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Abstract: Neutrophils are key cells of the immune system and have a decisive role in fighting foreign
pathogens in infectious diseases. Neutrophil extracellular traps (NETs) consist of a mesh of DNA
enclosing antimicrobial peptides and histones that are released into extracellular space following
neutrophil response to a wide range of stimuli, such as pathogens, host-derived mediators and
drugs. Neutrophils can remain functional after NET formation and are important for periodontal
homeostasis. Periodontitis is an inflammatory multifactorial disease caused by a dysbiosis state
between the gingival microbiome and the immune response of the host. The pathogenesis of
periodontitis includes an immune-inflammatory component in which impaired NET formation
and/or elimination can be involved, contributing to an exacerbated inflammatory reaction and to the
destruction of gingival tissue. In this review, we summarize the current knowledge about the role of
NETs in the pathogenesis of periodontitis.
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1. Periodontitis

Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues and
exhibits a wide range of clinical, microbiological and immunological manifestations. It is associated
with, and caused by, a multifaceted dynamic interaction among specific infectious agents, host immune
responses, hazardous environmental exposure and genetic propensity [1]. The process of developing
the disease starts with the accumulation of a complex bacterial biofilm. The composition of this biofilm
has been estimated in approximately 700 species [2]. This biofilm creates a coat for the dental root and
its structure is capable of protecting against antimicrobial substances. In healthy subjects, there is a
homeostasis between the periodontium and the host response. However, when the plaque biofilm
persists in a susceptible host it generates an inflammatory reaction that causes a dysbiosis, where
periodontal pathogens thrive [3]. This leads to a chronic inflammatory state, which consequentially
causes the destruction of the connective tissue. The process can progress to destroying surrounding
support tissues—gingiva, cementum, periodontal ligament and alveolar bone—and eventually end in
the loss of the affected teeth [4].
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As a result of gingivitis, the bacteria penetrate the sulcus between the gum and the tooth, and
then attack the gum attachment to progress deeper along the root. During this migration, toxins
produced by bacteria and consequent inflammatory reactions will irreversibly destroy the attachment
and the tooth-supporting tissues. This leads to the formation of periodontal pockets, which are located
between the deep periodontal tissues and the tooth and are considered to be the main clinical feature
of periodontitis [5].

The frequency and severity of periodontitis increases with age, with incidence peaking around the
age of 60 [6]. Periodontitis is considered the main cause of tooth loss in people older than 40, having a
higher prevalence than caries [7]. A high prevalence of periodontitis has been reported, with more
than 47% of adults (more than 60 million) in the USA affected, and the prevalence continues to grow
every year [8,9].

Periodontal inflammation is characterized by a chronic inflammatory infiltrate of varying intensity.
This infiltrate is mainly composed of lymphocytes, plasma cells and macrophages distributed in patches
on the lamina propria, frequently surrounding vascular structures [10]. Neutrophils are abundant in
the periodontal inflammatory-immune response infiltrate and are considered a first-line cell defense
mechanism against bacterial invasion [11]. However, in a susceptible host in which neutrophils
do not properly contribute to the restraint of the invading bacteria, the homeostasis between the
biofilm and the host response is altered, leading to an increase in tissue destruction [12,13]. Due to
this immune-inflammatory component, periodontitis has been related to several systemic diseases,
including rheumatoid arthritis (RA) [14]. Previous studies have indicated that neutrophils derived
from patients with periodontitis are hyperactive and have an increased activity and production of
reactive oxygen species (ROS) in response to a microbial invasion [15].

2. Periodontal Neutrophils

Neutrophils are the most abundant cell type of the granulocyte family (95%) and represent 50%
to 70% of the blood leukocytes [11], approximately (1-2) x 10! neutrophils are produced daily and
released from the bone marrow into the bloodstream [16]. Peripheral blood neutrophils are eventually
recruited from the bloodstream into the site of the infection. Naturally present in the oral cavity,
neutrophils attach to the endothelial cells through the interaction with selectin and integrin receptors;
by extravasation they abandon the bloodstream and migrate from the periodontal sulcus into the
oral cavity. In case of infection, neutrophils are the first of the immune cells to arrive at the site
through periodontal tissues and into gingival crevices as part of normal immune control. Although
neutrophils are one of the predominant immune cells present in the oral cavity, T cells in periodontal
tissue constitute the prevalent immune cell type [17]. Additionally, oral neutrophils have been found
to show different chemotactic and antimicrobial functions than circulating neutrophils [18,19].

