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ABSTRACT The detection of Alzheimer’s Disease in its early stages is crucial for patient care and drugs
development. Motivated by this fact, the neuroimaging community has extensively applied machine learning
techniques to the early diagnosis problem with promising results. The organization of challenges has helped
the community to address different raised problems and to standardize the approaches to the problem. In
this work we use the data from international challenge for automated prediction of MCI from MRI data
to address the multiclass classification problem. We propose a novel multiclass classification approach that
addresses the outlier detection problem, uses pairwise t-test feature selection, project the selected features
onto a Partial-Least-Squares multiclass subspace, and applies one-versus-one error correction output
codes classification. The proposed method yields to an accuracy of 67 % in the multiclass classification,
outperforming all the proposals of the competition.

INDEX TERMS Alzheimer’s Disease, CAD, error correcting output codes, Mild Cognitive Impairment,
Multiclass classification, One versus One, Partial least squares, Random forests, Support Vector Machines.

I. INTRODUCTION

ASSISTANCE in diagnosis of Alzheimer’s Disease (AD)
in it’s early stages has received a constant interest from

the medical imaging community in the past decades due to
its medical importance and societal implications [8]. Distin-
guishing between AD and its related neurological disorders,
including its prodromal stage Mild Cognitive Impairment
(MCI), is very challenging from the clinical evaluation point
of view, predominantly in the early stages of the disease.
Medical imaging techniques, such as Magnetic Resonance
Imaging (MRI) or Positron Emission Tomography (PET),
have provided new tools to assess the subject conditions
in a non-invasive way. However, both the subtle changes
produced in the brain and the lack of a complete under-
standing of the disease development still pose challenges
to the diagnosis assistance through brain images [45], [47].

Concretely, the discrimination between MCI and AD has
been shown to be a difficult task [24], [26], [30], [41], [42].
Machine learning applications in neuroimaging have become
an indispensable tool for brain image analysis and computer
aided diagnosis (CAD) systems, producing a prolific area of
research [8]. However, the lack of standardized datasets hin-
ders direct comparisons of approaches, and the identification
of their virtues.

The open data policy and the creation of big databases have
facilitated the organization of competitions for improving
the CAD systems for AD diagnosis, such as CADDementia
[3] and TADPOLE (https://tadpole.grand-challenge.org/),
among others. The availability of the data for posterior anal-
ysis allows for retrospective analysis of the competitions and
new submission proposals. It also facilitates the reproducibil-
ity of results, a problem that is becoming of central interest
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in neuroimaging research [4].
This work makes use of the International challenge for

automated prediction of MCI data. The objective of the
competition was the development of CAD systems for the
multiclass classification of 4 classes: Healthy Controls (HC),
Mild Cognitive Impaired (MCI) subjects, Mild cognitive
impaired subjects that converted into Alzheimer’s Disease
during the study (cMCI), and Alzheimer’s Disease (AD)
patients. The challenge provided with preprocessed MRI
data of the different classes to allow participant proposals of
optimized CAD systems, based on the finding that combin-
ing multiple anatomical measures improves classification of
early diagnosis of AD [44]. The results of the challenge were
published in the special issue [38] on the Journal of Neuro-
science Methods. The winner proposal used a random forest
ensemble with feature extraction methods [10], yielding to a
61 % accuracy in the multiclass classification problem.

Ensemble methods have been successfully applied to neu-
roimaging problem [7], [20], [32], [33]. It has also been
proven that multiclass approaches using binary classifiers
can be a competitive solution to the problem, such as those
based on one-versus-one approaches, one-versus-rest in the
context of Error Output Correcting codes (ECOC) [6], [9],
[13], [46]. This study uses and compares ensemble methods
and aggregation methods by binary classifiers, as those of
highest rated approaches in the challenge [5].

