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1. Introduction

Since the 1980 paper by Thomason [1], we know that the categories SSet, of simplicial sets,
and Cat, of small categories, are equivalent from a homotopical point of view. Indeed, there are several
basic functorial constructions by which one can pass freely between these categories, preserving all the
homotopy invariants of their objects and morphisms. For instance, we have the functor N : Cat→ SSet
which assigns to each small category C its nerve N(C), and the functor ∆ : SSet→ Cat sending each
simplicial set X to its category of simplices ∆(X).

Nevertheless, there are interesting algebraic constructions, both on simplicial sets and on small
categories, that are not invariants of their homotopy type. This is the case for Gabriel–Zisman cohomology
groups Hn(X,A) ([2] Appendix II), of simplicial sets X with arbitrary coefficient systems on them, that is,
with coefficients in abelian group valued functors A : ∆(X) → Ab. Recall from Quillen ([3] II
§3, Prop. 4) that a simplicial map f : Y → X is a weak homotopy equivalence if and only if it
induces an equivalence of fundamental groupoids Π(X) ' Π(Y), as well isomorphisms Hn(X,A) ∼=
Hn(Y, f ∗A), for all n ≥ 0, whenever A is a local coefficient system on X, that is, whenever A is
a morphism-inverting functor or, equivalently, if A : Π(X)→ Ab is actually an abelian group valued
functor on the fundamental groupoid of X. Similarly, Baues–Wirsching cohomology groups Hn(C,A) [4],
of a small category C with coefficients in natural systems A on it, that is, with coefficients in abelian
group valued functors on its category of factorizations A : F(C)→ Ab, are homotopy invariants of C
only for local coefficients A : Π(C)→ Ab.

There are, however, some particular weak homotopy equivalences that have a stronger
conservation property of cohomology than for local coefficients. For instance, for any small category
C, the morphism between end vertices functor e : ∆N(C) → F(C) is a weak homotopy equivalence
of categories which induces isomorphisms Hn(C,A) ∼= Hn(N(C), e∗A) for any natural system
of coefficients A on C. The aim of this paper is to prove that two relevant and well-known
weak homotopy equivalences have similar strong cohomology-preserving properties. These come
respectively associated to diagrams of small categories and simplicial sets. The first of them arises from
the seminal Homotopy Colimit Theorem by Thomason ([5] Theorem 1.2). This theorem states that,
for any indexing small category C and any functor F : Cop → Cat, there is a natural weak homotopy
equivalence of simplicial sets

η : hocolimC NF → N(
∫

C F )

Mathematics 2020, 8, 981; doi:10.3390/math8060981 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-5124-6508
http://dx.doi.org/10.3390/math8060981
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/981?type=check_update&version=2


Mathematics 2020, 8, 981 2 of 27

between the homotopy colimit of the C-diagram of simplicial sets NF, obtained by applying the nerve
construction N(F(c)) to each category F(c), and the nerve of the category obtained by applying the
Grothendieck construction on F, see (9) below for details. Thus, the Grothendieck construction on
a diagram of small categories represents its homotopy colimit with respect to the Thomason model
structure in Cat [1]. Since one easily sees that the simplicial map η induces an isomorphism between
the associated fundamental groupoids Π(hocolimCNF) ∼= Π(N

∫
C F) = Π(

∫
CF) (see ([5] p. 95)),

Thomason’s theorem is actually equivalent to the fact that η induces isomorphisms

Hn(
∫

C F,A) ∼= Hn(hocolimC NF, η∗A) (n ≥ 0) (1)

for every local coefficient systemA : Π(
∫

C F)→ Ab on the category
∫

C F. We prove here the following
stronger result.

Theorem 1. For any natural system A : F(
∫

C F)→ Ab, the isomorphisms (Equation (1)) hold.

The proof we give of this theorem is independent of that given by Thomason in [5] of his
Homotopy Colimit Theorem, so that this latter appears now as a consequence.

Going in the opposite direction, we also consider diagrams of simplicial sets. For any functor
G : Cop → SSet, there is a known natural weak homotopy equivalence in Cat

µ : ∆(hocolimCG)→
∫

C∆G ,

between the category of simplices of the homotopy colimit of G and the Grothendieck construction
on the diagram of small categories ∆G, obtained by applying the category of simplices construction
∆(G(c)) to each simplicial set G(c), see Equation (29) below for details. Then, for any local coefficient
system A : Π(

∫
C∆G)→ Ab, the functor µ induces isomorphisms

Hn(
∫

C∆G,A) ∼= Hn(hocolimCG, µ∗A) (n ≥ 0) . (2)

Our second main result in the paper is the following.

Theorem 2. For any coefficient system A :
∫

C ∆G → Ab, the isomorphisms (Equation (2)) hold.

We show several consequences of the above theorems. For instance, given a functor F : Cop → Cat
and a natural system A on

∫
C F, for any morphism u : c′ → c in C, there is an induced natural system

ι∗uA on the category F(c). We describe a first quadrant spectral sequence

Ep,q
2 = Hp(C,Hq(F, ι∗A))⇒ Hp+q(

∫
C F,A),

whereHq(F, ι∗A) is the natural system on C that assigns to each morphism u : c′ → c the cohomology
group Hq(F(c), ι∗uA). This spectral sequence reduces to that constructed by Pirashvili–Redondo in ([6]
Theorem 5.2) when the natural system of coefficients A is h-local (see also Gálvez–Neumann–Tonks
([7] Theorem 2.5) and ([8] Theorem 2.16)). In the other direction, given a functor G : Cop → SSet,
for a coefficient system A on

∫
C ∆G and an object c of C, there is an induced coefficient system ι∗cA on

the simplicial set G(c). We describe a Bousfield–Kan type first quadrant spectral sequence (cf. ([9] XII,
4.5, 5.8))

Ep,q
2 = Hp(C,Hq(G, ι∗A))⇒ Hp+q(hocolimC G, µ∗A),

where Hq(G, ι∗A) : C → Ab is the functor that assigns to each object c of C the cohomology group
Hq(G(c), ι∗cA). Various invariance results appears here as corollaries. Some of them are already
known, such as the Invariance Theorem by Moerdijk–Svensson ([10] Theorem 2.3), but others are new.
For example, if F, F′ : Cop → Cat are diagrams of categories and ν : F′ ⇒ F a natural transformation
such that every functor νc : F′(c) → F(c), c ∈ ObC, is a weak homotopy equivalence having the



Mathematics 2020, 8, 981 3 of 27

Baues–Wirsching cohomology-preserving property, then the induced
∫

C ν :
∫

C F′ →
∫

C F is also
a weak homotopy equivalence with the same cohomology-preserving property.

The plan of the paper is simple. After this introductory section, the preliminary Section 2
comprises some notations and a brief review of notions and facts concerning cohomology of small
categories and simplicial sets, and Sections 3 and 4 are essentially dedicated to proving Theorems 1
and 2 above, respectively. Although the proofs of both theorems follow a similar strategy, they are
independent.

2. Preliminaries

This section aims to make this paper as self-contained as possible; hence, at the same time as fixing
notations and terminology, we review some needed constructions and facts concerning cohomology of
small categories and simplicial sets.

Throughout the paper, the composition of maps between sets, homomorphisms between abelian
groups, and functors between categories, is written by juxtaposition. The composition of arrows in
any abstract small category C is denoted by the symbol ◦.

2.1. Cohomology of Small Categories

If C is any small category, then the category of C-modules, denoted C-Mod, has as objects the
abelian group valued functors A : C → Ab, with morphisms the natural transformations between
them. If A is any C-module and u : a → b is a morphism in C, then we write the associated
homomorphism A(u) by u∗ : A(a)→ A(b).

The category C-Mod is abelian. We refer to Mac Lane ([11] Chapter IX, §3) for details, but recall
that the set of morphisms between two C-modules A and A′, denoted by HomC(A,A′), is an abelian
group by pointwise addition, that is, if f , g : A → A′ are morphisms, then f + g : A → A′ is defined
by setting ( f + g)a = fa + ga, for each object a ∈ ObC. The zero C-module is the constant functor
0 : C → Ab defined by the trivial abelian group 0, and a sequence of C-modules A → A′ → A′′ is
exact if and only if all the induced sequences of abelian groups A(a)→ A′(a)→ A′′(a) are exact.

Furthermore, the category C-Mod has enough projective objects. A way to see this is by means of
free C-modules: There is a forgetful functor U : C-Mod→ Set↓ObC, from the category of C-modules
to the comma category of sets over the set of objects of C, which carries a C-module A to the disjoint
union set

UA =
⋃

a∈ObCA(a) = {(a, x) | a ∈ ObC, x ∈ A(a)},

endowed with the projection map π : UA → ObC, given by π(a, x) = a. If f : A → A′ is any
morphism of C-modules, then U f : UA → UA′ is defined by U f (a, x) = (a, fa(x)). This functor
U has a left adjoint, the free C-module functor, F : Set↓ ObC → C-Mod, which is defined as follows.
If S = (S, π : S→ ObC) is any set over ObC, then

FS =
⊕
s∈S

ZHomC(πs,−)

is the C-module that assigns to each a ∈ ObC the free abelian groupFS(a) = Z{(s, u)}with generators
all pairs (s, u) consisting of an element s ∈ S together with a morphism u : πs→ a of C. We usually
write (s, idπs) simply by s, so that each element of s ∈ S is regarded as an element of FS(πs). For any
morphism v : a → b in C, the homomorphism v∗ : FS(a) → FS(b) is defined on generators by
v∗(s, u) = (s, v ◦ u). Thus, for any generator (s, u) of FS(a), we have the equality u∗(s) = (s, u),
where u∗ : FS(πs)→ FS(a) is the homomorphism induced by u. If λ : S→ S′ is any map of sets over
ObC (so that π′λ = π), the induced Fλ : FS→ FS′ is the morphism whose component at an object a
of C is the homomorphism (Fλ)a : FS(a)→ FS′(a) such that (Fλ)a(s, u) = (λ(s), u).
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Proposition 1. The functor F is left adjoint to the functor U . Thus, for S = (S, π) any set over ObC and any
C-module A, there is a natural isomorphism

HomC(FS,A) ∼= ∏
s∈S
A(πs) , f 7→

(
fπs(s)

)
s∈S.

