113 1.000

T′ 0.862 −0.127 0.832 1.000

E′ 0.754 −0.213 0.577 0.784 1.000


. (5.17)

– Regarding affluence, the corresponding parameter is negative, which

is inconsistent with expectations, but it is non-significant, hence,

the conclusion is that affluence is not a relevant factor.

– The parameter of T is positive and individually significant, as for

the previous countries.

– The estimated parameter of variable E has a positive sign, which

is consistent with the correlation matrix (5.17), but not with the

theoretical interpretation. However, the corresponding parameter of

efficiency is not individually significant, thus the inconsistency with

theory and expectations is supported by the results of the model.

• In the case of Greece (Table 5.17):

– For population, as in Portugal and Spain, the corresponding

parameter is positive and individually significant, supporting the

theory of Malthus (1973). This sign is also consistent with the
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correlation matrix (5.18).

I P A T E

I 1.000

P 0.656 1.000

A 0.712 0.088 1.000

T 0.918 0.432 0.840 1.000

E 0.724 0.563 0.710 0.693 1.000


. (5.18)

– Regarding affluence, for the case of Greece the results are similar to

Italy: the parameter is negative and it is not individually significant,

hence the inconsistency of this value is supported by the results of

the model.

– The parameter of T is positive and individually significant, as for

the rest of countries.

– Finally, the result for variable E is similar to those of Italy: the

parameter has a positive sign, which is consistent with the correlation

matrix (5.18) but inconsistent with the theoretical interpretation,

however, the parameter is not individually significant, thus the

inconsistency with theory and expectations is supported by the

results of the model.

Previously, in subsection 5.2.1, it was concluded that there is a nexus

between energy efficiency and income: the most efficient countries are in the

group of the countries with higher GDP per capita on average and the inefficient

energy economies are in the group with smaller GDP per capita. Nevertheless,

the results of the STIRPATE models studied have not found a high relationship

between efficiency and GDP per capita. The correlation between variables A
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and E is lower than 0.8 (in absolute value) for the four countries in the study (see

expressions (5.15), (5.16), (5.17) and (5.18)). In any case, other relationships

have been detected among the explanatory variables and residualization has

been applied for mitigating essential collinearity problems in the models of

Portugal, Spain and Greece in three different ways, as explained above. After

modifying these three models, interesting conclusions about the signs and the

importance of the parametes of STIRPATE models have been achieved. As

a whole, taking into account the above results, it can be concluded that the

STIRPATE model is successful.

5.3 Model 3: the STIRPAT model in China. New

interpretations of the variables

The third model is also based on the STIRPAT model, using data from China

(1990-2014), the most polluting country in the world, as revealed by the World

Bank, with a CO2 emissions value of 10291926.878 kilotonnes (kt) in 2014.

The dataset has been extracted from the World Bank website8 and information

regarding the variables is presented in Table 5.18.

With regard to the expected signs of the variables, P and T are controversial,

and the idea has been expressed in Section 5.1. The variable that is worth to

mention is GDP (both GDP per capita, Apc, and total GDP, A). In Section

5.1, the expected sign was negative, while in Section 5.2, the expected sign was

positive. In this example, the second perspective is more appropriate: it has to

be taken into account that in this section only one country is observed and this

particular country is China. By observing data from China without considering

more countries of the world, it could be interpreted that higher GDP, higher

8https://databank.worldbank.org
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domestic production, implies more pollution going into the atmosphere, thus,

the expected sign for this parameter will be positive.

The traditional specification of the STIRPAT model is:

I = β1 + β2 P + β3 Apc + β4 T + u, (5.19)

where u is the random disturbance, which is supposed to be spherical.

