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In this Letter we consider a general quadratic parity-preserving theory for a general flat connection. 
Imposing a local symmetry under the general linear group singles out the general teleparallel equivalent 
of General Relativity carrying both torsion and non-metricity. We provide a detailed discussion on 
the teleparallel equivalents of General Relativity and how the two known equivalents, formulated on 
Weitzenböck and symmetric teleparallel geometries respectively, can be interpreted as two gauge-fixed 
versions of the general teleparallel equivalent. We then explore the viability of the general quadratic 
theory by studying the spectrum around Minkowski. The linear theory generally contains two symmetric 
rank-2 fields plus a 2-form and, consequently, extra gauge symmetries are required to obtain potentially 
viable theories.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most beautiful properties of General Relativity (GR) is its intimate alliance with the geometry of spacetime. Nowadays it is 
understood that the geometrical interpretation of gravity arises as a consistency requirement for the low energy effective theory describing 
an interacting massless spin-2 particle. Since Einstein first taught us how to think of gravity in terms of the curvature of spacetime, we 
have become acquainted with this description which has proven to be extremely useful for studying gravitational phenomena as well as 
exploring possible modifications of gravity.

However, the geometry of spacetime admits a much richer structure than that prescribed by GR once we unleash the affine sector. 
Remarkably, although rarely mentioned in standard textbooks, it is known that flat geometries with their well-defined notion of paral-
lelism, provide alternative and fully equivalent representations of GR. On one hand, Weitzenböck spaces can host a Teleparallel Equivalent 
of GR (TEGR) [1] where gravity is identified with torsion. On the other hand, flat and torsion-free spacetimes only containing a non-trivial 
non-metricity can also accommodate a Symmetric Teleparallel Equivalent of GR (STEGR) [2,3]. In addition to the interest of these alterna-
tive formulations by themselves, they serve as different starting points to explore gravity theories beyond GR. The goal of this Letter is 
to extend previous studies in the literature on teleparallel geometries by allowing both torsion and non-metricity while keeping a trivial 
curvature, so the only constraint we impose is

Rα
βμν = 2∂[μ�α

ν]β + 2�α [μ|λ|�λ
ν]β = 0. (1)

This condition fixes the connection to be a pure GL(4, R) gauge (also called inertial connection) so that it can be expressed in terms of an 
arbitrary �α

β ∈ GL(4, R) as
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�α
μβ = (�−1)αρ∂μ�ρ

β. (2)

This inertial connection features a global symmetry � → U� for a constant U ∈ GL(4, R) that will be present in the teleparallel theories. 
The torsion and the non-metricity of the teleparallel geometry are given by

T α
μβ =2�α [μβ] = 2(�−1)αρ∂[μ�ρ

β], (3)

Q αμν =∇α gμν = ∂α gμν − 2(�−1)λρ∂α�ρ
(μgν)λ, (4)

respectively, with the independent traces Tμ = T α
μα , Q μ = Q μα

α and Q̄ μ = Q α
αμ . These are the two fundamental objects to construct 

a general teleparallel theory. Notice that, since these objects transform covariantly under Diffeomorphisms (Diffs), the resulting theory 
will automatically enjoy this symmetry (unless it is explicitly broken from the outset). It may be worth to emphasise that � is not a 
tensor under Diffs, as can be easily seen from the transformation of � as a connection. The action will be the most general quadratic and 
parity-preserving form built in terms of these objects. We parameterise it as

S‖ = 1

2
M2

Pl

∫
d4x

√−g
[
a1Tαμν T αμν + a2Tαμν T νμα + a3TμT μ + b1 Q αμν T ναμ + b2 Q μT μ + b3 Q̄ μT μ

+ c1 Q αμν Q μαν + c2 Q αμν Q μνα + c3 Q μ Q μ + c4 Q̄ μ Q̄ μ + c5 Q μ Q̄ μ
]
. (5)

We will use the shortcut S‖ = 1
2 M2

Pl

∫
d4x

√−g G with G implicitly defined by (5). This action reduces to New GR [7] for a metric con-
nection with Q αμν = 0 and to Newer GR [3] for a torsion-free connection. The corresponding field equations are obtained by varying w.r.t 
the fundamental fields gμν and �α

β . The above action can be regarded as the leading order effective action organised in derivatives of 
the metric and dimensionality of the corresponding operators. Let us notice that the Riemann tensor of the metric Levi-Civita connec-
tion contains second derivatives of the metric that are higher order in derivatives. In this particular case, these second derivatives only 
contribute a total derivative, leaving only the first derivatives coming from the �2 piece so one could argue that this operator should 
be allowed. However, the terms coming from the �2 part are already included in the Q 2 sector of (5) and, consequently, the Riemann 
tensor of the Levi-Civita would only contribute redundant terms. Other operators that could contribute by their dimensionality would be 
derivatives of the torsion and the non-metricity. The latter would contribute second derivatives of the metric so they can be disregarded 
at the considered order, while the former would again contribute a total derivative plus terms already included in the T 2 and mixed T Q
sectors. This is so because the only dimension 2 operator involving derivatives and the torsion is ∇μT μ , so if we expand the connection 
into Levi-Civita plus the disformation (that is proportional to the torsion and the non-metricity), we generate a total derivative plus the 
T 2 and T Q terms aforementioned and, therefore, it would also be redundant.

