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Hematopoietic Stem Cells

Introduction

Human hematopoietic stem cells (HSC) and hematopoietic
progenitor cells (HPC) are almost exclusively enriched in the
CD34+ fraction, which represents a rare cell subset (<1%) in
cord blood, bone marrow and mobilized peripheral blood.1,2

In the setting of clinical transplantation, the dose of total
CD34+ cells infused per kilogram of patient’s bodyweight is
used as a predictor of short-term hematopoietic recovery and
establishment of long-term engraftment.1,3,4 Although distinct
surface markers (CD38, CD90, CD45RA, CD133, etc.)5 have
been experimentally used to distinguish between HSC or
HPC, bona fide segregation of HSC and HPC relies on in vitro
and in vivo functional assays.
It has been extensively demonstrated that the CD34+ frac-

tion is phenotypically and functionally heterogeneous.
Experimentally, only 1:10 to 1:4 of CD34+ or CD34+CD38-

cells display clonogenic potential. Clinically, different out-
comes/hematopoietic recovery are reported in patients with
identical underlying disease who undergo hematopoietic
stem/progenitor cell (HSPC) transplantation with equal doses

of CD34+ cells after receiving identical chemotherapy treat-
ment. It can, therefore, be speculated that genetically identi-
cal CD34+ cells within the graft may exhibit cell-to-cell varia-
tions not only in the amount of individual gene products but
also in metabolic homeostasis/mitochondrial status, resulting
in phenotypic and functional diversity.6 The metabolic status
of HSC and HPC becomes crucial during clinical HSPC trans-
plantation since the efficiency of donor-derived HSC/HPC to
engraft, survive, home, proliferate and differentiate into mul-
tiple lineages in a chemotherapy-induced aplastic patient is
markedly influenced by their hypoxic niche, demanding a
significant metabolic adaptation to survive and promote rapid
and stable hematopoietic reconstitution in chemotherapy-
induced aplastic microenvironments.7,8

As in other tissues, mitochondria play key roles in
HSC/HPC and have recently come under increased scrutiny
because compelling evidence has revealed their role in
numerous cellular processes, beyond ATP production and
apoptosis regulation, and they have recently even been sug-
gested to act as cell-fate or lineage determinants.9-11 In fact,
deregulation of mitochondrial function plays a pathophysio-
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The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-
renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these process-
es. Although recent work has contributed to understanding the role of mitochondria during stem cell differentia-
tion, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus pro-
genitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential
in CD34+ hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34+ cells on the basis of their
mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopu-
lating potential of CD34+ cells with high (CD34+ MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass. The
CD34+ MitoLow fraction contained 6-fold more CD34+CD38– primitive cells and was enriched in hematopoietic
stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno -
deficient mice. In contrast, the CD34+ MitoHigh fraction was more enriched in hematopoietic progenitor function
with higher in vitro clonogenic capacity. In vitro differentiation of CD34+ MitoLow cells was significantly delayed as
compared to that of CD34+ MitoHigh cells. The eventual complete differentiation of CD34+ MitoLow cells, which coin-
cided with a robust expansion of the CD34– differentiated progeny, was accompanied by mitochondrial adapta-
tion, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and
COX2. In conclusion, cord blood CD34+ cells with low levels of mitochondrial mass are enriched in hematopoietic
repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A
mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-
committed CD34– cells.
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logical role in a range of hematologic diseases, such as
inherited dyserythropoiesis, sideroblastic anemias and
low-grade myelodysplastic symdromes.8,12 In addition,
transcriptome, epigenetic and proteomic studies in stem
cell systems have indicated that specific metabolic/mito-
chondrial properties are essential for regulating the bal-
ance between self-renewal and differentiation.13,14
Although recent work has begun to shed light on the

mitochondrial response during murine stem cell differenti-
ation,7,10,15,16 how and to what extent the mitochondrial
mass/function contributes to human hematopoietic stem
and progenitor function remains poorly understood. Here,
we found that mitochondrial mass correlates strongly
with mitochondrial membrane potential (ΔΨm). This led
us to separate cord blood-derived CD34+ cells based on
their mitochondrial mass and to analyze the in vitro home-
ostasis and clonogenic potential as well as the in vivo
repopulating potential of CD34+ cells with high (CD34+
MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass.