Although the starting point is model (5.19), the following specification is

proposed:

I = γ1 + γ2 P + γ3 eA + γ4 T + w, (5.20)

where eA are the residuals of the following auxiliary regression:

A = α1 + α2 P + α3 T + v. (5.21)

The use of model (5.20) instead of model (5.19) intends to overcome the

following disadvantages:

• Traditionally, per capita GDP has been used to avoid the existing

dependency between the GDP and the population. However, as the

reader will see in the following correlation matrix, the linear relationship

between per capita GDP and population is higher than the relationship

between GDP and population, i.e. the linear relationship is not mitigated

but increased.

I P Apc A T

I 1.0000

P 0.8896 1.0000

Apc 0.9910 0.9111 1.0000

A 0.9905 0.9081 0.9999 1.0000

T −0.5464 −0.6194 −0.6296 −0.6320 1.0000


. (5.22)
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• In STIRPAT studies, Apc is usually taken as the variable that represents

affluence. However, the use of Apc presents a disadvantage. From an

interpretative point of view, a very important issue of the economy is

ignored when using the per capita GDP (the ratio between GDP and

population) since the distribution of income and the level of development

of each region of the country are disregarded when all people are

considered equal in terms of earnings, as has been noted in Section

5.2. An increase in the GDP per capita does not necessarily mean the

country is more developed; it can also indicate that the richest people in

the country have increased their income.

Furthermore, variable T is also included in the auxiliary regression (5.21)

in order to isolate variable A from the industry sector as well.

First, the models have been validated. In relation to heteroscedasticity, the

White test concludes in not rejecting the null hypothesis of homoscedasticity

(p value higher than 0.05).

The VIF values from model (5.19) are: VIFP = 6.010, VIFApc = 6.137

and VIFT = 1.691, hence in terms of essential multicollinearity, this model

does not present worrying problems. Therefore, the residualization procedure

in this example is applied for empirical purposes. In any case, non-essential

collinearity appears since CV(P) = 0.053 and CV(T) = 0.026 and the CN has

a high value (see Table 5.19).

In order to mitigate the existing non-essential collinearity in model (5.20),

the variables population and technology have been centred. Thus, model (5.20)

is modified as follows:

I = γ1 + γ2 P′ + γ3 eA + γ4 T′ + w, (5.23)
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where P′ = P−P and T′ = T−T.

Furthermore, because of the use of residualization, the relationship between

GDP and population is suppressed. In this case, the relationship between GDP

and industrialization (variable T) is also deleted. Indeed, eA coincides with the

part of GDP that has no relationship with population and industrialization. If

Apc could be interpreted as a tool for measuring the enrichment of the people

and not the enrichment of the country, eA would be interpreted as a tool that

measures whether the countries, and not the people, are richer in economic

terms that are unrelated to industry.

The results obtained by using OLS estimation of models (5.19) and (5.23)

are shown in Table (5.19).

With model (5.23), it is verified that the degree of the existing near

multicollinearity (essential and non-essential) is not worrisome. The values of

VIF are lower than 4 (VIFP′ = 1.622, VIFeA = 1.000 and VIFT′ = 1.622).

Taking into account the results obtained, the reader will observe the

following:

• In model (5.19), the intercept has a parameter that is significantly

different from zero and has a negative value, i.e. if population and

GDP were null, the CO2 emissions would be negative. This situation is

corrected with the model (5.23).

• In model (5.19), the estimated parameter for population is not

significantly different from zero; by contrast, in model (5.23), the

parameter is significant, and it has a positive value, i.e. when the

population increases, the CO2 emissions also increase. This is in line

with the economic theory and the correlation matrix.
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• In models (5.19) and (5.23), the GDP parameter (obtained from Apc and

eA, respectively) is significantly different from zero and has a positive

value. However, the interpretations of the two estimated parameters are

different. While in model (5.19) it can be concluded that the increase in

the enrichment of the people (supposing all people are equal in terms of

earnings) implies an increase in the CO2 emissions, in model (5.23), it

can be concluded that the increase in the wealth of the country when the

production of goods and services is unrelated to industrialization entails

an increase in CO2 emissions.

