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Abstract: In this paper we present some novel fixed point theorems for a family of contractions
depending on two functions (that are not defined on t = 0) and on some parameters that we have
called multiparametric contractions. We develop our study in the setting of b-metric spaces because
they allow to consider some families of functions endowed with b-metrics deriving from similarity
measures that are more general than norms. Taking into account that the contractivity condition we
will employ is very general (of Hardy-Rogers type), we will discuss the validation and usage of this
novel condition. After that, we introduce the main results of this paper and, finally, we deduce some
consequences of them which illustrates the wide applicability of the main results.

Keywords: b-metric space; multiparametric contraction; fixed point; contractivity condition;
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1. Introduction

The field of Fixed Point Theory has very recently undergone a great development, mainly due to
the great number of contractivity conditions, especially in two directions: by considering new terms
and by involving auxiliary functions. Let us briefly describe respective examples. Let (X, d) be a
metric space and let f : X → X be a mapping from X into itself. Starting from the celebrated Banach’s
contractivity condition [1]:

d (fx, fy) ≤ λ d (x, y) for all x, y ∈ X,

where λ ∈ [0, 1), an initial extension of the previous assumption was due to Kannan [2]:

d (fx, fy) ≤ λ′ [ d (fx, y) , d (x, fy) ] for all x, y ∈ X (λ′ ∈ [0, 1/2) ).

This result allowed to extend Banach’s principle to a family of self-mappings that did not
need to be continuous. Later, other terms were involved in the contractivity condition, as in the
following examples:

d (fx, fy) ≤ λ max
{

d (x, y) , d (x, fx) , d (y, fy) ,
d (fx, y) + d (x, fy)

2

}
for all x, y ∈ X,
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or

d (fx, fy) ≤ λ max { d (x, y) , d (x, fx) , d (y, fy) , d (fx, y) , d (x, fy) } for all x, y ∈ X.

Independently, contractivity conditions evolved towards the inclusion of auxiliary functions.
A first example in this direction was the Boyd and Wang’s contractivity condition [3]:

d (fx, fy) ≤ φ (d (x, y)) for all x, y ∈ X,

where φ : [0, ∞) → [0, ∞) was a function satisfying key properties (in that case, φ (t) < t
and lim supr→t+ φ (r) ≤ φ (t) for all t > 0; this last condition is verified, for instance, by any
upper semicontinuous from the right on (0, ∞) function). In recent times, several classes of
auxiliary functions have enriched this theory a lot (altering functions [4,5], simulation functions [6,7],
R-functions [8–10], etc.).

As a mixture of both lines of research, in 1977 Jaggi [11] introduced the following kind of rational
type contractivity condition (where α, β ∈ (0, 1) satisfy α + β < 1):

d (fx, fy) ≤ α d (x, y) + β
d (x, fx) d (y, fy)

d (x, y)
for all x, y ∈ X such that x 6= y.

Obviously, such kind of contractivity conditions can only be verified by pairs of distinct points
of the metric space (see [12]). This new family of hypotheses allowed the researcher to realize that,
in many cases, contractivity conditions became trivial when the pair of points are equal, that is, x = y.
As a consequence, a lot of results were introduced by assuming that the contractivity condition must
be only verified for distinct points. Hence, auxiliary functions φ : [0, ∞)→ [0, ∞) did not need to be
defined in t = 0, which led to the fact that recent results only use functions such as φ : (0, ∞)→ (0, ∞),
where φ (0) does not necessarily exist. However, when we combine several restrictions, it is possible to
pose a contractivity condition of type

d(fx, fy) ≤ φ(M(x, y))

in which, for some distinct points x0, y0 ∈ X, we can deduce M(x0, y0) = 0 but φ is not defined in
t = 0. As a consequence, when we apply the contractivity condition, we must take care about the fact
that M(x, y) > 0.

In this paper, we present some novel fixed point theorems for a family of contractions depending
on two functions (that are not defined on t = 0) and on some parameters that we have called
multiparametric contractions. We develop our study in the setting of b-metric spaces because they
are, in our opinion, a very successful context because they allow to consider some important families
of functions endowed with b-metrics deriving from similarity measures that are more general than
norms. Taking into account that the contractivity condition we will employ is very general and it
makes use of functions that are not defined on t = 0, we will discuss the validation and use of this
condition in Section 3. After that, we introduce the main results of this paper and, finally, we deduce
some consequences of them which illustrates the wide applicability of the main results.

2. Background on b-Metric Spaces and Fixed Point Theory

Let N = {1, 2, 3, . . .} the family of all positive integers. Henceforth, let X be a non-empty set and
let s ∈ [1, ∞) be a real number.

A b-metric on X is a function b : X × X → [0, ∞) satisfying null self-distance (b(u, u) = 0),
indistinguishibility of indiscernibles (if b(u, v) = 0, then u = v), symmetry (b(v, u) = b(u, v)) and the
following generalized version, involving the number s, of the triangle inequality:

b(u,w) ≤ s [ b(u, v) + b(v,w) ] for all u, v,w ∈ X.
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When s = 1, we recover the notion of metric space. However, the notion of b-metric is more
general than the concept of metric (see [13–15]). For instance, in general, a b-metric is not necessarily
continuous.

Example 1 ([16–19]). Let (X, d) be a metric space and let r > 1. If we consider the function dr : X × X →
[0, ∞) defined by dr(x, y) = d(x, y)r for all x, y ∈ X, then (X, dr, s) forms a b-metric space with s = 2r−1.

In a b-metric space (X, b, s), a sequence {un} is b-convergent to u ∈ X if lim
n→∞

b(un, u) = 0, and it

is b-Cauchy if lim
n,m→∞

b(xn, xm) = 0. The reader can check that each b-convergent sequence is b-Cauchy.

The b-metric space (X, b, s) is complete if each b-Cauchy sequence is b-convergent to a point in X.