To optimize the multiclass classification through combina-
tion of anatomical features, not only classifier aggregations
are necessary, but also feature extraction techniques [36].
Different approaches to feature selection and extraction re-
ported high relevance in the literature, with high accuracy
and also a correspondence between automatic cortical and
subcortical region selection and clinical findings [7]. Con-
cretely, brain atrophy has been found to be relevant for AD
diagnosis in white matter cortical and subcortical regions,
as well as hippocampal volume, cortical thickness, and grey
matter density, thus making feature extraction a reasonable
preprocessing step (see [44] and references therein). One of
such successful methods for feature selection and combina-
tion is Partial Least Squares, linearly transforming the data
into a space maximal separation between classes [25], [35],
[39], [40].

Through the extensive use of feature extraction and one-
vs-one feature selection and classification, we propose and
study a CAD system for identification of early stages of AD
and MCI that optimizes the combination multiple anatomical
measures of atrophy in the brain to improve classification
performance.

II. METHODS
Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database. The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial MRI, PET, other biological markers,

N = 240 Male/female Age MMSE
HC 30/30 72.34 [5.67] 29.15 [1.11]
MCI 28/32 72.19 [7.42] 28.32 [1.56]
cMCI 35/25 72.96 [7.20] 27.18 [1.87]
AD 29/31 74.75 [7.31] 23.43 [2.11]

TABLE 1. Training dataset (sociodemographic data and MMSE for each
group). X[Y ] denotes the mean X and standard deviation Y for each group.

N = 160 Male/female Age MMSE
HC 18/22 74.88 [5.48] 29.00 [1.10]
MCI 23/17 72.40 [8.04] 27.65 [1.87]
cMCI 25/15 71.75 [6.23] 27.58 [1.80]
AD 23/17 73.11 [8.05] 22.68 [1.98]

TABLE 2. Real data in testing dataset (sociodemographic data and MMSE for
each group). X[Y ] denotes the mean Xand standard deviation Y for each
group.

and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD. For
up-to-date information, see www.adni-info.org.

A. DATASETS
This section shows the datasets that were provided for the
International challenge for automated prediction of MCI
from MRI data (https://inclass.kaggle.com/c/mci-prediction).
MRIs were selected from the ADNI and preprocessed by
Freesurfer (v5.3) [14], [15]. In total 429 demographical,
clinical as well as cortical and subcortical MRI features were
available for each subject. Fig. 2 shows the average values
for different regions across the brain for the four available
classes.

Two different datasets were provided for training and test-
ing the proposed methods for automated prediction of MCI
from MRI data. According to their diagnosis, patients were
grouped into four classes: healthy control (HC) subjects, AD
patients, MCI subjects whose diagnosis did not change in
the follow-up (MCI) and converter MCI (cMCI) subjects that
progressed from MCI to AD in the follow-up of the disease.
The training dataset consisted of 240 ADNI real subjects (60
HC, 60 MCI, 60 cMCI and 60 AD). Demographic informa-
tion is shown in Tables 1 and 2. The testing dataset consisted
of 500 subjects. 160 out of them were real subjects, whereas
the 340 remaining subjects were artificially generated from
the real data. Table 2 shows demographic information of
only the 160 real patients excluding 340 dummy subjects in
the testing dataset. No information about the class labels of
the test set was available during the competition. The test
set was half split into public and private test sets and only
the accuracy score on the public dataset was available for
competitors until the challenge ended. Once the challenge
finished, class labels for the subjects on the test set were
provided to the competitors. The accuracy score on the real
subjects of the testing set was used as the figure of merit in
the competition.
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FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Mean cortical thickness of the database for each class.

B. WORKFLOW

The methodology followed in this work aims at optimizing
the binary classification of the different classes, HC, MCI,

cMCI and AD in the multiclass classification problem, so
that the overall classification performance is increased. To
that aim, the process is divided in four steps as depicted
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in Fig. 1. A first preprocessing step is applied to discard
outliers and standardize the data. Secondly, based on the
observation of the existence of irrelevant or redundant data, a
filter is applied to eliminate unimportant features. Once a set
of features is selected, a combination of statistical tests and
Partial Least Squares (PLS) techniques are used to extract
features at binary level for each one vs. one classification (HC
vs MCI, HC vs. cMCI, etc..). Finally, binary classifiers are
trained on these data, and an aggregation method is proposed
for achieving a final multiclass decision.