The metric field equations can then be expressed as

Gμν = 1

M2
Pl

Tμν (6)

where we have defined

Gμν ≡ 2M−2
Pl√−g

δS‖
δgμν

= 1

2
Ggμν + a1

(
T μ

σρ T νσρ − 2T ρσμTρσ
ν
)

− a2T ρσμTσρ
ν − a3T μT ν

− b1T ρσ (μ
(

Q ν)
σρ − Q σρ

ν)
)

+ b2

(
Q ρμν Tρ + Q (μT ν)

)
+ b3

(
Q (μν)ρ Tρ + Q̄ (μT ν)

)
− c1

(
Q μ

σρ Q νσρ + 2Q σρμ Q σρ
ν
)

− c2

(
2Q σρ

(μ Q ν)σρ + Q ρσμ Q σρ
ν
)

− c3

(
Q μ Q ν + 2Q ρ Q ρμν

)
− c4

(
Q̄ μ Q̄ ν + 2Q̄ ρ Q (μν)ρ

)
− c5

(
Q (μ Q̄ ν) + Q̄ ρ Q ρμν + Q ρ Q (μν)ρ

)
−

(
∇ρ + 1

2
Q ρ + Tρ

)[
2c1 Q ρμν + 2c2 Q (μν)ρ + 2c3 Q ρ gμν + 2c4 gρ(μ Q̄ ν)

+ c5

(
Q̄ ρ gμν + gρ(μ Q ν)

)
− b1T (μν)ρ + b2T ρ gμν + b3 gρ(μT ν)

]
, (7)

and the energy-momentum tensor of the matter sector Sm is given by the usual expression

T μν = − 2√−g

δSm

δgμν
. (8)

To compute the field equations for �α
β , we use the identity for general connections that gives the variation of the connection under 

an infinitesimal gauge transformation parameterised by ε in terms of the corresponding covariant derivative of the gauge parameter 
δε� = ∇ε . Applied to our teleparallel connection and taking into account that it is pure gauge, we then obtain that1

δ�α
μβ = ∇μ

[
(�−1)αρδ�ρ

β

]
. (9)

1 It may be convenient to be a little more explicit for clarity. A given connection � transforms under the corresponding gauge transformation parameterised by U as 
� → U−1(� +d)U . If the connection is pure gauge � = �−1d�, this transformation simply leads to the expected transformation � → �U . For an infinitesimal transformation 
U = 1 + ε , we have δε� = dε + [�, ε] = ∇ε . Since the pure gauge connection changes under the infinitesimal transformation as � → � + �ε , we can relate it to a variation 
of � with ε = �−1δ� that leads to (9).
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The field equations can then be expressed as(∇μ + Tμ

)
Pα

μν = 0 (10)

where we have defined

Pρ
μν ≡ δS‖

δ�ρ
μν

= √−gM2
Pl

[
2a1Tρ

μν − 2a2T [μν]
ρ + 2a3T [μδν]

ρ

+ b1

(
Q [μν]

ρ + T (λν)μgλρ

)
+ b2

(
Q [μδν]

ρ − T μδν
ρ

)
+ b3

(
Q̄ [μδν]

ρ − gμ(ν T λ)gλρ

)
− 2c1 Q μν

ρ − 2c2 Q (νλ)μgλρ − 2c3 Q μδν
ρ − 2c4 gμ(ν Q̄ λ)gλρ − c5

(
Q̄ μ4δν

ρ + gμ(ν Q λ)gλρ

)]
. (11)

We have assumed that the connection does not enter the matter action so the hypermomentum vanishes. We could have used a Palatini 
approach by allowing a fully general affine connection and imposing the constraint (1) with suitable Lagrange multipliers. We however 
prefer to solve the constraint and formulate the theory in terms of the fundamental fields, namely gμν and �α

β directly so we do not 
have to solve for any Lagrange multipliers. The fundamental fields make up a total of 10 + 16 = 26 independent components. However, 
the gauge symmetry provided by Diffs invariance reduce these to a maximum of 18 propagating fields that can be associated with the 16 
components of �α

β plus the two polarisations of the graviton contained in gμν . These are still too many dof’s to avoid ghostly modes so 
we need to restrict the parameter space to render the theory stable. But before moving to that, let us delve into the theories with a trivial 
�-sector that actually reduce to GR.

