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Abstract: Heterogeneous photocatalysts for water decontamination were obtained by the optimized
synthesis of bismuth-functionalized reduced graphene oxide (rGO/Bi) using the Hummer method
and microwave treatment. Sulfamethazine (SMZ) was used as model pollutant to evaluate the
photocatalytic efficacy. Photocatalysts were characterized by VP-SEM, HRTEM, XDR, XPS, RAMAN,
and FTIR analyses, which confirmed the effective reduction of GO to rGO and the presence of bismuth
as a crystalline phase of Bi2O3 polydispersed on the surface. Their performance was influenced by the
rGO/Bi ratio, microwave temperature, and treatment time. The as-obtained 5%rGO/Bi composite had
the highest photocatalytic activity for SMZ degradation under visible light irradiation (λ > 400 nm),
achieving 100% degradation after only 2 h of treatment. The degradation yield decreased with
higher percentages of rGO. Accordingly, the rGO/Bi catalysts efficiently removed SMZ, showing
a high photocatalytic activity, and remained unchanged after three treatment cycles; furthermore,
cytotoxicity tests demonstrated the nontoxicity of the aqueous medium after SMZ degradation.
These findings support the potential value of these novel composites as photocatalysts to selectively
remove pollutants in water treatment plants.
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1. Introduction

Sulfamethazine (SMZ) is an anti-infective agent used as antibiotic in human and veterinary
medicine against bacteria responsible for bronchitis and prostatic and urinary tract infections, among
others. The strong antimicrobial activity, stable chemical properties, and low cost of SMZ have led to its
widespread utilization [1,2]. However, prolonged exposure to low concentrations of antibiotics in water
can be cytotoxic or promote resistance to bacterial strains, posing a major public health challenge [3].

Advanced oxidation processes (AOPs) have proven effective to oxidize compounds resistant
to conventional biological treatments, minimizing the discharge of these contaminants into the
environment [4,5]. Heterogeneous photocatalysis is an AOP that benefits from the easy preparation of
photocatalysts, their reusability, and their selectivity against contaminants. Photocatalysis induced by
visible light offers further advantages, given the hazard-free and sustainable nature of sunlight and its
inexhaustible supply.

Graphene and its nanoderivatives have been widely studied over recent decades, and
photocatalysts formed by graphene and transition metal oxides (ZnO, TiO2, CdS, ZnS, CeO2, etc.)
have proven highly effective [6–8]. Graphene sheets act as an efficient electron acceptor, improving
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photoinduced charge transfer, hindering charge carrier recombination, and increasing photocatalytic
activity [9]. It has been found that the utilization of reduced graphene oxide (rGO) as a solid support
for the photocatalyst can modify its morphological nanostructure and energy band, changing its
photocatalytic activity against different contaminants [10].

Among different metals studied in this context, bismuth has been widely selected for its
good electrochemical properties, reduced cross-section for neutron absorption, nontoxicity, and
low cost. However, despite the promise shown by rGO/Bi composites, there has been little research
on their synthesis as supercapacitors [11–14], electroactive materials for heavy metal analysis [15–19],
or photocatalysts for compound degradation [20–24]. Studies on their application as photocatalysts
have emphasized the importance of the graphene synthesis method, reduction method, bismuth salt
type, and rGO/Bi ratio for optimal results.

The reduced composite rGO/Bi has been produced by various methods, including chemical,
thermal, or electrochemical reduction. Chemical reduction requires elimination of the reagents, which
is often impossible to fully achieve, contaminating the resulting product [25]. Among methods used
for thermal reduction, microwaving offers the transfer of energy in a short time period, facilitating
low-cost mass production, and achieves close contact between the components [20,26,27].

With this background, the main purpose of this study was to synthesize novel high-performance
photocatalysts based on Bi and rGO using the Hummer method and microwave treatment. The rGO/Bi
catalysts obtained were extensively characterized to determine their structural, surface, and electronic
properties. SMZ degradation by solar radiation was measured in the presence of these composites, and
the cytotoxicity of their byproducts was evaluated. The reuse of the photocatalysts was also studied.