1) Preprocessing
The presence of outliers is usually an undesirable source of
instabilities for machine learning applications. In neuroimag-
ing, outliers are specially challenging as they are frequently
found due to acquisition, scanner differences, preprocess-
ing artefacts or resulting from large intrinsic inter-subject
variability, having a dramatic effect on the statistical based
analysis [17].

A carefully analysis of the data reveals a high abundance
of outliers on each of the 429 data features. In Fig. 3,
the presence of outliers is depicted for selected features as
measured in standard deviations, with values exceeding 8
times the standard deviation.

A common preprocessing step in machine learning con-
sists of centering the data to zero mean and one standard
deviation values, usually known as z-score values [19]. How-
ever, as Fig. 4a) shows, the z-score values of the data contain
high salt-and-pepper type noise. We attributed this effect
to a miss-transformation of the data format, coming from
freesurfer software, as described by the challenge organizers.
The outlier correction algorithm is described in box 1. The
algorithm results are shown in Fig. 4b). Correcting this for-
mat defect reveals a different data structure, with high redun-
dancy, justifying posterior steps. Concretely, the features sets
1-35, 45-73, 71-139, 140-277, 278-347, 348-413, 413-429,
seem to contain very low inter-patient variability, suggesting
that the feature space dimension can be highly reduced. In
posterior sections, we show that feature space dimension can
be optimally reduced to a value below 20.

Data: Raw data matrix D of r features and s subjects
Result: Clear outlier values
Compute median values M(s) of D for each feature ;
for i from 1 to r do

for j from 1 to s do
if D(i, j) > 50 ∗M(j) then

Replace outlier value by D(i, j)/1000;
else if D(i, j) < 50 ∗M(j) then

Replace outlier value by D(i, j) ∗ 1000;
end

end
end

Algorithm 1: Outlier elimination algorithm

2) Feature selection and extraction
The preprocessing step is followed by the elimination of
irrelevant features and the extraction of features for classi-
fication. The former is a filter, in a one vs. one approach.
The features are sorted according to a specific criteria, thus
eliminating the features with the lowest relevance. The latter
is achieved under a multiclass PLS transformation of the
selected features, reducing the feature space dimension [21].

The sorting criteria is based on binary comparisons be-
tween classes: HC vs. MCI, HC vs. cMCI, HC vs. AD, MCI
vs. cMCI, MCI vs. AD, and cMCI vs. AD. For each binary
comparison a t-test is performed for each feature, and the
features fi are sorted according to their value of the t statistic,
ti, i = 1, 2, ..., 429. A 6x429 matrix S of sorted features is
generated in this process. From this matrix S, a submatrix
T is constructed by eliminating the n last columns, ordered
by decreasing value of the t statistic. The number of times m
a feature appeared in the matrix T was calculated for each
feature. The parameter m is a significance measure for each
feature and is constrained: 0 ≤ m ≤ 6. All the features
with a value of m under a fixed threshold R where filtered
out, resulting in a feature selected set S containing the most
relevant features for all the individual comparisons:

SR = {fi : fi ∈ T &mi > R} i = 1, 2, ..., 429− n (1)

The parameter n was fixed by cross validation, and the pa-
rameter R has six possible values, being R = 3 a reasonable
compromise between very restrictive and non-existent filter.

The feature set SR selection is followed by a PLS-based
feature extraction. Following the development presented in
[37], we will consider the problem of modelling the relation-
ship between two sets of data using PLS. Let X ∈ IRN and
Y ∈ IRM be two multidimensional spaces of variables, PLS
models the relationship between them by score vectors. After
making n observations of each space, PLS decomposes the
matrix X(n × N) ∈ X of zero-mean variables and matrix
Y(n×M) ∈ Y of zero-mean variables as follows:

X = TPT +E (2)

Y = UQT + F (3)

where X is the training data matrix, Y is a labels matrix,
and T and U are matrices (n × p) formed by the p score
vectors extracted (components, latent vectors). The matrix
P(N×p) and the matrix Q(M×p) correspond to the weight
matrices. Finally, the E(n × N) and the matrix F(n ×M)
are identified as residual values matrices. PLS calculates
the vectors of weights w, c that form the respective weight
matrices mentioned above, as follows:

[Cov(t,u)]2 = [Cov(Xw,Yc)]2 = max
|x|=|s|=1

[Cov(Xr,Ys)]2

(4)
where Cov(t,u) = ttu/n denotes the covariance sample of
the score vectors t and u.