Proof. This follows from the Yoneda Lemma. For any list ϕ ∈ ∏s∈SA(πs), the unique morphism
of C-modules f : FS → A such that fπs(s) = ϕ(s), for all s ∈ S, consists of the homomorphisms
fa : FS(a)→ A(a), a ∈ ObC, defined on generators by fa(s, u) = u∗ϕ(s).

From the above proposition, it is plain to see that any free C-module is projective and, moreover,
the counit FUA → A is a projective presentation of any C-module A.

Let
Z : C→ Ab

be the C-module that associates to each a ∈ ObC the free abelian group on the generator a, and to each
morphism u : a→ b the isomorphism of abelian groups u∗ : Z(a)→ Z(b) such that u∗a = b. This is
isomorphic to the constant functor on C defined by the abelian group Z.

The cohomology groups Hn(C,A) of a small category C with coefficients in a C-module A (cf., e.g.,
Gabriel–Zisman [2], Illusie [12], Roos [13], and Watts [14]), are defined as

Hn(C,A) = Extn
C(Z,A) (n ≥ 0) . (3)

2.2. Baues–Wirsching Cohomology of Small Categories

If C is any small category, its category of factorizations, F(C), is the category whose objects are the
morphisms u : a → b in C, and whose morphisms (v, v′) : u → u′ are pairs of morphisms of C such
that v ◦ u ◦ v′ = u′, that is, making commutative the square below.

a u // b

v
��

a′
v′

OO

u′ // b′

Composition is given by the formula (w, w′) ◦ (v, v′) = (w ◦ v, v′ ◦ w′). The identity arrow at any
u : a→ b is the pair (1a, 1b) : u→ u. In [4], Baues and Wirsching call such F(C)-modules by the name
of natural systems on C, and they define the cohomology groups Hn(C,A) of C with coefficients in a natural
system A to be those of its category of factorizations (see ([4] Theorem (4.4))):

Hn(C,A) = Hn(F(C),A) (n ≥ 0). (4)

Notation: If A : F(C)→ Ab is a natural system, for a u // b v // c any two composible arrows in C,
we denote the induced homomorphisms (v, 1a)∗ and (1c, u)∗ briefly by

v∗ : A(u)→ A(v ◦ u), u∗ : A(v)→ A(v ◦ u),

respectively. Thus, for any composible arrows a u // b v // c w // d , the equalities below hold.

(w, u)∗ = w∗u∗ = u∗w∗ : A(v)→ A(w ◦ v ◦ u),
(w ◦ v)∗ = w∗v∗ : A(u)→ A(w ◦ v ◦ u),
(v ◦ u)∗ = u∗v∗ : A(w)→ A(w ◦ v ◦ u).
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Baues–Wirsching cohomology recovers the cohomology of a small category C with coefficients in
C-modules, as follows. There is a canonical target functor

t : F(C)→ C (5)

sending a morphism (v, v′) : u→ u′ in F(C) to t(v, v′) = v : b→ b′. By composing with this functor
t, every C-module A gives rise to a natural system on C, which is equally denoted A. This way,
every C-module A is regarded as a natural system on C and, by ([4] Proposition (8.5)), there are
natural isomorphisms Extn

C(Z,A) ∼= Extn
F(C)(Z,A), so that both Equations (3) and (4), for coefficients

in C-modules, are the same.

2.3. Cohomology of Simplicial Sets

As usual, let ∆ denote the simplicial category, whose objects are the finite ordered sets n =

{0, 1, . . . , n}, and morphisms the weakly order-preserving maps between them. The coface maps are
denoted by di : n− 1 → n, 0 ≤ i ≤ n. Recall that these are the injections that omit the ith element.
We denote by SSet the category of simplicial sets. If X : ∆op → Set is any simplicial set, for any map
α : m → n in ∆, we write the attached map X(α) : X(n) → X(m) by α∗ : Xn → Xm. In particular,
the face maps (di)∗ are denoted by di : Xn → Xn−1.

The category of simplices of a simplicial set X is denoted by ∆(X). This has as objects the pairs
(n, x) where n ∈ ∆ and x ∈ Xn, and an arrow α : (m, x′) → (n, x) is map α : m → n in ∆ such
that α∗x = x′. The assignment X 7→ ∆(X) is the function on objects of a functor ∆ : SSet → Cat,
from the category of simplicial sets to the category of small categories, which carries a simplicial map
f : X → Y to the functor ∆( f ) : ∆(X) → ∆(Y) sending an arrow α : (m, x′) → (n, x) of ∆(X) to the
arrow α : (m, f x′)→ (n, f x) of ∆(Y).

A coefficient system on a simplicial set X is a ∆(X)-module, that is, a functor A : ∆(X) → Ab.
To shorten notation, for an object (n, x) of ∆(X), we usually write A(x) instead of A(n, x), leaving
understood the dimension n of the simplex x. Thus, if α : (m, α∗x)→ (n, x) is a morphism in ∆(X), the
associated homomorphism is written as α∗ : A(α∗x)→ A(x). In particular, for any x ∈ Xn, we have
the coface homomorphisms

di
∗ : A(dix)→ A(x), 0 ≤ i ≤ n.

The cohomology groups Hn(X,A) of a simplicial set X with coefficients ∆(X)-moduleA are defined
to be those of its category of simplices (cf., e.g., Illusie ([12] Chapitre VI §3) and Gabriel–Zisman ([2]
Appendix II)), that is,

Hn(X,A) = Hn(∆(X),A) (n ≥ 0).

Remark 1. A ∆(X)-module A is called a local coefficient system on the simplicial set X (see Goerss–Jardine
([15] Chapter III §1) and Gabriel–Zisman ([2] Appendix II, 4.7)) whenever, for any map α : m → n of ∆
and any n-simplex x of X, the induced homomorphism α∗ : A(α∗x) ∼= A(x) is an isomorphism. A weak
homotopy equivalence f : Y → X induces isomorphisms Hn(X,A) ∼= Hn(Y, f ∗A), provided A is a local
coefficient system on X, see Quillen ([3] Chapter II, §3, Prop. 4). However, for arbitrary coefficient systems A
on a simplicial set X, the cohomology groups Hn(X,A) are not invariants of the homotopy type of X.

The standard cochain complex C(X,A), of a simplicial set X with coefficients in a ∆(X)-module A,
consists of the abelian groups

Cn(X,A) = ∏
x∈Xn

A(x),

with coboundary ∂ : Cn−1(X,A) → Cn(X,A) given by (∂ϕ)(x) = ∑n
i=0(−1)i di

∗ϕ(dix). In Section 4
below (see Corollary 8) there is a proof of the following well-known fact (see Illusie ([12] Chapitre VI,
(3.4.3))) and Gabriel–Zisman ([2] Appendix II, Prop. 4.2).
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Fact 1. For any coefficient system A on a simplicial set X, there are natural isomorphisms

Hn(X,A) ∼= HnC(X,A) (n ≥ 0).

2.4. The Nerve of a Small Category

We usually regard the ordered sets n of ∆ as categories with only one arrow (i, j) : i→ j whenever
i ≤ j, and the maps α : m → n in ∆ as functors. The nerve N(C) of any small category C is the
simplicial set whose n-simplices are the functors σ : n → C, and the map α∗ : N(C)n → N(C)m,
induced by a map α : m → n, is given by α∗σ = σ α. The functor nerve N : Cat → SSet carries
a functor f : C→ C′ to the simplicial map N( f ) : N(C)→ N(C′) such that N( f )(σ) = f σ.

From now on, we will employ several times the following notation: If σ : n → C is a functor,
then we write σi : σ(i− 1)→ σi for the morphism σ(i− 1, i). Thus, for any i < j in n, we have

σ(i, j) = σj ◦ · · · ◦ σi+1 : σi→ σj. (6)

The morphism between end vertices functor is denoted by

e : ∆N(C)→ F(C). (7)

This carries any object (n, σ) of ∆N(C) to the morphism σ(0, n) : σ0 → σn of C, and carries
a morphism α : (m, σα)→ (n, σ) of ∆N(C) to the morphism of F(C)(

σ(αm, n), σ(0, α0)
)

: σα(0, m)→ σ(0, n),

depicted as below.

σα0
σα(0,m) // σαm

σ(αm,n)
��

σ0

σ(0,α0)

OO

σ(0,n) // σn

By composing with this functor e, every natural system A : F(C) → Ab on C produces
a coefficient system on the simplicial set N(C), which is denoted also by A. In Section 3 below (see
Corollary 1) there is a proof of the following well-known fact (cf. Baues–Wirsching ([4] Definition (1.4),
Theorem (4.4)), Illusie ([12] Chapitre VI, (3.4.2)), and Gabriel–Zisman ([2] Appendix II, Proposition 3.3)).

Fact 2. For any natural system A on a small category C, there are natural isomorphisms

Hn(C,A) ∼= Hn(N(C),A) (n ≥ 0).