2. On the equivalents of GR

It is known that the teleparallel framework permits alternative formulations of GR, namely TEGR and STEGR. Here we want to elaborate 
further on the existence of these equivalences and clarify their origins. The starting point is the known post-Riemannian expansion of the 
Ricci scalar when the general connection is expanded around the Levi-Civita connection of the spacetime metric as �α

μν = {αμν} +
α
μν . 

In that case, the Ricci scalar can be expressed as

R = R+ 2gμν
(
D[α
α

μ]ν + 
α [α|λ|
λ
μ]ν

)
, (12)

with R and D the Ricci scalar and covariant derivative of the Levi-Civita connection respectively. We can further decompose 
α
μν =

Lα
μν + K α

μν in terms of the disformation and the contorsion tensors defined as Lα
μν = 1

2 Q α
μν − Q α

(μ ν) and K α
μν = 1

2 T α
μν + T α

(μ ν) . 
In terms of these objects, we can write (12) as

R = R+ G̊ +Dμ

(
Q μ − Q̄ μ + 2T μ

)
(13)

where we have defined

G̊ =1

4
Tμνρ T μνρ + 1

2
Tμνρ T μρν − TμT μ + Q μνρ T ρμν − Q μT μ + Q̄ μT μ

+ 1

4
Q μνρ Q μνρ − 1

2
Q μνρ Q νμρ − 1

4
Q μ Q μ + 1

2
Q μ Q̄ μ (14)

obtained from G upon the parameter choice [10,11]

(a1,a2,a3) =
(

1

4
,

1

2
,−1

)
, (b1,b2,b3) = (1,−1,−1) and (c1, c2, c3, c4, c5) =

(
1

4
,−1

2
,−1

4
,0,

1

2

)
. (15)

The general relation (13) between the Ricci scalars, barring the irrelevant total derivative, is the root for the equivalents of GR in teleparallel 
geometries. As a matter of fact, this very possibility can be further traced back to the equivalence between the metric and the Palatini 
formalisms for the Einstein-Hilbert action. The field equation for 
α

βγ of the action S = 1
2 M2

Pl

∫
d4x

√−g R built in terms of (12) is

gρσ 
γ
ρσ δ

β
α + gβγ 
ρ

ρα − gβρ
γ
αρ − gργ 
β

ρα = 0 (16)

that sets a vanishing 
α
μβ up to the non-trivial kernel of the above equation spanned by a projective mode 
α

βγ = Aβδα
γ . Therefore, the 

general solution for the connection is �α
μν = {αμν} + Aμδα

ν . This clearly shows that the geometry of GR admits a whole class of projective 
geometries parameterised by Aμ with torsion T α

μν = 2A[μδα
ν] and a Weyl non-metricity Q αμν = Aα gμν . By suitably fixing the projective 

gauge mode we can choose how much torsion and/or non-metricity we want. This of course lacks any physical relevance and can only be 
returned to having any physical interest via couplings in the matter sector. In the usual case with minimally coupled fields respecting the 
projective symmetry, the issue remains completely irrelevant.

Let us now turn to the case of our flat connections2 for which we have

R = −G̊ −Dμ

(
Q μ − Q̄ μ + 2T μ

)
. (17)

This shows that the two actions

2 Since the Riemann tensor is invariant under projective transformations with Aμ = ∂μ A, the flat condition does not fully fix the projective symmetry. For instance, the 
Weyl non-metricity trace in a teleparallel geometry reduces to a Weyl integrable pure gradient Q μ = ∂μ log det g

2 .

(det�)
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SEH[g] = −1

2
M2

Pl

∫
d4x

√−gR(g) and SGR‖ [g,�] = 1

2
M2

Pl

∫
d4x

√−g G̊ (18)

describe the same theory, up to the boundary term. The above action SGR‖ [g, �] constitutes the General Teleparallel Equivalent of GR 
(GTEGR). It may not be obvious that the geometrical identity used will lead to the same dynamics, with a fair objection being that 
the number of fields on both sides is not the same. While we need only the metric to construct the Einstein-Hilbert action, the action 
SGR‖ [g, �] contains the metric and the connection parameterised by �. Thus, we need some additional symmetries in order to square 
the number of dof’s in both sides. This can be easily shown by noticing that δ�SGR‖ [g, �] = 0 is satisfied off-shell, which means that 
� can at most contribute a total derivative to the action. This can be shown in a very transparent and straightforward manner by going 
to the vierbein formulation of the theory. The Einstein-Hilbert Lagrangian in that formalism is simply LEH = εabcd Rab ∧ ec ∧ ed , where 
Ra

b = dωa
b + ωa

m ∧ ωm
b is the curvature 2-form of the connection ωa

b and εabcd is the Levi-Civita tensor. We can consider the post-
Riemannian expansion of the connection ω = ω̄ + 
, with ω̄ the metric-compatible and torsion-free Levi-Civita part. The Einstein-Hilbert 
Lagrangian in this decomposition takes the form