This last feature extraction step produces a transformed
data matrixDt. The PLS transformation maximizes the sepa-
ration between classes in the new space, and can also be used
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FIGURE 3. Distribution of outliers per class above 8 standard deviations.

to reduce the feature space dimension by selecting a reduced
number of PLS components.

Apart from this last technique, the use of an autoencoder
[23] was tested for the same purpose as PLS, in order to use
the data generated at the encoder output as low-dimensional
data input in the classifier. However, its explanation will not
be extended since it is not finally used in the CAD pipeline
due to worse results than PLS for this dataset.

3) Classification
A simple solution to the multiclass classification problem
is to build binary classifiers and combine them. Classical

aggregation techniques of binary classifiers in multiclass
problems are usually based on the error correcting output
codes (ECOC). Given the multiclass classification problem
on N classes, the simplest example is the one-vs-rest model,
where the output code is generated by N binary classifiers
that exhaust all possible one class versus the N − 1 rest of
the classes classifications. After that, a decoding algorithm
is used to assign a final class to each generated output code.
Considering the output as a lengthN codeword, the decoding
algorithm can be modelled as a communication problem,
where the class information is being transmitted [13].

We consider here the following optimized approach to the
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a) Uncorrected values in four different features of the training set

b) Corrected values in four different features of the training set

FIGURE 4. Training data visualization using four features for corrected and
uncorrected values.

multiclass classification: a binary classifier is trained on the
Ks = N(N − 1)/2 one-vs-one individual classification
tasks using the transformed data matrix Dt, producing a
six-bit codeword output for each sample. This output is
aggregated to produce a final prediction on the test sample,
defined as a decoding process in ternary ECOC algorithms,
taking values on the four possible classes: HC, MCI, cMCI
and AD. The Hamming decoding [9] is used to map each
possible codeword into a single output class as HD(x, yi) =∑Ks

j=1 1/2(1 − sign(xjyji )). The justification of this choice
lies on the fact that the classes are nested. Concretely, the
MCI class is considered as an early stage of AD, although not
free of controversy [11], [31]. In any case, the class cMCI is
an early stage of AD, and thus can be considered as a subclass
of the AD class. For this reason, a ternary ECOC with three
possible symbols allows for reduction of the non-relevant
class influence in the codeword coding and decoding, and
thus managing the possible errors arising from the difference
on binary classification accuracies.

Different classifiers are used to perform the individual
binary tasks: support vector machine (SVM), including the
use of kernel methods [43], nearest neighbours (NN) and
decision trees, using different ensemble techniques: bagging
[1], boosting [16] and random forest [2]. Moreover, deep
learning techniques are also used, such as multilayer percep-
tron (MLP) and convolution neural network (CNN) [28], for
reference and comparison to other published results of the
challenge [10], [34]. For evaluation purposes and following
the results found in [22], an upper bound can be set on
the actual risk based on the re-substitution estimation of the
empirical error |Pact(f(x)) − Pemp(f(x))| ≤ γemp for any
classifier f(x) at a confidence level η given by:

γemp ≤

 1

2l
ln

2
∑Z−1

k=0

(
l − 1
k

)
η


1
2

(5)

III. RESULTS
To estimate the performance of the proposed method, to-
gether with the parameter fitting, two strategies were em-
ployed in this paper. A 10-fold cross validation strategy
and the re-substitution estimation of the actual error on the
training set. Once the parameters were optimized, the test set
was used to estimate the accuracy, recall and F1-score.

