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We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive
decay B̄ → Dlν̄ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field
configurations generated with 2þ 1 flavors of asqtad-improved staggered sea quarks. The ensembles
encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and
down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use
improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use
asqtad-improved staggered fermions. We extrapolate our results to the physical point using rooted
staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend
them to the full kinematic range using model-independent functions based on analyticity and unitarity. We
present our final results for fþðq2Þ and f0ðq2Þ, including statistical and systematic errors, as coefficients of
a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-
factor data jointly with the experimentally measured differential decay rate from BABAR to determine the
CKM matrix element, jVcbj ¼ ð39.6� 1.7QCDþexp � 0.2QEDÞ × 10−3. As a byproduct of the joint fit we
obtain the form factors with improved precision at large recoil. Finally, we use them to update our
calculation of the ratio RðDÞ in the Standard Model, which yields RðDÞ ¼ 0.299ð11Þ.
DOI: 10.1103/PhysRevD.92.034506 PACS numbers: 12.38.Gc, 13.20.He, 12.15.Hh

I. INTRODUCTION

Precision tests of the Standard Model (SM) seek to
find discrepancies that may indicate the presence of new
physics. The SM requirement of a unitary Cabibbo–
Kobayashi–Maskawa (CKM) weak mixing matrix provides
a good opportunity for such a test. The unitarity-triangle
test checks the orthogonality of the first and third rows of
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the CKM matrix. It requires consistency between results
extracted from the experimental measurements and theo-
retical calculations of a wide variety of flavor- and
CP-violating observables. Although recent results have
been roughly consistent with unitarity [1,2], some dis-
agreements persist and require further attention. The
CKM parameter jVcbj plays an important role in the
unitarity triangle test, since it normalizes the lengths of
sides of the triangle and contributes to tension in the
unitarity constraint.
The SM parameter jVcbj is determined through the

combination of an experimental measurement of a branch-
ing fraction and the theoretical calculation of the under-
lying hadronic form factor(s). There are two common
approaches [3] using (1) the exclusive processes B̄→Dlν
and B̄ → D�lν̄ with lattice-QCD determinations of the
relevant hadronic form factors [4,5] or (2) the inclusive
decay B̄ → Xclν̄ to any charm-containing final state Xc
and the operator-product and heavy-quark expansions to
describe strong-interaction effects [6,7]. It is troublesome
that the most recent results for jVcbj from these exclusive
and inclusive determinations disagree at the 3σ level
[3,5]. It is unlikely that this difference is due to new
physics effects [8], and further work is needed to refine
the determinations.
Reducing the error in the determination of jVcbj requires

both experimental and theoretical effort. Recent work by
the BABAR Collaboration [9] has provided better measure-
ments of the decay rate. The latest results from the Belle
Collaboration for this process are still preliminary [10].
Further improvements will come from Belle II. In this work
we improve the exclusive determination of jVcbj from the
decay process B̄ → Dlν̄ by providing the first unquenched
lattice-QCD calculation of the relevant form factors with a
complete error budget and small statistical and systematic
errors.
Traditionally, experimental measurements are first

extrapolated to zero recoil, where the comparison with
theory to obtain jVcbj occurs, using a parametrization of the
momentum dependence from Caprini, Lellouch, and
Neubert (CLN) [11]. Indeed lattice calculations at zero
recoil momentum are simpler, and for the exclusive process
B̄ → D�lν̄ this method yields a very precise determination
of jVcbj, which is described in our companion work [5].
However, due to the more severe phase space suppression
of the B̄ → Dlν̄ rate near zero recoil (compared with
B̄ → D�lν̄) the extrapolation of the experimental data to
zero recoil is a source of significant uncertainty. This results
in determinations of jVcbj from B̄ → Dlν̄ that are less
precise than they have to be. Here we calculate the form
factors for B̄ → Dlν̄ for a range of recoil momenta and
parametrize their dependence on momentum transfer using
the model-independent z expansion of Boyd, Grinstein and
Lebed [12]. We fit the experimental and lattice data
together as a function of momentum transfer and determine

jVcbj from the relative normalization over the entire range
of recoil momenta.
Where previous calculations of this process at nonzero

recoil ignored effects of sea quarks [13], ours includes
them. The use of asqtad-improved staggered fermions
and improved Wilson (“clover”) quarks reduces lattice
discretization errors. A preliminary determination of
jVcbj from B̄ → Dlν̄ with a very small subset of the
present asqtad ensembles was presented in Ref. [14]. That
calculation was done only at zero recoil and used only
lattices with spacing approximately 0.12 fm, so a con-
tinuum extrapolation was not possible. The broad range
of lattice spacings and sea-quark-mass ratios in our
current study gives confidence in the extrapolation to
physical quark masses and zero lattice spacing. More
recently, in a related project of ours [15], the ratio of form
factors for Bs → Dslν to B → Dlν decays was obtained
using only four asqtad ensembles, i.e., with two different
light sea-quark masses at two lattice spacings. This data
set was also used to obtain the first Standard-Model
prediction for RðDÞ≡ BðB → DτνÞ=BðB → DlνÞ from
unquenched lattice QCD in Ref. [16]. The present work
uses all 14 ensembles and uses a slightly different
analysis. These are the first such calculations to combine
all of the ingredients listed above.
Preliminary results for the B → D form factors from this

project were presented in [4]. The final analysis presented
here includes a more sophisticated treatment of the match-
ing factors as well as more refined estimates for the
renormalization and heavy-quark discretization errors.
This article is organized as follows. In Sec. II we review

the formalism and our strategy for extracting the form
factors at nonzero recoil. In Sec. III we give details of the
ensembles and simulation and discuss our determination of
the form factors and the chiral-continuum extrapolation.
We discuss systematic errors in Sec. IV. In Sec. V we
present fits to our lattice data for the two form factors fþ
and f0 and a joint fit that combines our lattice data with
the 2009 BABAR measurements [9], leading, finally, to
our result for jVcbj. We discuss our results in Sec. VI.
Appendix A discusses technical details regarding the
tuning of the bare-quark masses. Appendix B derives the
pattern of heavy-quark discretization effects and discusses
some details of matching lattice gauge theory with heavy
quarks to continuum QCD.

II. FORM FACTORS

A. Continuum form factors

The hadronic interaction in the process B̄ → Dlν̄ is
determined by the transition matrix element of the vector
current Vμ ¼ c̄γμb, which is conventionally decomposed in
terms of the vector and scalar form factors fþðq2Þ and
f0ðq2Þ as
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hDðpDÞjVμjBðpBÞi

¼ fþðq2Þ
�
ðpB þ pDÞμ −M2

B −M2
D

q2
qμ
�

þ f0ðq2Þ
M2

B −M2
D

q2
qμ: ð2:1Þ

Here pB and pD are the momenta of the B and D mesons,

MB andMD are the respective masses, and q ¼ pB − pD is

the momentum transferred to the leptons. In the approxi-

mation that the masses of the leptons l ¼ e; μ; νe; νμ are

much smaller than the B and D mass differenceMB −MD,

the differential decay rate is

dΓ
dw
ðB̄ → Dlν̄Þ

¼ jη̄EWj2
G2

FjVcbj2M5
B

48π3
ðw2 − 1Þ3=2r3ð1þ rÞ2GðwÞ2;

ð2:2Þ

where jη̄EWj2 accounts for electroweak corrections dis-

cussed below, GF is the Fermi weak decay constant, jVcbj
is the desired CKM matrix element, w ¼ v · v0 is the recoil
parameter, v ¼ pB=MB and v0 ¼ pD=MD are the hadronic

velocities, and G is related to fþ through

fþðwÞ2 ¼
ð1þ rÞ2

4r
GðwÞ2 ð2:3Þ

with r≡MD=MB ¼ 0.354.
The alternative parametrization in terms of the form

factors hþ and h− is convenient in heavy-quark effective
theory (HQET) and heavy-light meson chiral perturbation
theory:

hDðpDÞjVμjBðpBÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBMD
p ¼ hþðwÞðvþ v0Þμ þ h−ðwÞðv − v0Þμ:

ð2:4Þ

These form factors are related to fþ and f0 through

fþðq2Þ ¼
1

2
ffiffiffi
r
p ½ð1þ rÞhþðwÞ − ð1 − rÞh−ðwÞ�; ð2:5Þ

f0ðq2Þ ¼
ffiffiffi
r
p �

wþ 1

1þ r
hþðwÞ − w − 1

1 − r
h−ðwÞ

�
; ð2:6Þ

where q2 ¼ M2
B þM2

D − 2wMBMD. We note, also, the
kinematic constraint fþð0Þ ¼ f0ð0Þ at q2 ¼ 0, which
corresponds to w ¼ ðM2

B þM2
DÞ=ð2MBMDÞ ≈ 1.59. We

also have

GðwÞ ¼ hþðwÞ −
�
1 − r
1þ r

�
h−ðwÞ: ð2:7Þ

B. Form factors from lattice matrix elements

We use the local Fermilab-improved vector current for
the quark transition x → y

Vμ
xy ¼ Ψ̄xγ

μΨy; ð2:8Þ

where the subscripts denote flavor, Ψ is the “rotated”
field [17]

Ψ ¼ ð1þ d1γ · DlatÞψ ; ð2:9Þ

and ψ is the heavy-quark field in the action. The lattice
current Vμ is related to the continuum current Vμ through

Zμ
xyV

μ
xy ≐ Vμ

xy; ð2:10Þ

where “≐” denotes the equality of matrix elements.
Following Refs. [18] and [19], we define the correction
matching factor as the double ratio of matching factors for
flavor off-diagonal currents to those for flavor-diagonal
currents:

ρ2Vμ ¼
ZVμ

cb
ZVμ

bc

ZV4
cc
ZV4

bb

; ð2:11Þ

where ρVμ ¼ 1þ 4παsðq�Þρ½1�Vμ þOðαsðq�Þ2Þ is determined
to one-loop order in lattice perturbation theory [19]. It is
found to be quite close to 1 because of cancellations in the
ratio of similar quantities, including cancellations of tad-
pole diagrams. The truncation error is expected to be small
because αsðq� ¼ 2=aÞ ≈ 0.2.
The matching factor ρVμðwÞ depends, in principle, upon

the velocity transfer w. At present we have calculated only
ρV4ð1Þ for the quark masses and lattice spacings in our
project. Calculation of the spatial correction ρVi is more
difficult because, even for zero recoil, one must calculate it
for nonzero momentum. Thus we have calculated ρVið1Þ
only for the simpler case mca ¼ 0, but our lack of
knowledge of the mc dependence of the one-loop correc-
tion to ρVi makes only a small contribution to our final
uncertainty. The w dependence of ρVi is also unavailable.
Below we note where these issues arise.
To compute the form factors hþ and h− at arbitrary

recoil, we need the lattice matrix elements of both the
temporal and spatial vector currents, V4 and V. In practice,
we use ratios of lattice correlators in which the flavor-
conserving renormalization factors are automatically
included, as discussed below. These ratios also suppress
statistical fluctuations and systematic errors. The remaining
correction factors ρV4 and ρVi are applied after fitting the
ratios. We apply this correction in Sec. III F.
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Our calculation is done in the B-meson rest frame for any
D-meson recoil momentum p. We compute the double ratio

Rþ ¼
hDð0ÞjV4

cbjBð0ÞihBð0ÞjV4
cbjDð0Þi

hDð0ÞjV4
ccjDð0ÞihBð0ÞjV4

bbjBð0Þi
ð2:12Þ

and the single ratios

QþðpÞ≡ hDðpÞjV
4jBð0Þi

hDð0ÞjV4jBð0Þi ; ð2:13Þ

R−ðpÞ≡ hDðpÞjVjBð0ÞihDðpÞjV4jBð0Þi ; ð2:14Þ

xfðpÞ≡ hDðpÞjVjDð0ÞihDðpÞjV4jDð0Þi : ð2:15Þ

Note that QþðpÞ is the ratio of B → D matrix elements at
nonzero and zero recoil, and that xfðpÞ is computed only
from the flavor-diagonal transition D → D. As spelled out
below, we use RþðpÞ, QþðpÞ, and R−ðpÞ to obtain hþðwÞ
and h−ðwÞ, and xfðpÞ to obtain the recoil w. The flavor-
conserving renormalization factors ZV4

bb
and ZV4

cc
cancel

exactly in the double ratio Rþ, which was introduced by
Hashimoto et al. and used to obtain the B → Dlν form
factor at zero recoil in quenched lattice QCD [20].
From Eq. (B15), the 3-vector xf yields the velocity

without any matching ambiguities:

xf ¼
v0

wþ 1
: ð2:16Þ

Because w2 ¼ 1þ v02 (when the initial meson is at rest),
one finds

wðpÞ ¼ 1þ x2fðpÞ
1 − x2fðpÞ

: ð2:17Þ

Thus, even the kinematic variable w is determined dynami-
cally from a ratio of matrix elements.
The other ratios require matching factors. It is convenient

to define

Rþ ¼ ρ2V4ð1ÞRþ; ð2:18Þ

QþðpÞ ¼
ρV4ðwÞ
ρV4ð1Þ QþðpÞ; ð2:19Þ

R−ðpÞ ¼
ρViðwÞ
ρV4ðwÞR−ðpÞ: ð2:20Þ

We derive these factors and discuss how we handle them in
Appendix B. Note that Rþ reduces to

ffiffiffiffiffiffiffi
Rþ

p ¼ hþð1Þ þmatching and discretization errors:

ð2:21Þ
Also, Qþð0Þ ¼ Qþð0Þ ¼ 1 by construction. We then can
obtain hþ and h− from

hþðwðpÞÞ ¼
ffiffiffiffiffiffiffi
Rþ

p
QþðpÞ½1 −R−ðpÞ · xfðpÞ�; ð2:22Þ

h−ðwðpÞÞ ¼
ffiffiffiffiffiffiffi
Rþ

p
QþðpÞ

�
1 −R−ðpÞ · xfðpÞ

x2fðpÞ
�
; ð2:23Þ

as in Eq. (2.21) up to matching and discretization errors.