Design and Methods

Cord blood collection and CD34+ cell isolation 
and culture

Fresh umbilical cord blood units from healthy neonates were
obtained from local hospitals following approval from our local
Ethics and Biohazard Board Committee. The cord blood samples
were pooled to reduce variability among individual units.
Mononuclear cells were isolated using Ficoll-Hypaque and after
lysing the red cells (Cytognos, Salamanca, Spain), CD34+ cells
were purified by magnetic bead separation using the human
CD34 MicroBead kit and the AutoMACS Pro separator (Miltenyi
Biotec) as instructed by the manufacturer.17-19 The purity of the
CD34+ fraction was assessed by flow cytometry using an anti-
CD34-PE antibody (Miltenyi Biotec), and only CD34+ fractions
showing purity higher than 90% were used.17-19 The CD34– frac-
tion was irradiated (15 Gy) and used as accessory cells for co-trans-
plantation with CD34+ cells.

MitoTracker staining and cell sorting
CD34+ cells were stained with MitoTracker Red (CMXRos) and

MitoTracker Green FM dye (Molecular Probes) for 10 min and 20
min, respectively, according to the manufacturer's guidelines and
analyzed by wide confocal cytometry.6 For functional assays,
CD34+ cells were FACS-sorted (FACSAria-II, BD Biosciences)
based on MitoTracker Green levels into CD34+ MitoHigh and CD34+

MitoLow (n=10). 

Measurements of ATP and reactive oxygen species
ATP levels were measured using a Cell-Titer-Glo® Luminescent

Cell Viability Assay (Promega) according to the manufacturer’s
guidelines. Briefly, equal numbers of cells (5x104/100 mL) were
seeded in a 96-well plate and 100 mL of the reaction reagent were
added to each well. After 10 min of shaking, the luminescence sig-
nal was detected using the GloMax®-Multi Detection System
(Promega) and compared against the ATP Standard Curve using
ATP disodium salt (Promega).6

Reactive oxygen species were measured using the mitochondr-
ial superoxide indicator MitoSOX Red, as previously described.20

Briefly, CD34+ MitoLow and CD34+ MitoHigh cells were treated with
3 mM MitoSOX for 20 min and were then washed twice in Hanks
balanced salt solution and analyzed by flow cytometry (Online
Supplementary Figure S1A).

Gene expression by quantitative reverse transcriptase
polymerase chain reaction analysis 
RNA was extracted using the All Prep DNA/RNA kit (Qiagen)

and cDNA was synthesized by using SuperScriptTM First-Strand
Synthesis System for reverse transcriptase polymerase chain
reaction (Invitrogen). The expression of the mitochondrial genes
ND1 and COX2 as well as HIF-1α and Meis1 was compared
between CD34+ Mitohigh and CD34+ Mitolow cellular fractions by
quantitative polymerase chain reaction analysis. Values were nor-
malized to b-actin. The primers used were: ND1-Fw-5’-TGC-
GAGCAGTAGCCCAAACAATCT-3’, ND1-Rw-5’-TTATGGC-
CAAGGGTCATGATGGCA-3’, COX2-Fw-5’-ACAGATG-
CAATTCCCGGACGTCTA-3’, COX2-Rw-5’-GAC-
GATGGGCATGAAACTGTGGTT-3’, HIF-1α-Fw-5’-CTGCAA-
CATGGAAGGTATTGCA-3’, HIF-1α-Rw-5’-TACCCACACT-
GAGGTTGGTTACTG-3’, Meis1-Fw-5’-AAAAGCGTCA-
CAAAAAGCGT-3’, Meis1-Rw-5’-GATGGTGAGTCCCGT-
GTCTT-3’, b-actin-Fw-5-GATGGCCACGGCTGCTT-3’ and b-
actin-Rw-5’-AGGACTCCATGCCCAGGAA-3’. The polymerase
chain reaction conditions were 50ºC for 2 min followed by 90ºC
for 10 min and 40 cycles of 95ºC for 15 s and 60ºC for 60 s.15 The
expression of each gene was analyzed in three independent
experiments performed in triplicate.

