
Journal of

Marine Science
and Engineering

Article

Approaching Software Engineering for Marine
Sciences: A Single Development Process for
Multiple End-User Applications

Pedro Magaña * , Juan Del-Rosal-Salido , Manuel Cobos , Andrea Lira-Loarca and
Miguel Ortega-Sánchez

Andalusian Institute for Earth System Research, University of Granada, Avda. del Mediterráneo s/n,
18006 Granada, Spain; jrsalido@ugr.es (J.D.-R.-S.); mcobosb@ugr.es (M.C.); aliraloarca@ugr.es (A.L.-L.);
miguelos@ugr.es (M.O.-S.)
* Correspondence: pmagana@ugr.es

Received: 19 April 2020; Accepted: 11 May 2020; Published: 14 May 2020
����������
�������

Abstract: Research software is currently used by a large number of scientists on a daily basis,
and everything indicates that this trend will continue to increase in the future. Most of this
scientific software is very often developed by the researchers themselves, who usually make it
available to the rest of the scientific community. Although the relationship between science and
software is unquestionably useful, it is not always successful. Some of the critical problems that
scientists face include a lack of training in software development, a shortage of time and resources,
or difficulty in effectively cooperating with other colleagues. Additional challenges arise in the
context of increasingly common cross-cutting and multidisciplinary research. This often results
in the developed software and code being slow, not reusable, lacks visibility and dissemination,
and in the worst cases it is defective and unreliable. Therefore, a multidisciplinary framework is
needed to meet the demands of both scientists and software engineers and handle the situation
successfully. However, a multidisciplinary team is not always sufficient to solve this problem, and
it is necessary to have links between scientists and developers: software engineers with a solid
scientific background. This paper presents the approach used in the framework of the PROTOCOL
project, and more particularly in the development of its applied software, in which a tool for the
characterization of climate agents has been developed. The main guidelines of the development
process include, among others, modularity, distributed control version, unit testing, profiling, inline
documentation and the use of best practices and tools.

Keywords: sea level rise; climate change; research software engineers; reproducibility; open-source
software

1. Introduction

Scientific research at present is characterized by the application of new technologies.
One illustrative example is the recent unveiling of an image of a supermassive black hole containing
the same mass as 6.5 billion suns [1]. This was made possible by a global collaboration of more than
200 scientists using an array of observatories scattered around the world, acting like a telescope the
size of Earth, called the Event Horizon Telescope (EHT). The telescope array collected five petabytes
of data over two weeks. According to Dan Marrone, an astronomer and co-investigator of EHT [2],
“The task of correlating huge amounts of data, sifting through the noise, calibrating information and
creating a usable image was a very significant part of the project”.

While the work team was composed of astronomers, physicists, mathematicians and engineers,
the development of the algorithms that made the image possible was led by Katie Bouman, a computer

J. Mar. Sci. Eng. 2020, 8, 350; doi:10.3390/jmse8050350 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0002-0223-2425
https://orcid.org/0000-0002-6060-512X
https://orcid.org/0000-0002-5896-3630
https://orcid.org/0000-0003-2251-6684
https://orcid.org/0000-0002-1388-6870
http://www.mdpi.com/2077-1312/8/5/350?type=check_update&version=1
http://dx.doi.org/10.3390/jmse8050350
http://www.mdpi.com/journal/jmse

J. Mar. Sci. Eng. 2020, 8, 350 2 of 13

scientist [3]. It is worth mentioning that she had no experience studying black holes when becoming
involved in the project, almost six years before the generation of the image. Now she is a postdoctoral
fellow at the Harvard-Smithsonian Center for Astrophysics [4].

Researchers solve problems that are highly specific to their field of expertise. These problems
cannot be solved by the straightforward application of off-the-shelf software, so researchers develop
their own tools that are bound to their exact needs [5]. Thus, researchers are the prime producers of
scientific software. Some decades ago, most of the computing work done by scientists was relatively
straightforward. However, as computers and programming tools have grown more complex, scientists
have hit a steep learning curve.

In Han [6], a survey of almost 2000 scientists was presented. Some of the main conclusions
indicated that 91% of respondents acknowledged that using scientific software is important for their
own research, 84% stated that developing scientific software is important for their own research,
and 38% spent at least one-fifth of their time developing software. Nevertheless, the most notable
finding was that the knowledge required to develop and use scientific software was primarily acquired
from peers and through self-study, rather than from formal education and training. This may lead to
problems in the future.