III. ANALYSIS

A. Lattice action and parameters

Our calculation uses 14 ensembles of gauge-field con-
figurations generated in the presence of 2þ 1 flavors
of asqtad-improved staggered sea quarks by the MILC
Collaboration [21–23]. Ensembles are indicated graphi-
cally in Fig. 1, and they are tabulated in Table I. There are
four lattice spacings, a ≈ 0.12 fm, 0.09 fm, 0.06 fm, and
0.045 fm, and light sea-quark to strange sea-quark mass
ratios m̂0=m0s ranging from 0.4 to 0.05. The strange sea-
quark mass is set approximately to its physical value. For
the light valence quarks we use the asqtad action. Light-
quark propagators are converted to improved “naive”
propagators as in Ref. [24] to implement the standard
Dirac spin algebra. In this study, masses of the light valence
quarks are always equal to the sea-quark masses. For the
heavy valence quarks we use the Fermilab interpretation of
the clover action with the parameters listed in Table II.

0.0 0.090.06 0.150.12
a (fm)

0.00

0.10

0.20

0.30

0.40

0.50

m̂
′/m

s′

FIG. 1 (color online). Range of lattice spacings and light-quark
masses used here. The area of each disk is proportional to the
number of configurations in the ensemble.
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Two-point and three-point correlators are computed from
four equally spaced source times per configuration, but
with random offsets in time and space to reduce correla-
tions between successive gauge-field configurations within
an ensemble. We performed a blocking study to look for
residual autocorrelations, and found that the statistical
errors did not change significantly with block size. Thus
we do not block the data in this work. The masses of the
heavy valence quarks were tuned so that the kinetic masses
of the Ds and Bs mesons were equal to their physical
values. A detailed discussion of tuning is given in the
appendix of Ref. [5], where we show that we get good

agreement between the lattice values of the Ds and Bs
hyperfine splittings and their experimental values. The
simulation values of the heavy-quark masses are not
quite the same as our best-tuned values, which were
determined a posteriori. Postsimulation adjustment for
heavy-quark-mass tuning is described in Sec. III D.
After fixing the lattices to Coulomb gauge, two types

of interpolating operators for the D meson are used,
namely, a local operator and a smeared operator based
on a Richardson 1S wave function [39]. For the B meson
we use only the 1S operator. These two operators have
different overlap with excited states, so computing both

TABLE I. Parameters of the lattice-gauge-field ensembles. The columns from left to right are the approximate
lattice spacing in fm, the bare sea-quark masses in lattice units am̂0=am0s, the lightest pseudoscalar in MeV, the root-
mean-square (rms) mass of the pion taste multiplet in MeV, the dimensionless factor MP

πL, the dimensions of the
lattice in lattice units, the number of configurations in each ensemble (four sources each), and the tadpole-
improvement factor u0 (obtained from the average plaquette).

a (fm) am̂0=am0s MP
π (MeV) MRMS

π (MeV) MP
πL Lattice size Configs u0 data DOI

≈ 0.12 0.02=0.05 560 670 6.2 203 × 64 2052 0.8688 [25]
0.01=0.05 390 540 4.5 203 × 64 2259 0.8677 [26]

0.007=0.05 320 500 3.8 203 × 64 2110 0.8678 [27]
0.005=0.05 270 470 3.8 243 × 64 2099 0.8678 [28]

≈ 0.09 0.0124=0.031 500 550 5.8 283 × 96 1996 0.8788 [29]
0.0062=0.031 350 420 4.1 283 × 96 1931 0.8782 [30]

0.00465=0.031 310 380 4.1 323 × 96 984 0.8781 [31]
0.0031=0.031 250 330 4.2 403 × 96 1015 0.8779 [32]

0.00155=0.031 180 280 4.8 643 × 96 791 0.877805 [33]
≈ 0.06 0.0072=0.018 450 470 6.3 483 × 144 593 0.8881 [34]

0.0036=0.018 320 340 4.5 483 × 144 673 0.88788 [35]
0.0025=0.018 260 290 4.4 563 × 144 801 0.88776 [36]
0.0018=0.018 220 260 4.3 643 × 144 827 0.88764 [37]

≈ 0.045 0.0028=0.014 320 330 4.6 643 × 192 801 0.89511 [38]

TABLE II. Parameters of the heavy valence quarks. The approximate lattice spacing and bare sea-quark masses in
the first two columns identify the ensemble. The remaining columns show the coefficient of the clover term in the
SW action cSW, the bare hopping-parameter κ, and the rotation parameter in the current d1. The primes on κ
distinguish the simulation from the physical values.

≈a (fm) am̂0=am0s cSW κ0b d1b κ0c d1c

0.12 0.02=0.05 1.525 0.0918 0.09439 0.1259 0.07539
0.12 0.01=0.05 1.531 0.0901 0.09334 0.1254 0.07724
0.12 0.007=0.05 1.530 0.0901 0.09332 0.1254 0.07731
0.12 0.005=0.05 1.530 0.0901 0.09332 0.1254 0.07733
0.09 0.0124=0.031 1.473 0.0982 0.09681 0.1277 0.06420
0.09 0.0062=0.031 1.476 0.0979 0.09677 0.1276 0.06482
0.09 0.00465=0.031 1.477 0.0977 0.09671 0.1275 0.06523
0.09 0.0031=0.031 1.478 0.0976 0.09669 0.1275 0.06537
0.09 0.00155=0.031 1.4784 0.0976 0.09669 0.1275 0.06543
0.06 0.0072=0.018 1.4276 0.1048 0.09636 0.1295 0.05078
0.06 0.0036=0.018 1.4287 0.1052 0.09631 0.1296 0.05055
0.06 0.0025=0.018 1.4293 0.1052 0.09633 0.1296 0.05070
0.06 0.0018=0.018 1.4298 0.1052 0.09635 0.1296 0.05076
0.045 0.0028=0.014 1.3943 0.1143 0.08864 0.1310 0.03842
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helps us remove excited-state contributions. We generate
three-point functions in a standard way by fixing the
position of the D and B mesons to a separation T in
imaginary time and then varying the time t of the vector
current. Calculations at two adjacent time separations T are
carried out in each case to control the effects of oscillating
staggered-fermion propagators. We rotate the heavy-quark
fields as in Eq. (2.9) using the tadpole-improved tree-level
values for d1 listed in Table II, so that the vector current is
tree-level improved. Calculations are made at several
choices of three-momentum. In units of 2π=L, for this
study we use five momenta (0,0,0), (0,0,1), (0,1,1), (1,1,1),
and (2,0,0). Results at larger momenta tend to have
significantly larger statistical errors, and also suffer from
larger momentum-dependent discretization errors. In the
two-point correlator these momenta are projected at the
sink and in the three-point correlator, at the current. In
the latter case the three-momentum of the B meson is set
to zero.

B. Fitting strategy

We need both two-point and three-point correlation
functions to construct the form factor introduced in
Sec. II B. We use interpolating operators OXaðp; tÞ of
spatial momentum p and time t with X ∈ fB;Dg and
a ∈ f1S; dg. The notation d signifies a delta function
(point) source, while 1S denotes a 1S Richardson wave-
function. See Ref. [40] for details. The correlation functions
can be expressed in terms of operator matrix elements:

C2pt;Xa→Xbðp; tÞ ¼ hO†
Xbðp; 0ÞOXaðp; tÞi; ð3:1Þ

C3pt;Xa→Yb
μ ðp; tÞ ¼ hO†

Ybð−p; 0ÞVμðp; tÞOXað0; TÞi; ð3:2Þ

where T is the imaginary time separation between the B and
D mesons.
The spectral decomposition of the two-point correlator is

C2pt;Xa→Xbðp;tÞ¼
X
n

snðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZXa;nðpÞZXb;nðpÞ

p
2EnðpÞ

× ½expð−EnðpÞtÞþexpð−EnðpÞðNt− tÞÞ�;
ð3:3Þ

where there are either nonoscillating terms with snðtÞ ¼ 1
or staggered-fermion opposite-parity oscillating terms
snðtÞ ¼ −ð−1Þt, Nt is the lattice extent in time, and
ZXa;n is the overlap coefficient. For the three-point func-
tion, the decomposition is similar:

C3pt;Xa→Yb
μ ðp; tÞ ¼

X
n;m

snðtÞsmðT − tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZYb;nðpÞ

q

×
e−EnðpÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnðpÞ

p hYb; nðpÞjVμjXa;mð0Þi

×
e−MmðT−tÞffiffiffiffiffiffiffiffiffiffi

2Mm
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZXa;mð0Þ

q
; ð3:4Þ

where we have assumed t < T ≪ Nt, so we may
neglect wraparound terms with t → Nt − t and T − t →
Nt − ðT − tÞ.
The double ratio Rþ can be calculated very precisely

from

Rþ;bðt; TÞ ¼
C3pt;B;1S→Db
4 ð0; tÞC3pt;Db→B;1S

4 ð0; tÞ
C3pt;Db→Db
4 ð0; tÞC3pt;B;1S→B;1S

4 ð0; tÞ : ð3:5Þ

This quantity depends on t, T and the D-meson interpolat-
ing operator, labeled by b. The dependence arises from
contributions from excited states and opposite-parity oscil-
lating states. As in Refs. [5,41] and [42] we suppress
contributions from oscillating states by averaging

R̄þ;bðt; TÞ≡ 1

2
Rþ;bðt; TÞ þ

1

4
Rþ;bðt; T þ 1Þ

þ 1

4
Rþ;bðtþ 1; T þ 1Þ: ð3:6Þ

We drop the bar henceforth. We use a similar method for
the other three-point correlation functions. We find that the
suppression of oscillating states for B → D correlators is
similar to that of our previous work on B → D�lν [5]. In
particular, the contribution from the first oscillating B- and
D-meson excited states, which does not itself oscillate in
time, is reduced by a factor of ∼5–12 using the average in
Eq. (3.6), where greater suppression occurs for finer lattice
spacings.
For large t and T − t, excited-state contributions are

negligible, giving the desired result,

Rþ;bðt; TÞ → Rþ; ð3:7Þ

as a plateau in the ratio vs t, as illustrated in Fig. 2. The
leading corrections to the plateau arise from contributions
from the first excited D- and B-meson states. For large t
and T − t, their contributions to the correlator double
ratio fall off as exp½−ΔMt� and exp½−ΔMðT − tÞ�, where
ΔM ¼ ΔMB or ΔMD, the splitting between the ground
state and first excited state of the B and D mesons,
respectively. Since they are both small, for fitting the ratio,
we use the approximation
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Rþ;bðt; TÞ ≈ Rþ þ ARþ;b expð−ΔMDtÞ
þ BRþ;b exp½−ΔMBðT − tÞ�
þ CRþ;b expð−ΔMBtÞ
þDRþ;b exp½−ΔMDðT − tÞ� expðΔMBtÞ:

ð3:8Þ

However, since ΔMD ≈ ΔMB we construct the fit model
from only the Rþ, A, and B terms. We choose separations T
large enough that we can safely neglect the last term.
Similarly, we introduce a time- and interpolating-

operator-dependent ratio

Qþ;bðp; t; TÞ≡ C3pt;B;1S→Db
4 ðp; tÞ

C3pt;B;1S→Db
4 ð0; tÞ

EDZDbð0Þ
MDZDbðpÞ

eðED−MDÞt:

ð3:9Þ

In this ratio the plateau takes on the valueQþðpÞ introduced
in Eq. (2.13). Again, the leading corrections to the plateau
arise from contributions from the first excited D- and
B-meson states. For large t and T − t, their contributions
to the correlator ratio fall off as exp½−ΔEDt� and
exp½−ΔMBðT − tÞ�. Where they are both small, for fitting
the ratio, we use the approximation

Qþ;bðp; t; TÞ ≈QþðpÞ expðδmtÞ þ AQþ;bðpÞ expð−ΔEDtÞ
þ BQþ;bðpÞ exp½−ΔMDt�
þ CQþ;bðpÞ exp½−ΔMBðT − tÞ�: ð3:10Þ

The parameter δm vanishes when the exponential factor in
Eq. (3.9) cancels the time dependence in the three-point

functions, as it should. Since there may be slight differences
in the determination of the masses from the three-point
and two-point functions, the cancellation might not be
perfect. Therefore, we introduce δm as a constrained fitting
parameter. The prior constraint is centered at zero and it has
a width determined from the small statistical error in the
two-point-fitted energies. In practice, the values of aδm, are
typically of order 10−4.
For R−;bðp; t; TÞ we form the ratio

Ri−;bðp; t; TÞ ¼
C3pt;B;1S→Db
i ðp; tÞ

C3pt;B;1S→Db
4 ðp; tÞ ; ð3:11Þ

so that for large t and T − twe have R−;bðp; t; TÞ→ R−ðpÞ,
i.e., the quantity defined in Eq. (2.14). Similarly, for
xfðp; t; TÞ, we use the ratio

xif;bðp; t; TÞ ¼
C3pt;Db→Db
i ðp; tÞ

C3pt;Db→Db
4 ðp; tÞ ; ð3:12Þ

so that xf;bðp; t; TÞ → xfðpÞ, i.e., the quantity defined in
Eq. (2.15). To fit the time dependence of R−;bðp; t; TÞ we
use

R−;bðp; t; TÞ ≈ R−ðpÞ þ AR−;bðpÞ expð−ΔEDtÞ
þ BR−;bðpÞ exp½−ΔMBðT − tÞ�; ð3:13Þ

and for the time dependence of xfðp; t; TÞ, we use the same
form, except replacing ΔMB with ΔMD.