• In model (5.19), the estimated parameter for industrialization is

significant and has a positive value, which is contrary to the sign expected

by observing the correlation matrix. However, according to the theory

both signs were acceptable. In any case, in model (5.23), this parameter

is not significantly different from zero, so it can be concluded that

technology is not a relevant factor for this study.

5.4 Discussion

Although the dependence between the main explanatory factors of

environmental damage is evident, it is usually neglected in the scientific

literature. In this dissertation, residualization has been proposed as an

alternative to be used not only with the goal of mitigating collinearity problems,

but also with the objective of analysing the causal effects of the driving forces

affecting collinearity together with new interpretations of the variables affected

by the procedure. Throughout the chapter, the main goal has been to clarify

the role of collinearity in environmental models and to show how results are
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Table 5.19: Results of STIRPAT models (5.19) and (5.23).

OLS RESIDUALIZATION
Original model Transformed model

(5.19) (5.23)

Intercept
Estimator -10287191 * 5405875 ***

(s.d.) (3667784) (53166)

P
Estimator -1790259

(s.d.) (1861596)

P′
Estimator 35773988 ***

(s.d.) (1004251)

Apc
Estimator 1837647 ***

(s.d.) (77813)

eA
Estimator 1300875 ***

(s.d.) (57278)

T
Estimator 409211 ***

(s.d.) (80784)

T′
Estimator 24250

(s.d.) (82153)

CN 74.890 2.139
R2 0.9924 0.9918

F statistic 918.2 *** 851.2 ***

***, * Statistically significant at 0.001 (99.9% confidence level) and at 0.05 (95% confidence level),
respectively.

influenced by the methodology of estimation selected. Since environmental

research is used for policimaking, the results of this chapter mean that the use

of alternative methodologies such as residualization may allow to obtain policy

recommendations based on firm statistical results and not subject to statistical

instability when serious collinearity appears. This idea can be extended to

many different fields.

The first empirical analysis (Section 5.1) has addressed collinearity with

different methodologies to analyse how they affect the estimations. Although

ridge regression mitigates collinearity problems mechanically and presents
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the smallest MSE, this method presents various important disadvantages

(see Section 2.3.1). In turn, residualization maintains the initial properties

of the model (experimental F , sum of squares and R2) and it mitigates

strong collinearity problems, although it has the highest MSE. As stated in

the corresponding section, the use of biased methods has some advantages,

so the researcher has to decide if it is worth sacrificing the unbiased

estimations in support of reducing the variance of the predicted values and

improving the overall prediction accuracy. Once the decision to sacrifice the

unbiased estimations is made, the researcher has to choose between obtaining

interesting and interpretable results as well as mitigating collinearity problems

(residualization) or using traditional methodologies such as ridge regression

that obtain findings that are difficult to interpret.

The second empirical analysis (Section 5.2) studies two important issues: the

evolution of the countries of the European Union regarding the environmental

energy efficiency and whether this efficiency could be interpreted as a relevant

variable in the traditional STIRPAT model. With this two objectives, the

efficiency scores were obtained and a renewed version of the STIRPAT has been

studied: the STIRPATE model. The efficiency results for the whole European

Union indicate that there is a nexus between energy efficiency and income.

Although this relationship is evident in Subsection 5.2.1, the results of the

STIRPATE model in Subsection 5.2.2 did not find a high relationship between

efficiency and GDP per capita in the cases of Portugal, Spain, Italy and Greece.

The correlation between variables A and E is lower than 0.8 for the four

countries in the study. In any case, residualization is applied for mitigating

essential collinearity problems in the models of Portugal, Spain and Greece in

three different ways, as explained earlier, to show the reader the possibilities

of the application of the residualization procedure. After modifying these
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three STIRPATE models, interesting conclusions about the performance of the

STIRPATE model have been achieved. As a whole, regarding the importance

of variable E, the results obtained support the success of the inclusion of this

variable in the STIRPAT model instead of CO2 intensity (the fourth variable

from Section 5.1).