Let us stress that, after Fact 1, it is implicit in the above Fact 2 that, for any natural system A on
C, the cohomology groups Hn(C,A) can be computed by means of the standard cochain complex
C(N(C),A), which is denoted in [4] by F(C,A). Thus,

Fn(C,A) = ∏
σ:n→C

A(σ(0, n))

and the coboundary ∂ : Fn−1(C,A)→ Fn(C,A) is given by

(∂ϕ)(σ) = σ∗1 ϕ(d0σ) +
n−1

∑
i=1

(−1)i ϕ(diσ) + (−1)n σn∗ϕ(dnσ).
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Also, let us point out that the composition of the functors in Equations (7) and (5),

l = t e : ∆N(C)
e // F(C)

t // C, (8)

is just the last vertex functor, which sends each object (n, σ) of ∆N(C) to the object σn of C.
By composition with it, any C-module defines a coefficient system on N(C) and, in this way, Fact 2
applies to the ordinary cohomology groups of C with coefficients in C-modules.

Remark 2. For a small category C, arbitrary coefficient systems on N(C), that is, arbitrary functors
A : ∆N(C) → Ab, are called Thomason natural systems on C by Gálvez–Carrillo–Neumann–Tonks
in [8], where the cohomology groups Hn(N(C),A) are denoted by Hn

Th(C,A) and studied under the name of
Thomason cohomology groups of the category.

3. On the Weak Equivalence η : hocolimCNF → N(
∫

C F)

Throughout this section, F : Cop → Cat denotes a functor, where C is a small category.
For a morphism u : a → b of C, we write u∗ : F(b) → F(a) for the functor F(u). Thus, for any
n-simplex σ of N(C), that is, for any functor σ : n → C, we have functors (see Equation (6) for the
notation)

σ(i, j)∗ = σ∗i+1 · · · σ∗j : F(σj)→ F(σi) (0 ≤ i ≤ j ≤ n).

3.1. The Involved Constructions

By composing F with the nerve functor, we get a diagram of simplicial sets NF : Cop → SSet,
whose homotopy colimit ([9] Chapter XII, §5) is denoted by hocolimC NF. This simplicial set has as
n-simplices pairs of functors (σ, τ), where σ : n→ C and τ : n→ F(σn) and, for any map α : m→ n
in ∆, the induced α∗ : (hocolimCNF)n → (hocolimCNF)m acts by

α∗(σ, τ) = (σ α, σ(αm, n)∗ τ α).

In particular, its face operators are given by

di(σ, τ) =

{
(diσ, diτ), 0 ≤ i < n,

(dnσ, σ∗n dnτ), i = n.

On the other hand, the Grothendieck construction [5,16,17] on the diagram F yields a small category,
denoted by

∫
C F, whose objects are pairs (a, x) where a is an object of C and x is an object of F(a).

A morphism form (a, x) to (b, y) in
∫

CF is a pair (u, f ) with u : a→ b a morphism in C and f : x → u∗y
a morphism in F(a). Arrows in

∫
CF compose by the formula

(v, g) ◦ (u, f ) = (v ◦ u, u∗g ◦ f ).

The Thomason weak equivalence ([5] Theorem 1.2) is the simplicial map

η : hocolimCNF → N(
∫

C F) , (9)

which carries an n-simplex (σ, τ) of the homotopy colimit to the n-simplex of the nerve of the
Grothendieck construction η(σ, τ) : n→

∫
CF defined by

η(σ, τ)i = (σi, σ(i, n)∗τi),

η(σ, τ)(i, j) =
(
(σi, σ(i, n)∗τi)

(
σ(i,j), σ(i,n)∗τ(i,j)

)
// (σj, σ(j, n)∗τ j)

)
.
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3.2. A Free Resolution of the Natural System Z over
∫

C F

The following construction is key for our main result in this section.
Let Ψ = ΨC(F) be the simplicial replacement construction of Bousfield–Kan ([9] Chapter XII, §5) on

NF: that is, the bisimplicial set
Ψ : ∆op × ∆op → Set,

whose (p, q)-simplices are pairs of functors (σ, τ) where σ : p→ C and τ : q→ F(σp). If α : p′ → p
and β : q′ → q are maps in ∆, the induced maps

Ψp′ ,q Ψp,q
α∗h=(α,1q)∗oo

β∗v=(1p ,β)∗
// Ψp,q′

are defined on a (p, q)-simplex (σ, τ) as above by

α∗h(σ, τ) = (σ α, σ(αp′, p)∗ τ), β∗v(σ, τ) = (σ, τ β).

In particular, its face operators Ψp−1,q Ψp,q
dh

ioo
dv

j // Ψp,q−1 act by

dh
i (σ, τ) =

{
(diσ, τ) 0 ≤ i < p,

(dpσ, σ∗p τ) i = p,
dv

j (σ, τ) = (σ, djτ), 0 ≤ j ≤ q.

Now, for each integers p, q ≥ 0, let the set Ψp,q be endowed with the morphism between end vertices
map π : Ψp,q → ObF(

∫
C F), defined by

π(σ, τ) =
(
(σ0, σ(0, p)∗τ0)

(
σ(0,p), σ(0,p)∗τ(0,q)

)
//
(
σp, τq

) )
and let Pp,q = FΨp,q be the corresponding free F(

∫
CF)-module (i.e., free natural system on

∫
C F).

Thus, for each morphism (u, f ) : (a, x)→ (b, y) in
∫

CF,

Pp,q(u, f ) = Z{(σ, τ, v, g, v′, g′)} (10)

is the free abelian group with generators the sextuples (σ, τ, v, g, v′, g′), where

σ : p→ C is a functor,
τ : q→ F(σp) is a functor,
v : σp→ b is a morphism in C,
g : τq→ v∗y is a morphism in F(σp),
v′ : a→ σ0 is a morphism in C,
g′ : x → v′∗σ(0, p)∗τ0 is a morphism in F(a),

such that {
u = v ◦ σ(0, p) ◦ v′,

f = v′∗σ(0, p)∗(g ◦ τ(0, q)) ◦ g′.

Note that the latter equations mean that the square in the category
∫

C F below commutes.

(σ0, σ(0, p)∗τ0)
(σ(0,p),σ(0,p)∗τ(0,q)) // (σp, τq)

(v,g)
��

(a, x)

(v′ ,g′)

OO

(u, f ) // (b, y)
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For any three composible morphisms in
∫

C F,

(a′, x′)
(u′ , f ′) // (a, x)

(u, f ) // (b, y)
(u′′ , f ′′) // (b′, y′),

the induced homomorphisms

(u′, f ′)∗ : Pp,q(u, f ) −→ Pp,q(u ◦ u′, u′∗ f ◦ f ′),

(u′′, f ′′)∗ : Pp,q(u, f ) −→ Pp,q(u′′ ◦ u, u∗ f ′′ ◦ f ),

are, respectively, given on generators by

(u′, f ′)∗(σ, τ, v, g, v′, g′) = (σ, τ, v, g, v′ ◦ u′, u′∗g′ ◦ f ′),

(u′′, f ′′)∗(σ, τ, v, g, v′, g′) = (σ, τ, u′′ ◦ v, v∗ f ′′ ◦ g, v′, g′).

These Pp,q provide a bisimplicial natural system on
∫

CF

P = PC(F) : ∆op × ∆op −→ F(
∫

CF)-Mod , (11)

where, for any maps in the simplicial category, α : p′ → p and β : q′ → q, the induced α∗h : Pp,q → Pp′ ,q
and β∗v : Pp,q → Pp,q′ are the morphisms whose respective components at a morphism (u, f ) : (a, x)→
(b, y) of

∫
CF are the homomorphisms α∗h : Pp,q(u, f ) → Pp′ ,q(u, f ) and β∗v : Pp,q(u, f ) → Pp,q′(u, f )

respectively defined on generators by

α∗h(σ, τ, v, g, v′, g′) =
(
σ α, σ(αp′, p)∗ τ, v ◦ σ(αp′, p), σ(αp′, p)∗g, σ(0, α0) ◦ v′, g′

)
,

β∗v(σ, τ, v, g, v′, g′) =
(
σ, τ β, v, g ◦ τ(βq′, q), v′, (v′∗σ(0, p)∗τ(0, β0)) ◦ g′

)
.

In particular, the horizontal and vertical face homomorphisms

Pp−1,q(u, f ) Pp,q(u, f )
dh

ioo
dv

j // Pp,q−1(u, f )

act on generators by

dh
i (σ, τ, v, g, v′, g′) =


(d0σ, τ, v, g, σ1 ◦ v′, g′) i = 0,

(diσ, τ, v, g, v′, g′) 0 < i < p,

(dpσ, σ∗p τ, v ◦ σp, σ∗p g, v′, g′) i = p,

dv
j (σ, τ, v, g, v′, g′) =


(σ, d0τ, v, g, v′, (v′∗σ(0, p)∗τ1) ◦ g′) j = 0,

(σ, djτ, v, g, v′, g′) 0 < j < q,(
σ, dqτ, v, g ◦ τq, v′, g′

)
j = q,

Let diagP be the complex associated to the simplicial natural system diagonal of P : that is,
the cochain complex of natural systems on

∫
C F with (diagP)n = Pn,n, and whose differential

∂ : Pn,n(u, f )→ Pn−1,n−1(u, f ), at a morphism (u, f ) : (a, x)→ (b, y) of
∫

CF, is given on generators by

∂(σ, τ, v, g, v′, g′) =
(
d0σ, d0τ, v, g, σ1 ◦ v′, (v′∗σ(0, n)∗τ1) ◦ g′

)
+

n−1

∑
i=1

(−1)i(diσ, diτ, v, g, v′, g′) (12)

+ (−1)n(dnσ, σ∗n dnτ, v ◦ σn, σ∗n (g ◦ τn), v′, g′
)
.
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Lemma 1. diagPC(F) is a projective resolution of the natural system Z on
∫

CF. Therefore, for any natural
system A on

∫
CF,

Hn( ∫
C F,A

)
= Hn(HomF(

∫
C F)(diagPCF,A)

)
(n ≥ 0) .