Mutations in genes affecting neutrophil differentiation and egression from the bone marrow
have been related to periodontitis. Severe periodontitis has been described in patients with Severe
Congenital Neutropenia due to mutations in the neutrophil elastase (NE) ELA2/ELANE or the
HAX1 gene (hematopoietic cell-specific Lyn substrate) 1-associated gene X1 [20]. Patients with
warts, hypogammaglobulinemia, immunodeficiency and myelokathexis (WHIM) syndrome have
been reported to present with severe periodontitis [21,22]. WHIM is an autosomal dominant
immunodeficiency caused by mutations in the CXCR4 chemokine receptor leading to defects in
neutrophil exiting from the bone marrow.

Different neutrophil defects have been described affecting all stages of neutrophil recruitment and
extravasation to periodontal tissue: tethering, rolling, adhesion and endothelial transmigration [23,24].
Most notably, leukocyte adhesion deficiency-I (LAD-I) immunodeficiency, which alters neutrophil
extravasation into tissues, presents with periodontitis [25]. LAD-I results from mutation in the
CD18 gene [26] preventing normal integrin dimerization and leukocyte adhesion and extravasation.
Endothelial cell-derived developmental endothelial locus-1 (DEL-1) inhibits neutrophil adhesion to
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the endothelial cells [27] thereby restraining neutrophil transmigration; consequently, both DEL-1
upregulation and deficiency have been related to periodontitis [28].

Periodontitis is associated with reduced neutrophil chemotaxis. Dysfunctional neutrophil
chemotaxis may predispose patients with periodontitis to disease by increasing tissue transit times,
thereby exacerbating neutrophil-mediated collateral host tissue damage [29]. The absence of tissue
neutrophils due to defective recruitment and extravasation [23] can also lead to persistent periodontal
inflammation and bone loss [30,31]. Both an excessive presence or absence of neutrophils in the tissue
can lead to periodontitis, indicating how important neutrophil balance is in periodontal homeostasis.
A comprehensive understanding of defective neutrophil behavior in periodontitis would help in the
development of new therapeutic approaches.

3. Neutrophil Extracellular Traps (NETs)

3.1. NET Formation

Neutrophils contribute to host defense at sites of tissue injury by patroling through the circulatory
system [32]. The function of eliminating invading pathogens in periodontal tissues is mediated through
ROS production, phagocytosis, extracellular and intracellular degranulation [11] and most recently
neutrophil extracellular trap (NET) production. Brinkmann first described NETs as bactericidal traps,
disarming and promoting the elimination of extracellular bacteria [33]. The formation of NETs involves
the extrusion of nuclear chromatin into the extracellular space through the rupture of the nuclear
and plasma membranes, and this extruded chromatin is embedded with cytoplasmic granule-derived
proteins [34]. The term NETosis has been used in the past years to describe the combination of NET
formation and neutrophil death [35]. However, concerns have been raised and the use of this term
has been discouraged in some reports, and other terms such as “NET formation” or “NETotic cell
death” have been proposed [36,37]. NETs are web-like structures of decondensed nuclear chromatin
fibers combined with various antimicrobial compounds, including histones and antimicrobial peptides
(AMPs) from azurophilic granules, specific granules and tertiary granules (gelatinase) released out
of the neutrophil after activation. These AMPs were found to be effective not only against bacterial
species but also against viruses, fungi and other microorganisms [38,39].