Regarding the parameters of (1) and the number of PLS
components, a grid search strategy was employed. Fig. 5
shows the accuracy results on the training set for each pair
(number of PLS components, number of features), where the
number of features is selected by order from the pool of SR,
affected by the value of n. It can be claimed that a wide
range of values around 10 PLS components and 10 selected
features produce competitive classification results, whereas
a choice of PLS components above 3 and below 20 is also a
good compromise independently from the number of features
selected. This can be related to the robustness of the method.

The grid search results indicate that a reduced number
of selected components, around 23, is optimum for classi-
fication results, in combination with a reduced number of
PLS components (around 13). The regions that were selected
are depicted in Fig. 6, excluding the MMSE score and age,
also selected. This optimum set of features was processed
as described in section II-B2, providing the training and test
data for classification.

Table 4 summarizes the classification results on the train-
ing and testing sets for the different classifiers. The results
are also summarized for the test set excluding the dummy
subjects. SVM outperforms every other classifier, and linear
kernel provides slightly better performance than non-linear
kernels. However, even the simplest 1-NN classifier provides
very competitive results if related to the challenge results.
Challenge results are summarized in tables 5 and 6. The
competitive performance of every classifier is a sign of the
preprocessing importance, revealing that the feature selection
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FIGURE 5. Accuracy values for each pair number of PLS components, final number of selected features.

Training Test Test (without dummies)
Class Accuracy recall F1-score Accuracy recall F1-score Accuracy recall F1-score
HC 0.43 0.41 0.42 0.43 0.39 0.41 0.80 0.67 0.72
MCI 0.23 0.27 0.25 0.23 0.39 0.29 0.45 0.62 0.52
cMCI 0.50 0.48 0.49 0.46 0.31 0.37 0.62 0.59 0.61
AD 0.75 0.70 0.73 0.38 0.44 0.41 0.80 0.78 0.79

mean 0.48 0.47 0.47 0.38 0.39 0.37 0.67 0.67 0.66

TABLE 3. Performance results by class using the selected and extracted
features and the one-vs-one classification scheme with SVM.

and extraction provide a very relevant set of features. Fur-
thermore, the fact that more complex techniques are the ones
with the lowest performance, such as CNN and deep learning
algorithms in general, is consistent. It is mainly due to the use
of such a low number of subjects and features, since these
techniques are especially focused on problems with a large
and high-dimensional dataset.

Table 3 summarizes the linear SVM classification results
obtained following the proposed aggregation method. F1-
score and recall are also reported during the training and
test phases. The results are detailed for each class: HC,
MCI, cMCI and AD. As expected, AD and cMCI are the
classes with highest recognition values, whereas MCI report
recognition rates slightly over random classification during
training, but improved values on test. Overall, recognition
rates are several percentage points over the challenge winner
approach, outperforming every proposal of the challenge in
the partial ranking (Table 5) and in the final ranking (Table
6).

A study about the control of the family-wise error (FWE)
rate in our CAD system was performed based on the re-
substitution estimation. A dataset of HCs containing 100
samples, 60 from the training set and 40 from the test set
(without dummies), was used. The dataset was randomly
divided into two subsets of 50 subjects each throughout 1000

Training Test (without dummies)
Ensemble Clasifier Accuracy Recall F1-score Accuracy Recall F1-score

- SVM lineal 0.48 0.47 0.47 0.67 0.52 0.66
- SVM RBF 0.47 0.47 0.48 0.67 0.52 0.63

LogitBoost Decision Tree 0.48 0.44 0.51 0.64 0.46 0.60
Random forest Decision Tree 0.48 0.44 0.52 0.64 0.51 0.57

AdaBoost Decision Tree 0.50 0.42 0.47 0.60 0.43 0.52
- 5-NN 0.52 0.43 0.44 0.60 0.44 0.46
- 1-NN 0.52 0.39 0.42 0.58 0.39 0.44
- 3-NN 0.51 0.40 0.39 0.58 0.41 0.40
- MLP 0.56 0.57 0.56 0.60 0.60 0.59
- CNN 0.55 0.55 0.54 0.48 0.47 0.48

TABLE 4. Performance results for selected features using different classifiers.

iterations. Then, the re-substitution estimation was evaluated
under the null hypothesis that the actual risk was equal to
0.50 (no group difference in the feature set should be true),
where the number of PLS components (dimensions) was
chosen equal to 1. The re-substitution accuracy obtained was
equal to 0.612 with a standard deviation of 0.037. The upper
bound associated to this configuration is equal to 0.136, with
a significance level η = 0.05 as shown in equation 5, thus the
actual risk is then at most 0.523±0.037. As a conclusion, we
cannot reject the null-hypothesis in the test.