Proof. Let us write P = PC(F) as in Equation (11). Let ε : P0,0 → Z be the morphism of natural
systems whose component ε : P0,0(u, f ) → Z(u, f ), at a morphism (u, f ) : (a, x) → (b, y) of

∫
C F,

is the homomorphism defined on generators by

ε(a0, x0, a0
v→ b, x0

g→ v∗y, a v′→ a0, x
g′→ v′∗x0) = (u, f ),

where we have identified any object a0 of C with the functor σ : 0 → C such that σ0 = a0 and,
similarly, an object x0 of F(a0) with the functor τ : 0 → F(a0) with τ0 = x0. It is easily seen that this
morphism ε : P0,0 → Z determines an augmentation ε : diagP � Z.

Since every natural system Pn,n is free, whence projective, it suffices to prove that, for any
morphism (u, f ) : (a, x)→ (b, y) of

∫
C F, the augmented chain complex of abelian groups

· · · → P2,2(u, f ) ∂−→ P1,1(u, f ) ∂−→ P0,0(u, f ) ε−→ Z(u, f )→ 0 (13)

is exact. To do this, let us fix such a morphism (u, f ) and proceed as follows.
For each q ≥ 0, let Pq(u, f ) = Z{(τ, w, w′)} be the free abelian group on the set of triples (τ, w, w′)

consisting of a functor τ : q → F(b) and morphisms w : τq → u∗y and w′ : x → τ0 of F(a) with
f = w ◦ τ(0, q) ◦ w′, that is, making commutative the square

τ0
τ(0,q) // τq

w
��

x

w′

OO

f // u∗y.

These Pq(u, f ) define a simplicial abelian group P(u, f ), where each map β : q′ → q of ∆ induces
the homomorphism β∗ : Pq(u, f )→ Pq′(u, f ) defined on generators by

β∗(τ, w, w′) =
(
τ β, w ◦ τ(βq′, q), τ(0, β0) ◦ w′

)
.

In particular, its face homomorphisms di : Pq(u, f )→ Pq−1(u, f ) are defined by

dj(τ, w, w′) =


(d0τ, w, τ1 ◦ w′), j = 0,
(djτ, w, w′), 0 < j < q,

(dqτ, w ◦ τq, w′), j = q.

This simplicial abelian group P(u, f ) can be endowed with an augmentation over Z(u, f ) by the

homomorphism ε : P0(u, f ) � Z(u, f ) which acts on generators by ε(x0, x0
w→ u∗y, x w′→ x0) = (u, f ).

Let us also denote by P(u, f ) the associated chain complex, in which the differentials ∂ = ∑(−1)idi
are obtained by taking alternating sums. The resulting augmented chain complex of abelian groups
admits a contracting homotopy k

· · · → P2(u, f ) ∂ // P1(u, f ) ∂ //

k1

{{
P0(u, f ) ε //

k0

{{
Z(u, f )

k−1

{{
→ 0 (14)
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whence it is exact. Such a contraction k is given by the homomorphisms k−1 : Z(u, f )→ P0(u, f ) and
kq : Pq(u, f )→ Pq+1(u, f ), q ≥ 0 which act on generators by

k−1(u, f ) = (u∗y, 1u∗y, f ), kq(τ, w, w′) = (−1)q+1(w ? τ, 1u∗y, w′).

In the above formula, for any functor τ : q→ F(a) and any morphism w : τq→ u∗y, the functor
w ? τ : q + 1→ F(a) is defined by

(w ? τ)i =

{
τi i ≤ q,

u∗y i = q + 1,

(w ? τ)(i, j) =

{
τ(i, j) : τi→ τ j, j ≤ q,

w ◦ τ(i, q) : τi→ u∗y, j = q + 1.

(15)

To check that k : idP(u, f ) ⇒ 0 is actually a chain homotopy, we first observe the equalities

dj(w ? τ) =


w ? djτ, 0 ≤ j < q,
(w ◦ τq) ? dqτ, j = q,
τ j = q + 1.

From these, it is not hard to see that the operators kq satisfy the equations

djkq =

{
−kq−1dj 0 ≤ j ≤ q,

idPq(u, f ) j = q + 1,

whence the equality ∂kq + kq−1∂ = idPq(u, f ) follows for all q ≥ 0.
Consider now the simplicial abelian group P(u, f ) as a bisimplicial abelian group which is

constant in the horizontal direction. Then, the homomorphisms ε : P0,q(u, f ) � Pq(u, f ) defined on
generators by

ε
(
a0, q τ→ F(a0), a0

v→ b, v∗τq
g→ y, a v′→ a0, v′∗x

g′→ τ0
)
= (v′∗ τ, v′∗g, g′),

determine a bisimplicial homomorphism ε : P(u, f ) → P(u, f ). For every q ≥ 0, the associated
augmented chain complex of abelian groups

· · · → P2,q(u, f ) ∂ // P1,q(u, f ) ∂ //

h1

zz
P0,q(u, f ) ε //

h0

zz
Pq(u, f )

h−1

zz
→ 0,

is exact, because of it admits a contracting homotopy h given by the homomorphisms h−1 : Pq(u, f )→
P0,q(u, f ) and hp : Pp,q(u, f )→ Pp+1,q(u, f ) which act on generators by{

h−1(τ, w, w′) = (a, τ, u, w, 1a, w′),

hp(σ, τ, v, g, v′, g′) = (σ ? v′, τ, v, g, 1a, g′),

where, for any functor σ : p → C and any morphism v′ : a → σ0, the functor σ ? v′ : p + 1 → C is
defined by the formulas
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(σ ? v′)i =

{
a i = 0,

σ(i− 1) i > 0,

(σ ? v′)(i, j) =

{
σ(0, j− 1) ◦ v′ : a→ σ(j− 1), i = 0,

σ(i− 1, j− 1) : σ(i− 1)→ σ(j− 1), i > 0.

As above, to check that h is actually a contracting chain homotopy, we first observe the equalities

di(σ ? v′) =


σ i = 0,

d0σ ? (σ1 ◦ v′) i = 1,
di−1σ ? v′ 1 < i ≤ p + 1.

From these, we see that the operators hp satisfy the equations

dh
i hp =

{
idPp,q(u, f ) i = 0,

hp−1dh
i−1 0 < i ≤ p + 1,

whence the equality ∂hp + hp−1∂ = idPp,q(u, f ) follows.
Finally, the Dold–Puppe theorem implies that the induced map on the associated augmented

diagonal complexes ε : diagP(u, f )→ P(u, f ),

(13) · · · → P2,2(u, f ) ∂ //

ε

��

P1,1(u, f ) ∂ //

ε

��

P0,0(u, f )

ε

��

ε // Z(u, f ) // 0

(14) · · · → P2(u, f ) ∂ // P1(u, f ) ∂ // P0(u, f ) ε // Z(u, f ) // 0,

is a homology isomorphism. Therefore, the chain complex Equation (13) is exact, since the chain
complex Equation (14) is such.

Let us now consider the category of simplices ∆(hocolimC NF), whose objects are triples (n, σ, τ),
where σ : n→ C and τ : n→ F(σ0) are functors, and whose morphisms α : (m, γ, δ)→ (n, σ, τ) are
those maps α : m→ n in ∆ such that σ α = γ and σ(αm, n)∗ τ α = δ. We have the composite functor
e ∆(η),

∆(hocolimC NF)
∆(η) // ∆(N

∫
CF) e // F(

∫
C F), (16)

of the functor ∆(η) induced by Thomason simplicial map Equation (9) with the morphism between
end vertices functor e Equation (7). This functor e∆(η) carries each object (n, σ, τ) to the morphism of∫

C F

(σ0, σ(0, n)∗τ0)
(σ(0,n),σ(0,n)∗τ(0,n)) // (σn, τn),

and a morphism α : (m, γ, δ)→ (n, σ, τ), as above, to the morphism of the category of factorizations
F(
∫

C F) given by the broken arrows below.

(γ0, γ(0, m)∗δ0)
(γ(0,m),γ(0,m)∗δ(0,m)) // (γm, δm)

(σ(αm,n),σ(αm,n)∗τ(αm,n))

��
(σ0, σ(0, n)∗τ0)

(σ(0,α0),σ(0,α0)∗τ(0,α0))

OO

(σ(0,n),σ(0,n)∗τ(0,n)) // (σn, τn)
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Then, by composition with e ∆(η), any natural system A on
∫

CF gives rise to a coefficient system,
denoted by η∗A, on the simplicial set hocolimCNF. As a main result in this paper, we have

Theorem 3. For any natural system A on
∫

C F, the Thomason map η in Equation (9) induces isomorphisms

Hn(
∫

C F,A) ∼= Hn(hocolimC NF, η∗A).

Proof. For any given natural system A on
∫

C F, the coefficient system η∗A on the homotopy colimit
hocolimC NF carries an n-simplex (σ, τ) to the abelian group

η∗A(σ, τ) = A(σ(0, n), σ(0, n)∗τ(0, n))

and, for any map α : m → n in the simplicial category, the induced homomorphism α∗ :
η∗A(α∗(σ, τ))→ η∗A(σ, τ) is the homomorphism

α∗ =
(
σ(αm, n), σ(αm, n)∗τ(αm, n)

)
∗
(
σ(0, α0), σ(0, n)∗τ(0, α0)

)∗
: A(σ(α0, αm), σ(α0, n)∗τ(α0, αm)) −→ A(σ(0, n), σ(0, n)∗τ(0, n)).