LEH = εabcd

(
R̄ab + D̄
ab + 
a

m ∧ 
mb
)

∧ ec ∧ ed (19)

that is the vierbein equivalent of (12). Again, we can drop the total derivative term involving D̄
ab that can be written as d
(
εabcd


ab ∧
ec ∧ ed

)
because the Levi-Civita connection is metric compatible, so D̄εabcd = D̄ηab = 0, and torsion-free, so D̄ea = 0. If we now impose the 

flatness condition on the full curvature Ra
b = 0 we recover the relation R̄a

b = −(D̄
a
b + 
a

m ∧ 
m
b) and the connection is ω = ω̄ + 
 =

�−1d� so we have 
 = −ω̄ + �−1d�. If we plug this into the 
 ∧ 
 term in (19) we can write

εabcd

a

m ∧ 
mb ∧ ec ∧ ed = εabcd

[
ω̄a

m ∧ ω̄mb − D̄
(
�−1d�

)ab
]
∧ ec ∧ ed . (20)

We clearly see that � only contributes a total derivative and we obtain the Einstein Lagrangian3 of GR as the only dynamical part. 
Consequently, the action built in terms of G̊ is nothing but the special quadratic theory where the global GL(4, R) invariance becomes 
a local symmetry. In other words, we can perform a local GL(4, R) transformation to fully trivialise the connection. In that gauge, we 
have 
α

μν = −{αμν} and a vanishing torsion, while Q αμν = ∂α gμν so that SGR‖ reduces to the Einstein action of GR, thus providing the 
GL(4, R) generalisation of the coincident gauge in STEGR [3].

In view of GTEGR, we can give a nice interpretation of TEGR and STEGR as different gauge-fixed versions of the general equivalent:

• TEGR gauge.
In TEGR, the connection is further restricted to be metric compatible. The corresponding additional constraint ∇α gμν = 0, for the 
teleparallel connection, leads to the equation

2(�−1)λκ∂α�κ
(μgν)λ = ∂α gμν, (21)

that relates the metric and �. This gauge does not fix the full GL(4, R) symmetry, but there is still some residual symmetry. To reveal 
the unfixed sector of the symmetry, we notice that the above equation is solved by a teleparallel connection satisfying

gμν = �α
μ�β

νcαβ (22)

for an arbitrary constant cαβ . It is thus clear that the gauge-fixing (21) leaves undetermined the orthogonal subgroup with respect 
to the metric cαβ . Since we are interested in Lorentzian metrics, it is natural to choose cαβ = ηαβ so that the residual symmetry is 
nothing but a local Lorentz invariance, which is the well-known symmetry of TEGR.

• STEGR gauge.
The STEGR on the other hand is obtained by imposing T α

μν = 0. This gauge constrains the teleparallel connection to have the 
form �α

β = ∂βξα for some arbitrary ξα ’s that can be identified with a coordinate transformation. This gauge represents a minimal 
covariantisation of GR in the sense that is the maximal partial fixing of the local GL(4, R) that still allows a covariant formulation. 
In fact, the parameters ξα that parameterise the local symmetry in this partial gauge fixing can be nicely interpreted as Stückelberg 
fields introduced to restore covariance in the Einstein Lagrangian.

The above are special gauges because only one of the fundamental geometrical objects of the affine structure is left and, thus, gravity 
is fully described in terms of them. Together with the usual description of GR as the spacetime curvature, this tern has been dubbed the 
geometrical trinity [4]. However, our discussion clarifies that it is possible to make other gauge choices within the teleparallel realm that 
interpolate between these two special gauges.

The identification of TEGR and STEGR as merely particular cases of GTEGR with different gauge-fixing terms opens up the possibility 
for a whole plethora of modifications of gravity based on non-linear extensions of the corresponding partially gauge-fixed version of the 
GR equivalent analogous to the f (T ) [5,6] and f (Q ) [8] theories based on the TEGR and STEGR gauges. It is now apparent that the 
differences between these two extensions root in the different gauges employed for their construction. In general, the different non-linear 
extensions can be parameterised as

S =
∫

d4x
[√−g f (G̊) + F (�,λ, · · · )

]
(23)

3 A word on nomenclature: We call the Einstein Lagrangian/action to the dynamical part of the Einstein-Hilbert action without the total derivative necessary to conform a 
scalar, i.e., LEinstein = 1

2 M2
Pl

√−g gμν
({

α
βμ

}{
β
να

}
−

{
α
βα

}{
β
μν

})
.
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where F is the gauge-fixing condition that depends on the connection �, some Lagrange multipliers λ and, possibly, other fields such as 
the metric. The non-linear extensions based on TEGR and STEGR are those with FTEGR = λαμν∇α gμν and FSTEGR = λα

μν T α
μν respectively.