Many stimuli have been revealed to induce NET formation, such as viruses, fungi, parasites and
host-derived components, such as cytokines and activated platelets [40]. Three main forms of NET
formation have been identified. The classical form of NET formation is defined as a programmed cell
death, different from necrosis and apoptosis, characterized by disruption of the nuclear membrane
that lasts from two to four hours, which gives neutrophils the ability to fight pathogens beyond
their lifespan. NET formation starts with the recognition of several stimuli (e.g., bacteria, fungi,
viruses) through neutrophil receptors (such as toll-like receptors (TLRs), IgG-Fc receptors and cytokine
receptors) [41]. Then, the mobilization of stored calcium ions from the endoplasmic reticulum would
also be crucial for the process, the calcium being necessary for the citrullination of the histones and
for the activation of protein-arginine deiminase 4 (PAD4) and the release of ROS [42]. The histone
deamination by PAD4 is known as a major event in the decondensation of chromatin and the release
of NET. ROS play an essential part in promoting the breakdown of the nuclear membrane. NE and
deferoxamine are involved in the further decondensation of the nuclear chromatin phenomenon [43].
In addition, NE and myeloperoxidase are dismissed from azurophilic granules and then translocate
into the nucleus. Then the nuclear chromatin is extruded into the extracellular space; suicidal NETosis
can be recognized microscopically by the presence of disrupted neutrophils in the tissue (Figure 1).
NET extrusion from cell death would cause damage of periodontal tissues through an autoimmune
phenomenon [44]. However, in 2012, Pilsczek et al. offered another mechanism and stated that the
neutrophils formed NETs during highly developed infection with Staphylococcus aureus (S. aureus),
but the neutrophils are still viable, and have the normal function of vital neutrophils in terms of
phagocytosis and other purposes. NET formation involves the use of vesicles that carry the chromatin
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without extracellular release of DNA [45]. This phenomenon is very rapid; it takes place between 5 and
60 min after stimulation and does not involve NADPH oxidase. In this second form, called vital NET
formation, neutrophils create NETs but there is no breakdown of the plasma or nuclear membranes [46].
More recently, NET formation from mitochondrial DNA in viable neutrophils has been described [47];
mitochondrial DNA is released instead of nuclear DNA. Mitochondrial NET formation is not related to
cell death but is dependent on ROS formation [47]. Mitochondrial NETs are identified in neutrophils
within 15 min when stimulated with C5a or lipopolysaccharide (LPS). These findings are not in line
with those of Brinkmann et al., who stated that NET formation leads inexorably to the death of the
neutrophil [48]; moreover, it is not clear whether the mitochondrial DNA content would be enough for
the amount of DNA detected in the traps [40]. The mechanisms that result in the formation of NETs
through the release of mitochondrial DNA or through viable cells are still unknown. Interestingly,
mitochondrial NETs may be a faster antimicrobial mechanism, which allows cells to remain viable and
to prevent the extrusion of phagocytosed bacteria [49], an event that to our knowledge has not yet
been studied in relation with periodontitis.

Figure 1. Transmission electron microscopy micrograph from a gingival tissue sample with periodontitis.
An emptied disrupted neutrophil alongside an intact one are shown. Scale bar, 2Im.

3.2. Microbicidal Effects of NETs

Since 2004, many studies have highlighted the ability of NETSs to participate in destroying infectious
agents, such as bacteria, parasites, fungi and more recently viruses. Bacteria are powerful stimuli
that activate the release of NETs [50]. NETs can trap microorganisms and slow their spread from the
initial site of infection, probably through the electrostatic interactions between cationic components of
NETs and the anionic surface of the pathogen [48]. NETs can also inactivate the virulence factors of
pathogenic microorganisms; whose function is to modify and destroy the host cells. This had already
been confirmed in the first evidence on NETs, where extracellular NE as a component of NETs actively
targeted bacterial virulence factors of Shigella spp., such as the adhesin IcsA protein and the invasion
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plasmid antigen B. The antimicrobial activity of NETs depends on the structure of the NETs, as it
provides a high local concentration of proteins with anti-infectious activity in the direct proximity of
the trapped pathogen [33]. These proteins’ proteases include enzymes such as antimicrobial peptides
and lysozyme. Histones, the most abundant proteins of NETs, also possess a strong ability to kill
microorganisms. NETs are involved in the elimination of Gram-positive and Gram-negative bacteria.
Among Gram-positive bacteria, S. aureus can be destroyed by a mechanism dependent on peroxidase
activity of the NET’s MPO [51]. NETs can also kill Gram-negative bacteria, including Shigella flexneri,
Escherichia coli and Salmonella typhimurium [34].