Lemma 1 ([20]). Let {un} be a sequence of elements in a b-metric space (X, b, s). If there exists C ∈ [0, 1/s)
such that b(un, un+1) ≤ Cb( un−1, un) for every n ∈ N, then {un} is a b-Cauchy sequence.

Lemma 2 ([21]). Let {un} be a sequence in a b-metric space (X, b, s) such that {b(un, un+1)} → 0 as n→ ∞.
If the sequence {un} is not b-Cauchy, then there exist e > 0 and two partial subsequences {up(r)}r∈N and
{uq(r)}r∈N of {un}n∈N such that

p (r) < q (r) < p (r + 1) and e < b(up(r)+1, uq(r)+1) for all r ∈ N,

lim
r→∞

b(up(r), uq(r)) = lim
r→∞

b(up(r)+1, uq(r)) = lim
r→∞

b(up(r), uq(r)+1) = lim
r→∞

b(up(r)+1, uq(r)+1) = e.

A fixed point of a self-mapping f : X → X is an element u0 ∈ X such that fu0 = u0. We will say
that f is fixed-points free if it has not a fixed point. Associated also to the self-mapping f, a sequence
{un} in X is a Picard sequence of f if un+1 = fun for all n ∈ N.

Following [22], a sequence {un} in X is infinite if un 6= um for all n 6= m, and {un} is almost
periodic if there exist r0, N ∈ N such that

ur0+r+Np = ur0+r for all p ∈ N and all r ∈ {0, 1, 2, . . . , N − 1} .

Proposition 1 ([22], Proposition 2.3). Every Picard sequence is either infinite or almost periodic.

Proposition 2. Let {ur} be a Picard sequence in a b-metric space (X, b, s) such that {b(ur, ur+1)} → 0.
If there are r1, r2 ∈ N such that r1 < r2 and ur1 = ur2 , then there is r0 ∈ N and u ∈ X such that ur = u for all
r ≥ r0 (that is, {ur} is constant from a term onwards). In such a case, u is a fixed point of the self-mapping for
which {un} is a Picard sequence.

Proof. Let f : X → X be a mapping for which {ur} is a Picard sequence. The set

Ω =
{

k ∈ N : ∃ r0 ∈ N such that ur0 = ur0+k
}

is non-empty because r2 − r1 ∈ Ω, so it has a minimum k0 = min Ω. Then k0 ≥ 1 and there is r0 ∈ N
such that ur0 = ur0+k0 . As {ur} is not infinite, then it must be almost periodic. In fact, it is easy to check,
by induction on p, that:

ur0+r+pk0 = ur0+r for all p ∈ N and all r ∈ {0, 1, 2, . . . , k0 − 1} . (1)

If k0 = 1, then ur0 = ur0+1. Similarly ur0+2 = fur0+1 = fur0 = ur0+1. By induction, ur0+r = ur0 for
all r ≥ 0, which is precisely the conclusion. Next we are going to prove that the case k0 ≥ 2 leads to a
contradiction.
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Assume that k0 ≥ 2. Then all two terms in the set { ur0 , ur0+1, ur0+2, . . . , ur0+k0−1 } are distinct, that
is, ur0+i 6= ur0+j for all 0 ≤ i < j ≤ k0− 1 (on the contrary case, k0 is not the minimum of Ω). Let define

e0 =
min

({
b(ur0+i, ur0+i+1) : 0 ≤ i ≤ k0 − 1

})
2

.

Then e0 > 0. Since {b(ur, ur+1)} → 0, there is m0 ∈ N such that m0 ≥ r0 and b(um0 , um0+1) < e0.
Let i0 ∈ {0, 1, 2, . . . , k0 − 1} the unique integer number such that the non-negative integer numbers
m0 − r0 and i0 are congruent modulo k0, that is, i0 is the rest of the integer division of m0 − r0 over
k0. Hence there is a unique integer p ≥ 0 such that (m0 − r0)− i0 = pk0. Since m0 = r0 + i0 + pk0,
property (1) guarantees that

um0 = ur0+i0+pk0 = ur0+i0 ,

where r0 + i0 ∈ {r0, r0 + 1, r0 + 2, . . . , r0 + k0 − 1}. As a consequence:

2e0 = min
({

b(ur0+i, ur0+i+1) : 0 ≤ i ≤ k0 − 1
})
≤ b(ur0+i0 , ur0+i0+1) = b(um0 , um0+1) < e0,

which is a contradiction.

Corollary 1. Let (X, b, s) be a b-metric space and let {ur} ⊆ X be a Picard sequence of f such that
{b(ur, ur+1)} → 0. If f is fixed-points free, then {ur} is infinite (that is, ur 6= ur′ for all r 6= r′).

Remark 1. If ψ : (0, ∞)→ R is a non-decreasing function and t, r ∈ (0, ∞) are such that ψ (t) < ψ (s), then
t < s.

Given t0 > 0, we will use the notation ψ(t+0 ) to stand the lateral limit lim
t→t+0

ψ (t) (if it exists), that is,

a limit taken on values verifying t > t0. We also consider the limit superior lim sup
t→t+0

φ(t), which is the

greatest limit of the images by φ of any strictly decreasing sequence in the interval (t0, ∞) converging
to t0.

3. Discussion on the Contractivity Condition

As we have pointed out in the introduction, the contractivity condition we will employ is as
general that, for the sake of clarity, we have to previously discuss about how it must be correctly
applied. We set our study in the context of b-metric spaces. In the following definition, we introduce
the algebraic tools we will handle in order to complete this study.