FIG. 2 (color online). Sample joint three-point function fits for determining the ratios Rþ and QþðpÞ (left), R1−ðpÞ (middle), and
x1fðpÞ (right), for lattice momentum p ¼ ð1; 0; 0Þ. Data shown are for the a ≈ 0.06 fm, m̂0 ¼ 0.14m0s ensemble with B-D separation
T ¼ 24 and 25. Values are plotted against the time t of the vector-current insertion. Data points at the left and right extremities are
not included in the fit. A color (gray-scale) change indicates which points are included in the fit. Black lines indicate the upper and
lower 1σ range of the ground-state contribution. Best fit lines are shown in red (gray). For QþðpÞ the “plateau” is slanted because
of the factor expðδmtÞ in Eq. (3.10).
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C. Correlator fitting

We obtain the lattice form factors via a two-step
procedure. First, we fit the B- and D-meson two-point
correlators to obtain the energies and overlap factors. Then
we use these results as constraints with Bayesian priors in
the three-point fits. Errors in the resulting form factors hþ
and h− are determined from a complete single-elimination
jackknife procedure.

1. Two-point correlator fits

The two-point functions are constructed from both a
local and a smeared interpolating operator. They are fit
simultaneously to determine the ground- and excited-state
energies. We include oscillating and nonoscillating states in
pairs and test the stability of the fits by comparing results
with 2þ 2 and 3þ 3 states. An example is shown in
Table III for the a ≈ 0.12 fm, m̂0 ¼ 0.14m0s ensemble. For
this case we choose a fit range of [4,23] with 3þ 3 states.
Results for the energy and overlap factor for that range
agree with fits in the range [6,16] with 2þ 2 states. For the
analysis, we use fits with 3þ 3 states; the (2þ 2)-state fits
provide a check of systematic effects from excited-state
contamination. We select approximately the same fit ranges
in physical units for all ensembles, as shown in Table IV.

2. Three-point correlator fits

To determine the nonzero-recoil form factor RþðpÞ, we
fit three ratios simultaneously: the double ratio for the 1S
source from Eq. (3.5) and the local- and smeared-source
ratios Qþ;dðp; t; TÞ and Qþ;1Sðp; t; TÞ from Eq. (3.9).
Because the fit model [Eq. (3.10)] includes effects of the
same first-excited states that occur in the two-point func-
tions, we use the two-point-fit values for these states to set
priors for δm, δED, and δMB. The best-fit values are used as
the central values and their errors as the widths of the
Gaussian priors. As shown in Table IV, the Euclidean time
separation between the B- and D-meson interpolating
operators is set at approximately 1.5 fm for all ensembles.
This separation is sufficient to reduce the last term in
Eq. (3.8) to the 10−4 level. Fit ranges are chosen for

stability. We use the same range for all three-point
correlators in a given ensemble. The ranges are listed in
Table IV, and a sample three-point fit is plotted in
Fig. 2, left.
For xf;bðp; t; TÞ and R−;bðp; t; TÞ, we fit values for both

local and smeared sources jointly with the fitting form of
Eq. (3.13). Sample three-point fits are plotted in the middle
and right panels of Fig. 2. Then, having determined all the
needed quantities, we calculate w, hþðwÞ, and h−ðwÞ from
Eqs. (2.17) and (2.22)–(2.23) for each momentum p and
ensemble.

D. Heavy-quark-mass adjustment

We adjust the bare masses of the b and c quarks so that
the kinetic masses of the Ds and Bs mesons obtain their
physical values. When computing the two-point and three-
point correlators, we used good estimates of these quark
masses. By the end of the data generation, we could obtain
better estimates via the procedure described in [5].
Because there are small differences between the simu-

lation values and final, tuned values, an adjustment of the
form factors is required. Details are given in Appendix A.
To obtain the adjustment we computed a full set of
correlation functions on one of our ensembles with a
few heavy-quark masses close to the tuned value and
use these results to calculate the slopes of the form factors
with respect to the quark masses. These results and the
known corrections then give the needed small adjustments

TABLE III. Comparison of ground-state energies ED, excited-state energies E0D, and ground-state overlap factors Zd and Z1S for
the ð2þ 2Þ-state and ð3þ 3Þ-state two-point-correlator fits for the D meson on the a ≈ 0.12 fm, m̂0 ¼ 0.14m0s ensemble. In all cases
the ð2þ 2Þ-state fitting range is [6, 16] and the ð3þ 3Þ-state fitting range is [4, 23]. We use (3þ 3)-state fits for the analysis; the
(2þ 2)-state fits just provide a check of systematic effects.

Ground state (aED) First excited state (aE0D) χ2=df

p ð2π=LÞ 2þ 2 3þ 3 2þ 2 3þ 3 Z1S;1S Zd;d 2þ 2 3þ 3

000 0.9566(6) 0.9566(7) 1.54(3) 1.41(4) 4.045(29) 0.0785(7) 18.9=18 35.5=37
100 1.0013(10) 1.0017(9) 1.55(2) 1.39(4) 2.912(36) 0.0741(10) 16.5=18 46.6=37
110 1.0436(15) 1.0433(12) 1.56(2) 1.41(3) 2.149(38) 0.0704(13) 16.5=18 36.9=37
111 1.0838(21) 1.0831(15) 1.60(2) 1.45(3) 1.628(40) 0.0673(18) 22.6=18 39.3=37
200 1.1206(31) 1.1172(23) 1.60(3) 1.48(4) 1.279(46) 0.0658(25) 17.4=18 46.9=37

TABLE IV. Fit ranges ½tmin; tmax� for two-point and three-point
functions and B-D time separations T. They are chosen to be
approximately similar in physical units and independent of sea-
quark masses with one exception: for the case a ≈ 0.12 fm and
m̂0=m0s ¼ 0.1, the two-point range was [3,23].

≈a (fm)
D-meson
two-point

B-meson
two-point three-point T

0.12 [4,23] [4,15] [2,10] 12,13
0.09 [5,33] [9,24] [2,15] 17,18
0.06 [7,45] [8,32] [4,18] 24,25
0.045 [11,80] [8,32] [7,24] 32,33
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tabulated in Table XII. The size of the heavy-quark mass
corrections to hþ (h−) range from 0 to 0.2% (0 to 2%).
Small errors arise both from uncertainties in the tuned
quark masses and uncertainties in the determination of the
slopes.

E. Current renormalization

Here we summarize the procedure for matching the
lattice matrix elements to the continuum. The three-point
fits yield ratios in which the flavor-diagonal factors
ZV4

cc
ZV4

bb
from Eq. (2.11) cancel. Thus, to normalize the

form factors to continuum conventions, we only have to
apply the flavor off-diagonal factors ρVμ as in Eqs. (2.18)–
(2.20). Matching factors with two heavy quarks depend on
the recoil w, but the w dependence is not available. Even so,
we can obtain some information by considering the limit
m2ca ≪ 1, where the w dependence goes away. For this
reason, each of the matching factors in Eqs. (2.18)–(2.20)
requires somewhat different treatment. Appendix B pro-
vides further details on the matching calculations.
The calculation of the zero-recoil matching factor ρV4ð1Þ

needed to renormalize Rþ is completely analogous to
that of the axial-vector matching factor used in Ref. [5].
Following Ref. [19], we compute it to one-loop order in
perturbation theory,

ρV4ð1Þ ¼ 1þ αVðq�Þρ½1�V4ð1Þ; ð3:14Þ

where αVðq�Þ is the QCD coupling in the V scheme [43],
evaluated here at the scale q� ¼ 2=a. The result for each
ensemble is listed in Table V.

For the matching factor ρV4ðwÞ=ρV4ð1Þ, we note that, by
construction, the one-loop coefficient must be proportional
to w − 1. Moreover, for m2ca ≪ 1, which holds on the two
finest lattices, one may treat the charm quark as a light
quark [19], using the HQET formalism for heavy-light
currents [44]. The w dependence goes away in this limit, so
the one-loop coefficient must also be proportional to m2ca.
Thus, ρV4ðwÞ=ρV4ð1Þ ¼ 1þOðαsðw − 1Þm2caÞ, where
the coefficient of the one-loop correction is not known.
In our analysis, we take ρV4ðwÞ=ρV4ð1Þ ¼ 1 and include the
estimated size of the one-loop correction as a w-dependent
uncertainty.
For the matching factor ρViðwÞ=ρV4ðwÞ, we can take the

heavy-light theory a step further and calculate the matching
explicitly for m2ca ≪ 1. The calculation does not depend
on w. The resulting values for ρViðwÞ=ρV4ðwÞ as in
Eq. (3.14) are listed in Table V. The error in the one-loop
coefficient introduced by taking the limit m2ca → 0 is
proportional to αsm2cawith a, presumably, mild w depend-
ence, and is again included as an uncertainty.

F. Chiral-continuum extrapolation

The resulting form factors hþ and h−, after applying the
κ corrections and renormalization factors, are shown in
Fig. 3. As can be seen, the dependence of hþ on lattice
spacing a and light-quark-mass ratio m̂0=m0s is quite mild.
The form factors must be extrapolated to the physical
average value of the up and down quark mass r1m̂ and zero
lattice spacing (a → 0) (the physical point).
To this end we fit both form factors to the following

expressions:

TABLE V. One-loop estimates of the matching factors for the lattice ensembles in this study. Shown are the
approximate lattice spacing in fm, the sea-quark mass ratio m̂0=m0s, the tuned κ values of the charm and bottom
quarks [5], the strong coupling in the V-scheme evaluated at q� ¼ 2=a, and the zero-recoil factors ρV4ð1Þ and
ρViðwÞ=ρV4ðwÞ on that ensemble. The first error in each tuned κ value is statistical, and the second reflects the
uncertainty in the lattice scale determination [5]. The correction factors are evaluated at the tuned heavy-quark
masses except for ρVi=ρV4, which is evaluated atmca ¼ 0. The systematic uncertainties in the ρ factors are discussed
in Sec. IV and Appendix B.