3.3. Microorganisms’ Strategies to Escape the Action of NETs

Identifying strategies to escape NETs in various microorganisms highlights the long coexistence
of neutrophils and infectious agents in evolution, as well as the importance of this mechanism
for combating infections [50]. Among these strategies, some bacteria produce DNases and other
extracellular nucleases in order to destroy the DNA backbone of NETs and therefore evade
this mechanism. This has been demonstrated with S. aureus [52] and Streptococcus pneumonia
(S. Pneumonia) [53]. DNase production has been reported by a wide range of periodontal bacterial
species and this expression appeared to be a trait in species that have been classically considered
as periodontal pathogens, such as species from red (Porphyromonas gingivalis (P. gingivalis) and
Tannerella forsythia (T. forsythia)), orange (Fusobacterium nucleatum (F. nucleatum), Prevotella intermedia
(P. intermedia) and Prevotella nigrescens (P. nigrescens)) and yellow (Streptococcus gordonii (S. gordonii))
microbial complexes. As P. gingivalis is one of the most important periodontal pathogens, the DNase
expression of six different strains was analyzed, showing all of them had different degrees of DNase
activity [54]. P. gingivalis is a potent inducer of NET formation that is mediated by gingipains, but
its proteolytical activity has shown to inactivate the bactericidal components of NETs through the
activation of protease-activated receptor-2 [55]. Several mutant and wild-type strains of P. gingivalis
have been analyzed and their results showed that mutant strains induced a characteristic NET
formation [56]. P. intermedia has also shown a strong nuclease activity when compared with other
periodontal bacterial species, suggesting that this species could have a major role in the biofilm
ability to evade the action of NETs. In the same study, another major periodontal pathogen such as
Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) showed no DNase activity [57].

3.4. Removal of NETs

Many investigations about the removal of NETs have been published recently. While the
investigations appreciated that the removal of NETs is essential for tissue homeostasis, the processes
involved and time required in removing NETs are not well understood. In 2010, it was reported that
NETs produced in vitro were stable for over 90 h. DNase 1 is one of the mechanisms responsible for
NET degradation, and the presence of DNase 1 inhibitors or anti-NET antibodies that also blocked the
access of the enzyme would be responsible for the removal of impaired NETs in cases of autoimmune
diseases such as systemic lupus erythematosus [58]. NETs are degraded by macrophages through
lysosomic action. However, the whole specific nuclease pathway involved in this process remains
difficult to find. A key to this process is that the mechanism of NET removal is similar to that of
apoptosis, whereby macrophages do not release pro-inflammatory cytokines [59]. Recently it has been
reported that NET degradation is increased in treated periodontitis patients, what indicates that NET
degradation contributes to a decreased pro-inflammatory state [60,61].

4. NETs and Periodontitis

4.1. NETs in Periodontitis Studies

In Table 1, we summarize the articles to date that have studied the role of NETs in periodontitis.
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Table 1. Summary table of the studies assessing the role of neutrophil extracellular traps (NETs) in periodontitis and the induction of NET formation by

periodontal bacteria.
Studies on the Expression of NETs in Periodontitis Patients
Author Year Participants Types of samples NET marker Results
27 periodontitis, 17 gingivitis and Peripheral blood IL-8 and TNF-alpha as Periodontitis showed lower expression of IL-8
Zhang et al. [62] 2020 . .
20 controls neutrophils NETs inducers compared to controls
Ist part:38 I;Zﬁzi(f;mtls and 38 Peripheral blood No differences in NET degradation between
Moonen et al. A [61] 2019 . . P . SYTOX Green healthy subjects and periodontitis. Periodontal
2nd part: 91 periodontitis before neutrophils . .
therapy increased NET degradation
and after treatment
Magén-Ferndndez et al. 2019 6 Chronic periodontitis, 5 gingivitis Gingival fissue biopsies CitH3 and MPO Higher H3 in gingivitis agq MPO higher in
[63] and 2 controls periodontitis
3 Localized aggressive Peripheral blood
Levy et al. [64] 2019 periodontitis and 3 controls and neutroph}ls jcmd HL60 SYTOX Green NET formation was higher in t h'e neutrophils
. neutrophils incubated exposed to Nupharidine
HL60 neutrophils . 1
with nupharidine
40 Rheumatoid arthritis and NET-associated 1\12?51:1? increased n t?edRA. t; perzlod()?tltus sroup-
Kaneko et al. [65] 2018 periodontitis, 30 periodontitis and Serum samples MPO-DNA complexes by S were associated with mocerate 1o severe
periodontitis. Periodontal treatment reduced
43 controls ELISA
NETs
. . o Peripheral blood .
White et al. [60] 2016 Chronic pen&%ontl;ls) and controls neutrophils stimulated SYTOX Green NEI fc;rthlforhdecirsasedrian; Tthienlzaizvas
pairs with PMA or HOCI estored following periodontal treatme
. . -, Proinflammatory oral neutrophils from
Fine et al. [66] 2016 17 Chronic periodontitis and 11 Blood and oral CitH3, MPO, CD18 periodontitis showed high levels of NET
controls neutrophils .
formation compared to controls
. T Supragingival plaque, CitH3, Histone H1, e s
Hirschfeld et al. [67] 2015 14 Experimental gingivitis and 6 peripheral blood CD-177, MPO, NE, NETs were found W}thm the oral blOfllm:
controls . . Bacterial isolates tested induced NET formation.
neutrophils Cathepsin-G.
) Scanning electron o . .
Vitkov et al. [68] 2010 26 Periodontitis GCF (18); Purulent microscopy (SEM); CitH3 All neutorophﬂs in the sarnple.s were citrullinated.
crevicular exudate (8) 78% of them showed dispersed NETs
and DNA
Exudates: NE and DNA;
Purulent crevicular Biopsies: Transmission
Vitkov et al. [69] 2009 22 Chronic Periodontitis exudate (22); Gingival electron microscopy NETS were found on all the exudate samples.