Definition 1. Let (X, b, s) be a b-metric space, let f : X → X be a self-mapping and let κ = {κ1, κ2, κ3, κ4, κ5}
be a set of five non-negative real numbers.We will denote by

Af : X× X → [0, ∞)

to the function defined, for all x, y ∈ X, by:

Af(x, y) = κ1b(x, y) + κ2b(x, fx) + κ3b(y, fy) + κ4b(x, fy) + κ5b(y, fx). (2)

Given two auxiliary functions ψ, φ : (0, ∞) → R and a real number q ∈ [1, ∞), we will say that f is a
(ψ, φ,κ, q)-multiparametric contraction on (X, b, s) if

ψ(sqb(fx, fy)) ≤ φ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0. (3)

On the one hand, notice that function Af depends on the b-metric b, on the function f and on the
constants of the set κ = {κ1, κ2, κ3, κ4, κ5}. However, we center our attention on the dependence w.r.t.
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f because the main aim of fixed point theory is to introduce fixed point result for an operator f : X → X
(if we have removed f from Af , then reader would not been able to appreciate the dependence on f

on the right-hand side of the contractivity condition (3)). Furthermore, the function Af makes that
(3) is known as a Hardy-Rogers type contractivity condition. In addition to this, this function is not
necessarily symmetric, so some results can be optimized later. Indeed, our contractions satisfy:

ψ(sqb(fx, fy)) ≤ min {φ(Af(x, y)), φ(Af(x, y))} .

On the other hand, the contractivity condition (3) depends on a function φ : (0, ∞)→ Rwhich
is not defined for t = 0, so its applicability needs to only consider pairs of points x and y for which
Af(x, y) > 0. Is the condition b(fx, fy) > 0 strong enough in order to guarantee that Af(x, y) > 0?
The response is not. The condition b(fx, fy) > 0 guarantees that x and y are distinct because fx 6= fy.
However, we cannot guarantee that Af(x, y) > 0 when x 6= y. For instance, when κi = 0 for all
i ∈ {1, 2, 3, 4, 5} then Af(x, y) = 0. In such a case, we cannot apply assumption (3) because the domain
of function φ : (0, ∞) → R is the family of all strictly positive real numbers, and the evaluation
φ(Af(x, y)) is meaningless. Furthermore, although κ1 = κ2 = κ3 = 0 and κ4, κ5 > 0, it is possible that
Af(x, y) = 0, as we show in the following result.

Proposition 3. Let (X, b, s) be a b-metric space, let f : X → X be a mapping and let κ1, κ2, κ3, κ4, κ5 ≥ 0 be
five non-negative real numbers. Suppose that there are two distinct points x0, y0 ∈ X such that Af(x0, y0) = 0,
where Af is defined in (2). Then κ1 = 0 and at least one of the following four statements hold.

1. κi = 0 for all i ∈ {1, 2, 3, 4, 5}. In this case, Af is constantly 0.
2. κ2 6= 0 and x0 is a fixed point of f.
3. κ3 6= 0 and y0 is a fixed point of f.
4. κ1 = κ2 = κ3 = 0 and at least one of κ4 and κ5 is strictly positive. In such case, if κ4 6= 0 then fx0 = y0,

and if κ5 6= 0 then fy0 = x0. As a consequence, if κ4 and κ5 are strictly positive at the same time, then x0

and y0 are distinct fixed points of f2.

Proof. If κi = 0 for all i ∈ {1, 2, 3, 4, 5}, then the first case holds. For the contrary case, assume that
some κi is distinct to zero. Since Af(x0, y0) = 0 and κi ≥ 0 for all i ∈ {1, 2, 3, 4, 5}, then

κ1b(x0, y0) = κ2b(x0, fx0) = κ3b(y0, fy0) = κ4b(x0, fy0) = κ5b(y0, fx0) = 0.

Since b(x0, y0) > 0, then necessarily κ1 = 0. If κ2 6= 0, then b(x0, fx0) = 0, so x0 is a fixed point of f
and the second case holds. Next assume that κ2 = 0. Similarly, if κ3 6= 0, then b(y0, fy0) = 0, so y0 is a
fixed point of f and the third case holds. Next assume that κ3 = 0. Since κ1 = κ2 = κ3 = 0, then either κ4

or κ5 does not vanish. If κ4 6= 0, then b(x0, fy0) = 0, so fy0 = x0. Similarly, if κ5 6= 0, then b(y0, fx0) = 0,
so fx0 = y0. Finally, if κ4 and κ5 are strictly positive at the same time, then f2(x0) = f (fx0) = fy0 = x0

and f2(y0) = f (fy0) = fx0 = y0, so x0 and y0 are distinct fixed points of f2, and the fourth case holds.

The previous proposition let us to imagine a case in which f is fixed-points free although it satisfies
the contractivity condition (3).

Example 2. Let X = {x0, y0}, where x0 6= y0, and let define f : X → X by fx0 = y0 and fy0 = x0. Then f

is fixed-points free. However, if κ1 = κ2 = κ3 = 0, then Af(x0, y0) = 0 whatever the values of κ4 and κ5.
Hence the contractivity condition (3) is empty, so it is not useful in order to guarantee the existence of fixed
points of f.

A simple way to guarantee that Af(x, y) > 0 for all x, y ∈ X such that b(fx, fy) > 0 follows from
the assumption that κ1 6= 0. Anyway, although κ1 = 0, the equality Af(x0, y0) = 0 implies that x0 or y0
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is a fixed point of f when κ2 6= 0 or κ3 6= 0, respectively. Therefore, in such a case, the existence of a
fixed point of f is guaranteed.

Corollary 2. Let (X, b, s) be a b-metric space, let f : X → X be a mapping, let κ1, κ2, κ3, κ4, κ5 ≥ 0 be five
non-negative real numbers and let Af be defined as in (2).

• If κ1 > 0, then Af(x, y) > 0 for all distinct points x, y ∈ X.
• If κ2 > 0 and there are x0, y0 ∈ X such that Af(x0, y0) = 0, then x0 is a fixed point of f.
• If κ3 > 0 and there are x0, y0 ∈ X such that Af(x0, y0) = 0, then y0 is a fixed point of f.
• If κ1 + κ2 + κ3 > 0, then either f admits a fixed point or Af(x, y) > 0 for all distinct points x, y ∈ X.