2. Results and Discussion

2.1. Characterization of Materials

2.1.1. Surface Area Measurements

The surface area of the photocatalyst was studied because it is proportional to the active surface
and therefore to the active sites where charge carriers are housed before recombination [28]. Table 1
exhibits the surface areas and pore volumes of the materials under study.

Table 1. Textural properties of the studied materials.

Sample Surface Area SBET (m2/g)

Bismuth subnitrate 0.27
Graphite 24

GO 114
rGO 16

5%rGO/Bi 26
10%rGO/Bi 17
20%rGO/Bi 20
30%rGO/Bi 21
35%rGO/Bi 21
40%rGO/Bi 20
50%rGO/Bi 21
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It can be observed that the original graphite has a surface area of 24 m2/g and that the synthesis of
GO produces a marked increase to 114 m2/g, in agreement with Guo et al. [29]. However, reduction
produces a significant decrease in surface area to 16 m2/g. Bismuth subnitrate has a very small surface
area of 0.27 m2/g and is a nonporous material. The surface area of the composites ranges between 17
and 26 m2/g, in accordance with previous reports [30], and the corresponding isotherms are type IV
(Figure 1), indicating that the material is not porous. The increase in surface area of the composites
with respect to the original bismuth salt is due to the introduction of GO and the improved dispersion
of bismuth subnitrate on the GO surface.
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Figure 1. Nitrogen adsorption–desorption isotherms of (a) 5%rGO/Bi and (b) bismuth subnitrate.

2.1.2. Morphological Structure

The microstructure of composites was characterized by VP-SEM and HRTEM. VP-SEM images of
GO and 5%rGO/Bi are depicted in Figure 2 as examples. Samples were prepared in silicon wafers and
observed at low voltage (5 kV) to obtain clear images. The image of GO (Figure 2a) shows a typical
lamellar structure, with a few folder regions on a smooth basal plane. Images in Figure 2b,c correspond
to the 5%rGO/Bi composite, in which rGO sheets are randomly ordered and the structure is stratified.
Energy-dispersive X-ray spectroscopy (EDX) data (results not shown) demonstrate the presence of C,
O, and Bi in this sample.
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Figure 2. SEM images of graphene oxide (a) and 5%rGO/Bi composite (b) and (c).

HRTEM images (Figure 3a) confirm the morphology of the composites revealed by VP-SEM and
the presence of polydispersed bismuth throughout the structure (Figure 3b). The SAED image in
Figure 3c also shows the presence of a crystalline phase of bismuth in the rGO matrix with d-spacings
of 3.26, 2.70, and 1.95 Å, corresponding to the planes (120), (121), and (223) of Bi2O3 (JCPDS card No.
76−1730).
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Figure 3. HRTEM images, (a) an (b), and SAED image (c) of 5%rGO/Bi.

2.1.3. X-Ray Diffraction Analysis

The crystallographic nature of the resulting composites is demonstrated in the XRD patterns
depicted in Figure 4, showing the transformation of graphite powder to GO as a sharp reflection
at around 26.4◦, corresponding to the interspacing distance between graphite layers. According to
Bragg’s law, this distance is 3.37 Å, similar to previous reports [31]. After oxidation, the reflection
is broader and shifts to a lower angle of around 10.24◦ (Figure 4), corresponding to a between-layer
distance of 7.98 Å. This results from loss of the ordered lattice structure in graphite sheets due to the
formation of functional oxygen groups [32].
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Figure 4. XRD patterns of graphite, graphene oxide, and 5%rGO/Bi.

The XRD pattern shows marked changes after the addition of Bi salt and reduction of GO. The
reduction is confirmed by the plane in (002)*, characteristic of rGO, and the formation of Bi2O3 and
rGO/Bi nanocomposites is demonstrated by the characteristic planes in (310), (311), (321), (332), (511),
(520), (531), and (610). The diffraction pattern of Bi2O3 shows that all peaks can be indexed as the cubic
crystal structure of γ-Bi2O3 (JCPDS N◦ 6-312), which is supported by the SAED results. Application
of the Scherrer equation revealed that the average crystal size for 5%rGO/Bi composite is 17.9 nm.
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It should be noted that, depending on the rGO/Bi ratio, the main peak intensity decreases with higher
%rGO, indicating a reduction in the crystallinity of the composites.