≈a (fm) m̂0=m0s κc κb αVðq� ¼ 2=aÞ ρV4ð1Þ ρViðwÞ=ρV4ðwÞ
0.12 0.4 0.12452(15)(16) 0.0879(9)(3) 0.3047 1.025105 0.892347
0.12 0.2 0.12423(15)(16) 0.0868(9)(3) 0.3108 1.026472 0.888051
0.12 0.14 0.12423(15)(16) 0.0868(9)(3) 0.3102 1.026395 0.888248
0.12 0.1 0.12423(15)(16) 0.0868(9)(3) 0.3102 1.026388 0.888241

0.09 0.4 0.12737(9)(14) 0.0972(7)(3) 0.2582 1.015603 0.924664
0.09 0.2 0.12722(9)(14) 0.0967(7)(3) 0.2607 1.016080 0.923051
0.09 0.15 0.12718(9)(14) 0.0966(7)(3) 0.2611 1.016160 0.922757
0.09 0.1 0.12714(9)(14) 0.0965(7)(3) 0.2619 1.016259 0.922319
0.09 0.05 0.12710(9)(14) 0.0964(7)(3) 0.2623 1.016340 0.922022

0.06 0.4 0.12964(4)(11) 0.1054(5)(2) 0.2238 1.008792 0.947870
0.06 0.2 0.12960(4)(11) 0.1052(5)(2) 0.2245 1.008945 0.947361
0.06 0.14 0.12957(4)(11) 0.1051(5)(2) 0.2249 1.009017 0.947085
0.06 0.1 0.12955(4)(11) 0.1050(5)(2) 0.2253 1.009098 0.946829

0.045 0.2 0.130921(16)(70) 0.1116(3)(2) 0.2013 1.004566 0.962520
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hþða; m̂0; m0s; wÞ ¼ 1þ XþðΛχÞ
m2

c
− ρ2þðw − 1Þ þ kþðw − 1Þ2 þ c1;þxl þ ca;þxa2 þ ca;a;þx2a2

þ ca;m;þxlxa2 þ c2;þx2l þ
g2D�Dπ

16π2f2πr21
logsSUð3Þða; m̂0; m0s; w;ΛχÞ; ð3:15Þ

h−ða; m̂0; m0s; wÞ ¼
X−
mc

− ρ2−ðw − 1Þ þ k−ðw − 1Þ2 þ c1;−xl þ ca;−xa2 þ ca;a;−x2a2 þ ca;m;−xlxa2 þ c2;−x2l ; ð3:16Þ

which contain the correct dependence on the light and
strange-quark masses, lattice spacing, and recoil w at next-
to-leading order (NLO) in chiral perturbation theory. The
chiral logarithm term, denoted “logsSUð3Þ,” contains non-
analytic dependence upon the pion and kaon masses (or
equivalently m̂0 andm0s). It comes from a staggered-fermion
version of the one-loop continuum result of Chow andWise
[45] that includes taste-breaking discretization effects [46].
The explicit expression for logsSUð3Þ is given in the
appendix of Ref. [15]. The coefficient of the logarithm
term is predicted in χPT, but depends upon the value of the
D�-D-π coupling, gD�Dπ , which is not known precisely. We
allow gD�Dπ to vary in the fit, but constrain it with a
Gaussian prior 0.53� 0.08, motivated by the spread
of experimental [47–49] and recent lattice-QCD results
[50–55]. The analytic terms depend on the light spectator-
quark mass through xl ¼ 2B0m̂0=ð8π2f2πÞ and on the lattice
spacing through xa2 ¼ ½a=ð4πfπr21Þ�2, which, according to
χPT power counting, are expected to have coefficients of
order 1 [40]. The NLO expression is supplemented by next-
to-next-to-leading order (NNLO) analytic terms in the
light-quark mass m̂0 and lattice spacing to incorporate
the error from the truncation of the chiral expansion, as
explained below, and by terms analytic in ðw − 1Þ to allow
interpolation in w at nonzero recoil. We do not include
analytic functions of the strange sea-quark mass because

(1) we do not have sufficiently varied values of m0s to be
able to resolve any strange-quark mass dependence,
(2) from χPT we expect the sea-quark mass dependence
of the form factors to be significantly smaller than the light
spectator-quark mass dependence, and (3) as discussed in
Sec. IV G, we do not observe any strange sea-quark mass
dependence within our current statistical precision.
The statistical errors and correlations from the two-point

and three-point ratio fits are propagated to the chiral fits
using a single-elimination jackknife procedure. The strong-
est correlations are between the data for hþðwÞ [or h−ðwÞ]
at different w values on the same ensemble. The data for
hþðwÞ and h−ðwÞ on the same ensemble are only weakly
correlated. Results from different ensembles are sta-
tistically independent. The fits to Eqs. (3.15) and (3.16)
are done taking fully into account all statistical correlations.
To test the applicability of NLO chiral perturbation

theory to our data, we first fit without the analytic
NNLO terms. The p value, p ¼ 0.93 of the joint, exclu-
sively NLO fit to hþ and h− is satisfactory.1 Next we

FIG. 3 (color online). Global fit of all data for the form factors hþ (left) and h− (right) vs recoil w. The blue (shaded) band gives the 1σ
confidence range for the continuum extrapolation at physical quark masses. Fit errors include statistics, matching, and truncation of the
chiral expansion. The legend in the left figure gives the color convention for the lattice spacing, and, in the right, it gives the shape
convention for the sea-quark mass ratio.

1With Gaussian priors our p value is determined from the
augmented χ2. We count degrees of freedom as the number of
data points minus adjustable parameters plus the number of
theoretically motivated priors. Very loose priors that have no
impact but to stabilize the fits are not counted.
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include the analytic NNLO terms with priors 0� 2 based
on expectations from χPT power counting in order to test
for the effect of truncating the chiral perturbation series.
The p value decreases slightly to 0.87. Including these
terms increases the standard deviation by at most ∼10% for
hþ and ∼30% for h−, and shifts the central values by much
less than the final standard deviation, as shown in Fig. 4.
The statistical errors then can be safely assumed to include
the systematic error of the truncation. We therefore use this
fit including NNLO terms to obtain our preferred value for
the form factors at the physical point. The results of the
extrapolation with propagated statistical errors are shown as
bands in Fig. 3.
In heavy-quark effective theory, Luke’s theorem states

that hþðw ¼ 1Þ has leading corrections only at second
order in the inverse heavy-quark masses, namely, 1=m2

c

and 1=m2
b, whereas h− has corrections at first order.

Appendix B and Ref. [56] show how Luke’s theorem
applies in lattice gauge theory and, hence, that one expects
h− to have larger heavy-quark discretization errors than hþ.
Indeed, we see that h− does have a stronger dependence on
lattice spacing than hþ. For the determination fþ, and
therefore jVcbj, the contribution of h− over the entire
kinematic range is small, so the larger errors in h− do
not increase the overall error much. These trends in lattice
spacing with 14 ensembles are consistent with our previous
findings with 4 ensembles [15].
We build the systematic errors from κ tuning and from

the matching factors into the chiral-continuum extrapola-
tion by forming the combined covariance matrix for the
data as follows:

Cij ¼ Cstat
ij þ δðρÞi δðρÞj þ δðκÞi δðκÞj ; ð3:17Þ

where the first term is the statistical covariance, and
the index i runs over all data (ensembles, momenta, and

hþ and h−). We denote by δðρÞi and δðκÞi the shift on the ith
datum due to the matching and κ-tuning errors, respec-
tively. Equation (3.17) conservatively assumes that the
matching-factor errors (or κ-tuning errors) are 100%

correlated between all data points. For the systematic errors
due to our matching procedure, we have estimates for the
uncertainty in ρV4ð1Þ, ρV4ðwÞ=ρV4ð1Þ and ρViðwÞ=ρV4ðwÞ in
Eqs. (B31), (B29), and (B37), respectively. The form
factors h�ðwÞ change the most when ρV4ðwÞ and
ρViðwÞ=ρV4ðwÞ are simultaneously shifted in opposite
directions. We take the average of these two shifts as an
estimate of the ρ-factor error for all h�ðwÞ on all ensembles.
For the κ-tuning error, we take the same approach in
principle, propagating the uncertainties of the intercepts

and slopes in Appendix A to shifts δðκÞi of the form-factor

data. However, we find that the resulting δðκÞi are negligibly
small, and we therefore set them to zero in Eq. (3.17).
Given the chiral-continuum fit results for hþ and h−, we

construct the vector and scalar form factors fþ and f0 using
Eqs. (2.5) and (2.6). Figure 5 compares our new B → Dlν

FIG. 4 (color online). Comparison of NLO (hatched) and NNLO (solid) chiral-continuum fits for hþ (left) and h− (right) vs recoil w.

FIG. 5 (color online). The form factors fþ and f0 as a function
of the recoil w resulting from the chiral-continuum fit in this study
(cyan band), compared with the results from [15] (cross-hatched
band). The width of each band indicates the 1σ error from the
chiral-continuum fit, but uncertainties from the matching factors
are included only in the cyan bands. See the text for additional
details.
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form-factor results with those from our earlier work [15] in
the w range where we have simulation data. The curves
shown are output from the chiral-continuum extrapolation,
and therefore include the uncertainties from statistics, the
chiral-continuum extrapolation, and matching (for the
current work); they do not include the remaining systematic
uncertainties, which we add in quadrature a posteriori in
both works. We expect that the two results are largely
independent because they have only a small subset of
overlapping data (the earlier work included only four
ensembles), and the new work includes NNLO analytic
terms in the χPT fit function. The results are consistent for
both form factors over almost all simulated w values, and
diverge only slightly for f0 for w > 1.13. The central values
of the new form factors are slightly higher than in [15],
primarily due to explicit inclusion of the perturbative
correction factors ρViðwÞ=ρV4ðwÞ which have a bigger
effect on the form factor f0 than on fþ. The total errors
on the form factors in this work are similar in size to those
in Ref. [15], but the additional ensembles used in this work
enable a more detailed and reliable systematic error
analysis as described in Sec. IV. (Reference [15] focused
on form-factor ratios in which most of the systematic errors
are suppressed.)

IV. SYSTEMATIC ERRORS

In this section we discuss the sources of systematic error
in the lattice determinations of hþ and h− and their
propagation to the form factors fþ and f0. As can be seen
from Fig. 4, the magnitude of h− is about 5% of hþ for the
entire range of simulated w values. Further, the contribution
of h− to the vector form factor fþ is suppressed relative to
the contribution from hþ by the factor ð1 − rÞ=ð1þ rÞ ¼
0.477, while the contribution of h− to the scalar form
factor f0 is exactly zero at w ¼ 1 and grows linearly with
recoil as ðw − 1Þ. Thus even large percentage systematic

errors in h− lead to only small uncertainties in fþ and
f0. Figure 6 shows the momentum dependence of the
error contributions to fþðwÞ and f0ðwÞ, while Table VI
provides numerical values for a representative recoil
w ¼ 1.16.

A. Overview of systematic errors in fþ and f 0
As can be seen from Fig. 6, the dominant uncertainty in

both form factors arises from the chiral-continuum fit,
which includes contributions from statistics, matching
factors, and higher-order terms in the chiral expansion.
Although we cannot strictly disentangle the contributions
to the error from these sources, we can estimate their sizes
by repeating the chiral-continuum fit omitting either the
errors in the matching factors or the NNLO terms in the
chiral expansion, and take the quadrature difference of

FIG. 6 (color online). Error budgets for fþ and f0 as a function of the recoil w. The colored bands show the error contribution of each
uncertainty source to the quadrature sum. The corresponding error is provided on the right y axis. Our lattice simulation results are for
w ∈ ½0; 1.16�, i.e., to the left of the vertical line.

TABLE VI. Error budget (in percent) for fþ and f0 at
w ¼ 1.16, which is the largest recoil value used in our momentum
extrapolation to the full kinematic range and determination of
jVcbj (see Sec. V). The first row includes the combined error from
statistics, matching, and the error from truncating the chiral
expansion resulting from the chiral-continuum fit: errors in
parentheses are approximate subparts estimated as described in
the text. The total error is obtained by adding the individual errors
in quadrature. Not explicitly shown because they are negligible
are finite-volume effects, isospin-breaking effects, and light-
quark mass tuning.

Source fþð%Þ f0ð%Þ
Statistics þmatchingþ χPT cont extrap. 1.2 1.1
(Statistics) (0.7) (0.7)
(Matching) (0.7) (0.7)
(χPT=cont extrap.) (0.6) (0.5)
Heavy-quark discretization 0.4 0.4
Lattice scale r1 0.2 0.2
Total error 1.2 1.1
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the resulting error estimates. The contribution from
“statistics” is defined to be the error in the NLO
chiral-continuum fit to data with no matching-factor
uncertainties included. This imprecise scheme does not
guarantee that the individual errors sum to the total fit error,
but, roughly speaking, we find that the statistics, matching,
and truncation uncertainties in the chiral-continuum expan-
sion contribute approximately equally to the error in the full
NNLO fit. Despite our incomplete knowledge of the
matching factors, we find their contributions to the uncer-
tainty in fþ and f0 to be modest. The errors from the chiral-
continuum fit are under good control for the range of
simulated lattice recoil values, but grow rapidly for
w≳ 1.16 where we do not have data.
We add the remaining systematic uncertainties a poste-

riori to the chiral-continuum fit error. We estimate the
individual contributions to the form-factor error budget in
the following subsections, discussing each source in a
separate subsection for clarity. In practice, only the heavy-
quark discretization errors (Sec. IV D) and lattice-scale
uncertainty (Sec. IV E) turn out to be significant.
We assume that systematic uncertainties from heavy-

quark discretization effects and the lattice-scale uncertainty
are uncorrelated, and therefore add them in quadrature. We
then propagate them to fþ and f0 according to the linear
transformation Eqs. (2.5) and (2.6), which depends on the
recoil w, taking them to be 100% correlated between w
values and between hþ and h−. Both the lattice-scale and
heavy-quark discretization errors are substantially smaller
than the chiral-continuum fit error, and increase only slowly
with w.