Finally, the third empirical analysis (Section 5.3) uses the traditional

STIRPAT model to show the reader the advantage of using residualized

variables. In this case, there are no strong essential collinearity problems, so

the methodology is applied for empirical purposes. By doing so, it is clear

that the application of residualization leads to conclusions about the model

that differ from the original even though both models (the original and the

residualized) have several identical characteristics. The residualized model can

answer questions that could not be answered with the initial model, apart from

reducing the degree of collinearity, but it has to be taken into account that

residualization is not always applicable because the interpretations of the new

estimated coefficients are not always simple.
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Chapter 6

Conclusions

6.1 Discussion and global conclusions

The dissertation presented here aims to clarify the role of multicollinearity in

an econometric model and proposes residualization as a good methodology not

only to deal with the problem but also to achieve another type of interpretation

of the explanatory variables from the model under consideration.

Chapter 1 gave the reader an initial introduction to the problem and offered

a brief explanation of the methodology being presented. Chapter 2 then looked

in depth at the multicollinearity problem and the traditional methodologies

used in this field. Chapters 3 and 4 explain the methodology further; Chapter

3 focuses its attention on earlier works in the field: criticism of the method and

methodological preliminaries, while Chapter 4 presents the generalization of

the method, together with the justification and properties of the residualization

procedure. These two chapters and in particular Chapter 4, are the main

contribution of this Thesis. Finally, Chapter 5 presents the empirical part: three

specific models on environmental economics, which present strong collinearity
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problems.

As stated in the Introduction (Chapter 1), the main goal in an econometric

model is to estimate the parameters which accompany the explanatory variables.

When any relationship exists between explanatory variables, it may be said

that it exists collinearity or multicollinearity in the model. In general, it could

be said that multicollinearity represents a big problem when the main goal of

the researcher is to study the impacts of some group of explanatory variables

on the selected independent variable but, if the goal is simply to predict the

explained variable from a set of variables, then it is not significant. Of course,

it is important to remark that the importance of multicollinearity depends on

the specific model and the specific study the researcher wants to perform, and

the proper identification of the problem is a very important initial step.

Chapter 2 of this dissertation further analysed the problem of

multicollinearity: concept and types of collinearity, causes and consequences of

this, detection of the problem and, finally, traditional solutions to collinearity.

It has been pointed out that collinearity always exists in an econometric

model because the researcher is modelling a reality in which, generally, some

type of relationship always appears, so the analyst in practice always has some

degree of collinearity. The controversial issue is to detect whether this fact

represents a real problem or whether it does not affect the research.

Two principal types of multicollinearity have been distinguished: perfect

and near, claiming that near or imperfect collinearity is the most complex and

difficult to manage because it allows the researcher to estimate the model, in

contrast to perfect multicollinearity, but it leads to unstable estimations. In

addition, near multicollinearity, regarding the relationships among explanatory

variables, may be split into two types: non-essential and essential collinearity.
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The principal consequences of near multicollinearity are: inflated variances

of the estimators, tendency to consider estimated parameters as non-significant,

high R2 and high sensitivity of the estimations. Basically, these characteristics

mean the researcher cannot separate the individual effects of the independent

variables and the results are distorted. Thus, it is very important to detect

the existing multicollinearity, and to check what type of collinearity appears

in the study in question in order to apply the best solution. Section 2.2 of

Chapter 2 outlined some methods to check the existence of the problem, such

as variance inflation factor (VIF), among others. Once it is verified there

is strong collinearity, the researcher must make decisions about the path to

take. To sum up, the analyst may delete some variables if the study allows,

may create new circumstances in which collinearity is mitigated or may use

alternative methodologies that allow the problem to be mitigated. This last

path is the one that concerns us in this dissertation. Some methods have been

explained in Section 2.3, such as ridge regression or raise regression. The most

commonly-used one is the well-known ridge regression, but this methodology

presents some deficiencies, as has been pointed out throughout this Thesis.