2.1.4. FTIR Spectroscopy Analysis

Figure 5 depicts the FTIR spectra of graphite, GO, and 5%rGO/Bi samples. The spectrum of GO
shows a broad band of absorption at 3400 cm−1, related to the stretching and bending vibrations of
O–H groups on the GO surface [33]. The bands located at 1710 and 1620 cm−1 correspond to the
stretching vibrations of the C=O bonds of COOH groups and C=C bonds, respectively. The bands
at 1220, 1046, 1369 cm−1 are the stretching vibration peaks of C–O (epoxy) and C–O (alkoxy) and
the deformation peak of O–H, respectively, evidencing the presence on the GO of different types of
oxygen-containing functional groups, including –COOH, –C–OH, –C=O, and –C–O–C.
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Spectrum of the bismuth nanocomposite reveals a significant decrease in the stretching vibration
of C=O groups at 1729 cm−1, confirming the disappearance of most of the oxygen functionalities in
GO and its reduction. The peaks below 1000 cm−1 can be attributed to Bi–O metal–oxygen vibrations,
demonstrating that bismuth is well functionalized on the rGO surface [34].

2.1.5. Raman Spectroscopy Analysis

The significant structural changes during the synthesis of rGO/Bi composites are reflected in their
Raman spectra. Figure 6 depicts the Raman spectra of GO, 5%rGO/Bi, graphite, and bismuth subnitrate.

The Raman spectra of graphite have three main bands: D band at 1351 cm−1, associated with
graphite defects or imperfections; G-band at around 1588 cm−1, due to interphase vibration of the
graphite lattice and first-order scattering of the E2g mode [35,36]; and G’ band or 2D band at around 2707
cm−1, associated with a second-order D band and corresponding to the bulk graphite [37]. All bands
undergo changes during the transformation from crystalline graphite to GO.

Graphite shows a well-defined graphitic structure due to the low ratio (0.65) of D-band intensity to
G-band intensity, ID/IG. After oxidation of graphite to GO, the G band broadens and shifts to 1587 cm−1

and the D band becomes more prominent, indicating the reduced size of sp2 planes. The ID/IG ratio
significantly increases to 0.95 because of the higher concentration of functional oxygen groups on its
surface, with a shift from sp2 C–C to sp3 C–C bonds.
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Thermal treatment of GO to obtain rGO increases the ID/IG ratio to 0.99 due to elimination of
oxygen functional groups by the reducing treatment and re-establishment of the conjugate graphene
network, shifting the G band to 1608 cm−1. This change indicates a decrease in the average size of
sp2 domains through the reduction of exfoliated GO [38], explained by the creation of numerous new
graphitic domains that are smaller than those in the exfoliated GO and have a greater number of leaves.
When GO is reduced to obtain rGO/Bi composites, there is a decrease in the D band, whose maximum
changes to 1332 cm−1. In addition, the band around 1031 cm−1 is associated with the inclusion of
Bi [39]. These Raman spectral results are consistent with previous reports [40,41] and indicate that GO
in rGO/Bi is well deoxygenated and reduced to graphene, which can accelerate electron transfer and
thereby increases SMZ degradation.