B. Matching

The ρ factors in Eq. (2.11) enter in the renormalization of
the components of the transition vector current Vμ

cb. As
explained in Sec. III E these factors are estimated in one-
loop lattice perturbation theory to the extent that such
calculations are available. As discussed near the end of
Sec. III F, we build the uncertainty estimates of Eqs. (B31),
(B32), and (B37) into the chiral-continuum fit via
Eq. (3.17).
A noteworthy feature of Table VI is the size of the

matching error after the chiral-continuum fit. Had we
omitted the errors in Eqs. (B31), (B32), and (B37) from
the fitting function, wewould have to add them a posteriori,
as we did for B → D� at zero recoil [5]. Following the
procedure used in Ref. [5], we would assign errors of 1.4%
and 1.1% for fþ and f0, respectively, at w ¼ 1.16, based on
the second-finest lattice with a ≈ 0.06 fm and its value of
αs ¼ 0.225. Incorporating the matching errors into the
chiral-continuum fit, however, allows them to vary with
lattice spacing and to be informed by the data. It is
reasonable that the additional information reduces the
uncertainty to about 0.7% for both fþ and f0 at
w ¼ 1.16, as shown in Table VI.

C. Light-quark and gluon discretization errors

Our improved actions have light-quark and gluon dis-
cretization errors of order αsa2 and α2sa2 [5]. As discussed
in Sec. III F, they are already included in the fit model of
Eqs. (3.15) and (3.16). From Table VI, the errors due to the
truncation of the chiral expansion and extrapolation to the
continuum limit are about 0.6% and 0.5% for fþ and f0,
respectively, at w ¼ 1.16. Using simple power-counting,
we would conservatively estimate the size of generic light-
quark and gluon discretization errors on the a ≈ 0.06 fm
lattice to be about 1%. The data for hþ, which give the
dominant contribution to fþ and f0, do not display
significant lattice-spacing dependence. Therefore, allowing
the data to constrain the possible size of light-quark and
gluon discretization effects reduces the error.

D. Heavy-quark discretization errors

An important uncertainty comes from discretization
errors in the lattice treatment of the heavy quarks.
Applying the theory of heavy-quark cutoff effects devel-
oped in Refs. [19,56], we estimate the size of these errors in
Appendix B, providing in Tables XIII and XIV numerical
results for the errors on h�ðwÞ from mismatches in the
lattice action and currents for a heavy-quark scale of
Λ̄ ¼ 450 MeV. The value is the same as that used in
Ref. [5], and here we explain why this choice is reasonable
in this case too.
In Fig. 7, we show the observed lattice-spacing depend-

ence of our simulation data for hþðwÞ at three recoil values
on the m̂0 ¼ 0.2m0s ensembles. The raw data (black squares)
are adjusted slightly to obtain the same w values for all a
using a chiral-continuum fit with the ρ-factor and κ-tuning
errors turned off. Thus, the error bars shown here are
statistical only. We also use this fit to adjust the light-
quark masses to those on the m̂0 ¼ 0.2m0s, a ≈ 0.09 fm
ensemble (orange circles). (In practice, shifting the strange
sea-quark mass has little impact on the fit points.) To
compare the trend with the expected heavy-quark discre-
tization error, we draw the size of the effect—defined as the
difference from a ≈ 0.09 fm—predicted in Appendix B
for Λ̄ ¼ 450 MeV.
For all values of w, Fig. 7 shows that this estimate

captures most of the discretization effect, given the stat-
istical scatter. Note that the fit-interpolated (orange) points
make clear that the trend is predominantly linear in a2. This
dependence is characteristic of generic discretization
effects of the light quarks and gluons, which are already
included in the chiral-continuum fit model, Eqs. (3.15) and
(3.16). Moreover, the heavy-quark discretization effects
turn out to be nearly linear in a2, so they, too, are mostly
absorbed by the fit model. It does not make sense to count
this well-modeled a dependence twice by, say, inflating Λ̄
to encompass all of the variation seen in Fig. 7. That said,
we do not have an argument to reduce the value of Λ̄ used in
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Tables XIII and XIV below 450 MeV. Following Ref. [5],
we base our final estimate on our next-to-smallest lattice
spacing, a ≈ 0.06 fm, leading to the error estimates in
Table VI. The heavy-quark discretization error is found to
be small compared with the chiral-continuum extrapolation
error. For hþðwÞ it ranges from approximately 0.15% at
w ¼ 1 to 0.35% at our largest w values. For h−ðwÞ it is
approximately 20%.

E. Lattice-scale error

We use the distance scale r1 and the relative lattice
spacing a=r1 to determine the lattice scale a. The ratio a=r1
for the ensembles in this study is known quite precisely
from a fit to a wide range of data for the heavy-quark
potential [23]. For this study we use the values of r1=a
presented in Table III of [5]. The continuum, physical
quark-mass value of r1 is determined from studies of the
light pseudoscalar-meson spectrum and decay constants.
For this study we use r1 ¼ 0.3117ð22Þ fm, based on the
PDG value of fπ [40].
Because the form factors are dimensionless, the lattice

scale enters only weakly into their determination via
(1) tuning the heavy-quark masses, (2) setting light-meson
masses in the chiral logarithms, and (3) fixing the location
of the continuum limit. To determine the error due to
uncertainties in r1 we see how much our results shift when
we change r1 by one standard deviation. We find that the
changes in the form factors are smaller than 0.2%.

F. Finite-volume corrections

The finite-volume effects can be estimated within NLO
heavy-light meson χPT by replacing the loop integrals with
discrete sums. The corrections to the integrals in the
formulas appearing in B → D decays at zero recoil were

worked out by Arndt and Lin [57]. At the values of quark
masses and volumes at zero recoil where we have data,
the effects predicted by χPT are less than one part in 104.
This is not a result of cancellation, but is due to the fact
that the chiral logarithms make only a very small
contribution to the form factor. We did not calculate
the finite-volume corrections at nonzero recoil because
the integrals appearing in those formulas are much more
complicated, but there is no reason to expect these effects
to be significantly enhanced away from the zero-recoil
point. Thus, finite-size effects are expected to be negli-
gible compared with our other errors, and we do not
assign any additional error due to them.

G. Light-quark-mass tuning

We extrapolate the form factors to the physical average of
the up- and down-quark masses r1m̂ ¼ 0.003612ð126Þ,
determined from an analysis of the light pseudoscalar-
meson spectrum and decay constants on the same ensembles
[58]. Varying r1m̂ by plus and minus 1σ in our chiral-
continuum fit leads to relative changes of order 10−5 for both
form factors in the range of simulated recoil values.
On some ensembles the strange sea-quark mass deviates

by as much as 30% from its physical value. From heavy-
light meson χPT, we expect the B → D form factors to be
largely insensitive to sea-quark masses. Nevertheless we
study the impact of the strange sea-quark mass by calcu-
lating the ratios in Eqs. (2.12)–(2.15) on an a ≈ 0.12 fm
ensemble with an unphysically light strange sea quark,
am̂0=am0s ¼ 0.005=0.005. We do not observe any sta-
tistically significant differences in these ratios from those
on the am̂0=am0s ¼ 0.005=0.05 ensemble. We therefore
conclude that errors from mistuning the strange sea-quark
mass are negligible within our current precision.
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FIG. 7 (color online). The form factor hþðwÞ at three representative values of the recoil w as a function of the squared lattice spacing
ða=r1Þ2, for all ensembles with m̂0 ¼ 0.2m0s. Black squares denote data points interpolated to the same recoil value, while orange circles
denote fit values interpolated further, so that the light-quark masses m̂0 and m0s correspond to the values on the lattice with a ≈ 0.09 fm;
the orange diamonds denote the continuum limit in this case. The solid curves show the a dependence predicted by the HQET
description of cutoff effects, with Λ̄ ¼ 450 MeV. These trends are shown as deviations from the a ≈ 0.09 fm lattice. For details, see the
discussion of Tables XIII and XIV in Appendix B. Note that the data and fit points reflect discretization errors from light quarks and
gluons, as well as those from the heavy quarks.
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H. Heavy-quark-mass tuning

As described in Sec. III D, we adjust the simulation data
before the chiral-continuum fit to account for the slight
difference between the simulated bottom and charm κ
values and the physical ones, using the corrections esti-
mated in Appendix A. The size of these corrections is quite
small, ranging from 0% to 0.2% for hþ, and from 0% to 2%
for h−. Repeating the chiral-continuum fit omitting the κ
corrections does not appreciably change the chiral-
continuum fit result. Thus we conclude that the uncertainty
in the form factors due to errors in the heavy-quark masses
is negligible.

I. Isospin correction

In our calculation we have assumed that the up- and
down-quark masses are equal, although in Nature, they
are not. Therefore, if we distinguish between them in
calculating the value of the form factors at the physical
point, we get a slightly different result. To estimate the
sensitivity of fþ and f0 to isospin splitting of the light-
quark masses, we use our best-fit parameters in the chiral-
continuum model, and evaluate the fit function at the
physical values of r1mu ¼ 0.002236 and r1md ¼
0.004988, instead of r1m̂ given above. These values
are obtained by combining r1m̂ obtained on the asqtad
ensembles with the ratio mu=md ¼ 0.4482ðþ173−207Þ obtained
from the MILC Collaboration’s study of electromagnetic
effects on the pion and kaon mass splittings on the
ð2þ 1þ 1Þ-flavor HISQ ensembles [59]. The relative
shifts in both form factors for all simulated recoil values
are of order 10−4, and therefore negligible. Although this
method varies the light valence- and sea-quark masses
together, the shifts are primarily due to the different
valence-quark mass.

V. DETERMINATION OF jVcbj
A. Synthetic data

The preferred chiral-continuum fit results for hþðwÞ and
h−ðwÞ are continuous functions of w at zero lattice spacing
and physical quark masses. Via Eqs. (2.5) and (2.6), we can

obtain the corresponding functions for fþðwÞ and f0ðwÞ.
As discussed above, the errors are under control for
w < 1.2, i.e., where we have lattice measurements.
Following Refs. [15,42], we proceed to extend our results
to the full kinematic range by generating synthetic data
fþðwjÞ and f0ðwjÞ for a finite set of w values, wj. Because
the functions are described by only six independent
functions (in the physical limit), we can only generate
six such data points. Generating more would just lead to a
covariance matrix of low rank. We choose the values of
wj ¼ 1, 1.08, and 1.16, for fþ and f0, to cover the
kinematic range of the lattice-QCD calculation. The values
of fþðwjÞ and f0ðwjÞ, as well as the matrix of correlations
among them, are given in Table VII.

B. z expansion

Experimental measurements of the form factor are
available over a larger kinematic range of w [1, 1.58]
than the lattice values [1,1.16], but experimental errors
are largest where lattice errors are small and vice versa.
Although the value of fþ at a single w-value suffices for
obtaining jVcbj, a better strategy is to fit both sets of data
simultaneously to a common fitting function in which
jVcbj is a free parameter that multiplies all the lattice
values and is determined in the fit [15,42]. This approach
minimizes the uncertainty in jVcbj by combining all of the
available experimental and lattice information. Further, a
comparison of the shapes of the experimental and lattice
results as a function of w provides a valuable consistency
check that is not available when using only a single
recoil point.
For this purpose we need a model-independent para-

metrization to carry out the necessary interpolation/
extrapolation. The z expansion of Boyd, Grinstein, and
Lebed (BGL) [12] is just such a parametrization. It builds in
constraints from analyticity and unitarity. It is based on the
conformal map

zðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
p − ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
p þ ffiffiffi

2
p ; ð5:1Þ

TABLE VII. Selected values of the form factors fþðwÞ and f0ðwÞ at the physical point (synthetic data) and their
correlations. Errors shown include statistics and all systematics added in quadrature.