In particular, for any n-simplex (σ, τ) of hocolimC NF, the coface homomorphisms

di
∗ : η∗A(di(σ, τ))→ η∗A(σ, τ)

are

d0
∗ = (σ1, σ(0, n)∗τ1)

∗ : A(σ(1, n), σ(1, n)∗τ(1, n)) −→ A(σ(0, n), σ(0, n)∗τ(0, n)),

di
∗ = id : A(σ(0, n), σ(0, n)∗τ(0, n)) −→ A(σ(0, n), σ(0, n)∗τ(0, n)) 0 < i < n,

dn
∗ = (σn, σ∗n τn)∗ : A(σ(0, n−1), σ(0, n)∗τ(0, n−1)) −→ A(σ(0, n), σ(0, n)∗τ(0, n)).

Then, the standard cochain complex C(hocolimC NF, η∗A) consists of the abelian groups

Cn(hocolimCNF, η∗A) = ∏
σ : n→ C

τ : n→ F(σn)

A(σ(0, n), σ(0, n)∗τ(0, n)), (17)

with coboundary ∂ : Cn−1(hocolimCNF, η∗A)→ Cn(hocolimCNF, η∗A) given by

(∂ϕ)(σ, τ) =(σ1, σ(0, n)∗τ1)
∗ϕ(d0σ, d0τ) +

n−1

∑
i=1

(−1)i ϕ(diσ, diτ)

(18)
+ (−1)n(σn, σ∗n τn

)
∗ϕ(dnσ, σ∗n dnτ).

Now, let P = PC(F) be the bisimplicial natural system in Equation (11). By Proposition 1, for
every n ≥ 0, there is an isomorphism of abelian groups

Γ : Cn(hocolimCNF, η∗A) ∼= HomF(
∫

C F)(Pn,n,A),

which carries any n-cochain ϕ ∈ Cn(hocolimCNF,A) to the morphism of natural systems Γϕ : Pn,n →
A whose component at every morphism (u, f ) : (a, x) → (b, y) of

∫
C F is the homomorphism of

abelian groups

Γϕ : Pn,n(u, f )→ A(u, f ) | (σ, τ, v, g, v′, g′) 7→ (v, g)∗(v′, g′)∗ϕ(σ, τ).
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These morphisms Γ fit together to define an isomorphism of cochain complexes

Γ : C(hocolimC NF, η∗A) ∼= HomF(
∫

C F)(diagP ,A).

In effect, for any ϕ ∈ Cn−1(hocolimC NF, η∗A), any morphism (u, f ) : (a, x)→ (b, y) of
∫

C F, and
any generator (σ, τ, v, g, v′, g′) of Pn,n(u, f ), we have(

Γ(∂ϕ)
)
(σ, τ, v, g, v′, g′) = (v, g)∗(v′, g′)∗

(
(∂ϕ)(σ, τ)

)
(18)
= (v, g)∗(v′, g′)∗(σ1, σ(0, n)∗τ1)

∗ϕ(d0σ, d0τ) +
n−1

∑
i=1

(−1)i(v, g)∗(v′, g′)∗ϕ(diσ, diτ)

+ (−1)n(v, g)∗(v′, g′)∗(σn, σ∗n τn)∗ϕ(dnσ, σ∗n dnτ)

= (v, g)∗(σ1 ◦ v′, (v′∗σ(0, n)∗τ1) ◦ g′)∗ϕ(d0σ, d0τ) +
n−1

∑
i=1

(−1)i(v, g)∗(v′, g′)∗ϕ(diσ, diτ)

+ (−1)n(v ◦ σn, σ∗n g ◦ σ∗n τn)∗(v′, g′)∗ϕ(dnσ, σ∗n dnτ)

= (Γϕ)
(
(d0σ, d0τ, v, g, σ1 ◦ v′, (v′∗σ(0, n)∗τ1) ◦ g′) +

n−1

∑
i=1

(−1)i(diσ, diτ, v, g, v′, g′)

+ (−1)n(dnσ, σ∗n dnτ, v ◦ σn, σ∗n (g ◦ τn), v′, g′)
)

(12)
=
(
(Γϕ)∂

)
(σ, τ, v, g, v′, g′).

Hence, the result follows from Lemma 1 and Fact 1 (=Corollary 8 below).

Theorem 3 above is actually a natural generalization of the useful and well-known result below,
already presented as Fact 2 in the preliminary Section 2.

Corollary 1. Let C be a small category. For any natural system A on C, there are natural isomorphisms

Hn(C,A) ∼= Hn(N(C),A) (n ≥ 0).

Proof. Let us specialize Theorem 3 to the case when F = 0 : Cop → Cat is the constant functor
defined by the only-one-arrow category 0. In this case,

∫
C 0 = C, hocolimCN0 = N(C), and the

Thomason simplicial map Equation (9), η : hocolimCN0→ N(
∫

C 0), is the identity map on NC.
Therefore, Theorem 3 just says that, for any natural system A on C, there are isomorphisms
Hn(C,A) ∼= Hn(N(C),A).

Particular cases of the following corollary have been used several times in homological algebra to
compute cohomology of semidirect products of groups or monoids, diagrams of groups, etc. (see, e.g.,
Cegarra [18,19]), by means of certain chain complexes more manageable than the standard ones.

Let P = PC(F) be the bisimplicial natural system on
∫

C F in Equation (11), and let A be any
given natural system on

∫
C F. By Proposition 1, there is a natural isomorphism of bicosimplicial

abelian groups

HomF(
∫

C F)(P ,A) ∼= C̃(
∫

C F,A),

where C̃(
∫

C F,A) is the bicosimplicial abelian group described as follows: for every integers p, q ≥ 0,

C̃p,q(
∫

C F,A) = ∏
σ : p→ C

τ : q→ F(σp)

A(σ(0, p), σ(0, p)∗τ(0, q)), (19)
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and, for any maps α : p′ → p and β : q′ → q in the simplicial category, the induced homomorphisms

C̃p′ ,q(
∫

C F,A)
αh
∗ // C̃p,q(

∫
C F,A) C̃p,q(

∫
C F,A)

βv
∗oo

are defined by

(α∗h ϕ)(σ, τ) = (σ(αp′, p), 1σ(αp′ ,p)∗τq)∗(σ(0, α0), 1σ(0,p)∗τ0)
∗(σ α, σ(αp′, p)∗ τ),

(βv
∗ϕ)(σ, τ) = (1σp, τ(βq′, q))∗(1σ0, σ(0, p)∗τ(0, β0))∗(σ, τ β).

In particular, its horizontal and vertical coface homomorphisms

C̃p−1,q(
∫

C F,A)
di

h // C̃p,q(
∫

C F,A) C̃p,q−1(
∫

C F,A)dj
voo

are given by the formulas

di
h ϕ(σ, τ) =


(σ1, 1σ(0,p)∗τ0)

∗ϕ(d0σ, τ) i = 0,

ϕ(diσ, τ) 0 < i < p,

(σp, 1σ∗p τq)∗ϕ(dpσ, τ) i = p,

(20)

dj
v ϕ(σ, τ) =


(1σ0, σ(0, p)∗τ1)

∗ϕ(σ, d0τ) j = 0,

ϕ(σ, djτ) 0 < j < q,

(1σp, τq)∗ϕ(σ, dqτ) j = q,

(21)

Define the non-standard cochain complex of
∫

C F with coefficients in a natural system A to be
TotC̃(

∫
C F,A), the total cochain complex of the associated double cochain complex to C̃(

∫
C F,A).

Thus, it consists of the abelian groups

TotnC̃(
∫

C F,A) = ∏
σ : p→ C

τ : q→ F(σp)
p + q = n

A(σ(0, p), σ(0, p)∗τ(0, q)),

with coboundary ∂ : Totn−1C̃(
∫

C F,A)→ TotnC̃(
∫

C F,A) given by

(∂ϕ)(σ, τ) = (σ1, 1σ(0,p)∗τ0)∗ϕ(d0σ, τ) +
p−1

∑
i=1

(−1)i ϕ(diσ, τ) + (−1)p(σp, 1σ∗p τq
)
∗ϕ(dpσ, σ∗p τ)

+ (−1)p
[
(1σ0, σ(0, p)∗τ1)

∗ϕ(σ, d0τ) +
q−1

∑
j=1

(−1)j ϕ(σ, djτ) + (−1)q(1σp, τq
)
∗ϕ(σ, dqτ)

]
.

Corollary 2. For any natural system A on
∫

C F, there are natural isomorphisms

Hn(
∫

C F,A) ∼= HnTotC̃(
∫

C F,A) (n ≥ 0).

Proof. From the descriptions of the bicomplex C̃(
∫

C F,A) in Equations (18) and (17) and the
complex C(hocolimC NF, η∗A) in Equations (19)–(21), a straightforward comparison shows that
diag C̃(

∫
C F,A) = C(hocolimC NF, η∗A). Then the result follows from Theorem 3, since both

cochain complexes diag C̃(
∫

C F,A) and TotC̃(
∫

C F,A) are cohomology equivalent by the generalized
Eilenberg–Zilber theorem of Dold and Puppe (see, e.g., Goerss–Jardine ([15] Chapter IV,
Theorem 2.4)).
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Spectral sequences for the cohomology of the Grotendieck construction are implicit in the above
corollary. Let A be a natural system on

∫
C F. Every arrow u : a→ b in C determines a functor between

the categories of factorizations
ιu : F(F(b))→ F(

∫
C F), (22)

which acts on objects by

ιu(x
f→ y) =

(
(a, u∗x)

(u,u∗f ) // (b, y)
)

and on morphisms by

x
f // y

g
��

� ιu //

(a, u∗x)
(u,u∗ f ) // (b, y)

(1b ,g)
��

x′

g′

OO

f ′ // y′ (a, u∗x′)
(u,u∗ f ′) //

(1a ,u∗g′)

OO

(b, y′).