As an illustration, researchers do not generally test or document their programs rigorously,
and they rarely release their codes, making it almost impossible to reproduce and verify published
results generated by scientific software. At best, poorly written programs cause researchers to waste
valuable time and energy. However, the coding problems can sometimes cause substantial harm and
have even forced some scientists to retract papers [7,8].

When a researcher publishes an article with code in a scientific journal, other colleagues may adopt
this code and build their own research upon this software. Many of these scientists rely on the fact that
the software has appeared in a peer-reviewed article. This is scientifically misplaced, as the software
code used to conduct the science is not formally peer-reviewed. This is especially important when a
disconnection occurs between the equations and algorithms published in peer-reviewed literature and
how they are actually implemented in the reportedly used software [9].

Despite the fact that these warnings have been sent before by some researchers [10–12], they are
not having a visible effect. Software is pervasive in research, but its vital role is very often overlooked
by funders, universities, assessment committees, and even the research community itself. It needs to
be made clear that if scientific software is incorrect, so is the science derived from the software [7].

While this is a generalized problem in science, some scientific fields are more advanced than
others. Some branches of science have spawned sub-disciplines. This is the case of bioinformatics,
computational linguistics or computational statistics. They even have their own journals, some of them
with significant scientific impact, such as the first quartile journal “Journal of Statistical Software”.
However, this does not seem to be the case in Marine Engineering [13].

A possible solution to deal with these problems is hiring software engineers to perform the
development of scientific software. While this approach will solve many issues related to the poor
quality of scientific software, it usually lacks the physical interpretation or the correct validation of
results. Pure software engineers suffer from a lack of expert knowledge in the scientific discipline of
the software they are developing. Furthermore, the availability of massive datasets and the application
of cutting-edge technologies, such as data mining or deep learning, does not in itself mean that reliable
scientific software is being built.

To overcome these issues, a more appropriate proposal is the creation of a new academic
professional designation, the Research Software Engineer (RSE), which is dedicated to complementing
the existing postdoctoral career structure [14]. RSEs are both part of the scholarly community and
professional software developers, who understand the scientific literature as well as research questions
and have a professional attitude towards software development. Their work should be evaluated by
both software and academic metrics.

J. Mar. Sci. Eng. 2020, 8, 350 3 of 13

2. Methodology

Regardless of the research field, developers of scientific software should have both strong scientific
and software engineering background. In the following sections, we will briefly describe some of
the skills that coastal engineers of the project “Protection of Coastal Urban Fronts against Global
Warming (PROTOCOL)” have acquired to develop high-quality scientific software. The main aim
of this project is the development of general technical recommendations to protect the coastal urban
fronts against sea-level rise. A significant part of the project consists of developing a climate software
tool to characterize the different atmospheric, maritime and fluvial forcings at different case study
locations and generate automatic reports including the climate analyses.

2.1. PROTOCOL Project

Global warming associated with climate change is producing a progressive rising in the sea-level.
The consequences of this sea-level rise lead to greater and more frequent floods, diseases and damage
to property as well as a greater risk of loss of human lives. These effects will be amplified in the coastal
fronts of cities and urban areas due to the high concentration of activities, services and population.
This high concentration highlights the need to propose coastal protection measures whenever possible,
mainly because it is not feasible to relocate the activities as a generalizable alternative.

The PROTOCOL project1 addresses this topic with the purpose of developing an assessment
methodology and establishing technical recommendations for the design of coastal protection on urban
fronts. The methodology is mainly based on the following components: (1) quantification of agents
and actions considering their different scales of affection and the predicted scenarios (projections) of
sea-level rise; (2) risk assessment at the coastal urban front; and (3) calculation of the overtopping
based on the types of protection and the envisaged scenarios. This methodology will be applied to
five study areas in Spain, Mexico, Portugal and Uruguay. The results obtained for the different sites
will allow contrasting the effects of global warming in different parts of the world and will serve as
valuable examples of the products derived from this project.

2.2. Modular Programming

Modular programming consists of organizing the source code of a program into different modules.
Dividing the source code into modules (Python files) and packages (collections of modules) makes it
possible to organize the program logically and minimizes the number of problems.

As the program grows and changes, it is often necessary to rewrite parts of the source code.
Modular programming facilitates these changes by isolating where they should occur and minimizing
side effects, keeping the code under control and making it scalable.