Corollary 3. Let (X, b, s) be a b-metric space, let f : X → X be a mapping, let κ1, κ2, κ3, κ4, κ5 ≥ 0 be five
non-negative real numbers and let Af be defined as in (2). Suppose that f is fixed-points free. If κ1 + κ2 + κ3 > 0,
then Af(x, y) > 0 for all distinct points x, y ∈ X.

4. Fixed Point Theory for Multiparametric Contractions in the Setting in b-Metric Spaces

In the previous section, we have described the cautions we must observe when applying the
contractivity condition (3). In this section, we introduce the main results of this paper. To reach this
objective, we need to impose some appropriate conditions on the auxiliary functions ψ, φ : (0, ∞)→ R.
Inspired by some results in [21], the restrictions we will consider are the following:

(c0) φ(t) < ψ(t) for any t > 0;
(c1) ψ is nondecreasing;
(c2) lim sup

t→t+0

φ(t) < ψ(t+0 ) for any t0 > 0.

We start this study by introducing a common result in which we describe sufficient conditions in
order to guarantee that the fixed point, if it exists, it is unique.

Theorem 1. Let f : X → X be a (ψ, φ,κ, q)-multiparametric contraction on a b-metric space (X, b, s). If the
functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1), and

0 < κ1 + κ4 + κ5 ≤ sq, (4)

then f admits, at most, a unique fixed point.

Proof. To prove the uniqueness, suppose that f admits two distinct fixed points, that is, there are
x∗, x∗∗ ∈ X such that fx∗ = x∗ 6= x∗∗ = fx∗∗. Then b(x∗, x∗∗) > 0 and

Af(x∗, x∗∗) = κ1b(x∗, x∗∗) + κ2b(x∗, fx∗) + κ3b(x∗∗, fx∗∗) + κ4b(x∗, fx∗∗) + κ5b(x∗∗, fx∗)

= κ1b(x∗, x∗∗) + κ4b(x∗, x∗∗) + κ5b(x∗∗, x∗)

= (κ1 + κ4 + κ5) b(x∗, x∗∗).

Therefore Af(x∗, x∗∗) > 0 because κ1 + κ4 + κ5 > 0 and b(x∗, x∗∗) > 0. Hence the contractivity
condition (3) can be applied because b(fx∗, fx∗∗) = b(x∗, x∗∗) > 0, and it guarantees that

ψ(sqb(fx∗, fx∗∗)) ≤ φ(Af(x∗, x∗∗)).

As a consequence, assumptions (4), (c0) and (c1) lead to

ψ(sq b(x∗, x∗∗)) = ψ(sqb(fx∗, fx∗∗)) ≤ φ(Af(x∗, x∗∗))

= φ((κ1 + κ4 + κ5) b(x∗, x∗∗))

< ψ((κ1 + κ4 + κ5) b(x∗, x∗∗)) ≤ ψ(sq b(x∗, x∗∗)),
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which is a contradiction. Hence we can conclude that f admits, at most, a unique fixed point.

In the following results, the uniqueness of the fixed point will be deduced from Theorem 1
after firstly proving the existence of such kind of points. In this sense, we introduce now our first
main theorem.

Theorem 2. Let f : X → X be a (ψ, φ,κ, q)-multiparametric contraction on a b-metric space (X, b, s). If the
functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1), and the numbers in κ verify

0 < κ1 + κ2 + κ3 and sκ1 + sκ2 + κ3 +
(
s+ s2

)
κ4 < 1,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

As some arguments of the following proof can be repeated under distinct global hypotheses,
we divide the proof into some steps in order to recall them later (in particular, steps 1 and 2 only
depend on the notion of (ψ, φ,κ, q)-multiparametric contraction on a b-metric space).

Proof. We reason by reductio ad absurdum assuming that f is fixed-points free and getting a
contradiction.

Step 1. Af(x, y) > 0 for all distinct points x, y ∈ X.
If follows from Corollary 3 taking into account that κ1 + κ2 + κ3 > 0 and f is fixed-points free.
Let ω be an arbitrary point in X and let {un} be a sequence defined as follows:

u1 = fω, u2 = fu1, ..., un = fun−1, . . .

for any n ∈ N.
Step 2. For all n ≥ 2, Af(un−1, un) > 0 and

0 < sqb(un, un+1) < (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1). (5)

To prove it, observe that un 6= un+1 for all n ∈ N because we assume that f is fixed-points free,
and also Af(un, un+1) > 0 for all n ∈ N because of Step 1. Notice that

0 < Af(un−1, un) = κ1b(un−1, un) + κ2b(un−1, fun−1) + κ3b(un, fun)+

+ κ4b(un−1, fun) + κ5b(un, fun−1)

= κ1b(un−1, un) + κ2b(un−1, un) + κ3b(un, un+1)+

+ κ4b(un−1, un+1) + κ5b(un, un) (6)

≤ κ1b(un−1, un) + κ2b(un−1, un) + κ3b(un, un+1)+

+ sκ4 [ b(un−1, un) + b(un, un+1) ]

= (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1). (7)

Letting x = un−1 and y = un in (3) for some n ≥ 2, and taking into account that
b(fun−1, fun) = b(un, un+1) > 0,

ψ(sqb(un, un+1)) = ψ(sqb(fun−1, fun)) ≤ φ(Af(un−1, un)).
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As the argument of φ in the right-hand term is strictly positive, then (c0) and the nondecreasing
character of ψ lead to

ψ(sqb(un, un+1)) ≤ φ(Af(un−1, un))

< ψ(Af(un−1, un))

≤ ψ
(
(κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1)

)
.

(8)

Since ψ is nondecreasing by (c1), then we deduce that

0 < sqb(un, un+1) < (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1),

so Step 2 is completed.
Step 3. We claim that κ3 + sκ4 < 1 and

b(un, un+1) < C0 b(un−1, un) for all n ≥ 2, (9)

where

C0 =
κ1 + κ2 + sκ4

sq − κ3 − sκ4
∈
(

0,
1
s

)
.