On the other hand, it was anticipated at the outset that the main goal of

the dissertation is to present residualization as an alternative to the traditional

methodologies in dealing with multicollinearity. This methodology has been

previously applied in different fields, but has not been developed explicitly. The

lack of specification and the consequent misunderstanding have led to some

criticism of it in the literature, as was commented in Chapter 1 and clarified

in Chapter 3. Residualization has been explained throughout this Thesis:

its antecedents and the method, properties and application (see Chapters

3 to 5). With the principal objective of mitigating collinearity, it has been
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demonstrated that with residualization it is possible not only to alleviate the

problem but also to obtain different interpretations of the modified variables,

so this procedure allows the researcher to apply the method with different

purposes: to answer questions regarding the interpretation of the coefficients

that cannot be performed by the original model. In the generalization of the

procedure given in Chapter 4, the properties of the methodology were studied

further, leading to the following conclusions (see Section 4.5):

• Estimations and inference:

– The coefficient of the residualized variable does not change, but

the interpretation of the variable does: it will represent the part

of the original variable that has no relationship with the rest of

explanatory variables of the model (the principle ceteris paribus is

strictly fulfilled) if the rest of the independent variables are included

in the auxiliary regression.

– The inference related to the individual significance of the residualized

variable is still the same.

– The coefficients of the non-residualized variables change, however

the interpretations are still the same.

– The inference related to the individual significance of the

non-residualized variables is different.

– The value of the estimated parameters of the non-residualized

variables are the same as in the model which does not include

the modified variable.

– If only some of the independent variables are included in the auxiliary

regression, then the estimations of the parameters of the explanatory
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variables not included in it also remain unchanged.

• Global properties:

– The sum of square residuals of the original model and the

residualized model are the same.

– The estimate of the variance of the random disturbance does not

change.

– The coefficient of determination, R2, is still the same.

– The global significance test remains unchanged.

– The original model and the residualized model provide the same

prediction.

In light of the foregoing, it can be concluded that residualization leads to

conclusions about a model which is different to the original even though both

have several identical characteristics. It means, as a whole, the researcher is

estimating the initial model but deleting redundant information regarding to

the set of explanatory variables; looking at it in detail, it has some new variables

(the residualized variables) that have a different interpretation. Furthermore,

collinearity problems are mitigated and, in the majority of the cases, the

application of residualization leads to better results in terms of individual

significance and consistency with theory (the signs of the estimated parameters).

These facts are shown in the empirical part (Chapter 5), specifically, in Section

5.1, which compares residualization with three additional methodologies:

ridge regression, LASSO regression and raise regression. Section 5.2 mainly

uses residualization to mitigate collinearity problems, but the residualization

procedure is applied in three different ways to show the reader the possibilities

of the methodology: using all the explanatory variables, using only one of
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the explanatory variables and using an external variable. Finally, Section 5.3

applies the methodology to show the reader its use with empirical purposes,

i.e. the application of the method for obtaining new interpretations of the

variables.

All the examples used in Chapter 5 are based on a traditional environmental

model: the STIRPAT model, with a renewed version presented in Section 5.2:

the STIRPATE. It is well-known that in social sciences relationships among

explanatory variables are always present and, in environmental studies, this

fact has important implications as the research is used in policymaking. This

chapter allows the reader to reaffirm the idea about residualization: it leads to

good properties, characteristics and consistency with theory and expectations

about the results.

In conclusion, it is evident that strong collinearity is a real problem that

has to be mitigated. In this field, new methods are arising, as residualization,

with better properties than other traditional methodologies, such as ridge

regression. In social sciences, traditional variables are closely related to each

other and this fact has to be taken into account for future research in any type

of field.