The goal of source code separation is to have modules without any or few dependencies on other
modules. When a modular system is created, several modules are built separately and independently.
The final application will be created by putting them together. Furthermore, many of these modules
and packages could also be reused to build other applications, thus facilitating the reusability of
the code.

Climate analysis constitutes the first step towards the assessment of climate change impacts
and risk management. In the last few years, relevant advances have been done in this field [15–17].
However, tools and results are often excessively complicated and time-consuming for stakeholders
and end-users; as a consequence, there is a need for developing simpler tools. This work fills this gap
by developing a simple, modular and expandable climate tool composed of six modules that simplify
the labor of analyzing the joint behavior of the concomitant climate drivers.

1 https://gdfa.ugr.es/protocol.

https://gdfa.ugr.es/protocol

J. Mar. Sci. Eng. 2020, 8, 350 4 of 13

The tool consists of two main blocks, the first centered on data entry and pre-processing, and the
second on data analysis. In turn, each of them is divided into three different modules, as shown
in Figure 1. The first module of the pre-processing block allows the reading of data from various
sources, from major European databases, such as Copernicus [18], to numerical model outputs, such as
WAVEWATCH III [19]. The tool then performs a quality analysis of the data and makes use of
processing functions that have been specifically designed and incorporated for gap-filling or null
value detection, among others. Since the tool reads data from multiple sources with different formats,
it is necessary to homogenize these formats into a standard one so that the rest of the modules can
work independently from the source of the original data. The developed format, named MetOcean
DataFrame, is composed of a Pandas DataFrame plus a series of attributes, such as location, depth or
forcing agent, among others.

Figure 1. Scheme of the different modules of the tool. AT, RD, WV and SS stand for Astronomical Tide,
River Discharge, Wave and Storm Surge, respectively.

The analysis block is in turn composed of three other modules. The first module summarizes
the basic climate analysis, including histograms and density functions of the main variables and
their correlations, as well as a complete summary of the data. The tool allows both the automatic
graphic representation of the results and the saving of this information with different output formats.
The second module performs an average regime of the different variables, adjusting different theoretical
distribution functions to the data. The tool gives the user flexibility to select different types of functions
and to analyze the fit according to goodness-of-fit. Finally, the third module performs an extreme
analysis of the variables using the “Peak Over Threshold” (POT) method. Figure 2 shows some of the
results of the climate data analysis modules provided by the tool.

J. Mar. Sci. Eng. 2020, 8, 350 5 of 13

Figure 2. Graphical outputs obtained by the climate tool. (a) Time series plot of significant wave height.
(b) Histogram of the astronomical tide. (c) Scatter plot of significant wave height and peak period.
(d) Wind rose. (e) River discharge annual variability. (f) Empirical cumulative density function of the
river discharge.

2.3. Inline Code Documentation

In the same way that a well-documented experimental protocol makes research methods easier to
reproduce, good documentation helps people understand code. This makes the code more reusable
and lowers maintenance costs. The best way to create and maintain reference documentation is to
embed the documentation for a piece of software in that software. Python makes this task easier by
using documentation strings, also known as docstrings.

Unlike conventional source code comments or even format-specific comments, docstrings are
not removed from the source code when analyzed and are retained throughout the program runtime.
In contrast to traditional comments, reference documentation and descriptions of design decisions are

J. Mar. Sci. Eng. 2020, 8, 350 6 of 13

key for improving code understandability. Scientists should use docstrings to document functions,
modules or classes (why), and not concrete implementations (how).

Docstrings allow generating documentation into a wide range of output formats, including HTML,
LaTeX (for printable PDF versions), manual pages, or plain text. This user-friendly documentation
allows other researchers to understand the code, find errors, or even adapt it to their own needs.

2.4. Quality Control Process

Programs should be thoroughly tested according to the test plans developed in the design phase.
Because of the modularity nature of our software, we can define unit tests to subject each piece to a
series of tests. Well-designed unit tests may be used to address whether a particular module of code is
working properly and allows testing to proceed piecemeal and iteratively throughout the development
process. Robustness is greatly increased because it is easier to test and debug separate components
before they are integrated into a larger software system.

Once the unit tests have been successfully passed, the integration tests verify the correct
assemblage between the different components. The integration tests should focus on the interfaces and
data flows between the different modules of the source code. When successfully completed, integration
tests verify the data input, flow and output storage through a string of code modules.