Then, by composition with ιu, the natural system A on the Grothendieck construction gives rise
to a natural system on the category F(b), denoted by ι∗uA, so that the cohomology groups

Hq(F(b), ι∗uA) (23)

are defined. For any integer q ≥ 0, there is a natural system on C,

Hq(F, ι∗A) : F(C)→ Ab, | (a u→ b) 7→ Hq(F(b), ι∗uA), (24)

which acts on morphisms as follows: For any morphism (v, v′) : u→ u′ in F(C),

a u // b

v
��

a′ u′ //

v′

OO

b′,

one has the natural transformation 〈v, v′〉 : ιu v∗ ⇒ ιu′

F(F(b))
ιu //

〈v,v′ 〉⇒

F(
∫

C F)

F(F(b′))

ιu′

??

v∗

__

whose component at a morphism f : x → y of F(b′) is the morphism of F(
∫

C F)

〈v, v′〉( f ) =
(
(v, 1v∗y), (v′, 1u′∗x)

)
: (u, u∗v∗f )→ (u′, u′∗ f )

depicted as

(a, u∗v∗x)
(u,u∗v∗ f ) // (b, v∗y)

(v,1v∗y)

��
(a′, u′∗x)

(u′ ,u′∗ f ) //

(v′ ,1u′∗x)

OO

(b′, y).

Then, the induced homomorphism

v∗v′∗ : Hq(F(b), ι∗uA)→ Hq(F(b′), ι∗u′A)
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is the composite of the homomorphisms

Hq(F(b), ι∗uA)
(v∗)∗ // Hq(F(b′), v∗ι∗uA)

〈v,v′〉∗ // Hq(F(b′), ι∗u′A).

Corollary 3. For any natural system A on
∫

C F there is a natural first quadrant spectral sequence

Ep,q
2 = Hp(C,Hq(F, ι∗A))⇒ Hp+q(

∫
C F,A)

whereHq(F, ι∗A) is the natural system on C defined in Equation (24).

Proof. Let C̃(
∫

C F,A) be the double cochain complex associated to the bicosimplicial abelian group in
Equation (19). Fixing any p ≥ 0, and taking homology in the vertical complex C̃p,•(

∫
C F,A), we have

Hq
vC̃p,• (

∫
C F,A) = Hq( ∏

σ:p→C
F(F(σp), ι∗σ(0,p)A)

)
= ∏

σ:p→C
Hq(F(σp), ι∗σ(0,p)A)

= ∏
σ:p→C

Hq(F,A)(σ(0, p)).

Taking now the cohomology again, we have Hp
h Hq

vC̃ (
∫

C F,A) = Hp(C,Hq(F, ι∗A)), whence the
result follows from Corollary 2.

Note that, when u = 1b is the identity arrow of any object b of C, then functor ι1b : F(F(b)) →
F(
∫

C F) in (22) is the induced one on the category of factorizations by the canonical inclusion functor

ιb : F(b) ↪→
∫

C F | (x
f→ y) � //

(
(b, x)

(1b , f ) // (b, y)
)
. (25)

So, in this case, we can write the corresponding cohomology group Equation (23) simply as
Hq(F(b), ι∗bA). For any q ≥ 0, we have the C-module

Hq(F, ι∗A) : C→ Ab | b 7→ Hq(F(b), ι∗bA), (26)

which carries every morphism v : b→ b′ to the composite homomorphism

Hq(F(b), ι∗bA)
(v∗)∗ // Hq(F(b′), v∗ι∗bA)

〈v〉∗ // Hq(F(b′), ι∗b′A),

where 〈v〉 : ιb v∗ ⇒ ιb′

F(b)
ιb //

〈v〉⇒

∫
C F

F(b′)

ιb′

AA

v∗

]]

is the natural transformation defined, at any object x of F(b′), by

〈v〉(x) = (v, 1v∗x) : (b, v∗x)→ (b′, x).

There is, for any integer q ≥ 0, a morphism of natural systems on C

〈 〉∗ : Hq(F, ι∗A)→ Hq(F, ι∗A), (27)
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where, recall, the C-module Hq(F, ι∗A) is regarded as a natural system by composition with the
target functor t : F(C) → C in Equation (5). Its component at any morphism u : a → b in C is the
homomorphism

〈u〉∗ : Hq(F(b), ι∗bA)→ H
q(F(b), ι∗uA)

induced by the natural transformation 〈u〉 : ιb ⇒ ιu,

F(F(b))

ιb
))

ιu

55
〈u〉⇓ F(

∫
C F),

which is defined on any morphism f : x → y of F(b) by

〈u〉( f ) =
(
1(b,y), (u, 1u∗x)

)
: (1b, f )→ (u, u∗ f )

(b, x)
(1b , f ) // (b, y)

(a, u∗x)

(u,1u∗x)

OO

(u,u∗ f ) // (b, y).

Following to Pirsahvili–Redondo [6], we say that the natural system A is h-local provided the
morphism 〈 〉∗ : Hq(F, ι∗A) ∼= Hq(F, ι∗A) in Equation (27) is an isomorphism, for all q ≥ 0. This means
that, for any arrow u : a→ b in C, the cochain map 〈u〉∗ : F(F(b), ι∗bA)→ F(F(b), ι∗uA)

· · · → ∏
τ:q→F(b)

A(1b, τ(0, q)) ∂ //

∏
τ
(u,1u∗τ0)

∗

��

∏
τ:q+1→F(b)

A(1b, τ(0, q + 1))→ · · ·

∏
τ
(u,1u∗τ0)

∗

��
· · · → ∏

τ:q→F(b)
A(u, u∗τ(0, q)) ∂ // ∏

τ:q+1→F(b)
A(u, u∗τ(0, q + 1))→ · · ·

is a homology isomorphism. We call the natural system A local whenever the natural transformations
〈u〉 : ιb ⇒ ιu induces an isomorphism ι∗bA ∼= ι∗uA of natural systems on F(b), that is, if for any f : x → y
in F(b),

(u, 1u∗x)
∗ : A(1b, f ) ∼= A(u, u∗ f )

is an isomorphism (note that this condition is a bit weaker than the corresponding one stated
in [6]). Clearly every local natural system on

∫
C F is h-local, as well as every

∫
C F-module is

a local natural system. The spectral sequence by Pirsahvili–Redondo in ([6] Theorem 5.2) (cf. also
Gálvez–Neumann–Tonks ([7] Theorem 2.5)) and ([8] Theorem 2.16)) appears now as a particular case
of the spectral sequence in the above Corollary 3.

Corollary 4. For any h-local natural system A on
∫

C F there is a natural spectral sequence

Ep,q
2 = Hp(C, Hq(F, ι∗A))⇒ Hp+q(

∫
C F,A)

where Hq(F, ι∗A) is the natural system on C defined in Equation (26).

The spectral sequence in Corollary 3 involves some invariance results, as we show below.
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Corollary 5. Let F, F′ : Cop → Cat be functors, let ν : F′ ⇒ F be a natural transformation, and let A
be a natural system on

∫
C F. If, for any arrow u : a → b in C, the functor νb : F′(b) → F(b) induces

isomorphisms
Hn(F(b), ι∗uA) ∼= Hn(F′(b), ν∗b ι∗uA), n ≥ 0,

then the functor
∫

C ν :
∫

C F′ →
∫

C F also induces isomorphisms

Hn(
∫

C F,A) ∼= Hn(
∫

C F′, (
∫

Cν)∗A) , n ≥ 0.

Proof. For any arrow u : a→ b of C, the square

F(F′(b))

νb

��

ι′u //
∫

C F′∫
C ν

��
F(F(b))

ιu //
∫

C F

commutes. Therefore νb induces isomorphisms

Hn(F(b), ι∗uA) ∼= Hn(F′(b), ι′∗u (
∫

Cν)∗A) .

Since these are natural in u, it follows that ν induces an isomorphism of natural systems on C between
Hn(F, ι∗A) andHn(F′, ι′∗(

∫
Cν)∗A). Then, for any integers p, q ≥ 0, there are natural isomorphisms

Hp(C,Hq(F, ι∗A)) ∼= Hp(C,Hq(F′, ι′∗(
∫

Cν)∗A))

and the result follows from the spectral sequences in Corollary 3 for F and A and F′ and
(
∫

Cν)∗A, respectively.

Recall now that a functor A :
∫

C F → Ab is called a twisted system of coefficients on the diagram of
categories F : Cop → Cat whenever, for any object b of C, i∗bA is a local system of coefficients on the
category F(b); that is, provided that, for any arrow f : x → y in F(b), the induced (1b, f )∗ : A(b, x) ∼=
A(b, y) is an isomorphism, see ([10] Definition 2.1). The following invariance result was proved by
Moerdijk–Svensson in ([10] Theorem 2.3).

Corollary 6. Let F, F′ : Cop → Cat be functors. Suppose ν : F′ ⇒ F is a natural transformation such that all
the functors νb : F′(b)→ F(b), b ∈ ObC, are weak homotopy equivalences of categories. Then, for any twisted
system of coefficients A on F, ν induces natural isomorphisms

Hn(
∫

C F,A) ∼= Hn(
∫

C F′, (
∫

Cν)∗A), n ≥ 0.

Proof. For any twisted system of coefficients A on F, the induced homomorphisms ν∗b :
Hn(F(b), ι∗bA) ∼= Hn(F′(b), ν∗b ι∗bA) are isomorphisms. Since, for any u : a → b in C, we have
i∗bA = ι∗uA, the hypothesis of Corollary 5 above hold, whence the result follows.

The following terminology is suggested by T. Pirashvili.

Definition 1. A weak homotopy equivalence of categories f : C′ → C is a Baues–Wirsching weak homotopy
equivalence (resp. a Roos–Watts weak homotopy equivalence) provided that, for any natural system A on
C (resp. C-module), the induced homomorphisms Hn(C,A) ∼= Hn(C′, f ∗A), n ≥ 0, are all isomorphisms.
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For instance, if f : C′ → C is any functor with a left or right adjoint, then it is a Baues–Wirsching
weak homotopy equivalence. This fact follows from ([20] Lemma 1.5, p. 10). See also ([6] Lemma 2.2),
([8] Corollary 2.3), and ([21] Corollary 4.3).