It is important to strongly emphasise however that most, if not all, of those extensions will be prone to suffer from some pathologies 
owed to the loss of symmetries. This is in particular the case of f (T ) [6] and f (Q ) [8] theories. Any cosmological solution is strongly 
coupled in the former, while the latter alleviates the situation by only suffering from strong coupling on maximally symmetric back-
grounds. We notice that fully fixing the gauge that trivialises the connection, i.e., F = λα

β(�α
β − δα

β), leads to the Coincident GR so 
the corresponding extensions will be the same as f (Q ). A potentially interesting non-linear extension could be that without any partial 
gauge-fixing, i.e., f (G̊) where the full �α

β is allowed to contribute.

3. Perturbative spectrum on Minkowski

3.1. Quadratic Lagrangian

As the first step towards unveiling the viable Lagrangians we will study the linear theory on a Minkowski background. For that, we 
will expand the connection and the metric to first order as follows

gμν = ημν + hμν, �α
β = δα

β + λα
β. (24)

The torsion and the non-metricity are given by:

T α
μν = 2∂[μλα

ν], Q αμν = ∂α

(
hμν − Hμν

)
, (25)

where we have defined Hμν = 2λ(μν) . We will also introduce the antisymmetric part of the connection perturbation as Bμν = 2λ[μν] so 
that we have λμν = 1

2 (Hμν + Bμν). The quadratic Lagrangian in terms of these fields reads

1

M2
Pl

L(2)
‖ = c1

2
∂αhμν∂αhμν + c24

2
∂μhμα∂νhνα + c5

2
∂μh∂νhμν + c3

2
(∂h)2

+ c̃1

8
∂α Hμν∂α Hμν + c̃2

8
∂μHμα∂ν Hνα + c̃3

4
∂μH∂ν Hμν + c̃4

8
(∂ H)2

+ 2a1 − a2

8
∂μBαβ∂μBαβ − 2a1 − 3a2 − a3

8
∂μBμα∂ν Bνα

+ b1 − 4c1

4
∂αhμν∂α Hμν − b1 + b3 + 4c24

4
∂μhμα∂ν Hνα + b3 − 2c5

4
∂μH∂νhμν − b2 + 2c5

4
∂μh∂ν Hμν

+ b2 − 4c3

4
∂μh∂μH + 2a1 + a2 + a3 − b1 + b3

4
∂μBμα∂ν Hνα + b1 − b3

4
∂μBμα∂νhνα, (26)

where we have defined

c24 = c2 + c4, c̃1 = 2a1 + a2 − 2b1 + 4c1, c̃2 = −2a1 − a2 + a3 + 2(b1 + b3) + 4c24,

c̃3 = −a3 + b2 − b3 + 2c5, c̃4 = a3 − 2b2 + 4c3. (27)

The first three lines of (26) describe the pure Hμν , hμν and Bμν sectors respectively, while the last two lines comprise the mixings among 
the different fields. Notice that the parameters c2 and c4 are degenerate at linear order, since they only enter through the combination 
c24. This degeneracy will be broken by interactions. For arbitrary parameters, this quadratic Lagrangian contains the 2-symmetric rank-2 
fields hμν and Hμν plus the antisymmetric field Bμν . The absence of any masses for these fields is guaranteed by the GL(4, R) global 
symmetry. In view of the fields that enter the quadratic Lagrangian, a very reasonable requirement in order to avoid ghost-like fields 
around Minkowski is that the field content should correspond to two massless spin-2 fields plus a massless Kalb-Ramond field, each with 
its corresponding gauge symmetry. Since the general quadratic theory only enjoys the usual Diff symmetry, the absence of unstable modes 
makes it necessary to fix some coefficients to enhance the symmetries.

3.2. Symmetries

It will be useful to analyse how the different symmetries of the theory are realised in the perturbations of the metric and the connec-
tion. By construction, we have Diffs that, at linear order, are realised as usual in the metric and the connection perturbations

δζ hμν = −2∂(μζν), δζ λ
α

β = −∂βζα. (28)

The transformation under Diffs for the connection translates into

δζ Hμν = −2∂(μζν) and δζ Bμν = 2∂[μζν]. (29)

It will be important to notice that, since the background values of both the torsion and the non-metricity vanish, their perturbations are 
gauge-invariant under linearised Diffs, in compliance with the Stewart-Walker lemma. On the other hand, the global symmetry enjoyed 
by the connection will be realised as δωλα

β = ωα
β with ωα

β a constant element of the Lie algebra gl(4, R) so that we have

δω Hμν = 2ω(μν), δω Bμν = 2ω[μν]. (30)
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Since ω is constant, this is a shift symmetry that will forbid any mass terms for both fields. Furthermore, the field Bμν transforms with 
the component along so(3, 1) and so it takes care of the whole change under Lorentz transformations, while the symmetric field Hμν

will change with the complementary components in gl(4, R). One important consequence of this is that the realisation of a local Lorentz 
symmetry will be straightforwardly identified in the quadratic Lagrangian from the absence of Bμν .