At this moment of the proof, we use that sκ1 + sκ2 + κ3 +
(
s+ s2) κ4 < 1 for the first time.

This inequality is equivalent to

0 ≤ s (κ1 + κ2 + sκ4) < 1−κ3 − sκ4,

which means that 1−κ3 − sκ4 > 0. Furthermore, from (5) and κ3 + sκ4 < 1 ≤ sq we deduce that

0 < (sq−κ3 − sκ4) b(un, un+1) < (κ1 + κ2 + sκ4)b(un−1, un), (10)

which leads to (9). Notice that C0 > 0 becuase the inequality (10) is strict. Furthermore:

C0 < 1
s ⇔ κ1+κ2+sκ4

sq−κ3−sκ4
< 1

s ⇔ sκ1 + sκ2 + s2κ4 < sq − κ3 − sκ4

⇔ sκ1 + sκ2 + κ3 +
(
s+ s2) κ4 < sq,

(11)

which holds because we assume that sκ1 + sκ2 + κ3 +
(
s+ s2) κ4 < 1.

Step 4. The sequence {un} converges to a point of x∗ ∈ X such that b(x∗, fx∗) ≤ lim sup
n→∞

Af(un, x∗) <

b(x∗, fx∗) (which is a contradiction).
Step 3 and Lemma 1 ensure that {un} is a Cauchy sequence in (X, b, s) and, as it is complete,

there is x∗ ∈ X such that {b(un, x∗)} → 0. In particular, {b(un, un+1)} → 0. Since we suppose that f is
fixed-points free, then b(x∗, fx∗) > 0. If the cardinal of the set

{ n ∈ N : un = x∗ }

is infinite, then there is a partial subsequence {un(k)}k∈N of {un} such that un(k)+1 = fun(k) = fx∗ for all
k ∈ N, so {un(k)+1} converges, at the same time, to x∗ and fx∗, which is impossible because x∗ 6= fx∗.
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As a consequence, there is n0 ∈ N such that un 6= x∗ for all n ≥ n0. In order not to complicate the
notation, without loss of generality, suppose that un 6= x∗ for all n ∈ N. Then

0 < Af(un, x∗) = κ1b(un, x∗) + κ2b(un, fun) + κ3b(x∗, fx∗)+

+ κ4b(un, fx∗) + κ5b(fun, x∗)

= κ1b(un, x∗) + κ2b(un, un+1) + κ3b(x∗, fx∗)+

+ κ4b(un, fx∗) + κ5b(un+1, x∗)

≤ κ1b(un, x∗) + κ2b(un, un+1) + κ3b(x∗, fx∗)+

+ sκ4b(un, x∗) + sκ4b(x∗, fx∗) + κ5b(un+1, x∗)

= (κ1 + sκ4) b(un, x∗) + κ2b(un, un+1) + κ5b(un+1, x∗)

+ (κ3 + sκ4) b(x∗, fx∗).

In particular, the limit superior lim sup
n→∞

Af(un, x∗) exits, and it satisfies:

lim sup
n→∞

Af(un, x∗) ≤ (κ3 + sκ4) b(x∗, fx∗) < b(x∗, fx∗).

On the other hand, by (8),

ψ (sb(un+1, fx∗)) ≤ ψ(sqb(fun, fx∗)) ≤ φ(Af(un, x∗)) < ψ(Af(un, x∗)).

Hence
sb(un+1, fx∗) < Af(un, x∗).

Since
b(x∗, fx∗) ≤ sb(x∗, un+1) + sb(un+1, fx∗) < sb(x∗, un+1) + Af(un, x∗),

then
b(x∗, fx∗) ≤ lim sup

n→∞
Af(un, x∗) < b(x∗, fx∗),

which is a contradiction.
This general contradiction proves that f necessarily admits a fixed point. The uniqueness of the

fixed point follows from Theorem 1.

There is a particularly simple case that we want to highlight in the following result.

Corollary 4. Let f : X → X be a (ψ, φ,κ, q)-multiparametric contraction on a b-metric space (X, b, s). If the
functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1), and the numbers in κ verify

0 < κ1 + κ2 + κ3 and κ1 + κ2 + κ3 + 2sκ4 <
1
s

,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Proof. Under these assumptions,

sκ1 + sκ2 + κ3 +
(
s+ s2

)
κ4 ≤ sκ1 + sκ2 + sκ3 + 2s2κ4 = s (κ1 + κ2 + κ3 + 2sκ4) < s

1
s
= 1,

so Theorem 2 is applicable.
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Next we relax the inequality sκ1 + sκ2 + κ3 +
(
s+ s2) κ4 < 1 by the weaker one

sκ1 + sκ2 + κ3 +
(
s+ s2

)
κ4 < sq.

However, we additionally need to assume that κ3 + sκ4 < 1. As a consequence, although their
proofs employ the same arguments, the following result is independent from Theorem 2.

Theorem 3. Let f : X → X be a (ψ, φ,κ, q)-multiparametric contraction on a b-metric space (X, b, s). If the
functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1), and the numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1 and sκ1 + sκ2 + κ3 +
(
s+ s2

)
κ4 < sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Proof. We also reason by contradiction. Assume that f is fixed-points free. In such a case, Steps 1 and 2
of the proof of Theorem 2 also hold, so Af(x, y) > 0 for all distinct points x, y ∈ X and

0 < sqb(un, un+1) < (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1).

As we are now supposing that κ3 + sκ4 < 1, then 0 < 1− κ3 − sκ4 ≤ sq − κ3 − sκ4, so the last
inequality also lead to

b(un, un+1) < C0 b(un−1, un) for all n ≥ 2

where C0 = (κ1 + κ2 + sκ4) / (sq − κ3 − sκ4). Furthermore, inequality sκ1 + sκ2 + κ3 +
(
s+ s2) κ4 < sq

is equivalent to C0 ∈ (0, 1/s) as we demonstrated in (11). Therefore, Steps 3 and 4 of the proof
of Theorem 2 can be identically repeated, so we get a contradiction. Hence f has at least one
fixed point.