2.1.6. XPS Analysis

X-ray photoelectron spectra (XPS) were also supplemented to analyze the chemical composition
and surface electronic state of the composites. Figure S1 (Supplementary Material) depicts the results
obtained for GO, rGO, and the 5%rGO/Bi composite. Figure S1d shows the XPS spectrum of wide sweep
range, evidencing the presence of C, O, and Bi in the 5%rGO/Bi sample, with atomic concentrations of
44.25%, 38.49%, and 17.26%, respectively. The C1s signal at 284 eV is mainly due to the presence of
rGO on the surface. Oxygen is efficaciously removed from the structure during the reduction process,
as shown by the decrease from 36.95% to 17.57%. Figure S1a,c displays the XPS spectra in the C1s
and Bi4f regions, respectively, used to evaluate the binding behavior of the main elements in the
GO and rGO nanocomposite samples. The C1s spectrum of GO can be decomposed into five peaks,
corresponding to C–C/C=C (284.3 eV), C–H (285.3 eV), C–O (286.7 eV), C=O (287.7 eV), and O–C=O
(288.5 eV). Peaks related to C–O and C=O groups are significantly decreased in the adjusted curves of
C1s regions for the rGO and synthesized composites. The contribution of sp2 C is greater after the
synthesizing treatment, increasing from 29.03% for GO to 57.30% for the composites. This effect is
confirmed by the Raman spectroscopy results, demonstrating that the thermal reduction of GO leads
to the recovery of sp2-hybridized carbon structures.
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The deconvolved XPS spectrum of O1s for 5%rGO/Bi shows three peaks at binding energies of
530.0, 531.3, and 532.3 eV, corresponding to O2− in the Bi2O3 network, adsorbed surface oxygen species
(e.g., OH− or O− defect oxide), and CO groups, respectively.

Deconvolution of the Bi4f signal reveals the presence of two doublets, with the Bi4f7/2 component
centered on 158.1 eV, corresponding to Bi(III), and 159.1 eV, attributable to the formation of Bi(V).
The binding energies of Bi4f7/2 and Bi4f5/2, detected at 158.1 and 163.9 eV, respectively, are typical for
Bi(III) cations. The doublet at 159.1 eV (4f7/2) and 164.1 eV (4f5/2) is attributable to Bi(V). These results
suggest that the Bi2O3 phase generated by decomposition of the bismuth subnitrate interacts with
oxygen during the synthesizing process, with partial oxidation of Bi(III) to Bi(V).

2.1.7. UV–Visible Spectra

Electronic band structures were studied by UV–Vis–IR DRS, applying the equation of
Kubelka–Munk (Equation (1)) [42,43]:

F(R) =
(1−R∞)

2

2R∞
=

k
S

(1)

where F(R) is the Kubelka–Munk function, corresponding to absorbance; R∞ is the reflectance of an
infinite-thickness sample with respect to a standard (barium sulfate) for each measured wavelength; k is
the absorption coefficient; and S is the dispersion coefficient. Assuming a constant material dispersion
in the studied wavelength range, Equation (2) depends on the absorption coefficient alone, hence F(R)
= α. It has been demonstrated in different transition mechanisms that the incident photons and Eg of
the material always maintain the following relationship in the absorption process:

α× hν = C
(
hν− Eg

)n
(2)

where α is the linear absorption coefficient of the material; h is Planck´s constant (4.136 × 10−15 eV/s);
C is the model adjustment constant; hν is the photon energy (eV); Eg is the band-gap energy (eV);
and n is the optical transition constant, with values of n = 2 for permitted indirect transitions, n = 3
for forbidden indirect transitions, n = 1/2 for permitted direct transitions, and n = 3/2 for forbidden
direct transitions.

The value of Eg can be determined by plotting (F(R) × hν)1/n against hν (i.e., Tauc plot). The slope
obtained is extrapolated to the x-axis (hν) to obtain the optical band gap value, considering n = 2 in
accordance with a previous report [44]. In addition, a double linear adjustment was performed to
minimize the adjustment error, with the Eg value being the point of intersection of the two lines [45].

UV spectrum analysis of rGO/Bi composites shows strong absorption in the ultraviolet and visible
region (Figure 7a). It can also be observed that, in general, an increase in the rGO content of composites
increases their absorbance, which may be due to the reintroduction of black body properties typical
of graphite-like materials, indicating that GO in rGO/Bi has been well deoxygenated and reduced
to graphene [46]. Besides the contribution from rGO, the absorbance is also increased by the higher
surface electric charge of the oxides and the change in electron–hole pair formation during irradiation.
Hence, graphene plays a multifunctional role in rGO/Bi, including enhancement of the absorption
cross-section in the visible region and promotion of the interfacial charge transfer, which can provide
photocatalytic active centers for pollutant degradation.



Catalysts 2020, 10, 573 8 of 16
Catalysts 2020, 10, x FOR PEER REVIEW 8 of 17 

 

 
(a)  

       (b) 

Figure 7. (a) UV–Vis spectra and (b) relationship between transformed Kubelka–Munk function and 
light energy for 5%rGO/Bi. 