6.2 General implications

For the analysis of causal effects, residualization has been proposed as a good

methodology to deal with multicollinearity in a specific econometric model.

It maintains the initial global properties while mitigating strong collinearity

problems, to analyse the causal effects of the driving forces affecting collinearity

and to study different interpretations of the explanatory variables.
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As was noted, the method has been meaningfully studied: the properties,

characteristics and uses of this have been further developed and explained. The

method has also been compared with other traditional methodologies, reaching

conclusions about important implications regarding the use and advantages of

the method: throughout this Thesis, the method is presented as a very good

alternative to traditional methodologies such as ridge regression.

The methodology has been applied to actual data to show the reader the real

implications and useful properties of the same. The implementation of the best

methodology is crucial to observe and make applicable conclusions of the results

obtained. As explained in the Introduction (Chapter 1) of this dissertation,

taking into account the residualization procedure and its properties, it is clear

that this method allows the researcher to deal with multicollinearity problems

and, furthermore, it also introduces another interpretation of the (modified)

variables.

In conclusion, even when the goal of the study is to predict (where it

has been concluded previously that collinearity is not significant), it is highly

recommended to mitigate the problem because the researcher needs to be very

sure of the continuity of the relationships between explanatory variables in the

future because, if the relationship changes, the forecast based on the initial

model may be unreliable as well.

6.3 Limitations and future lines of research

Residualization has been presented as a good alternative in dealing with

collinearity problems, but it has a noteworthy limitation. The principal

weakness of residualization is, in turn, its main strength: as it has been

pointed out throughout this Thesis, the new interpretation of the modified
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variables is crucial for implementing the method, but not all variables could

be modified. The choice of the appropriate variable is the more difficult part

of the application of the method because if the researcher selects a variable

whose isolated part makes no sense from an interpretative point of view, the

study will not be able to reach any successful conclusions.

On the other hand, the empirical examples used have essentially been

environmental models. As the title of this Thesis anticipates, one important

point here is the use of ecological data. In future research, it would be

interesting to apply the method to a different range of disciplines, in order to

show the reader the broad applicability of the method. As an empirical issue

to continue, regarding the STIRPAT or STIRPATE, Kilbourne and Thyroff

(2020) suggest that future research may focus on the education in the region on

the effect on the environment. Therefore, an interesting field to explore might

be an educational version of the STIRPAT or the STIRPATE, by including

new variables such as actitudes of the population towards pollution based

on their educational background. Furthermore, the same authors stated that

future research may also consider including country typologies as a variable

in the model. Finally, as has been suggested in Section 5.1, an interesting

question for future research could be to undertake an in-depth exploration of

the level of technology: does it play a key role in determining the influence of

the rest of the variables in environmental models? A starting point in this field

is the work by Garćıa et al. (2019a), which studies the relationship between

technological readiness and environmental efficiency in the EU-28 context.

Furthermore, as was noted in Section 5.1.1, regarding LASSO regression it

is not possible to corroborate directly whether the potential collinearity has

been mitigated in the model under consideration. With regard to check the

potential collinearity that may exist after applying any type of methodology, it
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would be interesting to develop more tools to measure and detect this problem.

Finally, as an important methodological line to continue working on is

the application of the method to another type of explanatory variable, with

more complex interpretation, such as dummy variables or interactions between

variables. For example, with the use of Moderated Regression Analysis (MRA),

which analyses how the effect of one of the explanatory variables is moderated

by another independent variable by adding an interaction term between these

two variables, the researcher may introduce strong collinearity in the model.

Although it has been briefly studied (see Garćıa et al. (2016a) and its references),

this “artificial” introduction of strong collinearity problems is interesting for

in-depth research. Furthermore, it would be interesting to further study any

possible link between residualization and other methodologies, such as raise

regression.
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Appendix A

Notes to Chapter 3.