3.3. Minimal field content: GTEGR

An instructive case to look at is the general equivalent of GR introduced above. The quadratic Lagrangian for those parameters reduces 
to

1

M2
Pl

LGTEGR = 1

8
∂αhμν∂αhμν − 1

4
∂μhμα∂νhνα + 1

4
∂μh∂νhμν − 1

8
(∂h)2. (31)

We see here that only the metric perturbation contributes and precisely in the Fierz-Pauli form that guarantees the propagation of a 
healthy massless spin-2 particle, while all the dof’s associated to the connection only contribute a total derivative, thus corroborating at 
linear level the realisation of the local gauge symmetry GL(4, R) up to the total derivative term that we have dropped. One may wonder 
whether, at linear order, there is a broader class of theories realising the linearised GL(4, R) gauge symmetry, even if it is not realised 
at the non-linear order. This would diagnose a discontinuity in the number of dof’s so we could already rule them out on the basis of 
phenomenological viability caused by a strong coupling problem on Minkowski. In order to analyse it, we can obtain the general linear 
theory for which the connection dof’s Hμν and Bμν have trivial linear field equations. Doing so we obtain that this is only possible 
precisely for the parameters of GTEGR, up to a normalisation factor and the explained degeneracy between c2 and c4. Thus, requiring the 
full global symmetry to become a local symmetry, even at linear order, is a very strong condition that fixes the theory to be GR at that 
order (as should be) and only leaves one free parameter in the full theory. This is the minimal field content we can have if we want 
the theory to describe gravity. Theories with other parameters, again assuming that gravity is a required sector, will then propagate more 
dof’s.

3.4. Maximal field content

The general quadratic Lagrangian contains the fields hμν , Hμν and Bμν which are prone to propagate ghost-like modes unless ap-
propriate gauge symmetries are present. Thus, the maximum number of physical dof’s that we can have without incurring in ghostly 
instabilities will correspond to having 2 massless spin-2 fields plus a massless Kalb-Ramond field, adding up to a total of 2 + 2 + 1 = 5
dof’s. Any choice of parameters propagating more than 5 dof’s will have ghosts around a Minkowski background. It will then be useful 
to study those theories that precisely propagate this number of dof’s. For the antisymmetric field Bμν we will impose the usual gauge 
symmetry for a massless 2-form field given by δBμν = 2∂[μθν] for an arbitrary θν . This gauge symmetry leads to the Bianchi identity

∂μ

(
δS(2)

‖
δBμν

)
= 0 (32)

that imposes

Gauge 2-form: 2a1 + a2 + a3 = 0 and b3 = b1. (33)

Since Bμν does not contribute to Q αμν , the pure non-metricity sector remains completely free. The first condition is the same as obtained 
in New GR (see e.g. [9]), while the second condition comes from the mixed sector. It is remarkable that imposing the presence of this 
gauge symmetry precisely decouples Bμν from the symmetric sector hμν and Hμν .

Consistency of the symmetric sector requires the presence of yet additional gauge symmetries. We will impose having two copies of 
linearised Diffs so we have the gauge symmetry Diff × Diff. As a matter of fact, since we know that the general theory already enjoys one 
Diff invariance, we only need to guarantee the presence of a second independent Diff. For that, we will impose the Bianchi identity4

∂μ

(
δS(2)

‖
δhμν

)
= 0 (34)

that is identically satisfied if

Diff × Diff: c5 = 2c1, c3 = −c1, c24 = −2c1, and b2 = −b1, (35)

assuming that (33) is already satisfied. If we further want Hμν and hμν to decouple we need to impose the additional condition b1 = 4c1, 
in which case the quadratic Lagrangian reduces to

L(2) = −c1hαβEαβμνhμν − 2a1 + a2 − 4c1

4
HαβEαβμν Hμν + 2a1 − a2

24
F 2 (36)

with Eαβμν the Minkowski Lichnerowicz operator and Fμνρ = 3∂[μBνρ] the Kalb-Ramond field strength. Requiring the decoupling of 
hμν and Hμν guarantees the recovery of the appropriate Newtonian limit where only the metric perturbations couple to matter fields. 