Correlation matrix

Value fþð1Þ fþð1.08Þ fþð1.16Þ f0ð1Þ f0ð1.08Þ f0ð1.16Þ
fþð1Þ 1.1994(095) 1.0000 0.9674 0.8812 0.8290 0.8533 0.8032
fþð1.08Þ 1.0941(104) 1.0000 0.9523 0.8241 0.8992 0.8856
fþð1.16Þ 1.0047(123) 1.0000 0.7892 0.8900 0.9530
f0ð1Þ 0.9026(072) 1.0000 0.9650 0.8682
f0ð1.08Þ 0.8609(077) 1.0000 0.9519
f0ð1.16Þ 0.8254(094) 1.0000
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which takes the physical region w ∈ ½1; 1.59� to
z ∈ ½0; 0.0644�. It pushes poles and branch cuts relatively
far away to jzj ≈ 1. Form factors are then parametrized as

fiðzÞ ¼
1

PiðzÞϕiðzÞ
X∞
n¼0

ai;nzn; ð5:2Þ

where the PiðzÞ are the “Blaschke factors” containing
explicit poles (e.g., a Bc or B�c meson) in the channel
variable q2, and the ϕi are the “outer functions,” whose
purpose is described below. The only unknown parameters
are the polynomial coefficients ai;n. In this work, we do not
introduce any pole, so PiðzÞ ¼ 1.2 The choice of outer
functions is arbitrary as long as they are analytic functions
that do not introduce poles or branch cuts; the ϕi just affect
the numerical values of the series coefficients, ai. For fþ
and f0, we use

ϕþðzÞ ¼ Φþð1þ zÞ2ð1 − zÞ1=2
× ½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r
p ð1þ zÞ�−5; ð5:3Þ

ϕ0ðzÞ ¼ Φ0ð1þ zÞð1 − zÞ3=2
× ½ð1þ rÞð1 − zÞ þ 2

ffiffiffi
r
p ð1þ zÞ�−4; ð5:4Þ

such that, numerically, Φ0¼0.5299 and Φþ ¼ 1.1213 [12].
With this choice, the bound on the series coefficients from
unitarity takes a particularly simple form:

XN
n¼0
jai;nj2 ≤ 1; ð5:5Þ

where this bound holds for any N. This bound, in
combination with the small range of jzj, ensures that only
a small number of coefficients is needed to parametrize
the form factors over the entire kinematic range to high
precision.
To implement the z expansion, we start from the

synthetic data for fþ and f0 at z values corresponding
to wj ¼ 1, 1.08, and 1.16, choose a truncation N and fit to

FIG. 8 (color online). Result of the z-expansion fit of the lattice form-factor values without (left) and with (right) the kinematic
constraint fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ. The expansion is truncated after the cubic term. The solid error band is for fþ, while the slashed
band is for f0. Without imposing the constraint, we find that it is nonetheless satisfied to a high accuracy.

TABLE VIII. Coefficients of the z expansion for fits to the
lattice form factors including the kinematic constraint
fþðq2 ¼ 0Þ ¼ f0ðq2 ¼ 0Þ. For completeness, the inferred value
and error in a0;0 is quoted. We also show the zero-recoil form
factor Gð1Þ. The results for different truncations N are virtually
identical. The unusually low (augmented) χ2 comes about
because these fits essentially behave like solves. This happens
because the kinematic constraint is so nearly perfectly satisfied
already at the quadratic level, N ¼ 2. Higher-order terms with
N ¼ 3 and 4 provide no further improvement and, hence, no
change. The coefficients of the higher-order terms are constrained
with priors with central value zero and width one. These
theoretically motivated priors are counted as data in the degrees
of freedom (df).

N ¼ 2 N ¼ 3 N ¼ 4

aþ;0 0.01262(10) 0.01262(10) 0.01262(10)
aþ;1 −0.097ð3Þ −0.097ð3Þ −0.097ð3Þ
aþ;2 0.50(14) 0.50(17) 0.50(17)
aþ;3 � � � −0.06ð90Þ −0.06ð90Þ
aþ;4 � � � � � � −0.0ð1.0Þ
a0;0 0.01142(14) 0.01142(14) 0.01142(10)
a0;1 −0.060ð3Þ −0.060ð3Þ −0.060ð3Þ
a0;2 0.31(15) 0.31(15) 0.31(15)
a0;3 � � � 0.06(91) 0.06(91)
a0;4 � � � � � � 0.0(1.0)
Gð1Þ 1.0541(83) 1.0541(83) 1.0541(83)

χ2=df 0.1=1 0.0=1 0.0=1

2We have checked that including a pole located at the
theoretically predicted B�c mass [60] does not appreciably change
the z-fit result.
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determine the coefficients ai;n for n ¼ 0;…; N. These
coefficients are then used to parametrize the form factors
over the full kinematic range. We find we need only the first
few coefficients in the expansion to obtain a stable fit with a
good p value. The kinematic constraint requires fþ ¼ f0 at
q2 ¼ 0 where z ≈ 0.0644. It is interesting to fit the data
without the constraint to see to what extent it is automati-
cally satisfied. The result for N ¼ 3 in the left panel of
Fig. 8 shows that the data satisfy the constraint much better
than our statistics would suggest. Nonetheless, in sub-
sequent fits, we include the constraint to reduce the form-
factor errors at q2 ¼ 0. The constraint is imposed by
expressing the parameter a0;0 in Eq. (5.2) in terms of the
other series coefficients. Table VIII shows the series
coefficients and goodness of fit obtained for fits of the
lattice form-factor data imposing the kinematic constraint
withN ¼ 2–4. For the fits at cubic and quartic order in the z
expansion, we have more parameters than data, but the

unitarity bound in Eq. (5.5) justifies imposing a prior with
central value 0 and width 1 on the coefficient(s) of the cubic
(and quartic) term(s).
The truncation of the z expansion introduces a possible

systematic error. We take this into account by increasing the
truncation order until the central values and errors stabilize.
At this point, the errors from the fit reflect the truncation
error, and do not need to be counted separately. Table VIII
shows that the fit has stabilized by quadratic order. We
therefore take the cubic fit, shown in the right panel of
Fig. 8, as our preferred parametrization. Table IX gives the
central values, errors, and normalized correlation matrix for
the series coefficients ai. This information can be used to
reproduce our results for fþðwÞ and f0ðwÞ over the full
kinematic range, and in particular, in combined lattice-and-
experiment fits to obtain jVcbj.
Our zero recoil form factor [Gð1Þ ¼ 1.0541ð83Þ] can be

compared with a recent lattice-QCD calculation by Atoui
et al. [61]. Their result, Gð1Þ ¼ 1.033ð95Þ in two-flavor
QCD, agrees with our determination within much larger
uncertainties. The only previous calculation at nonzero
recoil used quenched QCD [13]. Figure 9 compares their
result with ours. Although this earlier calculation was
performed in quenched QCD, and thus is subject to an
unquantifiable systematic due to the omission of sea-quark
effects, it uses step scaling [62] to control heavy-quark
discretization effects, plus multiple light-quark masses and
lattice spacings to control the mild chiral-continuum
extrapolation [13]. Thus it is the best calculation so far
for B → Dlν at nonzero recoil. The two calculations agree
for all w values, although the slope of fþðzÞ is somewhat
steeper for the (2þ 1)-flavor result reported here.

C. Determination of jVcbj
To obtain jVcbj, we need lattice results for the form

factors and experimental values for η̄EWjVcbjfþðwÞ.
Because the experimental value of the form factor at zero
recoil suffers from kinematic suppression, we prefer to fit
the theoretical and experimental data over the entire
kinematic range. For this work, we use the 2009 B-tagged
data from the BABAR Collaboration [9], because it is the

TABLE IX. Central values, errors, and correlation matrix for the parameters of the cubic fit to fþ and f0 including
the kinematic constraint at q2 ¼ 0.

Correlation matrix

Value aþ;0 aþ;1 aþ;2 aþ;3 a0;1 a0;2 a0;3
aþ;0 001262(10) 1.00000 0.21726 0.07203 0.00387 0.19347 0.15590 −0.00364
aþ;1 −00969ð34Þ 1.00000 −0.47505 0.25544 0.80946 −0.26302 −0.18212
aþ;2 050(17) 1.00000 −0.45415 −0.43845 0.85491 0.25116
aþ;3 −006ð90Þ 1.00000 0.11415 −0.15582 0.21768
a0;1 −00597ð29Þ 1.00000 −0.42932 −0.03556
a0;2 031(15) 1.00000 −0.06062
a0;3 006(91) 1.00000

FIG. 9 (color online). Comparison of lattice-QCD results for
the B → Dlν form factor GðzÞ at nonzero recoil from this work
(curves with error bands) and Ref. [13] (points with error bars).
Errors on the data points from Ref. [13] include all uncertainties
except for the unquantifiable error due to omitting sea-quark
effects.
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most precise to date.3 Reference [9] reports a systematic
error of 3.3% at small w. For present purposes, we take
3.3% over the entire kinematic range with 100% correlation
and combine this systematic in quadrature with the reported
(uncorrelated) statistical errors [63].
Although the BABAR Collaboration has applied some

radiative corrections to their published data, additional
electroweak effects still remain. These include a Sirlin
factor for the Wγ and WZ box diagrams [64] and a further
Coulomb correction for final-state interactions in B0

decays. The BABAR Collaboration reports that 37% of
the decays in their data sample were B0s, which results in a
QED correction factor in the amplitude of 1þ 0.37πα=2.
We have assigned an uncertainty of �0.005 to this
correction to account for omitted electromagnetic effects
at intermediate distances. When combined with the Sirlin
factor ηEW ¼ 1.00662 the net electroweak correction
becomes η̄EW ¼ 1.011ð5Þ. [We prefer to use GðwÞ to denote
the purely hadronic form factor, so in our notation
η̄EWjVcbjGðwÞ corresponds to the quantity often reported
as jVcbjGðwÞ, and the ratio of experimental to theoretical
values must be divided by η̄EW to get jVcbj.]
Before performing a joint fit to the lattice and exper-

imental data, we compare the values of the shape param-
eters to check for consistency. The left panel of Fig. 10
plots the 1-σ constraints on the curvature aþ;2=aþ;0 versus
slope aþ;1=aþ;0 obtained from separate N ¼ 3 z-expansion
fits of the lattice data and the 2009 BABAR experimental
data. The results are consistent, but the lattice data con-
strains the shape much better: this is both because the lattice
points are very precise at low recoil, and because they are

more correlated between w values. Given this consistency,
we now proceed with the determination of jVcbj from a
combined fit of the two data sets.
Table X shows the series coefficients and goodness of fit

obtained for combined fits of the lattice and experimental
data, imposing the kinematic constraint, for N ¼ 2–4.
Again, the fit, and in particular the error on jVcbj, stabilizes
by quadratic order. We choose N ¼ 3 for our preferred fit,
and plot the result in Fig. 11.

D. Comment on the CLN parametrization

The standard approach used by experimentalists to
obtain jVcbj is to use the Caprini, Lellouch, Neubert

FIG. 10 (color online). Left: one sigma contour plots showing the correlation between the normalized slope aþ;1=aþ;0 and normalized
curvature aþ;2=aþ;0 from N ¼ 3 z-expansion fits to either the BABAR experimental data alone, our lattice QCD results alone, and a joint
fit to both. Right: vector form factor fþ obtained from separate z-expansion fits of the 2009 BABAR experimental data (hatched band)
and lattice form factors (solid band).

TABLE X. Best-fit values of the z-expansion parameters for
different truncations N from a joint fit to experimental data and
lattice values. For completeness, the inferred value and error in
a0;0 is quoted. We also show the zero-recoil form factor Gð1Þ and
jVcbj. Priors are imposed on coefficients of higher-order terms
and degrees of freedom are counted as in Table VIII.

N ¼ 2 N ¼ 3 N ¼ 4

aþ;0 0.01260(10) 0.01261(10) 0.01261(10)
aþ;1 −0.096ð3Þ −0.096ð3Þ −0.096ð3Þ
aþ;2 0.37(8) 0.37(11) 0.37(11)
aþ;3 � � � −0.05ð90Þ −0.05ð90Þ
aþ;4 � � � � � � −0.0ð1.0Þ
a0;0 0.01140(9) 0.01140(9) 0.01140(9)
a0;1 −0.059ð3Þ −0.059ð3Þ −0.059ð3Þ
a0;2 0.18(9) 0.19(10) 0.19(10)
a0;3 � � � −0.3ð9Þ −0.3ð9Þ
a0;4 � � � � � � −0.0ð1.0Þ
Gð1Þ 1.0527(82) 1.0528(82) 1.0528(82)
jVcbj 0.0396(17) 0.0396(17) 0.0396(17)

χ2=df 8.4=10 8.3=10 8.3=10

3The Belle experiment presented preliminary measurements of
η̄EW jVcbjfþðwÞ at ICHEP 2014 [10]. Once these are finalized,
our form-factor coefficients from Table IX can be used to update
jVcbj from a joint lattice-experiment fit with both the Belle and
BABAR data (including experimental correlations).
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(CLN) parametrization [11] to extrapolate the experimental
data to w ¼ 1. Caprini, Lellouch, and Neubert use
heavy-quark symmetry to derive more stringent constraints
on the coefficients of the z-parametrization through Oðz3Þ,
resulting in a function with only two free parameters, fþð0Þ
and ρ21:

fþðzÞ
fþð0Þ

¼ 1 − 8ρ21zþ ð51ρ21 − 10Þz2 − ð252ρ21 − 84Þz3:

ð5:6Þ
Use of the CLN parametrization in our analysis does not
reduce the quoted errors in jVcbj despite the introduction of
additional theoretical information.
The numerical values of the coefficients in Eq. (5.6) have

theoretical uncertainties which can be estimated from the
information given in tables and plots from Ref. [11]. To the
best of our knowledge, however, CLN fits to experimental
data do not incorporate the theoretical uncertainties dis-
cussed in Ref. [11], and may therefore be underestimating
the uncertainty in jVcbj. We have attempted to quantify the
uncertainty from the use of the CLN form by incorporating
the theoretical uncertainties in the CLN parameters via
Bayesian priors. We did not find any difference in the error
on jVcbj obtained from fits with and without including
these theoretical uncertainties at the current level of
precision. This is primarily because the B → Dlν data
displays little evidence of curvature in z within the present
errors, and does not constrain the coefficient of the z3 term.
Nevertheless, we do not quote the results of our CLN fits in
this work because we are more confident in the errors
obtained from the model-independent z parametrization,
Eq. (5.2), which can be used to obtain jVcbj even as the
experimental and lattice uncertainties become arbitrarily
more precise.