Corollary 7. Let F, F′ : Cop → Cat be functors. Suppose ν : F′ ⇒ F is a natural transformation such
that all the functors νb : F′(b) → F(b), b ∈ ObC, are Baues–Wirsching (resp. Roos–Watts) weak homotopy
equivalences, then

∫
C ν :

∫
C F′ →

∫
C F also is.

Proof. This follows from Corollary 5.

4. On the Weak Equivalence µ : ∆(hocolimC G) →
∫

C ∆G

Throughout this section, C is a small category and G : Cop → SSet is a functor. For any morphism
u : a→ b of C, we write u∗ : G(b)→ G(a) for the simplicial map G(u). Since u∗ is simplicial, for any
map α : m→ n in ∆, we have α∗u∗ = u∗α∗, that is, the square below commutes.

G(b)n
u∗ //

α∗

��

G(a)n

α∗

��
G(b)m

u∗ // G(a)m

In particular, every functor σ : n→ C gives rise to the simplicial maps, see Equation (6),

σ(i, j)∗ = σ∗i+1 · · · σ∗j : G(σj)→ G(σi) (0 ≤ i ≤ j ≤ n).

4.1. The Involved Constructions

The simplicial replacement of G of Bousfield–Kan ([9] Chapter XII, §5) produces the bisimplicial set

Ψ = ΨC(G) : ∆op × ∆op → Set, (28)

whose (p, q)-simplices are pairs (σ, x) where σ : p→ C is a functor and x ∈ G(σp)q is a q-simplex of
G(σp). If α : p′ → p and β : q′ → q are maps in ∆, the induced maps

Ψp′ ,q Ψp,q
α∗h=(α,1q)∗oo

β∗v=(1p ,β)∗
// Ψp,q′

are respectively defined on any (p, q)-simplex (σ, x) as above by

α∗h(σ, x) = (σ α, σ(αp′, p)∗x), β∗v(σ, x) = (σ, β∗x).

In particular, its horizontal and vertical face maps Ψp−1,q Ψp,q
dh

ioo
dv

j // Ψp,q−1 act by

dh
i (σ, x) =

{
(diσ, x) 0 ≤ i < p,

(dpσ, σ∗p x) i = p,

dv
j (σ, x) = (σ, djx), 0 ≤ j ≤ q.

The homotopy colimit construction on G is the simplicial set

hocolimC G = diag ΨC(G).
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Its n-simplices are then pairs (σ, x) where σ : n→ C is a functor and x ∈ G(σp)n. If α : m→ n is
any map in ∆, then the induced map α∗ : (hocolimCG)n → (hocolimCG)m acts by

α∗(σ, x) = (σ α, σ(αm, n)∗α∗x).

In particular, its face maps are given by

di(σ, x) =

{
(diσ, dix) 0 ≤ i < n,

(dnσ, σ∗n dnx) i = n.

On the other hand, by composing G with the category of simplices functor ∆ : SSet → Cat,
we get a diagram of categories ∆G : Cop → Cat on which we can apply the Grothendieck construction.
This yields the small category ∫

C∆G,

whose objects are triples (n, a, x), where n ∈ Ob∆, a ∈ ObC, and x ∈ G(a)n is a n-simplex of G(a).
A morphism (α, u) : (m, b, y)→ (n, a, x) consists of morphisms α : m → n, of ∆, and u : b → a, of C,
such that y = u∗α∗x. Composition in

∫
C∆G is given by (β, v) ◦ (α, u) = (β α, v ◦ u).

Let ∆(hocolimC G) be the category of simplices of the homotopy colimit of G. Its objects are
triples (n, σ, x), where σ : n→ C is a functor and x ∈ G(σn)n. Its morphisms α : (m, τ, y)→ (n, σ, x)
are those maps α : m→ n in ∆ such that τ = σ α and y = σ(αm, n)∗α∗x. We have the functor

µ : ∆(hocolimC G)→
∫

C ∆G , (29)

which is defined on objects by µ(n, σ, x) = (n, σn, x), and on morphisms α : (m, τ, y)→ (n, σ, x) by

µ(α) = (α, σ(αm, n)) : (m, τm, y) −→ (n, σn, x).

4.2. A Projective Resolution of the
∫

C ∆G-module Z

To shorten some expressions, ifA is any
∫

C ∆G-module and (n, a, x) is an object of
∫

C ∆G, then we
write A(a, x) for A(n, a, x), leaving understood the dimension n of the simplex x of G(a).

Let Ψ = ΨC(G) be as in Equation (28). For any integers p, q ≥ 0, let the set Ψp,q be equipped with
the map

π : Ψp,q → Ob
∫

C ∆G , (σ, x) 7→
(
q, σp, x

)
,

and let Qp,q = FΨp,q be the associated free
∫

C ∆G-module. Thus, for each object (n, a, x) of
∫

C ∆G,
Qp,q(a, x) = Z{(σ, z, α, u)} is the free abelian group on the set of lists (σ, z, α, u) consisting of a functor
σ : p → C, a simplex z ∈ G(σp)q, a map α : q → n in ∆, and a morphism u : σp → a in C, such that
z = u∗α∗x. Equivalently, we can take

Qp,q(a, x) = Z{(σ, u, α)} (30)

the free abelian group on the set of triples (σ, u, α) consisting of a functor σ : p → C, a morphism
u : σp → a in C, and a map α : q → m in ∆. If (β, v) : (m, b, y) → (n, a, x) is any morphism of
the category

∫
C ∆G, then the induced homomorphism (β, v)∗ : Qp,q(b, y) → Qp,q(a, x) is given on

generators by (β, v)∗(σ, α, u) = (σ, β α, v ◦ u).
These Qp,q provide us of a bisimplicial

∫
C ∆G-module

Q = QC(G) : ∆op × ∆op −→
∫

C ∆G-Mod , (31)
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in which, for any maps β : p′ → p and γ : q′ → q in the simplicial category, the induced morphisms
at any object (n, a, x) of

∫
C ∆G,

Qp′ ,q(a, x) Qp,q(a, x)
β∗hoo γ∗v // Qp,q′(a, x)

are the homomorphisms acting on generators by{
β∗h(σ, α, u) =

(
σ β, α, u ◦ σ(βp′, p)

)
,

γ∗v(σ, α, u) =
(
σ, α γ, u

)
.

In particular, the horizontal and vertical face homomorphisms

Qp−1,q(a, x) Qp,q(a, x)
dh

ioo
dv

j // Qp,q−1(a, x)

are defined on generators by

dh
i (σ, α, u) =

{
(diσ, α, u), 0 ≤ i < p,

(dpσ, α, u ◦ σp) i = p,

dv
j (σ, α, u) = (σ, αdj, u), 0 ≤ j ≤ q.

Let diagQ be the complex associated to the simplicial
∫

C ∆G-module diagonal of Q.
Thus, (diagQ)m = Qm,m and, at any object (n, a, x) of

∫
C ∆G, the differential ∂ : Qm,m(a, x) →

Qm−1,m−1(a, x) is given on generators by

∂(σ, α, u) =
m−1

∑
i=0

(−1)i(diσ, α di, u) + (−1)m(dmσ, α dm, u ◦ σm
)
. (32)

Lemma 2. diagQC(F) is a projective resolution of the
∫

C ∆G-module Z. Hence, for any
∫

C ∆G-module A,

Hn( ∫
C ∆G,A

)
= Hn(Hom∫

C∆G(diagQC(F),A)
)
.

Proof. Let us write Q = QC(F) as in Equation (31). There is an augmentation ε : diagQ� Z which,
at any object (n, a, x) of

∫
C ∆G, is given by the homomorphism

ε : Q0,0(a, x)→ Z(a, x)

that carries all generators (σ, α, u) of Q0,0(a, x) to the generator (n, a, x) of Z(a, x). Since every∫
C∆F-module Qn,n is free, whence projective, it suffices to prove that, for any object (n, a, x) of∫
C ∆F, the augmented chain complex of abelian groups

· · · → Q2,2(a, x) ∂−→ Q1,1(a, x) ∂−→ Q0,0(a, x) ε−→ Z(a, x)→ 0 (33)

is exact. To do this, let us fix any such (n, a, x) and proceed as follows.
Let ∆n = Hom∆(−, n) be the standard simplicial n-simplex, and let us consider the simplicial

abelian group Z∆n, q 7→ ZHom∆(q, n), as a bisimplicial abelian group which is constant in the
horizontal direction. Then, a bisimplicial homomorphism ε : Q(a, x) → Z∆n is given by the
homomorphisms ε : Q0,q(a, x)→ Z∆n

q defined on generators by

ε(a0, q α→ n, a0
u→ a) = α,
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where we have identified any object a0 of C with the functor σ : 0 → C such that σ0 = a0. For any
q ≥ 0, the associated augmented chain complex of abelian groups admits a contracting homotopy k

· · · → Q2,q(a, x) ∂ // Q1,q(a, x) ∂ //

k1

zz
Q0,q(a, x) ε //

k0

zz
Z∆n

q

k−1

||
→ 0,

whence it is exact. Such a homotopy k is given by the homomorphisms

k−1 : Z∆n
q → Q0,q(a, x), kp : Qp,q(a, x)→ Qp+1,q(a, x),

which act on generators by

k−1(α) = (a, α, 1a), kp(σ, α, u) = (−1)p+1(u ? σ, α, 1a),

where, for any σ : p→ C and u : σp→ a, u ? σ : p + 1→ C is defined as in Equation (15). It follows
from Dold–Puppe Theorem that the induced map on the associated augmented diagonal complexes
ε : diagQ(a, x)→ diagZ∆n = Z∆n,

· · · → Q2,2(a, x) ∂ //

ε

��

Q1,1(a, x) ∂ //

ε

��

Q0,0(a, x)

ε

��

ε // Z(a, x) //

∼=
��

0

· · · → Z∆n
2

∂ // Z∆n
1

∂ // Z∆n
0

ε // Z // 0,

is a homology isomorphism. Then, the exactness of Equation (33) follows from the exactness of the
augmented chain complex at the bottom in the above diagram, as it has a contracting homotopy given
by the homomorphisms

h−1 : Z→ Z∆n
0 , hq : Z∆n

q → Z∆n
q+1, (34)

which are defined on generators as follows: h−1(1) : 0→ n is the map 0 7→ 0, and, for any α : q→ n,
hq(α) : q + 1→ n is the map 0 7→ 0 and i + 1 7→ α(i).