In the next result we accept the equality in an inequality inspired in Corollary 4. This fact leads
to C0 ∈ (0, 1), which is not strong enough to guarantee that the sequence {un} is Cauchy in (X, b, s).
Hence we need to include an additional assumption on the auxiliary functions ψ and φ.

Theorem 4. Let f : X → X be a (ψ, φ,κ, q)-multiparametric contraction on a b-metric space (X, b, s). If the
functions ψ, φ : (0, ∞)→ R satisfy (c0), (c1) and (c2), and the numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ sq

and κ1 + κ2 + κ3 + 2sκ4 ≤ sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Proof. As in the proof of Theorem 3, we also reason by contradiction. Assume that f is fixed-points
free. In such a case, Steps 1 and 2 of the proof of Theorem 2 also hold, so

Af(x, y) > 0 for all distinct points x, y ∈ X (12)

and
0 < sqb(un, un+1) < (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1).

As we are now supposing that κ3 + sκ4 < 1, then 0 < 1− κ3 − sκ4 ≤ sq − κ3 − sκ4, so the last
inequality also lead to

b(un, un+1) < C0 b(un−1, un) for all n ≥ 2
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where C0 = (κ1 + κ2 + sκ4) / (sq − κ3 − sκ4). Inequality κ1 + κ2 + κ3 + 2sκ4 ≤ sq is equivalent to say
that C0 ∈ (0, 1), so the last property becomes

b(un, un+1) < b(un−1, un) for all n ≥ 2.

Let γ ≥ 0 the limit of the strictly decreasing sequence {b(un, un+1)}. To prove that γ = 0, suppose
that γ > 0. Let t0 = sγ > 0. As Steps 1 and 2 of Theorem 2 are now valid, recall that (8) assures that

ψ(sqb(un, un+1)) ≤ φ(Af(un−1, un)) < ψ(Af(un−1, un))

≤ ψ
(
(κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1)

)
,

which leads, by (6) and (7), to

sq b(un, un+1) < Af(un−1, un)

≤ (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1)

< (κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un−1, un)

= (κ1 + κ2 + κ3 + 2sκ4)b(un−1, un)

≤ sq b(un−1, un)

As the sequences {b(un, un+1)} and {b(un−1, un)} are strictly decreasing and converging to γ > 0,
then the sequence {Af(un−1, un)} satisfies t0 = sγ < sq b(un, un+1) < Af(un−1, un) for all n ∈ N
and also

lim
n→∞

Af(un−1, un) = sγ = t0 > 0.

Letting n→ ∞ in

ψ(sqb(un, un+1)) ≤ φ(Af(un−1, un)) < ψ(Af(un−1, un))

≤ ψ
(
(κ1 + κ2 + sκ4)b(un−1, un) + (κ3 + sκ4)b(un, un+1)

)
≤ ψ (sq b(un−1, un)) ,

we deduce that

lim
n→∞

φ(Af(un−1, un)) = lim
n→∞

ψ (sq b(un−1, un)) = lim
t→t+0

ψ (t) = ψ
(
t+0
)

.

However, condition (c2) means that

lim
n→∞

φ(Af(un−1, un)) ≤ lim sup
t→t+0

φ(t) < ψ(t+0 ),

which is a contradiction. This contradiction permit us tu deduce that γ = 0, so {b(un, un+1)} → 0.
Next, let show that {un} is a Cauchy sequence in (X, b, s) by contradiction. If it is not Cauchy,

Lemma 2 demonstrates that there exist e > 0 and subsequences {up(r)}r∈N and {uq(r)}r∈N of {un}n∈N
such that

p (r) < q (r) < p (r + 1) and e < b(up(r)+1, uq(r)+1) for all r ∈ N, (13)

lim
r→∞

b(up(r), uq(r)) = lim
r→∞

b(up(r)+1, uq(r)) = lim
r→∞

b(up(r), uq(r)+1) = lim
r→∞

b(up(r)+1, uq(r)+1) = e. (14)
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Let t0 = sqe > 0. Corollary 1 ensures that ur1 6= ur2 for all r1 6= r2. Since up(r) 6= uq(r), (12) implies
that Af(up(r), uq(r)) > 0 for all r ∈ N. Applying (c0) and the contractivity condition (3) to x = up(r) and
y = uq(r), we deduce that

ψ(sqb(up(r)+1, uq(r)+1)) = ψ(sqb(fup(r), fuq(r))) ≤ φ(Af(up(r), uq(r))) < ψ(Af(up(r), uq(r))), (15)

where

t0 = sq e < sqb(up(r)+1, uq(r)+1) ≤ Af(up(r), uq(r))

= κ1b(up(r), uq(r)) + κ2b(up(r), fup(r)) + κ3b(uq(r), fuq(r))+

+ κ4b(up(r), fuq(r)) + κ5b(fup(r), uq(r))

= κ1b(up(r), uq(r)) + κ2b(up(r), up(r)+1) + κ3b(uq(r), uq(r)+1)+

+ κ4b(up(r), uq(r)+1) + κ5b(up(r)+1, uq(r)).

Therefore
t0 = sq e < sqb(up(r)+1, uq(r)+1) < Af(up(r), uq(r)).

Letting r → ∞, we deduce from (14) that

t0 = sq e ≤ lim
r→∞

Af(up(r), uq(r)) = κ1 e+ κ2 e+ κ3 e+ κ4 e+ κ5 e ≤ sq e = t0.

This means that {Af(up(r), uq(r))} is a sequence whose terms, by (13), are strictly greater than t0

and converging to t0. Letting r → ∞ in (15), we observe that

lim
r→∞

φ(Af(up(r), uq(r))) = lim
r→∞

ψ(sqb(up(r)+1, uq(r)+1)) = lim
t→t+0

ψ (t) = ψ(t+0 ).