Figure 7b plots the transformed Kubelka–Munk function against light energy for sample 
5%rGO/Bi as an example. Table 2 (band gap energies for rGO/Bi composites) shows that the band 
gap for rGO/Bi composites significantly increases with greater rGO content up to 35% rGO but then 
decreases at higher percentage rGO levels. These results demonstrate the influence of rGO on the 
optical characteristics of Bi2O3, and it can be attributed to the formation of Bi–O–C bonds in the 
composites during hydrothermal treatment, similar to observations in other materials [47]. With 
regard to the temperature and treatment time, the lowest band gap energy is observed for the 
composite synthesized at 140 °C for 12 h (Table 3). 

Table 2. Band gap energies of rGO/Bi nanocomposites. 

%rGO 
Band Gap 

(eV) 
5 3.51 

10 3.57 
20 3.73 
30 3.76 
35 3.76 
40 3.33 
50 3.04 

Table 3. Band gap energy of 5%rGO/Bi as a function of treatment time and temperature. 

%rGO 
Band Gap  

(eV) 
6 h/120 °C 3.59 

12 h/140 °C 3.51 

2.2. Photocatalytic Degradation of SMZ in the Presence of rGO/Bi Composites 

It was found in the present study that SMZ is not degraded by solar radiation in the absence of 
photocatalysts as reported by other authors [48]. Figure 8 and Table 4 exhibit the kinetic parameters 
of SMZ removal by solar photodegradation in the presence of rGO/Bi composites. It can be observed 
that the photocatalytic activity for SMZ degradation is high when using bismuth subnitrate and even 
higher with 10%rGO/Bi and, especially, 5%rGO/Bi. Among the samples under study, the catalytic 
activity is greatest for 5%rGO/Bi and decreases with higher rGO/Bi ratios due to the reduction of the 

0

0.3

0.6

0.9

1.2

1.5

1.8

250 350 450 550 650

A
bs

or
ba

nc
e (

a.
u)

Wavelength (nm)

5%rGO/Bi
10%rGO/Bi
20%rGO/Bi
30%rGO/Bi
35%rGO/Bi
40%rGO/Bi
50%rGO/Bi

0

600

1200

1800

3.4 3.5 3.6 3.7 3.8 3.9

(F
(R

) ×
hν

)1/
2

E (eV)

Figure 7. (a) UV–Vis spectra and (b) relationship between transformed Kubelka–Munk function and
light energy for 5%rGO/Bi.

Figure 7b plots the transformed Kubelka–Munk function against light energy for sample 5%rGO/Bi
as an example. Table 2 (band gap energies for rGO/Bi composites) shows that the band gap for rGO/Bi
composites significantly increases with greater rGO content up to 35% rGO but then decreases at higher
percentage rGO levels. These results demonstrate the influence of rGO on the optical characteristics of
Bi2O3, and it can be attributed to the formation of Bi–O–C bonds in the composites during hydrothermal
treatment, similar to observations in other materials [47]. With regard to the temperature and treatment
time, the lowest band gap energy is observed for the composite synthesized at 140 ◦C for 12 h (Table 3).

Table 2. Band gap energies of rGO/Bi nanocomposites.

%rGO Band Gap
(eV)

5 3.51
10 3.57
20 3.73
30 3.76
35 3.76
40 3.33
50 3.04

Table 3. Band gap energy of 5%rGO/Bi as a function of treatment time and temperature.

%rGO Band Gap
(eV)

6 h/120 ◦C 3.59
12 h/140 ◦C 3.51

2.2. Photocatalytic Degradation of SMZ in the Presence of rGO/Bi Composites

It was found in the present study that SMZ is not degraded by solar radiation in the absence of
photocatalysts as reported by other authors [48]. Figure 8 and Table 4 exhibit the kinetic parameters of
SMZ removal by solar photodegradation in the presence of rGO/Bi composites. It can be observed
that the photocatalytic activity for SMZ degradation is high when using bismuth subnitrate and even
higher with 10%rGO/Bi and, especially, 5%rGO/Bi. Among the samples under study, the catalytic
activity is greatest for 5%rGO/Bi and decreases with higher rGO/Bi ratios due to the reduction of the
number of electrons and photogenerated holes available for photocatalytic reaction, because excessive
rGO nanosheets act as recombination centers, leading to the aggregation of rGO nanosheets and Bi2O3

nanoparticles that cover active Bi2O3 surface sites. Similar results were reported for other types of
rGO/metal composites [49–51].
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Figure 8. Kinetics of sulfamethazine (SMZ) removal by solar photodegradation in the presence of
rGO/Bi composites. [SMZ]0 = 15 mg/L.