In vitro liquid culture, cell cycle, and apoptosis 
analyses of MitoHigh and MitoLow CD34+ cells
FACS-sorted CD34+ MitoHigh and CD34+ MitoLow cells were

cultured for 40 days on StemSpan media (Stem Cell
Technologies) supplemented with early hematopoietic
cytokines [stem cell factor (100 ng/mL), FLT3L (100 ng/mL) and
interleukin-3 (10ng/mL); PeproTech].21 To determine the growth
kinetics of Mitohigh and Mitolow CD34+ cultures, cells were count-
ed twice a week and replated at a density of 1x105 cells/cm2.
Similarly, the maintenance of the CD34+ phenotype was ana-
lyzed twice a week as an approach to trace the “default” differ-
entiation of both MitoHigh and MitoLow CD34+ cells. For cell cycle
analysis, Mitohigh and Mitolow CD34+ cells were fixed in 70% ice-
cold ethanol and stored at -20°C. Subsequently, cells were
washed with ice-cold phosphate-buffered saline and suspended
in propidium iodide buffer containing 5 mg of propidium iodide
and 100 mg/mL of RNAase. Cell cycle distribution discriminat-
ing between quiescent cells (G0/G1) and cycling cells (S/G2/M
phase) was analyzed on a FACSCanto-II cytometer using
FACSDiva and ModFit software (BD Bioscience).21 The apoptot-
ic status of MitoHigh and MitoLow CD34+ cells was assessed using
the annexin-V apoptosis detection kit (BD Biosciences) accord-
ing to the manufacturer’s instructions.21 Briefly, cells were har-
vested and washed twice with phosphate-buffered saline
before staining with annexin V-phycoerythrin and 7-amino acti-
nomycin D. Apoptotic cells were detected by gating the annex-
in V-positive fraction.21

Colony-forming unit assay
Primary human clonogenic progenitor assays (n=6) were per-

formed by plating 1000 sorted CD34+ cells into methylcellulose
H4434 (Stem Cell Technologies) containing the human growth
factors stem cell factor (50 ng/mL), granulocyte-macrophage
colony-stimulating factor (10 ng/mL), interleukin-3 (10 ng/mL)
and erythropoietin (3 U/mL). Colonies were counted and scored
on day 14 of the colony-forming unit (CFU) assay using standard
morphological criteria.21 For secondary replating, all the CFU
colonies from the primary methylcellulose culture were harvest-
ed, and a single-cell suspension was achieved, washed in Iscove’s
modified Dulbecco’s medium and replated in the secondary CFU
assay.
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Mice transplantation and analysis of engraftment
NOD/LtSz-scid IL2Rγ−/− mice (NSG) were housed under sterile

conditions. The Animal Care Committee of the University of
Granada approved all animal protocols (Ref. UGR-CEEA 2011-
361). Mice (n=22) at 8 to 12 weeks of age were sublethally irradi-
ated (2.5 Gy) for 6 to 12 h before transplantation. Mice were anes-
thetized by isoflurane inhalation, and intrabone marrow trans-
plantation was performed as described in detail elsewhere.21-23 A
total of 2×105 Mitohigh or Mitolow CD34+ cells together with 5×104

irradiated accessory cells were transplanted in a volume of 30 mL.
For pain relief, 0.1 mg/kg buprenorphine and 5 mg/kg carprofen
were administered immediately after transplantation and 24 h
after.21-23 Mice were killed 7 weeks after transplantation. Cells from
the bone marrow (injected tibia and from the contralateral tibia
and femur), spleen, liver and peripheral blood were stained with
anti-hHLA-ABC-FITC and anti-hCD45-APC-Cy7 (BD
Biosciences) to analyze human chimerism by flow cytometry. All
engrafted mice were assessed for multilineage analysis using anti-
hCD33-PE for myeloid cells, anti-hCD19-APC for B cells, and anti-
hCD34-PE-Cy7 for immature hematopoietic cells (BD
Biosciences).21,22,24

Statistical analysis
Data are expressed as mean ± SD. Statistical comparisons were

performed using a paired Student’s t test. Differences were consid-
ered statistically significant when the P value was <0.05.

Results

FACS sorting of CD34+ cells based on mitochondrial mass

We first analyzed by confocal cytometry the mitochon-
drial membrane potential (ΔΨm) and the mitochondrial
mass using MitoTracker Red (CMXRos) and MitoTracker
Green, respectively. A strong correlation was observed
between mitochondrial mass and function (ΔΨm) in cord
blood-derived CD34+ cells; the greater the mitochondrial
content, the higher the ΔΨm (Figure 1A). Accordingly,
CD34+ cells were FACS-sorted based on mitochondrial
mass (MitoTracker Green) into CD34+ MitoHigh and CD34+
MitoLow (Figure 1B). Sorted CD34+ MitoHigh contain 2-fold
higher ATP levels (Figure 1C) and also express the mito-
chondrial-specific genes ND1 and COX2 at a level 2-fold
higher than that of CD34+ MitoLow (Figure 1D), confirming
that CD34+ MitoHigh cells have more expression of the
mitochondrial-specific genes ND1 and COX2, and pro-
duce more ATP.