VI. DISCUSSION AND OUTLOOK

We obtain

jVcbj ¼ ð39.6� 1.7QCDþexp � 0.2QEDÞ × 10−3 ð6:1Þ

from our analysis of the exclusive decay B → Dlν at
nonzero recoil, where the first error combines systematic
and statistical errors from both experiment and theory and
the second comes from the uncertainty in the correction for
the final state Coulomb interaction in the B0 decays.
Because we provide the series coefficients of a z para-
metrization and their correlations, the result for jVcbj in
Eq. (6.1) can be updated whenever new experimental
information becomes available.
The combined error from lattice and experiment in jVcbj

is about 4%. Because this error is obtained from a joint z-fit,
the theory and experimental errors cannot be strictly
disentangled, but they can be estimated as follows. In
the right panel of Fig. 10 we plot the determinations of fþ
from separate z fits to the lattice form factors and to the
experimental data. Inspection of the error bands shows that
the combined error, which determines the uncertainty on
jVcbj, is smallest at about z ≈ 0.025 (w ≈ 1.2). At this point,
the experimental error is about 3.9% and the lattice error is
about 1.4%. (Note that combining them in quadrature
yields a total that is close to the 4% lattice+experiment
error on jVcbj from the joint fit.) Thus the experimental
error currently limits the precision on jVcbj from this
approach. The dominant uncertainty in the experimental
data is the assumed 3.3% systematic error, which is used for
all w values in the joint fit. Now that lattice-QCD results for
the B → Dlν form factors are available at nonzero recoil;
however, it is clearly worthwhile to study and improve the
systematic errors in the experimental data at medium and
large recoil.
It is interesting to compare the above nonzero-recoil result

with the result based on the standard method that uses only
the zero-recoil extrapolation of the experimental and theo-
retical form factors. The z expansion fit to lattice-only data
gives Gð1Þ ¼ 1.054ð4Þstatð8Þsyst. The BABAR Collaboration
quotes η̄EWjVcbjGð1Þ ¼ 0.0430ð19Þstatð14Þsyst [9] from its
B-tagged data, which gives jVcbj ¼ ð40.8� 0.3QCD�
2.2exp � 0.2QEDÞ × 10−3. The result is consistent with
the value from nonzero recoil, but the error is larger, as
expected. Our zero-recoil form factor is consistent with a
previous, preliminary Fermilab/MILC result of Gð1Þ ¼
1.074ð18Þstatð16Þsyst [14], but with significantly smaller
uncertainties due to the use of a much larger data set with
several lattice spacings and lighter pions. We also note that
the systematic error estimate for the earlier result did not
include an estimate of the heavy-quark discretization
errors, one of the larger contributions to the error in our
new result.

FIG. 11 (color online). Result of the preferred joint fit of the
BABAR experimental data together with the lattice form factors.
The plotted experimental points have been divided by our best-fit
value of η̄EWjVcbj and converted to fþ.
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We compare our result for jVcbj with other published
determinations from inclusive and exclusive decays in
Fig. 12. Our result is consistent with the determination
from our companion analysis of B → D�lν at zero recoil,
jVcbj¼ ð39.04�0.53QCD�0.49exp�0.19QEDÞ×10−3 [5].
The errors on jVcbj from the current work are larger,
however, because of the larger errors in the experimental
data. Our result is 1.5σ lower than a recent inclusive
(nonlattice) determination, jVcbj ¼ ð42.2� 0.8thyþexpÞ ×
10−3 [7] which is also based on several experiments and
employs data at nonzero recoil.
We also plot the result for jVcbj in Fig. 12 determined

from only our zero-recoil lattice data, but using the best
experimental knowledge of the extrapolated quantity
η̄EWjVcbjGð1Þ. The HFAG average value η̄EWjVcbjGð1Þ is
0.04264ð72Þstatð135Þsyst [3], which combines five exper-
imental measurements from ALEPH [65], Belle [66],
BABAR [9,67], and CLEO [68]. From this value we obtain
jVcbj ¼ ð40.0� 0.3QCD � 1.4exp � 0.2QEDÞ × 10−3. This
error is smaller than that from the analysis at nonzero
recoil, thanks to the additional experimental information,
but only by about 10%. Thus combining lattice data at
nonzero recoil with a single experiment reduces the error on
jVcbj by almost as much as adding zero-recoil data from

several experiments. Clearly the error on jVcbj from B →
Dlν at nonzero recoil can be further reduced via a joint fit
of the lattice form-factor data with additional experimental
measurements once correlations are available.
An interesting byproduct of our combined z-expansion

fit to obtain jVcbj is an improved determination of the
B → D form factors fþðq2Þ and f0ðq2Þ. Because the lattice
form factors are most accurate at high q2, while the
experimental measurements are most accurate at low q2,
they provide complimentary constraints on the form-factor
shape. Table XI provides the z-fit coefficients and corre-
lation matrix from our preferred combined lattice-
experiment fit used to obtain our result for jVcbj quoted
in Eq. (6.1). These represent our current best knowledge of
fþðq2Þ and f0ðq2Þ for B → D semileptonic decays, and
can be used in other phenomenological applications. Here
we use the results in Table XI to update our calculation of
the ratio BðB → DτνÞ=BðB → DlνÞ in the Standard
Model [16]. We obtain

RðDÞ ¼ 0.299ð11Þ; ð6:2Þ

which agrees with our previous determination RðDÞ ¼
0.316ð12Þð7Þ in [16], but is 2.0σ lower than the BABAR
measurement RðDÞ ¼ 0.440ð58Þð42Þ [69]. The error in our
new determination of RðDÞ is about 20% smaller than in
Ref. [16], primarily due to the inclusion of the experimental
information on the shape of fþ from the joint z-fit.
The dominant errors in the lattice form factors come

from statistics, matching, and the chiral-continuum
extrapolation, and can be reduced through simulations at
smaller lattice spacings and at physical quark masses and
from further study of the matching factors. The MILC
Collaboration is currently generating (2þ 1þ 1)-flavor
HISQ ensembles with physical light quarks [70], which
we anticipate using for future calculations of B → Dð�Þ
form factors. Heavy-quark discretization errors are also
important. They can be reduced with a more improved

TABLE XI. Central values, errors, and correlation matrix for the parameters of the joint cubic fit to the synthetic lattice data for fþ and
f0 (including the kinematic constraint at q2 ¼ 0) and the experimental measurements of η̄EWjVcbjfþðwÞ. The coefficient a0;0 was
eliminated by the constraint, but we list it here for completeness. Its correlations with the other parameters are simply the coefficients of
the linear constraint relation.

Correlation matrix

Value aþ;0 aþ;1 aþ;2 aþ;3 a0;0 a0;1 a0;2 a0;3

aþ;0 001261(10) 1.00000 0.24419 −0.08658 0.01207 1.05212 0.23370 0.03838 −0.05639
aþ;1 −00963ð33Þ 1.00000 −0.57339 0.25749 0.06785 0.80558 −0.25493 −0.15014
aþ;2 037(11) 1.00000 −0.64492 0.00437 −0.44966 0.66213 0.05120
aþ;3 −005ð90Þ 1.00000 0.00028 0.11311 −0.20100 0.23714
a0;0 001142(14) 1.00000 −0.06448 −0.00416 −0.00027
a0;1 −00590ð28Þ 1.00000 −0.44352 0.02485
a0;2 019(10) 1.00000 −0.46248
a0;3 −003ð87Þ 1.00000

36 37 38 39 40 41 42 43 44

|V
cb

| × 10
3

Alberti et al. ’14, B → X
c
 inclusive

Fermilab/MILC ’14 + HFAG ’14, B → D
*
, w = 1

Fermilab/MILC ’15 + HFAG ’14, B → D, w = 1

Fermilab/MILC ’15 + BaBar ’09, B → D, w ≥ 1

FIG. 12 (color online). Comparison of exclusive and inclusive
determinations of jVcbj × 103. Triangles denote an extrapolation
to zero recoil, while squares use data over a wide kinematic range.
The color code is black, blue (dark gray), and orange (light gray)
for B → Dlν, B → D�lν, and B → Xclν, respectively.
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heavy-quark action such as that proposed in Ref. [71], and
work on this is underway [72,73].
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APPENDIX A: HEAVY-QUARK
MASS CORRECTIONS

Heavy-quark masses (κ values) are determined by
requiring that the kinetic masses of the Ds and Bs match
their experimental values. The three-point and two-point
functions in this study were computed with κ values from a
preliminary tuning. Final tuned values differed slightly [5],
as shown in Tables II and V.

We therefore need to adjust the form factors and w values
accordingly. This is done by repeating the computation
of the ratios Rþ, QþðpÞ, and R−ðpÞ on the a ≈ 0.12 fm,
m̂0 ¼ 0.2m0s ensemble for a few values of κb and κc in the
vicinity of the desired, tuned values. These results permit
calculating the derivatives of the form factors with respect
to the quarkmasses.We assume that these results, expressed
in dimensionless terms, can then be used to adjust form
factors in our other ensembles.
From Eqs. (2.18)–(2.20), we see that we have the option

of computing and applying these adjustments before or
after matching with the ρ factors. Because of the simplify-
ing steps taken in Appendix B for ρV4ðwÞ=ρV4ð1Þ and
ρViðwÞ=ρV4ðwÞ, we choose to make the adjustments
directly on unmatched quantities. From Eqs. (2.22) and
(2.23), one sees that it is convenient to study the mass
dependence of

Sþ ¼
ffiffiffiffiffiffi
Rþ

p
Qþ; ðA1Þ

S− ¼
R− · xf
x2f

; ðA2Þ

and x2fS−.
Heavy-quark symmetry suggests that interpolations in

inverse quark masses will implement the quark-mass tuning
most smoothly. With the Fermilab method [17], the quark
mass is identified with the kinetic mass:

1

m2a
¼ 2

m0að2þm0aÞ
þ 1

m0aþ 1
; ðA3Þ

where we compute the bare quark mass m0a from the
tadpole-improved, tree-level formula

m0a ¼
1

u0

�
1

2κ
− 1

2κcr

�
: ðA4Þ

Here, u0 is the tadpole parameter, and κcr is the value of κ
such that the lightest pseudoscalar meson mass vanishes.
Thus, below we compute slopes of Sþ, S−, and x2fS− with
respect to ξc ¼ 1=ðm2cr1Þ and ξb ¼ 1=ðm2br1Þ. The results
of the computations with varying quark masses are shown
in Figs. 13 and 14.
Because the corrections in the charm and bottom masses

are small, it suffices to work to first order in the inverse
mass shift. Heavy-quark symmetry also suggests that the
leading mass dependence of Sþðw ¼ 1Þ ¼ ffiffiffiffiffiffi

Rþ
p

is quad-
ratic, of the form ðξc − ξbÞ2. Therefore, the leading shift in
ξc is suppressed by ξb, and the leading shift in ξb is
suppressed by ξc. Below, we neglect the former effect
but keep the latter, since it is suppressed only by ξc.
Furthermore, by construction x2fS− → 0 as w → 1 for all
quark masses, and, therefore, the derivative with respect to
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ξc also vanishes at w ¼ 1. On the other hand, neither S− nor
its derivatives vanish at w ¼ 1.
Because of the narrow range of w, 1 ≤ w < 1.16, for

our data, one should expect a linear approximation in
w to suffice for the quark-mass adjustments. Indeed, only
x2fS− requires a quadratic, as shown in Figs. 15 and 16.
Therefore, we introduce

dSþ
dξc
¼ rþ;1;cðw − 1Þ; ðA5Þ

dS−
dξc
¼ r−;0;c þ r−;1;cðw − 1Þ; ðA6Þ

dðx2fS−Þ
dξc

¼ rx;1;cðw − 1Þ þ rx;2;cðw − 1Þ2; ðA7Þ

dw
dξc
¼ rw;1;cðw − 1Þ; ðA8Þ

dSþ
dξb
¼ rþ;0;b þ rþ;1;bðw − 1Þ; ðA9Þ

dS−
dξb
¼ r−;0;b þ r−;1;bðw − 1Þ: ðA10Þ

(The notation for the slope parameters rf;n;q encodes a form
factor label f, a polynomial coefficient index n, and a quark
mass label q.) Fits to our data then yield

rþ;1;c ¼ −0.72ð5Þ; ðA11Þ

r−;0;c ¼ 0.102ð11Þ; ðA12Þ

r−;1;c ¼ −0.23ð14Þ; ðA13Þ

rx;1;c ¼ 0.851ð14Þ; ðA14Þ

rx;2;c ¼ −1.22ð16Þ; ðA15Þ

FIG. 13. Heavy-quark mass dependence on the a ≈ 0.12 fm, m̂0 ¼ 0.2m0s ensemble at momentum 2πð1; 1; 0Þ=L. Left to right: Sþ, S−,
and x2fS−, respectively, vs inverse charm-quark kinetic mass ξc ¼ ðm2cr1Þ−1.