Table 4. Sulfamethazine (SMZ) degradation parameters for the different rGO/Bi composites.

%rGO Degradation Rate (min−1) % Degradation (2 h)

5 0.030 100
10 0.018 88
20 0.006 67
30 0.006 63
35 0.006 51
40 0.006 62
50 0.004 44

The recycling capacity of photocatalysts and their stability in the photocatalytic process are highly
relevant properties. As shown in Figure 9, 5%rGO/Bi sample shows no loss in activity after three 2-h
cycles of SMZ photodegradation or any significant structural or morphological changes, with only a
slight fall in SMZ removal from 100% to 91% over the three consecutive cycles, a loss of <10% of catalytic
activity. These results indicate the high efficiency of the 5%rGO/Bi catalyst during consecutive cycles.Catalysts 2020, 10, x FOR PEER REVIEW 10 of 17 
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Figure 9. Time course of SMZ photodegradation with irradiation time corresponding to three
consecutive SMZ photodegradation cycles using the same 5%rGO/Bi sample. [SMZ]0 = 15 mg/L and
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2.3. Cytotoxicity of Degradation By-Products

The cytotoxicity of SMZ degradation by-products after solar radiation in the presence of 5%rGO/Bi
was studied as a function of treatment time. HEK-293 cells were used for this study, given that SMZ is
used to treat kidney diseases and shows good renal clearance [52]. It is considered that there is a toxic
effect when the cell viability is < 75%. The viability of cell cultures in the aqueous medium during SMZ
photodegradation in the presence of 5%rGO/Bi was always > 75% (Figure 10). Greater cell viability
was observed for the by-products than for SMZ itself. These results are in agreement with previous
studies of SMZ [53], and similar behaviors have been observed for other pharmaceutical products [54].
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Figure 10. HEK-293 cell viability (%) in the aqueous medium during SMZ photodegradation under
solar radiation in the presence of 5%rGO/Bi. [SMZ]0 = 15 mg/L.

3. Materials and Methods

3.1. Reagents

All chemical reagents used in this study (sulfamethazine, potassium persulfate, acetonitrile,
formic acid, graphite, sulfuric acid, phosphoric acid, potassium permanganate, hydrogen peroxide,
hydrochloric acid, ethanol, ammonia, and bismuth subnitrate) were of high-purity analytical grade and
supplied by Sigma-Aldrich (St. Louis, MO, USA). The ultrapure water used for solution preparation
was obtained using Milli-Q® equipment (Millipore®, Billerica, MA, USA). Table 5 exhibits the relevant
chemical properties of SMZ.

Table 5. Properties of SMZ.

Pollutant Molecular Structure Molecular
Weight (g/mol)

Area
(nm2)

Water Solubility
(mg/L) pKa

Sulfamethazine
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3.2. Synthesis of GO and rGO/Bi Composites

Graphene oxide (GO) was synthesized from commercially available graphite powder using a
modification of the Hummer method (Figure 11) [55].
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Figure 11. Scheme for synthesis of graphene oxide.

Once GO was obtained, it was exfoliated by ultrasound and uniformly dispersed by magnetic
stirring for 1 h. Next, the appropriate amount of bismuth subnitrate was slowly added, followed by
vigorous stirring for 4 h, adding ammonia dropwise during the stirring until pH 8 was reached. This
mixture was transferred into a Teflon-lined autoclave (1500 W) for experiments using different GO/Bi
ratios, temperatures, and time periods in order to establish the optimal composite synthesis conditions
(Table 6). The final solutions were allowed to cool at room temperature and were then filtered and
washed with double-distilled water and ethanol to remove impurities before being allowed to dry at
60 ◦C to obtain rGO/Bi nanocomposites.