Hematopoietic stem versus progenitor cell 
characteristics of metabolically sorted cells
We next tested whether isolation of cord blood-derived

CD34+ cells based solely on their mitochondrial mass
enriches for stem and/or progenitor cell function. We uti-
lized in vitro clonogenic CFU assays as a read-out for HPC
function, and bone marrow xenotransplantation assays
into NSG mice as an in vivo read-out for SCID-repopulat-
ing HSC function. Equal numbers of CD34+ MitoHigh and
CD34+ MitoLow were plated in CFU assays and hematopoi-
etic colonies were counted after 14 days. CD34+ MitoHigh

cells displayed higher clonogenic capacity in both primary
and secondary CFU compared to CD34+ MitoLow (Figure
2A). Scoring of the CFU revealed no differences in the
CFU types (granulocyte-, macrophage-, granulocyte-
macrophage-, erythroid- and mix-) obtained from CD34+

MitoHigh versus CD34+ MitoLow. These data suggest that the
CD34+ MitoHigh fraction is enriched in HPC.

In vivo hematopoietic reconstitution studies were under-
taken to determine the long-term repopulating capacity of
CD34+ MitoHigh and CD34+ MitoLow. Equal numbers of cells
were transplanted into tibiae and mice were sacrificed 7
weeks later for chimerism analysis in multiple hematopoi-
etic organs. Human chimerism was determined by flow
cytometry using anti-CD45 and anti-HLA-ABC (Figure
2B). All engrafted mice were assessed for multilineage
reconstitution using anti-CD19 (B cells), anti-CD33
(myeloid cells) and anti-CD34 (immature cells) (Figure 2B).
The level of engraftment was higher in the mice trans-
planted with CD34+ MitoLow than in those transplanted
with CD34+ MitoHigh regardless of the tissue analyzed,
being more significant in the injected bone marrow
(79±18% versus 59±17%; P<0.05; Figure 2C, left panel).
We next characterized the engraftment composition, and
found very similar multilineage composition in all tissues
reconstituted with CD34+ MitoHigh or CD34+ MitoLow

(Figure 2C, right panel) except for the more immature
(CD45+CD34+) hematopoietic fraction which was signifi-
cantly higher (15±3% versus 10±4%; P<0.05) in the bone
marrow of mice engrafted with CD34+ MitoLow cells.
The vast majority of CD34+ cells co-express the activa-

tion surface marker CD38 which is routinely associated
with HPC whereas a very small proportion of CD34+ cells
lack CD38 expression and are considered to be enriched in
HSC.5,23,25 We, therefore, analyzed the proportion of
CD34+CD38- cells within the CD34+ MitoHigh and CD34+
MitoLow fractions (Figure 2D). The CD34+ MitoLow fraction
contained 6-fold higher numbers of CD34+CD38- primi-
tive cells, thus supporting the concept that the CD34+
MitoLow fraction is enriched in repopulating HSC and also
explaining, at least in part, the lower progenitor function
of CD34+ MitoLow cells (Figure 2A,C). Together, these data
indicate that the CD34+ MitoLow fraction is enriched in
HSC function.
It has been reported16 recently that murine long-term

HSC are highly enriched in HIF-1α and Meis1. We, there-
fore, analyzed the expression of these factors on our
CD34+ MitoHigh and MitoLow cells. As shown in Online
Supplementary Figure S1B, both HIF-1α and Meis1 were up-
regulated, by 5- and 4-fold, respectively, in CD34+ MitoLow

cells as compared to in CD34+ MitoHigh cells, confirming
that these factors are robustly expressed in the CD34+ cell
fraction enriched in repopulating stem cell function. 