biopsies (12)

(TEM) and SEM (with and
without DNase).

DNase caused the disappearance of NETs
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In Vitro Studies on NET Formation Induced by Periodontal Bacteria

Author Year Participants Types of samples NET marker Results
Peripheral blood
neutrophils stimulated NE, Hoechst 33342, Gingipains from P. gingivalis induce NETs
Bryzek et al. [55] 2019 Human donors with different P. gingivalis ~ ADNbc PicoGreen® and ~ formation and prevent P. gingivalis entrapment
strains, antigens and DNase I and killing
gingipains
Human primary
neutrophils infected with SYTOX Orange, NE F. nucleatum induced rapid and robust NET
Alyamietal. [70] 2019 In vitro PMN layers . Agg regutzbactgr CitH3, DAPI formation trough NOD1 and NOD 2 receptors
actinomycetemcomitans, P.
gingivalis and F. nucleatum
Peripheral blood
. neutrophils. Stimulation FITC NET-DNA, NE, and Certain species stimulated higher NET
Hirschfeld et al. [71] 2017 10 Healthy donors with 19 periodontal MPO formation.
bacteria
PMA-stimulated
peripheral blood Prevotella intermedia demonstrated the highest
Doke et al. [57] 2017 Healthy donors neutrophils. Nucleases SYTOX OS;‘I%IE »NE and NET degradation of all the Gram—periodontal
from several periodontal bacteria
bacteria.
5 Papillon—Lefévre syndrome (PLS) Peripheral blood SYTOX Green, NE, Neutrophils from PLS patients have a reduced
Roberts et al. [72] 2016 p atients and S}ZI(l)n trols neutrophils stimulated NET-bound MPO, capacity for NET formation and a compromised
P with periodontal bacteria NET-bound CG antimicrobial activity
Peripheral blood
neutrophils incubated Complement and IgG enhance NET formation
Palmer et al. [73] 2016 Healthy donors with oral bacteria in NET-DNA fluorometry P 8% .
. by several periodontal bacteria
different complement
blocking conditions
Peripheral blood The leucotoxic strain of A.a. and high
Hirschfeld et al. [74] 2016 Healthy donors neutrophils with A.a., A.a. Micrococcal nuclease concentrations of A.a. leucotoxin induced NET
leucotoxin formation
Jayaprakash et al. In vitro PMA-generated ~ FITC-labeled P. gingivalis, P. gingivalis strains K1A and E8 induced NET
[56] 2015 Healthy donors NETs; F-actin, DNA formation
. DNase activity of . .
Palmer et al. [54] 2012 Healthy donors In vitro PMA-generated periodontal bacterial DNase producing species caused the

NETs

species. SYTOX Green

degradation of NETs




Cells 2020, 9, 1494

Table 1. Cont.

8 of 18

Other Studies Regarding NET Formation in Oral Neutrophils

Moonen et al. [18]

2019

PMA-stimulated venous
9 Healthy donors blood neutrophils and SYTOX Green
oral neutrophils

Oral neutrophils showed greater NET formation
than circulating neutrophils in both stimulated
and non-stimulated groups
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With regard to previous results published by our group, we were able to characterize NETs in
tissue samples with periodontitis and gingivitis using immunofluorescence, immunohistochemistry
and electron microscopy analysis (Figure 2). The comparison of periodontitis and gingivitis showed
that NET composition changed, and the general expression of citrullinated histone H3 was found to be
higher in gingivitis. These findings suggested that the potential role of NETs in periodontitis may be
associated with early and more acute phases of the inflammatory process [63].