4 The second Diff symmetry can be fully realised with either of the two symmetric fields and we have chosen to fully realise it with hμν . Realising it with Hμν would 
lead to the same results. This can be easily understood by considering the general transformations δhμν = α1∂(μζ 1

ν)
+ α2∂(μζ 2

ν)
and δHμν = β1∂(μζ 1

ν)
+ β2∂(μζ 2

ν)
that can be 

trivially diagonalised with a redefinition of the gauge parameters.
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Otherwise, via diagonalising the symmetric sector, we would generate an additional gravitational force for matter fields mediated by Hμν . 
It is interesting to notice however, that this additional force could be absorbed into a redefinition of Newton’s constant at that order. 
This contrasts with other modified gravity scenarios where the diagonalisation involves a scalar field that only couples to the trace of 
the energy-momentum tensor and, therefore, can be detected by comparing the Newtonian and the lensing potentials. We finally notice 
that the three gauge symmetries that we have obtained amount to a full decoupling of the original Diffs for the three fields, i.e., the 
transformations (28) and (29) become symmetries with independent parameters for hμν , Hμν and Bμν .

Another way of guaranteeing the propagation of 2 massless spin-2 fields is to complete the linearised Diffs to Diff × WTDiff, i.e., by 
imposing an additional Weyl Transverse Diffeomorphism (WTDiff) invariance. Let us first obtain the condition to have TDiffs, which we 
achieve by imposing invariance of the field equations under a Diff with ∂μζμ = 0. Similarly to the above case with the full Diff invariance, 
we can impose the symmetry either on hμν or on Hμν independently thanks to the already existing Diff symmetry and to the fact that 
TDiff is a subgroup of Diff. The resulting condition in both cases is

TDiff: 2c1 + c24 = 0. (37)

Now, instead of completing this symmetry to full Diffs as before, we will complete it to add a linear Weyl symmetry. This can be realised 
in different ways. Unlike for TDiffs, a Weyl transformation is not, in general, a subgroup of Diffs so we need to consider the transformation 
δhμν = whϕημν and δHμν = w Hϕημν , where we have given different Weyl weights wh and w H to the two fields. The associated Bianchi 
identity will be

ημν

[
wh

δ

δhμν
+ w H

δ

δHμν

]
S(2)

‖ = 0. (38)

This identity is fulfilled if the following equations are satisfied:

2(2a1 + a2)w H − 2(c24 − 8c3 − c5)(wh − w H ) − b1(2wh − 3w H ) − b2(4wh − 7w H ) = 0,

b1 wh + 2(b2 + c24 + 2c5)(wh − w H ) − (2a1 + a2)w H = 0,

2(c24 − 8c3 − c5)(wh − w H ) − (b1 + 3b2)w H = 0,

2(c24 + 2c5)(wh − w H ) + b1 w H = 0. (39)

Particularly interesting realisations of the additional Weyl symmetry are5:

• w H = 0: The Weyl symmetry is fully realised on hμν while the connection does not transform. The solution is then b1 + 2b2 =
3c24 − 16c3 = 8c3 + 3c5 = 0.

• w H = wh: The Weyl symmetry is covariantly realised with the change in the metric perturbation accompanied by the corresponding 
change in the connection. In this case we find 2a1 + a2 = b1 = b2 = 0.

We will end our discussion on the enhancement of the gauge symmetries by recalling that a massless spin-2 particle can be described by 
the WTDiff quadratic Lagrangian (see e.g. [12])

1

M2
Pl

LWTDiff = 1

8
∂αhμν∂αhμν − 1

4
∂μhμα∂νhνα + 1

8
∂μh∂νhμν − 3

64
(∂h)2, (40)

whose only difference with GR is the appearance of a cosmological constant as an integration constant, but is otherwise completely 
equivalent. It is straightforward to see that the general teleparallel theory identically reproduces the above WTDiff quadratic Lagrangian 
for the parameters ai = bi = 0 and c5 = − 8

3 c3 = − 1
2 c24 = c1, which obviously satisfy Eqs. (39), and in terms of the perturbation ĥμν ≡

hμν − Hμν . These parameters hence provide an alternative class of theories with a minimal linear spectrum containing just a massless 
spin-2 field, in the WTDiff realisation, in addition to the GTEGR discussed above. There are some crucial differences however because, 
while the GTEGR is guaranteed to preserve the number of dof’s in the linear spectrum at the non-linear order due to the local GL(4, R)

symmetry of the full theory, there is no reason a priori to expect that the WTDiff alternative theories with a minimal spectrum around 
Minkowski will not introduce additional dof’s in the non-linear spectrum. These theories are natural candidates for a teleparallel equivalent 
of unimodular gravity, whose linearisation is precisely the WTDiff Lagrangian (40), but there are some indications that the equivalence 
cannot be maintained at the non-linear order. Firstly, as we have discussed above, imposing a local GL(4, R) symmetry for the linear 
theory singles out the GTEGR up to the degeneracy between c2 and c4, so the candidate for the unimodular equivalent cannot realise a 
local GL(4, R) symmetry associated to the trivialisation of the connection sector. We would then expect the appearance of dof’s associated 
to the connection from the non-linear terms which would in turn be strongly coupled around Minkowski. A second obstruction that takes 
place already at linear order is that the WTDiff is obtained for the perturbation ĥμν , while matter fields will only couple to hμν so the 
symmetry between hμν and Hμν is broken by the matter sector.