On the other hand, If a 10-fold cross validation strategy
is tested instead of re-substitution, an accuracy of 0.583 ±
0.06 is obtained with 13 PLS components. Although we can
reject the null hypothesis with the current test, it is possible to
not rejecting the null hypothesis with a confidence interval of
0.10, a value higher than the usual one of 0.05, but interesting
in the neuroimaging field [12].

The last verification of the significance of the selected
features is assessed using the actual risk [18]. Following
(5), we calculated the upper bound considering the final 13-
dimensional dataset in each one-vs-one classification. The
sample size in each comparison is 200 that is, by combining
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FIGURE 6. Selected regions after one vs. one t-test feature selection.

both training and test (without dummies) sets, a total of 200
subjects are considered in a two-class analysis. With η =
0.05, the upper bound is equal to 0.343. Table 7 shows em-
pirical errors and actual risks of each one-vs-one comparison
according to the upper bound. HCvsMCI and MCIvscMCI
actual risks are above 0.50 at the worst case, which means
that the selected features cannot be accepted as significant
to classify these conditions at the given significance level.
Nevertheless, the difficulty of separating these conditions is
well-known, thus in general terms a high relevance of the
selected features is observed.

An additional study was conducted to detect the relation-
ship between the actual error and dimensionality used in each
classifier. Fig.7 shows that the actual risk is never less than
0.50 in the HCvsMCI comparison, whilst in the MCIvscMCI
classification the number of PLS components needed for
achieving that condition is less or equal to 6. Nevertheless,
the use of 6 PLS components would only decrease the overall
accuracy down to 60%.
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Team 2nd Ranking (Partial)
Stavros Dimitriadis – Dimitris Liparas 0.35999

GRAAL 0.35599
Bari Medical Physics Group 0.34799

BrainE 0.34399
gogogo 0.336

DevinAnnaWilley 0.336
fengxy 0.332

ChaseCowart 0.328
BoyX 0.328

SiPBA-UGR 0.324
Jean-Baptiste SCHIRATTI 0.324

utaphys 0.32
Salvatore C. | Castiglioni I. 0.31199

Sørensen 0.30399
Neuroimage Division – CIFASIS – ARG 0.30399

agrickard 0.30399
JocelynHoye 0.30399
Loris Nanni 0.29199
Webiolab 0.276

Proposed method 0.38

TABLE 5. Partial results of the challenge by group, using the whole test set

Team 3rd Ranking (Automatically selected)
Stavros Dimitriadis – Dimitris Liparas 0.61875

SiPBA-UGR 0.5625
Sørensen 0.55

Bari Medical Physics Group 0.55
GRAAL 0.54375

Jean-Baptiste SCHIRATTI 0.54375
Neuroimage Division – CIFASIS – ARG 0.54375

Salvatore C. | Castiglioni I. 0.5375
Loris Nanni 0.53125

BrainE 0.525
utaphys 0.525
gogogo 0.525

ChaseCowart 0.51875
agrickard 0.50625
fengxy 0.5

JocelynHoye 0.5
DevinAnnaWilley 0.46875

BoyX 0.4625
Webiolab 0.2125

Proposed method 0.67

TABLE 6. Final results of the challenge by group, using the test set without
dummies.