Figure 2. Micrographs from gingivitis (A,C) and periodontitis (B,D) gingival tissue samples.
Immunostaining of citrullinated histone H3 (A,B) and MPO (C,D) are shown. Although citrullinated
histone H3 expression did not differ between gingivitis and periodontitis (A,B), a higher MPO expression
in gingivitis compared to periodontitis was found. This suggested that NET formation might be more
associated with gingivitis. Scale bar, 50 pm.

Previous investigations (see Table 1) showed that periodontitis led to an increased formation of
ROS and NETs. In addition, interferon alpha (IFN-«) was found in significant amounts in periodontitis
patients. This mediator is very important for stimulating NET formation and the periodontal pocket
provides ideal O, levels and pH for ROS formation [75]. Thus, for all the previous reasons this provides
a friendly environment for ROS formation. Investigations suggest that the loss of bone and progression
of disease depend on the nature of the inflammatory response of the patient and the type of pathogen.

4.2. Microbial Agents Alter NET Formation

Lipopolysaccharide is a key component of Gram-negative bacterial cell walls, where it maintains
the structural integrity, stability and negative charge of the bacteria. LPS does not have the capacity to
directly induce neutrophils to release NETs; however, there is a growing belief that LPS can activate
platelets, which subsequently initiate NET release. It has recently been discovered that TLR4 is present
on platelets, which is indicative of platelets having the capacity to recognize and respond to LPS from
Gram-negative bacteria [76]. Early studies identified P. gingivalis, Agregatibacter actinomycetemcomitans
and Tannerella forsythia as causative agents in periodontal disease and found them to be involved in
NET-related processes [77]. NET formation is dependent on the activation of protease-activated receptor
2 (PAR2) by P. gingivalis-derived proteases. P. gingivalis is found in the oral cavity, where it is implicated
in periodontal disease. Furthermore, a novel role has also been demonstrated for proteases as bacterial
virulence factors antagonizing the antibacterial activity of NETs [55]. Additionally, the suggested
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generation of NETs in the periodontium leads to increased inflammation and can be considered another
virulence strategy used by P. gingivalis. The presentation of intracellular self-antigens modified by
gingipains may have immunological consequences, as the excessive presentation of cryptic antigens
creates a developed part of systemic diseases associated with periodontitis [78]. Hirschfeld et al.
indicated that some bacteria (Propionibacterium acnes, Veillonella parvula and Streptococcus gordonii) led to
an enhancement of NET-derived DNA production, via NADPH oxidase-independent mechanisms [71].
It was previously mentioned in this review that NET formation depends strongly on the formation
of ROS for its release. Periodontal bacteria produce DNases that reduce NET release levels, and
pathogen colonization might increase in the periodontal tissue. Most aggressive pathogens release
DNase, disseminating NET contents that lead to the liberation of their antimicrobial components in the
surrounding tissue, resulting in a harmful effect on periodontal tissue [54].

As neutrophils are the major and first immune cell to reach the infected area, they are involved in
the initial steps of the inflammatory response. Therefore, neutrophils are a determinant component of
the immune response in periodontal status [15]. It is reasonable to assume that NET production or
effectiveness in periodontitis may be reduced, a reduction in the effectiveness of the NET function
would allow easier bacterial infiltration of periodontal tissues, leading to more inflammatory response
in the infected area and resulting in tissue destruction. The digestion of NETs via DNase leads to the
liberation of NET-associated antimicrobial peptides, which in turn leads to more tissue destruction [44].