Table 6. Experimental conditions used to obtain rGO/Bi nanocomposites.

rGO/Bi Ratio
(% weight)

Temperature
(◦C) Time (h)

5 10 30 35 40 50 100 120 140 6 12

In the optimization process, temperature and time were fixed (140 ◦C and 12 h) for the synthesis
of a battery of catalysts with different rGO/Bi ratios. After selection of the optimal rGO/Bi ratio, two
working temperatures (120 and 140 ◦C) and two treatment time periods (6 and 12 h) were tested. These
experiments yielded the optimal working conditions. The selection of working temperatures was
based on thermogravimetric analysis of GO [56] and determination of the appropriate temperature for
graphene reduction-exfoliation.

3.3. Characterization of rGO/Bi Nanocomposites

The structure, morphology, microstructures, and functional groups of rGO/Bi nanocomposites were
investigated by: (a) nitrogen physisorption, using ASAP 2420 equipment (Micromeritics, Norcross,
GA, USA); (b) UV–Vis diffuse reflectance spectra (DRS), using VARIAN CARY-5E double-beam
UV–Vis (Agilent, Santa Clara, CA, USA) and near-infrared absorption spectrophotometer with
wavelength measurements from 200 (6.20 eV) to 2000 nm (0.62 eV) equipped with a spherical diffuse
reflectance accessory; (c) variable pressure scanning electron microscopy (VPESM) with a Zeiss
SUPRA40VP microscope (Carl Zeiss AG, Oberkochen, Germany); (d) high-resolution transmission
electron microscopy (HRTEM), analyzing particles with a FEI Titan (FEI Company, Hillsboro, USA)
operated at 300 kV, and obtaining selected area electron diffraction (SAED) patterns through a 10-µm
aperture to collect diffraction data from a circular area; (e) Raman spectroscopy (JASCO NRS-5100,
JASCO Inc., Easton, MD, USA), recording from 200 to 3500 cm−1 with a 532-nm green diode laser; (f)
Fourier-transform infrared spectroscopy (FT-IR: FT-IR-6300, JASCO, Tokyo, Japan); (g) X-ray diffraction
(XRD), using a Bruker D8 Advance Diffractometer (Bruker, Rivas-Vaciamadrid, Madrid, Spain) with
Bruker LYNXEYE detector at Cu Kα radiation (λ) of 1.5406 Å, voltage of 40 kV, amperage of 40 mA,
range 2θ between 5◦ and 60◦, passage of ~0.04◦, and measurement time of 384 s/step; (h) X-ray
photoelectron spectroscopy (XPS), using a Kratos Axis Ultra-DLD spectrometer equipped with Al Kα
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source (Kratos Analytical Ltd., Kyoto, Japan) and CasaXPS software (version 2.3.16); and (i) particle
size determination with standard test sieves (Filtra® vibration).

3.4. Sulfamethazine Determination in Aqueous Solution

SMZ concentrations in aqueous solution were determined by reversed-phase high-performance
liquid chromatography (HPLC) using a Thermo-Fisher liquid chromatograph (Thermo Separation
Products, San Jose, CA, USA) equipped with visible ultraviolet detector and autosampler with capacity
for 120 vials and Kinetex® C18 chromatographic column. The mobile phase was 70% formic acid/water
(0.1%, v/v) and 30% acetonitrile in isocratic mode at flow rate of 0.35 mL/min; the detector wavelength
was 270 nm and the injection volume was 100 µL. This method is a modification of a previously
published technique [57]. When experiments were conducted in the presence of composites, samples
were immediately filtered with Millipore disk filters (0.45 µm pore size) to remove composites from
the solution before HPLC analysis.