A.1 Measurement of et4Y and et4e4

First, starting from expression (3.5), it is clear that:

et4Y = (x4 − x̂4)tY = (x4 − α̂2x2 − α̂3x3)tY = xt4Y − α̂2x
t
2Y − α̂3x

t
3Y

= %4 −
%2 − ρ23%3

1− ρ223
%2 −

%3 − ρ23%2
1− ρ223

%3.

On the other hand:

et4e4 = (x4 − x̂4)t(x4 − x̂4) = 1− 2α̂2ρ24 − 2α̂3ρ34 + 2α̂2α̂3ρ23 + α̂2
2 + α̂2

3

= 1− 2ρ224 − 2ρ23ρ24ρ34
1− ρ223

− 2ρ234 − 2ρ23ρ24ρ34
1− ρ223

+
2ρ24ρ34 − 2ρ23ρ

2
24 − 2ρ23ρ

2
34 + 2ρ223ρ24ρ34

(1− ρ223)2

+
ρ224 + ρ223ρ

2
34 − 2ρ23ρ24ρ34 + ρ234 + ρ223ρ

2
24 − 2ρ23ρ24ρ34

(1− ρ223)2

=
1 + ρ423 − 2ρ223 − ρ224 − ρ234 + ρ223ρ

2
24 + ρ223ρ

2
34 + 2ρ23ρ24ρ34 − 2ρ323ρ24ρ34

(1− ρ223)2

=

(
1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234

) (
1− ρ223

)
(1− ρ223)2

=
1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234

1− ρ223
.
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A.2 Demonstration that the residual sum of

squares coincides in models (3.2) and (3.6)

Starting from model (3.2), given (3.3) and (3.4), it is clear that:

SCE =
(1− ρ234)%22 + (1− ρ224)%23 + (1− ρ223)%24 − 2(ρ23 − ρ24ρ34)%2%3

1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234

+
2(ρ24 − ρ23ρ34)%2%4 − 2(ρ34 − ρ23ρ24)%3%4

1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234
. (A.1)

On the other hand, given (3.7) and (3.8), in model (3.6) it is verified that:

SSEO =
%2 − ρ23%3

1− ρ223
%2 +

%3 − ρ23%2
1− ρ223

%3 +
(et4Y)2

et4e4

=
(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(%22 − 2ρ23%2%3 + %23)

(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

+
(1− ρ223)%24 + (ρ24 − ρ23ρ34)2%22 + (ρ34 − ρ23ρ24)2%23

(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

+
2(ρ34 − ρ23ρ24)(ρ24 − ρ23ρ34)%2%3

(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

−2(1− ρ223)(ρ24 − ρ23ρ34)%2%4 + 2(1− ρ223)(ρ34 − ρ23ρ24)%3%4
(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

, (A.2)

where it has been taken into account that:

(et4Y)2

et4e4
=

(
(1− ρ223)%4 − (ρ24 − ρ23ρ34)%2 − (ρ34 − ρ23ρ24)%3

)2
(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

.

Combining and expanding the first two terms of (A.2), the result is the

following:

SSEO =
%22(1− ρ223 − ρ234 + ρ223ρ

2
34) + %23(1− ρ223 − ρ224 + ρ223ρ

2
24)

(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

+
2%2%3(−ρ23 − ρ223ρ24ρ34 + ρ323 + ρ34ρ24)

(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

+
(1− ρ223)%24 − 2(ρ24 − ρ23ρ34)%2%4 − 2(ρ34 − ρ23ρ24)%3%4

1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234

=
%22(1− ρ223)(1− ρ234) + %23(1− ρ223)(1− ρ224) + 2%2%3(1− ρ223)(ρ23 − ρ24ρ34)

(1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234)(1− ρ223)

+
(1− ρ223)%24 − 2(ρ24 − ρ23ρ34)%2%4 − 2(ρ34 − ρ23ρ24)%3%4

1 + 2ρ23ρ24ρ34 − ρ223 − ρ224 − ρ234
. (A.3)

As the reader can appreciate, expressions (A.1) and (A.3) coincide, thus

SCE = SCEO.
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Appendix B

Notes to Chapter 5.