3.5. Theories with local Lorentz invariance

A class of theories with enhanced interesting symmetries are those with a local Lorentz invariance. As we explained above, the local 
Lorentz invariance, at linear order, is achieved by removing Bμν from the Lagrangian or, equivalently, by choosing parameters such as to 
trivialise its equation of motion. It is interesting to note that, since only Hμν contributes to the non-metricity to this order, only the terms 

5 See [10] for a detailed analysis of the different realisations of conformal/scale/Weyl transformations within the affine framework.
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involving the torsion are relevant concerning the realisation of a local Lorentz symmetry. In particular, this means that the coefficients 
ci are not constrained by this requirement. Remarkably, when requiring the existence of the local Lorentz symmetry we obtain b3 = b1, 
a3 = −4a1 and a2 = 2a1, i.e., the pure torsion sector must reduce to the TEGR parameters and the mixed sector leaves b2 free and b3 = b1. 
This of course comprises the GTEGR case discussed above.

4. Discussion

In this Letter we have clarified how the TEGR and the STEGR descriptions of GR arise from the general equivalent in a teleparallel 
geometry as two particularly interesting gauges where the connection is further required to be either metric-compatible or torsion-free. 
The singular nature of GTEGR has been revealed to be a complete gauging of the global GL(4, R) symmetry enjoyed by the general inertial 
connection. Furthermore, we have shown that requiring such a gauging of the global symmetry in the linear theory around Minkowski 
only leaves one free parameter.

We have then obtained the quadratic Lagrangian around Minkowski for the general quadratic teleparallel theory and discussed the 
necessity of having additional symmetries in order to obtain physically sensible theories. A few cautionary comments concerning the 
theories with enhanced symmetries are in order however. Firstly, imposing the required gauge symmetries at linear order is a necessary 
but not a sufficient condition. For instance, in New GR, it has been observed that the gauge symmetry rendering the 2-form stable at 
linear order cannot be maintained at the non-linear order [13]. The crucial point is that tuning the coefficients in a somewhat ad-hoc 
manner to obtain the desired symmetries for the linear theory is not a very stable procedure and the inclusion of the interactions typically 
reveals the accidental nature of such gauge symmetries, thus signalling a discontinuity in the number of dof’s which will be at the heart 
of the strong coupling problems coming in at an offending low scale.

The second cautionary remark regarding the additional symmetric rank-2 field is that even if the additional massless spin-2 field can 
be made to enjoy the necessary symmetries at linear order, it is expected that at fully nonlinear order the two spin-2 fields will interact, 
but it is known that a theory with massless spin-2 fields in its spectrum only admits one single species of this type. Another possibility 
one could envision is that one of the spin-2 fields becomes massive with healthy interactions. However, also in this situation the two 
spin-2 fields would present derivative interactions which are prone to the re-introduction of pathological modes [14,15]. The potentially 
safe self-interactions obtained in [16] do not seem to be possible to realise in general, but only in very specific theories and, at most, up 
to some order in perturbation theory. We will leave this for future work, but it is likely that the only consistent theory among the general 
quadratic teleparallel theories that includes gravity is in turn the GTEGR so no extensions would be possible along this path.

To finalise our cautionary discussion, we comment on a somewhat extended folk argument in favour of teleparallel theories claiming 
that they provide a better starting point for modifications of gravity. The alluded reason is that the action only contains first order 
derivatives of the fields and, consequently, the corresponding extensions are less prone to introducing Ostrogradski instabilities than the 
curvature based theories that contain second derivatives of the metric. This reasoning is not correct6 and, actually, the crucial property 
is the introduction of additional dof’s associated with the loss of local symmetries. Instead, we could use the Einstein action for GR (see 
footnote 3) where only first derivatives appear and, therefore, the starting point would also be an action with only first derivatives, very 
much like the teleparallel framework. However, since the Einstein Lagrangian is not an exact Diff-scalar, utilising it as starting point to 
explore modifications will lead to the loss of symmetries and the problems will reappear as a consequence of the breaking of Diffs. The 
very same difficulties occur for the teleparallel theories. The equivalents of GR crucially realise some symmetries up to total derivatives 
so one must be very careful when considering either extensions or non-standard matter couplings in order not to introduce additional 
potentially unstable dof’s.
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