By composing with the functor µ : ∆(hocolimC G) →
∫

C ∆G in Equation (29),
every

∫
C ∆G-module A gives rise to a coefficient system µ∗A on hocolimC G, and we have

Theorem 4. For any
∫

C ∆G-module A, there are natural isomorphisms

Hn(
∫

C ∆G,A) ∼= HnC(hocolimC G, µ∗A).

Proof. Let A be any given
∫

C ∆G-module. As we did before, for any object (n, a, x) of
∫

C ∆G we write
A(a, x) instead of A(n, a, x), and also, for any morphism u : b→ a of C we write

u∗ : A(b, u∗x)→ A(a, x)

for the induced homomorphism (idn, u)∗ : A(n, b, u∗x) → A(n, a, x). Similarly, for α : m → n any
map in ∆, we write

α∗ : A(a, α∗x)→ A(a, x)

by the homomorphism (α, 1a)∗ : A(m, a, α∗x)→ A(n, a, x). Thus, we have the equalities

α∗ u∗ = (α, u)∗ = u∗α∗ : A(b, u∗α∗x)→ A(a, x), (35)
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that is, both inner triangles in the diagram below commutes.

A(b, u∗α∗x)
α∗ //

u∗
��

(α,u)∗

''

A(b, u∗x)

u∗
��

A(a, α∗x)
α∗

// A(a, x)

The induced coefficient system µ∗A on hocolimC G carries an n-simplex (σ, x) to the abelian
group µ∗A(σ, x) = A(σn, x) and, for any map α : m→ n in ∆, the attached µ∗A(α) : µ∗A(α∗(σ, x))→
µ∗A(σ, x) is the homomorphism

α∗ σ(αm, n)∗ : A(σαm, σ(αm, n)∗α∗x)→ A(σn, x).

In particular, the cofaces µ∗A(di) : µ∗A(di(σ, x))→ µ∗A(σ, x) are the homomorphisms{
di
∗ : A(σn, dix)→ A(σn, x), 0 ≤ i < n,

dn
∗σn∗ : A(σ(n−1), σ∗n dnx)→ A(σn, x), i = n.

Then, the standard cochain complex C(hocolimC G, µ∗A) consists of the abelian groups

Cm(hocolimC G, µ∗A) = ∏
σ : m→ C

x ∈ F(σm)m

A(σm, x),

with coboundary ∂ : Cm−1(hocolimC G, µ∗A)→ Cm(hocolimC G, µ∗A) given by

(∂ϕ)(σ, x) =
m−1

∑
i=0

(−1)idi
∗ϕ(diσ, dix) + (−1)mdm

∗ σm∗ϕ(dmσ, σ∗mdmx). (36)

Now, let Q = QC(G) be the bisimplicial
∫

C ∆G-module in Equation (31). By Proposition 1,
there are isomorphisms of abelian groups

Γ′ : Cm(hocolimC G, µ∗A) ∼= Hom∫
C ∆G(Qm,m,A) (m ≥ 0)

which carry an m-cochain ϕ ∈ Cm(hocolimC G,A) to the morphism of
∫

C ∆G-modules Γ′ϕ given,
at any object (n, a, x) of

∫
C ∆F, by the homomorphism of abelian groups

Γ′ϕ : Qm,m(a, x)→ A(a, x) | (σ, α, u) 7→ α∗u∗ϕ(σ, α∗u∗x).

These Γ′ fit together to define an isomorphism of cochain complexes

Γ′ : C(hocolimC G, µ∗A) ∼= Hom∫
C ∆G(diagQ,A).

In effect, for any ϕ ∈ Cm−1(hocolimC G, µ∗A), any object (n, a, x) of
∫

C ∆F, and any generator
(σ, α, u) of Qm,m(a, x), we have
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(
Γ′(∂ϕ)

)
(σ, α, u) = α∗u∗(∂ϕ)(σ, u∗α∗x)

(36)
=

m−1

∑
i=0

(−1)iα∗u∗di
∗ϕ(diσ, diu∗α∗x) + (−1)mα∗u∗dm

∗ σm∗ϕ(dmσ, σ∗mdmu∗α∗x)

(35)
=

m−1

∑
i=0

(−1)iα∗di
∗u∗ϕ(diσ, diα

∗u∗x) + (−1)mα∗dm
∗ u∗σm∗ϕ(dmσ, dmα∗σ∗mu∗x)

=
m−1

∑
i=0

(−1)i(αdi)∗u∗ϕ(diσ, (αdi)∗u∗x)

+ (−1)m(αdm)∗(u ◦ σm)∗ϕ(dmσ, (αdm)∗(u ◦ σm)
∗x)

(32)
= (Γ′ϕ)(∂(σ, α, u)) =

(
(Γ′ϕ)∂

)
(σ, α, u).

Hence, the result follows from Lemma 2.

Let X be a simplicial set. When we specialize Theorem 4 above to the case when C = 0 is
the only-one-arrow category and G : 0 → SSet the functor with G(0) = X, then hocolimC G = X,
the simplicial set X,

∫
C ∆G = ∆(X), the category of simplices of X, and the comparison functor

(Equation (29)), µ : ∆(hocolimC G) →
∫

C ∆G, is the identity on ∆(X). Therefore, we obtain the
following well-known result, already mentioned in Section 2 as Fact 1.

Corollary 8. For any simplicial set X and any ∆(X)-module A, there are natural isomorphisms

Hn(X,A) ∼= HnC(X,A) (n ≥ 0).

Returning to the general case, if A is any
∫

C ∆G-module, we have are natural isomorphisms

Hn(
∫

C ∆G,A)
4∼= HnC(hocolimC G, µ∗A)

8∼= Hn(hocolimC G, µ∗A),

whence our second main result in the paper follows

Corollary 9. The functor µ in Equation (29) is a Roos–Watts weak homotopy equivalence; that is, for any∫
C ∆G-module A, µ induces isomorphisms

Hn(
∫

C ∆G,A) ∼= Hn(hocolimC G, µ∗A).

Remark 3. For any
∫

C ∆G-module A, the spectral sequence in Corollary 4 can be written as

Ep,q
2 = Hp(C, Hq(G, ι∗A))⇒ Hp+q(hocolimC G, µ∗A),

where Hq(G, ι∗A) : C→ Ab is the C-module assigning to each object b of C the q-th cohomology group of the
simplicial set G(b) with coefficients in the ∆G(b)-module obtained by restriction of A via the inclusion functor
ib : ∆G(b) ↪→

∫
C ∆G (25).

Remark 4. Let us say that a weak homotopy equivalence of simplicial sets f : Y → X is Gabriel–Zisman
weak homotopy equivalence provided that, for any coefficient system A on Y, the induced f ∗ : Hn(X,A) ∼=
Hn(Y, f ∗A) are isomorphisms for all n ≥ 0. That is, whenever ∆( f ) : ∆(X) → ∆(Y) is a Roos–Watts
weak homotopy equivalence. The invariance result in Corollary 7, tell us that if ν : G′ ⇒ G is a natural
transformation between diagrams of simplicial sets G′, G : Cop → SSet, such that every νa : G′(a)→ G(a),
a ∈ ObC, is a Gabriel–Zisman weak homotopy equivalence, then the induced functor

∫
C ν :

∫
C G′ →

∫
C G is a

Roos–Watts weak homotopy equivalence (cf. Moerdijk–Svensson ([10] Corollary 2.5)).
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Finally, it is worth noting that both Theorem 3 and Corollary 9 can be useful in combination. For
example, for any diagram of categories F : Cop → Cat, there is a canonical functor

L =
∫

C lF :
∫

C ∆NF //
∫

C F,

induced by the natural transformation lF : ∆NF → F, whose component at any object a ∈ ObC, is the
last vertex functor lF(a) : ∆N(F(a))→ F(a), see Equation (8). We now can prove

Corollary 10. For any functor F : Cop → Cat, the functor L above is a Roos–Watts weak
homotopy equivalence.

Proof. We know that every last vertex functor lF(a) : ∆N(F(a)) → F(a) is a weak homotopy
equivalence (see, e.g., Illusie ([12] Chapitre VI, Thèormé 3.3)). Then, the functor L is also a weak
homotopy equivalence by Thomason ([5] Corollary 3.3.1). Furthermore, since the square of functors

∆(hocolimC NF)
∆(η) //

µ

��

∆N
∫

C F

l
��∫

C ∆NF L //
∫

C F.

commutes, for any
∫

C F-module A, the induced homomorphisms

Hn(
∫

C F,A)→ Hn(
∫

C ∆NF, L∗A) are the composite of the isomorphisms

Hn(
∫

C F,A)
3∼= Hn(hocolimCNF, η∗l∗A) = Hn(hocolimCNF, µ∗L∗A)

9∼= Hn(
∫

C ∆NF, L∗A).
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