However, condition (c2) means that

lim
r→∞

φ(Af(up(r), uq(r))) ≤ lim sup
t→t+0

φ(t) < ψ(t+0 ),

which is a contradiction. This contradiction proves that {un} is a Cauchy sequence in (X, b, s). The rest
of the proof is similar to Step 4 in the proof of Theorem 2, where we demostrated that the sequence
{un} converges to a point of x∗ ∈ X such that b(x∗, f x∗) ≤ lim sup

n→∞
Af(un, x∗) < b(x∗, f x∗), which is a

contradiction. This contradiction finishes the proof.

5. Consequences and Comparative Results

The first three consequences are particularizations of the three main Theorems 2, 3 and 4 to the
case in which q = 1. The reader can check that, indeed, they are equivalent to their corresponding
general results.

Corollary 5. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(s b( fx, fy)) ≤ φ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where Af is defined in (2) and the functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1). If the numbers in κ verify

0 < κ1 + κ2 + κ3 and sκ1 + sκ2 + κ3 +
(
s+ s2

)
κ4 < 1,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ s, then f

admits a unique fixed point.
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Corollary 6. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(s b( fx, fy)) ≤ φ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where Af is defined in (2) and the functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1). If the numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1 and sκ1 + sκ2 + κ3 +
(
s+ s2

)
κ4 < s,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ s, then f

admits a unique fixed point.

Corollary 7. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(s b( fx, fy)) ≤ φ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where Af is defined in (2) and the functions ψ, φ : (0, ∞) → R satisfy (c0), (c1) and (c2). If the numbers in
κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ s

and κ1 + κ2 + κ3 + 2sκ4 ≤ s,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ s, then f

admits a unique fixed point.

The case s = 1 leads to metric spaces, and we deduce the following consequence.

Corollary 8. Let (X, d) be a metric space and let f : X → X be a self-mapping satisfying

ψ(d( fx, fy)) ≤ φ(Af(x, y)) for all x, y ∈ X such that d(fx, fy) > 0,

where Af is defined in (2) and the functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1). If the numbers in κ verify

0 < κ1 + κ2 + κ3 and κ1 + κ2 + κ3 + 2κ4 < 1,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ 1, then f

admits a unique fixed point.

When we include in Af less terms than in the original definition (2), we are able to conclude many
particularizations. For instance, the following ones (where we present the case in which κ4 = κ5 = 0),
whose proofs make use of the same arguments of the general Theorems 2, 3 and 4.

Corollary 9. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(sqb(fx, fy)) ≤ φ(bf(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, bf is defined by

bf(x, y) = κ1b(x, y) + κ2b(x, fx) + κ3b(y, fy) for all x, y ∈ X

and the functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1). If the numbers κ1, κ2, κ3 ≥ 0 verify

0 < κ1 + κ2 + κ3 and sκ1 + sκ2 + κ3 < 1,
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then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 ≤ sq, then f admits a
unique fixed point.

Corollary 10. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(sqb(fx, fy)) ≤ φ(bf(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, bf is defined by

bf(x, y) = κ1b(x, y) + κ2b(x, fx) + κ3b(y, fy) for all x, y ∈ X

and the functions ψ, φ : (0, ∞)→ R satisfy (c0) and (c1). If the numbers κ1, κ2, κ3 ≥ 0 verify

0 < κ1 + κ2 + κ3, κ3 < 1 and sκ1 + sκ2 + κ3 < sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 ≤ sq, then f admits a
unique fixed point.

Corollary 11. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(sqb(fx, fy)) ≤ φ(bf(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, bf is defined by

bf(x, y) = κ1b(x, y) + κ2b(x, fx) + κ3b(y, fy) for all x, y ∈ X

and the functions ψ, φ : (0, ∞)→ R satisfy (c0), (c1) and (c2). If the numbers κ1, κ2, κ3 ≥ 0 verify

0 < κ1 + κ2 + κ3, κ3 < 1, and κ1 + κ2 + κ3 ≤ sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

The reader can also imagine other combinations as:

b′f(x, y) = κ1b(x, y) + κ4
b(x, fy) + b(y, fx)

2
for all x, y ∈ X.

In order not to extend this papers, we will only enunciate the main consequences that we can
derive from Theorem 4 (we left to the reader to particularize Theorems 2 and 3).

If we take τ > 0 and φ (t) = ψ (t)− τ for all t > 0, then we can deduce the following F-contraction
type corollary of the introduced Hardy-Rogers type results.

Corollary 12. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

τ + ψ(sqb(fx, fy)) ≤ ψ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, τ > 0, Af is defined in (2) and the function ψ : (0, ∞)→ R is nondecreasing. If the numbers in
κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ sq

and κ1 + κ2 + κ3 + 2sκ4 ≤ sq,
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then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

In a similar way, it is also interesting the case in which φ (t) = β (t)ψ (t) for all t > 0, where
β : (0, ∞)→ R satisfies appropriate properties.

Corollary 13. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ(sqb(fx, fy)) ≤ β(Af(x, y))ψ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, Af is defined in (2), the function ψ : (0, ∞) → (0, ∞) is nondecreasing and the function
β : (0, ∞)→ (0, 1) verifies

lim sup
t→t+0

β(t) < 1 for any t0 > 0. (16)

If the numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ sq

and κ1 + κ2 + κ3 + 2sκ4 ≤ sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Proof. Notice that we assume that ψ (t) > 0 and β (t) < 1 for all t > 0, so φ (t) = β (t)ψ (t) < ψ (t)
for all t > 0. Furthermore, condition (16) implies (c2), so Theorem 4 is applicable.

Remark 2. Notice that condition (16) does not guarantee that β (t) < 1 for all t > 0. For instance, let consider
β : (0, ∞)→ {0.5, 2} defined by β (1) = 2 and β (t) = 0.5 if t ∈ (0, ∞)�{1}.