2.5. Distributed Control Version

One of the most significant challenges scientists face when coding is keeping track of the changes
and being able to revert them if something fails. When the software is built in a collaborative manner,
this is even more challenging. It is difficult to find out which changes are in which versions or how
exactly particular results were computed at a later date.

The standard solution in both industry and the open-source world is to use a distributed version
control system. Programmers can modify their working copy of the project at will, then commit
changes to the repository when they are satisfied with the results to share them with colleagues.

The fact that each developer has his own copy of the repository increases the robustness of the
version control system, since integration is always done on the developers’ computers and never on
the shared copy of the server. If a problem occurs, it has to be solved locally before changes can be
uploaded to the server. This is a noticeable difference to the more common centralized version control
systems of the past.

2.6. Code Performance Analysis

Although efficiency is a crucial concern in science, it is one of the most ignored facets of scientific
software development. As a consequence of the fact that this task is carried out in advanced stages
of software development, and usually due to lack of time and other resources, not all the necessary
attention is devoted to it.

In scientific software development where computational efficiency is one of the main goals,
running-time profiling is a necessary step. The key to speeding up applications often lies in
understanding where the elapsed time is spent, and why. Profiling helps to extract this information
and aid program optimization.

2.7. Software Development Methodology

The team consisted of about 5 to 10 researchers, most of them with a background in coastal
engineering and with training in software development through self-study. Because of this, the software
engineering techniques employed had to be trained at an early stage for researchers. Periodically,
seminars were held to teach new techniques and to solve the questions raised.

The two main methodologies to organize software development are the waterfall model and the
agile development model. Although neither of the two methodologies were formally followed so
as to avoid additional training to the engineers, the development process is much closer to the agile

J. Mar. Sci. Eng. 2020, 8, 350 7 of 13

approach, focusing on the main functionality and doing both unit and integration tests before moving
to the next phases.

3. Results

Although the functionalities of the developed tool may seem limited, the following considerations
should be made. The first one is that, as it has been demonstrated throughout this work, the tool is
assembled in a modular way, which allows users, developers and scientists to add new functionalities
according to their needs. Thus, it is possible to easily and directly incorporate new analysis functions,
different graphic representations, or output formats of the results, among others. The second one
is related to its versatility; it is important to highlight that the developed tool is capable of reading
climate data from any point of the globe and generating a climate analysis in a totally automatic way
with a low computational cost and for free. This can have a great impact on developing countries
that do not have their own instruments or means to analyze their data, but require this information
both for the development of their port infrastructures and for the protection and improvement of
coastal management.

This methodology has enabled us to have a single source code to generate multiple products
addressing different users (Figure 3). Moreover, a new addition to the source code is immediately
available to all the products, and thus to every user. Deliverables currently available are tutorials in
Jupyter notebooks, user-friendly automated reports or relational databases. Some of the potential
users include public and private managers, specialized technicians, engineering students, stakeholders
or other scientists.

The tool has been applied at different locations along the coast of the Iberian Peninsula (Spain).
The software intends to help managers handle the impact of the environmental drivers on coastal
urban fronts through the characterization and simulation of the main drivers and their variability.
Therefore, this tool constitutes a preliminary and unavoidable step in the decision-making process of
the assessment of flooding risk.

Figure 3. Diagram of the climate tool.

3.1. Reports

In Coastal Engineering, as in other fields of Engineering, we frequently have to carry out previous
and specific studies whose methodology is similar, and in which the input data and the analysis of the
results obtained vary. Particularly, the analysis of the maritime climate is essential in any project or
study to be carried out on the coast.

The developed tool allows the automatic creation of elaborate reports (Figure 4) that can be
customized according to the specific needs of the user (Code 1). Thus, for example, the output
language, the sections to be included, or the types of analysis to be carried out can be chosen by the

J. Mar. Sci. Eng. 2020, 8, 350 8 of 13

end-user. Empty blocks are also included, in which the user can write (e.g., to discuss the results), that
are respected each time the program is run. So, for example, if a new analysis is included or the length
of the data time series is increased, when the code is recompiled and a new version of the report is
obtained, the writing is not deleted.

Figure 4. User-friendly report generated automatically from the tool.