In vitro homeostasis of CD34+ MitoHigh
and CD34+ MitoLow cells
It remains a challenge to expand CD34+ cells in vitro

while retaining their stem/progenitor properties.26 The
homeostasis of sorted CD34+ MitoHigh and CD34+ MitoLow

cells was analyzed in vitro. We first analyzed the in vitro dif-
ferentiation kinetics of CD34+ MitoHigh and CD34+ MitoLow

cultures by tracing the loss of the CD34 antigen.
Interestingly, although the number of CD34+ cells dimin-
ished progressively over time, the differentiation of CD34+
MitoLow cultures was significantly delayed as compared to
that of CD34+ MitoHigh (Figure 3A). After 15 days of liquid
culture, CD34+ cells were no longer present in either
CD34+ MitoHigh or CD34+ MitoLow cultures (Figure 3A,B).
Expansion of CD34+ MitoHigh and CD34+ MitoLow cultures
was moderate during the first 11-15 days of liquid culture
(Figure 3B). However, coinciding with the complete differ-
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entiation (loss of CD34+ cells) of the CD34+ cultures after
11-15 days, the cell expansion of differentiated (CD34–)
MitoHigh and MitoLow cultures was significantly boosted,
especially in the cultures seeded with CD34+ MitoLow cells
(Figure 3B). After sorting, >99% of the CD34+ MitoLow cells
were quiescent (G0/G1 cell cycle phases) while ~20% of
the CD34+ MitoHigh cells were cycling (Figure 3C), but as
CD34+ cells differentiated into CD34– cells, MitoLow cul-
tures displayed a higher proportion of cycling cells
(31±5% versus 22±6%, P<0.05) and lower apoptotic rate
(21±3% versus 29±4%, P<0.05) than MitoHigh cultures
(Figure 3C,D), explaining the robust increased cell expan-
sion of differentiated CD34- MitoLow cultures as compared
to differentiated CD34- MitoHigh cultures (Figure 3B).
Finally, the complete differentiation of CD34+ MitoLow cul-
tures by day 15 of liquid culture coupled with their robust
expansion from day 15 onwards (Figure 3A,B) was accom-
panied by a mitochondrial adaptation, as demonstrated by
a significant increase in energy (ATP) production (Figure
3E) and expression of the mitochondrial genes ND1 and
COX2 (Figure 3F). This suggests that a mitochondrial
response underlies the high proliferative activity of the
CD34+ MitoLow-differentiated derivatives.

Discussion

Mitochondria are multi-functional organelles that play a
vital role in the cell, providing most of the cellular energy
and regulating Ca2+ homeostasis, cell death, and differenti-
ation; furthermore, they have recently been suggested to
act as cell-fate or lineage determinants.9-11 Hematopoietic

tissue homeostasis relies on a finely tuned balance
between very dynamic intrinsically and extrinsically regu-
lated processes of self-renewal, differentiation and prolif-
eration. Based on recent transcriptomic, epigenomic and
proteomic studies, it has been proposed that the cellular
metabolism regulates these processes in different stem cell
systems.14 The metabolic status of human HSC/HPC
becomes crucial during clinical HSPC transplantation since
the efficiency of donor-derived HSC/HPC to engraft, sur-
vive, home, proliferate and differentiate in chemotherapy-
induced aplastic patients demands a significant metabolic
adaptation to survive and promote rapid and stable
hematopoietic reconstitution in chemotherapy-induced
aplastic microenvironments.7,8 Furthermore, deregulation
of mitochondrial functions plays a pathophysiological role
in several hematologic diseases.8,12 Although recent work
has begun to shed light on the mitochondrial response
during stem cell differentiation,7,10,15,16 how, and to what
extent the mitochondrial content affects human
hematopoietic stem versus progenitor function remains
elusive.
Here, we report that mitochondrial content correlates

strongly with ΔΨm in CD34+ cells. Thus, cord blood-
derived CD34+ cells were sorted based solely on their
mitochondrial mass, and the in vitro homeostasis and
clonogenic potential as well as the in vivo repopulating
potential of CD34+ cells with high (CD34+ MitoHigh) versus
low (CD34+ MitoLow) mitochondrial content were ana-
lyzed. As expected, the ATP levels and expression of mito-
chondrial-specific genes were higher in CD34+ MitoHigh

than in CD34+ MitoLow cells. We show for the first time in
human CD34+ cells that hematopoietic stem and progeni-