If we use ψ (t) = t for all t > 0 in Corollary 13, we obtain the following consequence.

Corollary 14. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

sqb(fx, fy) ≤ β(Af(x, y))Af(x, y) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, Af is defined in (2) and the function β : (0, ∞)→ (0, 1) verifies

lim sup
t→t+0

β(t) < 1 for any t0 > 0.

If the numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ sq

and κ1 + κ2 + κ3 + 2sκ4 ≤ sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Other interesting consequence occurs when φ (t) = kψ (t) for all t > 0, where k ∈ (0, 1).

Corollary 15. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

ψ (sqb(fx, fy)) ≤ kψ(Af(x, y)) for all x, y ∈ X such that b(fx, fy) > 0,
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where q ≥ 1, k ∈ (0, 1), Af is defined in (2) and the function ψ : (0, ∞) → (0, ∞) is nondecreasing. If the
numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ sq

and κ1 + κ2 + κ3 + 2sκ4 ≤ sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Finally, letting ψ (t) = t for all t > 0 in the previous result, we derive the following consequence.

Corollary 16. Let (X, b, s) be a b-metric space and let f : X → X be a self-mapping satisfying

sqb(fx, fy) ≤ kAf(x, y) for all x, y ∈ X such that b(fx, fy) > 0,

where q ≥ 1, k ∈ (0, 1) and Af is defined in (2). If the numbers in κ verify

0 < κ1 + κ2 + κ3, κ3 + sκ4 < 1, κ1 + κ2 + κ3 + κ4 + κ5 ≤ sq

and κ1 + κ2 + κ3 + 2sκ4 ≤ sq,

then f has at least one fixed point. Furthermore, if we additionally assume that 0 < κ1 + κ4 + κ5 ≤ sq, then f

admits a unique fixed point.

Example 3. Let X = [0, 1] ∪ {2, 3, 4} and let b : X× X → [0, ∞) be defined, for all u, v ∈ X, as:

b (u, v) =

{
15, if {u, v} = {3, 4},
|u− v| , in any other case.

Clearly b is not a metric on X because b (3, 4) = 15 > 3 = 1 + 2 = b (3, 2) + b (2, 4). However, b is a
b-metric on X with constant s = 5 because, for each u ∈ X�{3, 4},

b (3, 4) = 15 = 5 · 3 = 5 (1 + 2) = 5 [ b (3, 2) + b (2, 4) ] ≤ 5 [ b(3, u) + b(u, 4) ]

(if we consider other points, the Euclidean triangle inequality is applicable). Let f : X → X be the self-mapping
defined, for all u ∈ X, as:

fu =


0.5 + u

2
, if u ∈ [0, 1] ,

0, if u ∈ {2, 4},
1, if u = 3.

Notice that b (2, 3) = b (f2, f3) = 1. This means that other previous theorems in the setting of metric
spaces, or even in the setting of b-metric spaces but involving mappings such that b (fu, fv) < b (u, v),
are not applicable to this mapping. In fact, we cannot apply our main theorems by using κ1 = sq and
κ2 = κ3 = κ4 = κ5 = 0 because, in this case, using u = 2 and v = 3,

Af(2, 3) = κ1b(2, 3) + κ2b(2, f2) + κ3b(3, f3) + κ4b(2, f3) + κ5b(3, f2) = sqb(2, 3) = sq

and
ψ(sqb(f2, f3)) = ψ(sq) > φ (sq) = φ(Af(2, 3)).
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As a consequence, for this mapping f, it is necessary to involve other terms (like b(u, fu) and b(v, fv)) in
the contractivity condition. Hence, let

q = 1, κ1 = 4, κ2 = κ3 =
1
2

and κ4 = κ5 = 0,

ψ, φ : (0, ∞)→ (0, ∞) , ψ (t) = t, φ (t) =
{

t− sin
( t

100
)

, if t ∈ (0, 100) ,
1, if t ≥ 100.

The following tables describe the b-metrics b (u, v), b (fu, fv) and b (u, fu) in all possible cases.

b (u, v) v ∈ [0, 1] v = 2 v = 3 v = 4
u ∈ [0, 1] |u− v| 2− u 3− u 4− u

u = 2 2− v 0 1 2
u = 3 3− v 1 0 15
u = 4 4− v 2 15 0

b (u, fu)

u ∈ [0, 1]
|u− 0.5|

2
u = 2 2
u = 3 2
u = 4 4

b (fu, fv) v ∈ [0, 1] v = 2 v = 3 v = 4

u ∈ [0, 1]
|u− v|

2
0.5 + u

2
1.5− u

2
0.5 + u

2

u = 2
0.5 + v

2
0 1 0

u = 3
1.5− v

2
1 0 1

u = 4
0.5 + v

2
0 1 0

A simple computation considering all possible pairs of points u, v ∈ X show that

ψ(sqb(fu, fv)) = ψ(5 b(fu, fv)) ≤ φ

(
4 b(u, v) +

1
2

b(u, fu) +
1
2

b(v, fv)
)
= φ(Af(u, v)).

For instance, observe that using u = 2 and v = 3,

φ(Af(2, 3)) = φ

(
4 b(2, 3) +

1
2

b(2, f2) +
1
2

b(3, f3)
)

= φ

(
4 · 1 + 1

2
· 2 + 1

2
· 2
)
= φ (6) = 6− sin

(
6

100

)
> 5.9 > 5 = ψ(5) = ψ(sqb(f2, f3)).

As all hypotheses of Theorem 4 hold, we conclude that f has a unique fixed point in X, which is u = 0.5.
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18. Karapınar, E.; Fulga, A.; Petruşel, A. On Istrăţescu type contractions in b-metric spaces. Mathematics

2020, 8, 388. [CrossRef]
19. Karapınar, E.; Chifu, I.C. Results in wt-distance over b-metric spaces. Mathematics 2020, 8, 220. [CrossRef]
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