Classifier Empirical error Upper bound Actual risk
HC vs MCI 0.320 0.343 0.663
HC vs cMCI 0.135 0.343 0.478
HC vs AD 0 0.343 0.343

MCI vs cMCI 0.240 0.343 0.583
MCI vs AD 0.065 0.343 0.408
cMCI vs AD 0.130 0.343 0.473

TABLE 7. Actual risk associated to each one-vs-one classifier using the
selected and extracted features (13) and SVM by resubstitution (200 samples).
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FIGURE 7. Estimates of actual risk in each one-vs-one classifier for several
dimensions using a sample size of 200 subjects.

IV. DISCUSSION
The results presented reveal the importance of feature selec-
tion and extraction in the CAD pipeline of this challenge
problem. Concretely, the default sorting of the 429 cortical
thickness values provided by the organizers of the challenge
seem to contain already important information for classi-
fication. The best results are obtained by removing some
of the original set of default sorted features, by applying
the proposed minimum filter. After the feature selection by
means of the filter in (1), it is relevant to emphasize that
there is not an equilibrium between right and left hemi-
sphere regions. Specifically, there is a dominance of left-
sided hemisphere regions, which is coherent with recent
findings in CAD diagnosis of AD [29]. If compared with
other competent CAD proposals of the challenge, such as
the winner Dimitriadis-Liparas (DL) proposal [10], there
is a significant overlap with the feature extraction results.
The DL approach also results in a left-hemisphere regions
predominance. Therefore, a successful feature selection and
extraction method is critical for optimal performance.

The use of t-tests as sorting criteria for filtering features
and the upper-bound tests for assessing the feature relevance
are justified on the basis of the Kolmogorov-Smirnov (KS)
and the upper bound tests [18]. Moreover, the KS test quan-
tifies the departure of the empirical distribution function of
the features from a cumulative distribution function of a
particular statistical distribution. In this case, the assumption
underlying a t-test implies that the feature values follow a
normal distribution, which is an acceptable assumption in the
light of the results of the KS test presented in Fig. 8. It is
important to stress that direct comparisons between different
ti values at different tests are never performed, but the values
of ti are used for feature sorting. In addition, we employed a
novel approach [18] for testing relevance in a set of features
based on a data-driven approach (agnostic or free-parameter
model). The latter is based on the re-substitution error esti-
mate and the theoretical upper-bound of the empirical errors
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that provide a confidence interval for performing hypothesis
testing.

The present methodology can be applied in other multi-
class classification problems, in which there is a hierarchy
and overlap between classes. Furthermore, the computation
of the final selected algorithm is fast, which is an advantage
over tested deep learning techniques, which require a longer
processing time associated with network training.

Concerning the limitations on the present work, the prepro-
cessing of outliers reveal a high redundancy on the original
data. Therefore, the pre-selection of brain regions for the
challenge, and the extraction of cortical thickness affects the
maximum achievable performance in several ways. Firstly,
the limited number of training samples makes statistical esti-
mations prone to bias, a widely known-problem in medical
imaging [4], [22]. The cross validation technique used in
this work for performance estimations can be considered as
“pessimistic” [27], and therefore some mismatches between
training fitting and final test estimations can be expected,
limiting the capabilities of the system for reaching its highest
performance at test level.

Even though the proposed CAD was evaluated using the
test set labels, which were not available during the challenge
competition, the robustness of the method would have led
to the best competition results with just a few submissions.
Table 4 and Fig. 5 illustrate how the method is robust against
small variations on the optimal parameters and classifier
choice, providing with accuracy values over 60% for a wide
range of combinations.

V. CONCLUSION
Using the available data for A Machine learning neuroimag-
ing challenge for automated diagnosis of Mild Cognitive
Impairment, we developed a post-competition method for
multiclass classification. The method is based on a one vs.
one approach for feature selection, PLS feature extraction
and classification. The presented methodology is capable of
identifying the most relevant features for a multiclass classi-
fication by a sorting-and-filtering method, and is evaluated
using different parameters and classifiers. The results are
robust against variations of parameters and classifiers, and
they outperform all the proposals submitted to the challenge
by more than 5 percentage points in accuracy. The method is
also coherent with recent findings in CAD of AD, and can be
applied to other multiclass classification problems.
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