4.3. Defective Neutrophils and Impaired NET Formation in Periodontitis

Previous evidence has already shown that neutrophils show hyperactivity to bacterial species
found in subgingival plaque and an upregulated ROS release [15,79]. Neutrophils in healthy periodontal
tissue are moved towards dental biofilms, in which they are stimulated by oral bacteria and their
components to form NETs. The migrated oral neutrophil is a viable cell with a hyperactive phenotype,
as evidenced by the increased adhesion and internalization of microbes and 13 times more NET
formation capacity than the circulating neutrophils [18]. In 2017, Hirschfeld et al. suggested that the
variability in neutrophils, such as deficiencies in the number or abnormal function of neutrophils
toward various bacteria, might contribute to the pathogenesis of periodontal disease [71]. Periodontitis
patients presented with over four times higher oral neutrophil counts compared to healthy periodontal
tissue, which was a predictor for protease activity. More oral neutrophils were apoptotic in periodontitis
patients than in healthy ones [80,81]. The neutrophil-mediated antimicrobial action fails to stop the
bacteria in cases of periodontitis, leading to tissue damage and destruction of both bacterial and
immune origin. NET formation is also considered a potential factor changing the influence of the
individual course of periodontitis [82]. Periodontitis in Papillon-Lefévre (PLS) syndrome arises from
the failure to eliminate periodontal pathogens because of cathepsin C deficiency [83]. PLS neutrophils
reduced the capacity for NET production, characterized by the absence of the NET-related proteins
such as chorionic gonadotropin, MPO and NE. ROS formation was higher in PLS [72]. The failure of
activities of neutrophil antimicrobial proteins might maintain the stimulus for the wrongful recruiting
of highly responsive neutrophils in periodontal tissues, providing a reasonable explanation for the
acute inflammation and bone loss that characterize PLS periodontitis patients [84,85]. Interestingly,
individuals with PLS do not suffer any systemic infections—rarely are there any skin abscesses.
Therefore, the defects of neutrophils appear to be localized in areas of the human body more susceptible
to a direct and chronic bacterial challenge, such as the oral cavity [86].

This hyper-reactivity may come from the excessive NET formation in response to periodontal
pathogens and/or local mediators [66]. The implication of the neutrophils and their enzymes is
supported by the fact that high levels of NETs remain in the tissue for an extended period. In addition,
this supports the hypothesis that NET formation is dependent on ROS formation, which has been
shown to be higher in periodontitis [15]. The neutrophil function in periodontitis may be a key
determinant of the patient’s periodontal health status.
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In addition, increased neutrophil ROS formation is associated with elevated IFN« levels in
periodontitis, indicating that this class of signaling proteins is also important in NET formation [75,87].
High levels of NETs within periodontal tissue could stimulate an autoimmune response, resulting
in augmented neutrophil levels and causing more tissue destruction [73]. This hypothesis of NETs
hyperactivity in periodontitis is supported by Vitkov et al. They investigated NETs in exudate samples
from the gingiva of periodontitis patients and compared the results with previous examinations of
abscesses. In addition, they found that the samples collected had high levels of NETs and that in seven
samples 22 trapped bacteria were associated with the NETs. In addition, based on the use of electron
microscopy and analysis of gingival biopsies, patients with chronic periodontitis showed the presence
of NETs [69]. In a recent study from the same authors, they hypothesize that there is a dissemination
phenomenon of bacterial species, LPS and antigens citrullinated by NETs from the infected periodontal
tissue. This dissemination could contribute to exacerbated autoimmune diseases such as RA via the
activation of TLR receptors [78]. Therefore, both mechanisms of NET formation may be responsible
for tissue destruction [88]. The impaired degradation of NETs and the escape of pathogens from the
effect of NETs by virulence factors leads to a response from neutrophils, upregulating the release of
NETs, resulting in the immobilization and localization of neutrophils instead of trapping bacteria,
which leads to tissue destruction [34] (Figure 3).

V Phagocytosis NET formation Degranulation
: et NE T oot
v A = .
Decondensation
of chromatin
J 2 - {Rupture of granular
membrane and mixing

s a wit

7

Cell membrane rupture and NETosis

’ -
Virulence factors:

-
2
5
3 s .
'DNases > Antimicrobial activity
Formation of a capsule el

Macrophage

High levels of NETs could
stimulate autoimmune respons:

Removal of NETs

Figure 3. NET release. NET formation may be one of the main neutrophil functions in periodontal tissue.
NET production starts with chromatin decondensation, which is then embedded with cytoplasmic
antimicrobial peptide granules. NETs are then released into the extracellular space after cell membrane
rupture to exert their antimicrobial effect and later removed from the tissue. If NET removal fails,
persistent high levels of NETs could cause damage to periodontal tissues.
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5. Role of NETs in Systemic Diseases

The formation of NETs could promote thrombosis via histones [61]. NETs in combination with
platelets may damage the blood vessels during sepsis, destroying endothelial cells and causing vascular
occlusions [76,89]. On the other hand, it has been reported that NETs might promote the implantation
of metastases through the uptake of circulating malignant cells [90]. Garley et al. indicated in 2018 that
the neutrophils of patients with oral inflammation with stage I/II cancer produce increased formation
of NETs compared to the neutrophils of healthy humans. However, the amount of NETs in stage
III/IV cancer patients was lower than the amount of NETs in inflammation and early-stage cancer
patients [91].