Listing 1: Extract of a report template.
[LANGUAGE]
lang = ’ engl ish ’

[VARIABLES]
t i t l e = ’ Cancun (Mexico) ’
s u b t i t l e = ’ Astronomical t ide ’
author = ’ Environmental Fluid~Dynamics ’

[METOCEAN]
l o c a t i o n = ’ cancun ’

[DRIVERS]

[[TIDE]]
t i t l e = ’ Tide ’

[[[Eta]]]
t i t l e = ’ Astronomical t i d e l e v e l ’
var_name = ’ η ’
uni t = ’m’
i g n o r e _ s e c t i o n s = PLOT_GPD_FIT_PEAKS_OVER_THRESHOLD

[[[TABLE_SUMMARY]]]

[[[PLOT_SERIES]]]

[[[PLOT_SERIES_PERIOD_TIME]]]

J. Mar. Sci. Eng. 2020, 8, 350 9 of 13

i n i t i a l _ d a t e = ’2016−01−01’
f i n a l _ d a t e = ’2018−01−01’

[[[PLOT_HISTOGRAM]]]
bins = 10
kernel = Fa l se

3.2. Jupyter Notebook Tutorials

One of the most interesting packages for scientists that is currently drawing much attention is
the Jupyter notebook [20]. Jupyter is an interactive web tool that researchers can use to combine
software code, computational output, explanatory text and multimedia resources in a single
document. Although the use of Jupyter notebooks does not replace conventional development, it does
simplify the accomplishment of certain interactive tasks. Its use is especially indicated for data
exploration, communication of results and interactive tutorials. In addition, this tool facilitates
reproducibility research.

The technological development that has taken place in recent years has challenged traditional
teaching methods. While the theoretical foundations and concepts of the Coastal Engineering field
should not be abandoned, the advanced tools currently available need to be integrated into the
current teaching systems. To this respect, Ortega-Sánchez et al. [21] showed (1) the importance of
implementing the use of the latest state-of-the-art technologies and (2) how these methods also help
trigger student awareness towards a multidisciplinary, integrated and sustainable way of addressing
real engineering problems. Although many advanced numerical models exist today (both commercial
and free), technicians working in the field of Coastal Engineering still need to be able not only to
analyze advanced data or interpret results, but also increasingly, to perform their own codes in an
affordable way.

For this reason, several tutorial notebooks have been developed explaining the functionalities of
the tool in an interactive way. Figure 5 shows an example that corresponds to the exploratory analysis
of a circular variable.

Figure 5. Histogram and empirical density function of a circular variable in the form of a Jupyter notebook.

J. Mar. Sci. Eng. 2020, 8, 350 10 of 13

3.3. Web/Desktop Interface

The transfer of results and tools to users, administrations and stakeholders is one of the ultimate
goals that applied research should have. Therefore, the development of methodologies, new calculation
methods or advanced tools must guarantee their easy transfer and use by end-users.

The disparity of the operating systems used, the different prior training of end-users or even the
difficulty of providing physical support has highlighted the importance of promoting applications via
the web. This is what is known today as cloud computing, and applications developed within this
framework have numerous advantages.

One of the most interesting features of scientific software is instantaneous support and
deployment. The installation and maintenance of scientific software are complex, involving a large
number of packages that may suffer at given time incompatibilities between versions. Cloud computing
allows this maintenance to be conducted on the server in a way that is transparent to users.

Furthermore, no user requirements are necessary except for a web browser and an internet
connection. The processing is done on the server, so it does not matter how powerful the end-users’
computers are. They can even access it from their different devices (desktop computer, laptop computer,
smartphones or tablets) without any additional effort.

However, if it is necessary for different needs (privacy, or computing capacity) that the calculation
is done locally, it is also possible to generate a desktop application without much additional
technological effort. The development with web frameworks allows this type of local application with
minimum adjustments.

Within the GDFA research group, some of these interfaces have already been developed.
For instance, the Total Water Level tool that was developed for the Regional Government in [22].
This tool allows us to obtain, in different locations, the maximum water level for different conditions
of the maritime climate. Its simplicity has enabled the practical use by managers; likewise, since the
tool is located on GDFA’s servers, maintenance and updating of data are convenient, versatile and fast.

3.4. Databases

During the last decades, there has been a huge development of the technology related to the
measurement, storage and analysis of massive data [23]. Thus, today, cloud computing methods
and analysis tools, such as data mining [24], machine learning, and artificial intelligence, in general,
are being applied in practically all areas of society.

In the field of coastal engineering and earth sciences, there has also been a strong development
due to a greater computing capacity, which allows large datasets infrastructures [18] to be obtained at
a global and regional level. At the local level, the measurement techniques and the implementation of
detailed numerical models are also allowing to have large sources of data not only climatic, but also,
for example, hydrodynamic or bathymetric. One of the key elements of all these data sources is their
standardization and implementation in Geographic Information Systems for easy use by different users.