B.1 Notation

The following notation is used to present the variance inflator factor (VIF) and

the mean square error (MSE) of the different methodologies used in Section

5.1.

VIFi: Variance inflation factor of each independent variable i.

R2
i : Coefficient of determination of the ordinary least squares (OLS)

regressions of each independent variable i on the rest of the explanatory

variables of the model (OLS and residualization).

R2
i (λ): Coefficient of determination of the OLS regressions of each

independent variable i on the rest of the explanatory variables of the

model (using the raised variable Ã).

R2
i (k): Coefficient of determination of the ridge regressions of each

independent variable i on the rest of the explanatory variables of the

model. This coefficient is calculated following Garćıa et al. (2016b).
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MSE (β̂): Mean square error of the OLS regression.

MSE (β̂
O

): Mean square error of the residualization.

MSE
(
β̂ (λ)

)
: Mean square error of the raise regression.

MSE
(
β̂ (k)

)
: Mean square error of the ridge regression.

B.2 VIF and MSE for different methodologies

Table B.1 presents the corresponding expressions of VIFs of OLS,

residualization, raise and ridge regressions, and Table B.2 presents the

corresponding MSEs.

Table B.1: Detection of collinearity: variance inflation factor (VIF).

Method VIFP VIFA VIFT1 VIFT2

OLS 1
1−R2

P

1
1−R2

A

1
1−R2

T1

1
1−R2

T2

Residualization 1
1−R2

P

1
1−R2

eA

1
1−R2

T1

1
1−R2

T2

Raise regression 1
1−R2

P
(λ)

1
1−R2

Ã
(λ)

1
1−R2

T1
(λ)

1
1−R2

T2
(λ)

Ridge regression 1
1−R2

P
(k)

1
1−R2

A
(k)

1
1−R2

T1
(k)

1
1−R2

T2
(k)
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B.2. VIF and MSE for different methodologies

Table B.2: Mean square error (MSE).

Method MSE

OLS MSE(β̂) = σ2tr((XtX)−1).

Raise regression MSE
(
β̂(λ)

)
= σ2tr((X̃tX̃)−1) + βt(M−1

λ − I)t(M−1
λ − I)β,

where X̃ = X ·Mλ

and Mλ =


1 0 −λα̂0 0 0
0 1 −λα̂1 0 0
0 0 (1 + λ) 0 0
0 0 −λα̂2 1 0
0 0 −λα̂3 0 1

 .

Residualization MSE(β̂
O

) = σ2tr((Xt
eXe)

−1) + βt(N−1 − I)t(N−1 − I)β,
where Xe = X ·N

and N =


1 0 −α̂0 0 0
0 1 −α̂1 0 0
0 0 1 0 0
0 0 −α̂2 1 0
0 0 −α̂3 0 1

 .

Ridge Regression MSE
(
β̂(k)

)
= σ2∑p

i=1
µi

(µi+k)2
+ βt(Zk − I)t(Zk − I)β,

where Zk = (XtX + kI)−1XtX
and µi are the eigenvalues of matrix XtX.
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C. Garćıa, C. B. Garćıa, and R. Salmerón. Confronting collinearity in

environmental regression models: an evidence from world data. Statistical

Methods and Applications, Accepted, 2020.
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Tratamiento de la multicolinealidad aproximada mediante variables

ortogonales. In Anales de Economı́a Aplicada. XXIX Congreso Internacional

de Economı́a Aplicada, pages 1212–1227, 2015.

R.M. O’Brien. A caution regarding rules of thumb for variance inflation factors.

Quality & Quantity, 41:673–690, 2007.

J. O’Hagan and B. McCabe. Tests for the severity of multicolinearity in

regression analysis: A comment. The Review of Economics and Statistics,

pages 368–370, 1975.
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