NETs have been described as a source of auto-antigens in various autoimmune diseases, such as
vasculitis, lupus, psoriasis and RA [92]. NETs exhibit proteins normally restricted to the interior of the
granules, nucleus or cytoplasm. This exposure would result in immunization against self-antigens
and create autoimmune disorders. For example, in anti-neutrophil cytoplasmic antibody-associated
vasculitis, proteinase 3 and MPO are self-antigens targeted by auto-antibodies, and these two enzymes
are associated with NETs [93]. NETs have also been shown to have adverse effects in pre-eclampsia,
where placenta-derived cytokine-activated neutrophils activated NET extrusion. NETs were found in
the intervillous space of placental tissue samples [94]. In atherosclerosis, dendritic cell activation by
NETs is similar to that which occurs in lupus, and these dendritic cells are one of the cell populations
found in atheromatous plaques [95].

The Relationship between Rheumatoid Arthritis, Periodontitis and NETs

Periodontitis and RA are considered to be two chronic inflammatory diseases with a common
pathogenesis. RA is an autoimmune inflammatory disease defined by the destruction and inflammation
of joints and internal organs in which citrullination is a central feature leading to the generation
of auto-antibodies to citrullinated protein antigens. In periodontitis, citrullination either by NET
formation or P. gingivalis-derived peptydil arginine deiminase activity has been suggested [96], although
citrullination independent of oral bacteria has also been reported [97]. Evidence has suggested that
citrullinated antigens in RA are mostly derived from NETs [98]. Patients with periodontitis may
have RA and vice versa [99]. A recent publication has suggested that periodontal indices such as
gingival index, probing pocket depth (PPD) and bleeding on probing (BOP) have positive relationships
with RA. Anti-P. gingivalis antibody levels were associated with BOP, PPD and GI and the severity of
periodontitis; thus, increasing the values of periodontitis indices could be a sign of advanced disease
development in RA patients [100]. In addition, a high level of anti-P. gingivalis antibody could be
regarded as a warning sign in RA patients suffering from periodontitis [101]. Non-surgical periodontal
treatment has shown to improve symptoms in both diseases [102-104]. Previous studies demonstrated
that NETs were increased in the synovial fluid, rheumatoid nodules, peripheral blood and skin of RA
patients [92]. Increased NET formation in the oral cavity of periodontitis patients perhaps plays a part
in the initiation of RA [105]. P. gingivalis is the most important pathogen responsible for periodontitis.
Further, it was shown that P. gingivalis could induce NET generation [55]. Interestingly, a study
has demonstrated that patients with periodontitis and RA showed significantly higher serum levels
of NETs than the control group. Furthermore, a periodontal cure remarkably decreased the serum
levels of NETs in patients with RA and periodontitis [65]. However, more studies are required with a
greater number of cases and a longer evolution time in order to understand the relation between the
two diseases.

6. Conclusions and Future Research Lines

NETs trap and/or kill a wide variety of microorganisms, bacteria, fungi and parasites through
their antimicrobial agents, such as MPO, NE and proteinase. NET formation has been associated with
different diseases, such as inflammatory diseases including periodontitis and autoimmune diseases
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such as RA. Excess formation of NETs can be harmful to periodontal tissue if they are not correctly
removed; consequently, increased NET degradation has been reported following periodontal treatment.
As stated by a recently published consensus document, several areas regarding the study of NETs are
still controversial. Specifically, the origin of the DNA found in NETs should be identified in order
to find a clear way to distinguish NET formation from other forms of programmed cell death, and
to identify all the pathways that regulate NET formation, since it is very unlikely that it is mediated
by a single pathway. There is also a great need for standardization of the methodologies used for
the identification of NETs [37]. Finally, NETs are currently considered potential therapeutic targets.
Treatment with Nupharidine, an agent purified from the plant Nuphar lutea, has been shown to increase
NET extrusions by neutrophil-like cells by 106%. However, the authors claim that whether the increase
in NET extrusion by this compound has a detrimental or protective effect on the periodontal tissues
requires further in vivo research [64]. Therefore, NETs can be considered as potential therapeutic
targets for periodontitis as well as for other diseases of autoimmune origin. Certainly, the role of
NETs in periodontitis needs to be further studied to enable a full understanding of their role in the
pathogenicity of the disease.
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