Mitochondrial mass and CD34+ HSPC
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Figure 1. Sorting of CD34+ cells according to mitochondrial content.
(A) Correlation (arbitrary units) between mitochondrial function
measured as mitochondrial ΔΨm and mitochondrial mass (n=2).
Mitotracker Red CMXRos and Mitotracker Green were used to
measure mitochondrial ΔΨm and mass, respectively. (B)
Representative flow cytometry sorting of CD34+ cells according to
the mitochondrial mass. Total CD34+ cells were stained with
Mitotracker Green and sorted as MitoHigh and MitoLow. (C)
Confirmation that sorted CD34+ MitoHigh cells have significant more
[ATP] (n=4). (D) Quantitative expression (ratio) of the mitochondrial
ND1 and COX2 transcripts in CD34+ MitoHigh versus CD34+ MitoLow

cells confirming almost double ND1 and COX2 expression levels in
CD34+ MitoHigh cells (n=4).
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tor cell functions segregate partially between metabolical-
ly sorted cells. The CD34+ MitoLow fraction displayed sig-
nificantly higher in vivo reconstitution potential upon inoc-
ulation in NSG mice whereas the CD34+ MitoHigh fraction
was more enriched in progenitor function with higher in
vitro clonogenic capacity. This is in line with the “dogma”
that stem cells are usually quiescent and contain low num-
bers of mitochondria whereas progenitors are more prolif-
erative and contain higher numbers of mitochondria.9,10
The vast majority of CD34+ cells co-express the activation
surface marker CD38 which is associated with HPC
whereas a very small proportion of CD34+ cells lack CD38
expression and are considered to be enriched in HSC.5,23,25
Accordingly, the proportion of CD34+CD38– primitive
cells was 6-fold higher in the CD34+ MitoLow than in the
CD34+ MitoHigh fraction, supporting the concept that the
CD34+ MitoLow fraction is enriched in repopulating HSC
function, and also explaining, at least in part, the lower

progenitor function of CD34+ MitoLow cells. Our data con-
firm previous findings in mice showing that the MitoLow

cellular fraction of murine bone marrow is highly enriched
in repopulating HSC, partially due to the enrichment of
long-term HSC in this MitoLow fraction.16 Furthermore,
Simsek et al.16 recently reported that murine long-term
HSC are highly enriched in Meis1, a HSC-associated tran-
scriptional factor required for definitive hematopoiesis,
and in HIF-1α, a master regulator of glycolysis and mito-
chondrial respiration, including a metabolic shift toward
anaerobic glycolysis. In line with this study, the expres-
sion of both HIF-1α and Meis1 was found to be robustly
up-regulated in CD34+ MitoLow cells as compared to in
CD34+ MitoHigh cells, confirming that these factors are
robustly expressed in the CD34 cell fraction enriched in
repopulating stem cell function. Interestingly, mitochondr-
ial content enriches for either HSC or HPC but it does not
seem to act as a determinant in progenitor/lineage com-
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Figure 2. MitoHigh and MitoLow CD34+ cells display in vitro and in vivo functional differences. (A) Clonogenic (CFU) potential of MitoHigh versus
MitoLow CD34+ progenitor cells (n=6). Primary CFU cultures were harvested and re-plated in secondary CFU assays. (B) Representative flow
cytometric analysis of human multi-lineage engraftment in NSG mice. Human cells were identified as HLA-ABC+ CD45+. Within the human
graft, myeloid (CD33+), B-lymphoid (CD19+) and immature (CD34+) lineages were analyzed. (C) Levels of human multi-lineage chimerism in
injected tibia (IT), contra-lateral tibia (CL), peripheral blood (PB), spleen and liver indicating successful migration of the human CD34+ cells
from the injected tibia. Each dot/square represents an individual mouse and the horizontal line indicates the mean of each experimental
condition. (D) Proportion of CD38- primitive/stem cells within CD34+ MitoHigh and CD34+ MitoLow fractions (bottom panel). The upper panel
depicts a representative flow cytometry analysis of CD38 and CD34 staining.
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mitment since the multilineage composition in both CFU
and repopulating assays was very similar between CD34+
MitoHigh and CD34+ MitoLow cells. These data suggest that
mitochondrial mass/activity determines global in vitro
clonogenic potential and in vivo repopulating function but
does not impair/skew normal developmental stem cell
fate/hematopoietic lineage commitment.
Homeostasis of CD34+ MitoHigh and CD34+ MitoLow cul-

tures was further analyzed in vitro. The differentiation of
CD34+ MitoLow cultures was significantly delayed as com-
pared to that of CD34+ MitoHigh, but CD34+ cells were no
longer present in either CD34+ MitoHigh or CD34+ MitoLow