This tool has allowed the automatic creation of a database (Figure 6). By implementing a relational
database, the applications can interact and integrate the information it stores so that it can be reused.

J. Mar. Sci. Eng. 2020, 8, 350 11 of 13

Figure 6. Automatically-generated database.

4. Discussion

While most of the team members had experience with scientific platforms such as Matlab, one of
the major decisions was the use of the programming language Python. The choice of programming
language has many scientific and practical consequences. In particular, Matlab code can be quick to
develop and is relatively easy to read. However, the language is proprietary and the source code is not
available, so researchers do not have access to core algorithms making bugs in the core very difficult to
find and fix. Many scientific developers prefer to write code that can be freely used on any computer
and avoid proprietary languages.

Python is an increasingly popular and free programming language for scientists [25]. It combines
simple syntax and abundant online resources. As a general-purpose programming language, it has no
specific support for scientific data structures or algorithms, unlike scientific platforms like Matlab or R.
However, it provides a rich ecosystem of science-focused toolkits with strong community support.

One of the most interesting features of Python for scientists is the possibility of directly running
libraries coded in languages such as Fortran and C, without having to worry about programming
in these low-level languages. This allows the reuse of numerous scientific packages implemented in
these languages, such as BLAS or LAPACK. In addition, because Python is an interpreted language,
and therefore slow compared to these compiled languages, this dramatically increases the efficiency,
a key aspect in science. This is the main reason why most scientific Python packages are not written in
Python itself, or at least in its most critical parts.

Nevertheless, one of the major downsides in the past for Python was its installation. Including
parts of code in other languages, made the installation of Python for scientific tasks complex and
tedious, and implied some advanced knowledge for the compilation of these packages.

This is currently solved by scientific distributions of Python, such as Anaconda, which have
greatly facilitated the adoption of this language. Anaconda includes not only the general-purpose
language interpreter, but a large number of ready-to-use scientific packages, including the SciPy
ecosystem, and several code editors so that the scientist can start working with Python without having
to install anything else.

Anaconda includes, among others, packages to perform data cleaning, aggregations and
exploratory analysis (Pandas); numerical computation (NumPy); visualizing data (Matplotlib and
Seaborn); domain-specific toolboxes (SciPy); machine learning (scikit-learn); organizing large amounts
of data (netCDF4, h5py, pygrib); interactive data apps (Flask, Bokeh) or scientific dissemination and
divulgation (Jupyter, PyLaTeX).

This framework has been developed with reproducibility in mind. This is particularly sensitive
in all experimental disciplines. Some studies already claim that more than two-thirds of work in the

J. Mar. Sci. Eng. 2020, 8, 350 12 of 13

earth and environmental sciences is not reproducible [26]. It is therefore necessary to improve the
reproducibility and transparency of the results obtained.

5. Conclusions

A software tool has been built following some of the software engineering design guidelines
in order to bridge the gap between coastal engineering and software development. This framework
provides the tool with great robustness, versatility and the possibility of scalability and improvement
in the future.

Once the framework has been developed and some of the basic modules have been implemented,
the present work is a first step to continue adding more functionalities following the principles
established in the methodology. Currently, the tool allows us to summarize the basic climate analysis,
including histograms and density functions of the main variables and their correlations, as well as a
complete summary of the data.

The developed tool allows the creation of different products oriented to different users:
from managers to students, including also profiles such as researchers or developers. Some of the
products already available from the tool include Jupyter notebooks and the automatic generation of
elaborate reports and relational databases.

Other modules, such as the simulation of climate series, are in the process of development, as well
as the completion of all documentation to make the tool publicly available. Once the source code of the
tool is made public, feedback is expected for the improvement and implementation of new modules
and features.

6. Future Work

The package is in a phase of refactoring and enhancement. Among the changes currently being
made: (1) compatibility with Python 3 only; when development started it became compatible with
Python 2/3 but this has required more development effort; (2) restructuring the package to follow a
cookiecutter-generated template to improve its distribution, (3) completing the missing documentation;
(4) adding a new module for data access from remote data sources such as Cordex or Copernicus
(already completed but not integrated); (5) adding a new simulation module (already completed but in
testing phase).