3.5. Sulfamethazine Degradation by Simulated Solar Radiation

The solar radiation photoreactor used was a Solarbox 1500 (Neurtek Instrument) equipped with a
xenon lamp (PHILIPS XOP−15-OF, 1500 W) that supplies radiant energy in a spectral range from 280
to 825 nm. Photodegradation experiments were conducted at an irradiance of 450 W/m2 in quartz
tubes (wall width of 1 mm, inner diameter of 1.5 cm, and height of 20 cm) with 92% transmittance
across the 200–2500 nm range. The photoreactor also possesses a magnetic stirring system to ensure
the homogeneity of the solution (Figure 12).
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The photon flux entering the quartz tubes of the xenon lamp was determined by
2-nitrobenzaldehyde (o-NB) actinometry as described elsewhere [58]. The incident photon flow
(I0) was calculated using Equation (3):

I0 =
d[Atz]

dt

(
1
ϕ

)(
1

1− 10ε.b.[Atz]0

)
(3)

where [Atz] is the o-NB concentration, ϕ the quantum yield of o-NB (0.41 + 0.02 mol/E), ε the molar
absorptivity (128.6 L mol−1 cm−1), and b the path length of the light (2.2 cm).

In this way, the photon flow was calculated as 2.95 × 10−6 Einstein/s. The weighted average
wavelength of the xenon lamp, determined according to Cruz et al. [59], was 344 nm. The energy of the
photon calculated using Planck’s law was 5.78 × 10−19 J/photon, the quartz tube area was 159.56 cm2,
and the volume was 135.47 cm3. Based on these data, the calculated incident light flux was 64.52 W/m2.

Photocatalytic experiments were performed using nanocomposites with increasing rGO/Bi ratios
(from 5% to 50% weight) and a catalyst mass of 0.03 g, with initial SMZ concentration of 15 mg/L, and
pH of 5.4.
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3.6. Evaluation of the Cytotoxicity of Reaction By-Products

The cytotoxicity of reaction by-products was tested by using a MTS assay to determine the
percentage viability in the 293-human embryonic kidney cell line (Reference N◦ ECACC: 85120602
[lot CB2737]), supplied by the Cell Bank of the Center for Scientific Instrumentation (University
of Granada).

Degradation kinetics were first studied in the presence of phosphate-buffered saline,
and 10,000 HEK-293 cells were then incubated for 24 h, followed by renewal of the medium and the
addition of SMZ by-products (10:100 µL dilution). After incubation for a further 24 h, 20 µL MTS
was then added, and the absorbance was measured at 2 h with INFINITENANOQUA equipment at a
wavelength of 490 nm. The relative cell viability was calculated by using untreated cells as control.

4. Conclusions

rGO/Bi nanocomposites were successfully synthesized using a modified Hummer method with
microwave treatment. The optimal temperature was 140 ◦C and the optimal treatment time was 12 h
as the shock thermal treatment of GO caused significant reduction of its oxygen functionalities.

Characterization of the nanocomposites by VP-SEM, HRTEM, XDR, XPS, RAMAN, and FTIR
analyses demonstrated that GO is efficaciously reduced to rGO and bismuth is polydispersed on the
surface as a crystalline phase of Bi2O3. Diffuse reflectance analysis showed an increase in band gap
energy with lower percentages of rGO, making the rGO/Bi hybrid material more sensitive to visible
light irradiation (λ > 400 nm), with a positive effect on SMZ degradation.

The mass ratio of rGO to Bi affects the efficacy of SMZ photodegradation, and the 5%rGO/Bi
nanocomposite is the most active for SMZ degradation under solar radiation. When this rGO amount
is exceeded, the performance of the process decreases, because an excess of rGO particles can cover the
active sites on the Bi2O3 surface or act as recombination centers. This favors the aggregation of rGO/Bi
composites, blocking light to the Bi2O3 surface and restricting the rGO/Bi contact, thereby reducing the
synergic effect.

The 5%rGO/Bi nanocomposite does not lose its photocatalytic activity or undergo structural
or morphological changes after three photodegradation cycles, adding value to its utilization in
treatment plants.

Finally, SMZ degradation by-products are less toxic than the original SMZ pollutant, achieving
cell viability values of around 100%.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/5/573/s1,
Figure S1: XPS spectra of GO, rGO, and 5%rGO/Bi (top to bottom): (a) C1s, (b) O1s, (c) Bi4f regions, and (d)
comparative of full spectra for GO (pink line) and 5%rGO/Bi (yellow line).
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