cultures after 15 days. Expansion of CD34+ MitoHigh and
CD34+MitoLow cultures was limited during the first 15 days;
however, coinciding with the complete differentiation of
the CD34+ cultures after 15 days, the expansion of differ-
entiated (CD34-) MitoHigh and MitoLow cells was significantly
boosted, especially in the cultures seeded with CD34+
MitoLow cells. The fact that the CD34+ MitoLow cells display
a delayed differentiation coupled to a much higher expan-

sion rate of their CD34– differentiated cells supports the
better hematopoietic engraftment of NSG mice transplant-
ed with the CD34+ MitoLow fraction because efficient in vivo
hematopoietic reconstitution relies on a finely tuned bal-
ance between low proliferative/self-renewing CD34+ HSC
and rapidly amplifying progenitors, many of which are far
lineage-committed and lack CD34 expression.
Mitochondrial biogenesis during the differentiation of

embryonic stem cells has recently been studied.11,27
Undifferentiated embryonic stem cells have a low mito-
chondrial content and low levels of ATP. Upon differenti-
ation the mitochondrial content increases and mitochon-
drial biogenesis is activated to promote the synthesis of
increased levels of ATP which seem to be required for the
homeostasis of the differentiated cells.28-30 Similarly, we
found that the complete differentiation of CD34+ MitoLow

cells, which coincided with a robust expansion of the dif-
ferentiated progeny, was accompanied by mitochondrial
adaptation as demonstrated by a significant increase in
ATP production and expression of the mitochondrial
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Figure 3. In vitro homeosta-
sis of CD34+ MitoHigh and
CD34+ MitoLow cells. (A) Loss
of CD34 antigen over time
in liquid cultures seeded
with MitoHigh versus MitoLow

CD34+ cells (n=6). (B) In
vitro expansion of liquid cul-
tures initially seeded with
MitoHigh versus MitoLow CD34+

(n=6). Note that after day
15 there are no residual
CD34+ cells in the culture.
From day 15 onwards the
entire culture is comprised
of differentiated CD34- cells
(flow cytometry panel as
inset). (n=6). (C) Proportion
of cycling cells (S/G2/M
cell cycle phase) measured
at the indicated time points
in MitoHigh versus MitoLow

CD34+ cultures (n=2). (D)
Proportion of apoptotic
cells (annexin V+) measured
at the indicated time points
in MitoHigh versus MitoLow

CD34+ cultures (n=2). (E-F)
In vitro differentiation of
CD34+ MitoLow cultures (loss
of CD34 antigen) is associ-
ated with increased ATP
production (E) and higher
levels of ND1 and COX2
expression (F).
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genes ND1 and COX2. This suggests that HSPC differen-
tiation and proliferation of rapidly amplifying lineage-
committed CD34– cells are processes demanding up-regu-
lation of mitochondrial content and biogenesis, and these
properties seem to be conserved among embryonic stem
cells and HSC/HPC.
Increased bioenergetics and mitochondrial activity come

at an increased risk of oxidative damage, primarily in the
form of reactive oxygen species (ROS) which are mainly
generated by the mitochondria.10,31 Various recent studies
in mice have provided evidence for a link between intra-
cellular ROS levels and preservation of stem cell function,
with increased levels of ROS being associated with
reduced repopulating stem cell activity.32,33 Stem cells have
strategies to lessen the negative impact of ROS such as
lowering the numbers of mitochondria and ATP genera-
tion by promoting glycolysis over oxidative phosphoryla-
tion.29,34 In this study, human CD34+ MitoLow cells which
were shown to be more enriched in HSC function dis-
played significantly lower levels of ROS than CD34+
MitoHigh cells (Online Supplementary Figure S1A) which are
more enriched in HPC function, suggesting that HSC func-
tion may be enriched in the CD34+ MitoLow fraction as a
strategy to lessen the negative impact of ROS, which can
induce cell damage/death. Finally, during mitosis mito-
chondria may be segregated to daughter cells either sym-
metrically or asymmetrically. Asymmetric cellular distri-

bution of mitochondria is a dynamic process which has
been observed in some species and may play a role in cell-
fate determination, differentiation and self-renewal.11,27,35-37
Whether symmetric or asymmetric mitochondrial segre-
gation occurs in human CD34+ cells is unknown. It would
be worth studying in future work whether asymmetric
mitochondrial segregation could be an underlying mecha-
nism explaining why phenotypically identical CD34+ cells
may exhibit cell-to-cell variations in mitochondrial con-
tent resulting in functional diversity.
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