Author Contributions: Conceptualization, P.M.; funding acquisition, M.O.-S.; methodology, J.D.-R.-S.; software,
P.M., J.D.-R.-S., M.C. and A.L.-L.; supervision, M.O.-S.; writing—original draft, P.M. and J.D.-R.-S.; writing—review
and editing, M.C., A.L.-L. and M.O.-S. All authors have contributed substantially to the work and have read and
agreed to the published version of the manuscript.

Funding: This project is supported by “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo”,
CYTED (project PROTOCOL 917PTE0538) and the Spanish Ministry of Economy and Competitiveness
(project PCIN-2017-108).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Drake, N. First-Ever Picture of a Black Hole Unveiled. Available online: https://www.nationalgeographic.
com/science/2019/04/first-picture-black-hole-revealed-m87-event-horizon-telescope-astrophysics/
(accessed on 13 May 2020).

2. Chappell, B. Earth Sees First Image of a Black Hole. Available online: https://www.npr.org/2019/04/10/
711723383/watch-earth-gets-its-first-look-at-a-black-hole (accessed on 13 May 2020).

3. BBC. Katie Bouman: The Woman Behind the First Black Hole Image. Available online: https://www.bbc.
com/news/science-environment-47891902 (accessed on 13 May 2020).

4. Hess, A. 29-Year-Old Katie Bouman ‘Didn’T Know Anything About Black Holes’—Then She Helped
Capture the First Photo of One. Available online: https://www.cnbc.com/2019/04/12/katie-bouman-
helped-generate-the-first-ever-photo-of-a-black-hole.html (accessed on 13 May 2020).

https://www.nationalgeographic.com/science/2019/04/first-picture-black-hole-revealed-m87-event-horizon-telescope-astrophysics/
https://www.nationalgeographic.com/science/2019/04/first-picture-black-hole-revealed-m87-event-horizon-telescope-astrophysics/
https://www.npr.org/2019/04/10/711723383/watch-earth-gets-its-first-look-at-a-black-hole
https://www.npr.org/2019/04/10/711723383/watch-earth-gets-its-first-look-at-a-black-hole
https://www.bbc.com/news/science-environment-47891902
https://www.bbc.com/news/science-environment-47891902
https://www.cnbc.com/2019/04/12/katie-bouman-helped-generate-the-first-ever-photo-of-a-black-hole.html
https://www.cnbc.com/2019/04/12/katie-bouman-helped-generate-the-first-ever-photo-of-a-black-hole.html

J. Mar. Sci. Eng. 2020, 8, 350 13 of 13

5. Brett, A.; Croucher, M.; Haines, R.; Hettrick, S.; Hetherington, J.; Stillwell, M.; Wyatt, C. Research Software
Engineers: State of the Nation Report 2017. 2017. Available online: https://zenodo.org/record/495360#
.Xryi4MCWrIW (accessed on 13 May 2020).

6. Hannay, J.E.; MacLeod, C.; Singer, J.; Langtangen, H.P.; Pfahl, D.; Wilson, G. How do scientists develop
and use scientific software? In Proceedings of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, Vancouver, BC, Canada, 23 May 2009.

7. Miller, G. A scientist’s nightmare: Software problem leads to five retractions. Science 2006, 314, 1856–1857.
[CrossRef] [PubMed]

8. Merali, Z. Computational science.Error. Nature 2010, 467, 775–777. [CrossRef] [PubMed]
9. Ince, D.; Hatton, L.; Graham-Cumming, J. The case for open computer programs. Nature 2012, 482, 485–488.

[CrossRef]
10. Peng, R. Reproducible research in computational science. Science 2011, 334, 1226–1227. [CrossRef] [PubMed]
11. Goble, C. Better Software, Better Research. IEEE Internet Comput. 2014, 18, 4–8. [CrossRef]
12. Baker, M. Scientific computing: Code alert. Nature 2017, 541, 563–565. [CrossRef]
13. Hutton, C.; Wagener, T.; Freer, J.; Han, D.; Duffy, C.; Arheimer, B. Most computational hydrology is not

reproducible, so is it really science? Water Resour. Res. 2016, 52, 7548–7555. [CrossRef]
14. Baxter, R.; Hong, N.C.; Gorissen, D.; Hetherington, J.; Todorov, I. The research software engineer.

In Proceedings of the Digital Research Conference, Oxford, UK, 10–12 September 2012.
15. Rueda, A.; Gouldby, B.; Méndez, F.; Tomás, A.; Losada, I.; Lara, J.; Díaz-Simal, P. The use of wave propagation

and reduced complexity inundation models and metamodels for coastal flood risk assessment. J. Flood
Risk Manag. 2016, 9, 390–401. [CrossRef]

16. Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global
probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun.
2018, 9, 1–12. [CrossRef] [PubMed]

17. Del-Rosal-Salido, J.; Folgueras, P.; Ortega-Sánchez, M.; Losada, M.A. Beyond flood probability assessment:
An integrated approach for characterizing extreme water levels along transitional environments. Coast. Eng.
2019, 152, 103512. [CrossRef]

18. Hans, H.; Bell, W.; Berrisford, P.; Andras, H.; Muñoz-Sabater, J.; Nicolas, J.; Raluca, R.; Dinand, S.; Adrian, S.;
Cornel, S.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24.

19. WW3DG (The WAVEWATCH III Development Group). User Manual and System Documentation of
WAVEWATCH III Version 6.07; Tech. Note; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2019; 326p.

20. Perkel, J.M. Why Jupyter is data scientists’ computational notebook of choice. Nature 2018, 563, 145–146.
[CrossRef] [PubMed]

21. Ortega-Sánchez, M.; Moñino, A.; Bergillos, R.J.; Magaña, P.; Clavero, M.; Díez-Minguito, M.; Baquerizo, A.
Confronting learning challenges in the field of maritime and coastal engineering: Towards an educational
methodology for sustainable development. J. Clean. Prod. 2018, 171, 733–742. [CrossRef]

22. Magaña, P.; Bergillos, R.J.; Del-Rosal-Salido, J.; Reyes-Merlo, M.A.; Díaz-Carrasco, P.; Ortega-Sánchez, M.
Integrating complex numerical approaches into a user-friendly application for the management of coastal
environments. Sci. Total Environ. 2018, 624, 979–990. [CrossRef] [PubMed]

23. Bryant, R.E. Data-Intensive Scalable Computing for Scientific Applications. Comput. Sci. Eng. 2011, 13, 25–33.
[CrossRef]

24. Magaña, P.; López-Ruiz, A.; Lira, A.; Ortega-Sánchez, M.; Losada, M.A. A public, open Western Europe
database of shoreline undulations based on imagery. Appl. Geogr. 2014, 55, 278–291. [CrossRef]

25. Perkel, J.M. Programming: Pick up Python. Nature 2015, 518, 125–126. [CrossRef] [PubMed]
26. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 2016, 533, 452–454. [CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://zenodo.org/record/495360#.Xryi4MCWrIW
https://zenodo.org/record/495360#.Xryi4MCWrIW
http://dx.doi.org/10.1126/science.314.5807.1856
http://www.ncbi.nlm.nih.gov/pubmed/17185570
http://dx.doi.org/10.1038/467775a
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://dx.doi.org/10.1038/nature10836
http://dx.doi.org/10.1126/science.1213847
http://www.ncbi.nlm.nih.gov/pubmed/22144613
http://dx.doi.org/10.1109/MIC.2014.88
http://dx.doi.org/10.1038/nj7638-563a
http://dx.doi.org/10.1002/2016WR019285
http://dx.doi.org/10.1111/jfr3.12204
http://dx.doi.org/10.1038/s41467-018-04692-w
http://www.ncbi.nlm.nih.gov/pubmed/29915265
http://dx.doi.org/10.1016/j.coastaleng.2019.103512
http://dx.doi.org/10.1038/d41586-018-07196-1
http://www.ncbi.nlm.nih.gov/pubmed/30375502
http://dx.doi.org/10.1016/j.jclepro.2017.10.049
http://dx.doi.org/10.1016/j.scitotenv.2017.12.154
http://www.ncbi.nlm.nih.gov/pubmed/29929268
http://dx.doi.org/10.1109/MCSE.2011.73
http://dx.doi.org/10.1016/j.apgeog.2014.09.018
http://dx.doi.org/10.1038/518125a
http://www.ncbi.nlm.nih.gov/pubmed/25653001
http://dx.doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/27225100
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	PROTOCOL Project
	Modular Programming
	Inline Code Documentation
	Quality Control Process
	Distributed Control Version
	Code Performance Analysis
	Software Development Methodology

	Results
	Reports
	Jupyter Notebook Tutorials
	Web/Desktop Interface
	Databases

	Discussion
	Conclusions
	Future Work
	References