FIG. 14. Heavy-quark mass dependence on the a ≈ 0.12 fm, m̂0 ¼ 0.2m0s ensemble at momentum 2πð1; 1; 0Þ=L. Sþ (left) and S−
(right) vs inverse bottom-quark kinetic mass ξb ¼ ðm2br1Þ−1.
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rþ;0;b ¼ 0.0042ð41Þ; ðA16Þ

rþ;1;b ¼ 0.07ð21Þ; ðA17Þ

r−;0;b ¼ −0.49ð5Þ; ðA18Þ

r−;1;b ¼ −0.46ð69Þ: ðA19Þ

As discussed above, we expect rþ;0;b to be of order ξc, or
approximately 0.83. In fact, it is much smaller.
We compute the correlation functions at discrete

values of the recoil momentum of the D meson,
resulting in discrete values wi, which are determined
from Eqs. (2.15) and (2.17). The recoil variable wi is
determined dynamically from diagonal vector current
matrix elements involving the D meson, so it varies
with the charm quark mass, but not the bottom quark
mass. We take the convention that when we shift both
quark masses, we shift wi to wi

0 and we shift SþðwiÞ to
S0þðw0iÞ, and similarly for S− and x2fS−. As can be seen
from Fig. 17, the data support a linear approximation
for the shift in wi also.

The effect of the kappa adjustment on the values of w,
hþ, and h− is illustrated in Table XII for the a ≈ 0.12 fm,
m̂0 ¼ 0.14m0s ensemble where the tuning adjustment
decreases both κc and κb from their simulation values.

FIG. 15. Effect of heavy-quark mass shifts on the a ≈ 0.12 fm, m̂0 ¼ 0.2m0s ensemble as the charm-quark mass parameter is increased
from κc ¼ 0.1254 to 0.1280. Left to right: dSþ, dS−, and dðx2fS−Þ, respectively, vs w − 1.

FIG. 16. Effect of heavy-quark mass shifts on the a ≈ 0.12 fm, m̂0 ¼ 0.2m0s ensemble as the bottom-quark mass parameter is increased
from κb ¼ 0.0860 to 0.0901 vs w − 1. Left to right: dSþ and dS−, respectively, vs w − 1.

FIG. 17. Effect of heavy-quark mass shifts on the
a ≈ 0.12 fm, m̂0 ¼ 0.2m0s ensemble. Shift in recoil variable
wi vs w − 1 as the charm-quark mass parameter is increased
from κc ¼ 0.1254 to 0.1280.
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APPENDIX B: HEAVY-QUARK
DISCRETIZATION EFFECTS

We use the heavy-quark effective theory (HQET) to
derive the form of heavy-quark discretization effects
[19,56]. In this appendix, we apply this formalism to
derive the matching procedure from lattice gauge theory
to continuum QCD; cf. Eqs. (2.18)–(2.20). We also use it to
derive power-law discretization effects, both at nonzero
recoil (w > 1) and at zero recoil (w ¼ 1) where heavy-
quark symmetry is more constraining. In the last subsection
of the appendix, we also present numerical estimates for the
discretization errors.

1. Formalism

We describe the underlying lattice gauge theory (LGT)
with an effective Lagrangian, asserting the relation

LLGT ≐ h̄ðiv ·D −m1Þhþ
h̄D2⊥h
2m2

þ h̄s · Bh
2mB

þ h̄½Dα⊥; iEα�h
8m2

D
þ h̄sαβfDα⊥; iEβgh

4m2
E

þ � � � ; ðB1Þ

where ≐ can be read “has the same matrix elements as.”
Here, v is a four vector specifying the rest frame of the
heavy-light meson, such that v2 ¼ −1; the heavy-quark
field h satisfies vh ¼ ih; and sαβ ¼ −iσαβ=2. Then, Dμ

⊥ ¼
Dμ þ vμv ·D is the covariant derivative orthogonal to v,
Bαβ ¼ ðδαμ þ vαvμÞFμνðδβν þ vβvνÞ is the chromomagnetic
field (in the v frame), and Eβ ¼ −vαFαβ is the chromo-
electric field (in the v frame). The HQET description for
continuum QCD has the same structure

LQCD ≐ h̄ðiv ·D −mÞhþ h̄D2⊥h
2m

þ zBh̄s · Bh
2m

þ zDh̄½Dα⊥; iEα�h
8m2

þ zEh̄sαβfDα⊥; iEβgh
4m2

þ � � � :
ðB2Þ

In this framework, matching and improvement boil down to
choosing the parameters of the lattice Lagrangian, such that
the Eq. (B1) reproduces Eq. (B2) term by term.

The rest mass m1 does not influence matrix elements or
mass splittings. In the Fermilab method, therefore, one
tunes κ so that

1

2m2

¼ 1

2m
; ðB3Þ

and cSW so that

1

2mB
¼ zB

2m
¼ 1þOðαsÞ

2m
; ðB4Þ

where the second equality follows because zB ¼ 1þOðαsÞ.
In this work, we tune κ via the heavy-strange meson mass;
for details of our procedures, see Appendix C of Ref. [5].
Furthermore, we choose cSW at the tadpole-improved tree
level, which makes the coefficient of the OðαsÞ error in
Eq. (B4) small [74].
The Fermilab vector current, Eq. (2.8), has an HQET

description too. Through dimension four [19]

Vμ ≐ C̄LGT
V∥

vμc̄v0bv þ C̄LGT
V⊥ c̄v0iγ

μ
⊥bv þ C̄LGT

Vv0
v0μ⊥c̄v0bv

−X14
a¼1

B̄LGT
Va Q̄μ

Va þ � � � : ðB5Þ

The continuum-QCD current Vμ can be described in the
same way albeit with different C̄ and B̄ coefficients,
denoted in this paper by omitting the label “LGT.” Then
ZVμVμ ≐ Vμ if the Z factors are chosen to be [19]

ZV4 ≡ Z̄V∥
¼ C̄V∥

=C̄LGT
V∥

; ðB6Þ

ZVi ≡ Z̄V⊥ ¼ C̄V⊥=C̄
LGT
V⊥ : ðB7Þ

In practice, of course, such matching is only approximate.
For example, the one-loop calculation of ρV4 , explained in
Sec. III E, leads to a matching error of order α2s.
With the Fermilab currents most of the 14 dimension-

four coefficients B̄LGT
Va vanish at the tree level; the same

holds for continuum QCD and the B̄Va. The exceptions
multiply the operators

Q̄μ
V1 ¼ −vμc̄v0D⊥bv; ðB8Þ

TABLE XII. Unadjusted and adjusted values of w, hþ, and h− for the a ≈ 0.12 fm, m̂0 ¼ 0.14m0s ensemble. For
this illustration only statistical errors are shown.

Momentum Raw w Shifted w Raw hþ Tuned hþ Raw h− Tuned h−
000 1 1 1.0391(53) 1.0390(53) � � � � � �
100 1.0465 1.0426 0.9812(61) 0.9849(62) 0.0041(111) 0.0008(111)
110 1.0896 1.0822 0.9388(70) 0.9457(70) 0.0072(134) 0.0031(135)
111 1.1299 1.1191 0.8978(97) 0.9073(97) 0.0139(165) 0.0092(166)
200 1.1553 1.1424 0.8789(120) 0.8898(121) 0.0336(205) 0.0286(206)
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Q̄μ
V2 ¼ c̄v0iγ

μ
⊥D⊥bv; ðB9Þ

Q̄μ
V4 ¼ −v0μc̄v0 ⃖D⊥0bv; ðB10Þ

Q̄μ
V5 ¼ c̄v0 ⃗D⊥0iγμ⊥0bv: ðB11Þ

At the tree level, their coefficients are

Z̄V∥
B̄LGT
V1 ¼ Z̄V⊥B̄

LGT
V2 ≡ 1

2m3b
; ðB12Þ

Z̄V∥
B̄LGT
V4 ¼ Z̄V⊥B̄

LGT
V5 ≡ 1

2m3c
: ðB13Þ

The improvement terms in the current, namely d1, are
chosen so that

1

2m3

¼ 1

2m2

þOðαsaÞ; ðB14Þ

for operators with label a ∈ f1; 2; 4; 5g. The other B̄ðLGTÞVa
are of order αs from the outset.

2. Matching factors

Equation (2.18) is well known from earlier work [19,20].
To establish Eqs. (2.19) and (2.20), let us start by defining
hLGT� ðwÞ for the lattice current Vμ in analogy with the
decomposition in Eq. (2.4). These form factors hLGT� ðwÞ are
not the right-hand sides of Eqs. (2.22) and (2.23). The task
here is to show how the ratios cancel some of the cutoff
effects in hLGT� ðwÞ. Sometimes it is convenient to choose
arbitrary v and v0 when working out consequences of the
HQET. The kinematics of our lattice-QCD correlators
correspond to v ¼ ði; 0Þ and v0 ¼ ðiw; v0Þ.
The simplest case is the definition of the velocity via

Dð0Þ → DðpÞ matrix elements:

xfðpÞ ¼ v0
hLGTþ ðpÞ − hLGT− ðpÞ

ðwþ 1ÞhLGTþ ðpÞ − ðw − 1ÞhLGT− ðpÞ ¼
v0

wþ 1
;

ðB15Þ

because hLGT− ¼ 0 for a flavor-conserving transition. This
property follows from time-reversal invariance of the
chosen current and arises independent of any matching
considerations. The expression for w in Eq. (2.17) then
follows immediately from w2 ¼ 1þ v02 (when v ¼ 0).
Similarly, the other ratios are

QþðpÞ ¼
ðwþ 1ÞhLGTþ ðwÞ − ðw − 1ÞhLGT− ðwÞ

2hLGTþ ð1Þ
; ðB16Þ

R−ðpÞ ¼ v0
hLGTþ ðwÞ − hLGT− ðwÞ

ðwþ 1ÞhLGTþ ðwÞ − ðw − 1ÞhLGT− ðwÞ ; ðB17Þ

with w ¼ wðpÞ. These form factors, of course, are for the
flavor-changing process.
Using the trace formalism explained in Ref. [56], it is

straightforward to obtain the following expressions for
hLGT� ðwÞ:

hLGTþ ðwÞ ¼ C̄LGTþ ðwÞΞðwÞ

þ w − 1

2
fB̄LGTþ ðwÞ½2ξ3ðwÞ − Λ̄ξðwÞ�

− B̄0LGTþ ðwÞΛ̄ξðwÞg; ðB18Þ

hLGT− ðwÞ ¼ 1

2
ðwþ 1ÞC̄LGT− ðwÞΞðwÞ
þ B̄LGT− ðwÞ½2ξ3ðwÞ − Λ̄ξðwÞ�
− B̄0LGT− ðwÞΛ̄ξðwÞ; ðB19Þ

neglecting higher-dimension terms. The leading-dimension,
short-distance coefficients are

C̄LGTþ ðwÞ ¼ C̄LGT
V∥
ðwÞ þ 1

2
ðw − 1ÞC̄LGT− ðwÞ; ðB20Þ

C̄LGT− ðwÞ ¼ C̄LGT
V∥
ðwÞ − C̄LGT

V⊥ ðwÞ − ðwþ 1ÞC̄LGT
Vv0
ðwÞ:
ðB21Þ

The B̄ð0ÞLGT� each contain several of the 14 B̄LGT
Va in Eq. (B5),

and the detailed expressions are not illuminating. The Isgur-
Wise function ξðwÞ and its generalizations ξ3ðwÞ and

ΞðwÞ ¼ ξðwÞ þ Σ2A1ðwÞ þ ΣB½3A3ðwÞ þ 2ðw − 1ÞA2ðwÞ�
ðB22Þ

parametrize the long-distance physics. In the context of
lattice gauge theory, their discretization effects arise only
from the light degrees of freedom. In Eq. (B22), ξð1Þ ¼ 1
and A1ð1Þ ¼ A3ð1Þ ¼ 0 by flavor conservation in
HQET. In order to have compact formulas, the function Ξ
contains some short-distance information, namely the mass
combinations

ΣX ¼
1

2mXc
þ 1

2mXb
; X ∈ f2; B; 3g; ðB23Þ

which depend on the short-distances a and m−1
Q .

When using HQET to describe the heavy-quark limit of
continuum QCD, the algebra is identical. The difference
lies in the short-distance coefficients: in the notation
used here, C̄LGT

V∥
etc. simply lose the superscript “LGT.”

Further, discretization effects of the light degrees of free-
dom disappear from the HQET quantities Λ̄, ξðwÞ, ξ3ðwÞ,
and AiðwÞ.
To derive the matching factors, we focus on the leading-

dimension term. Then one finds
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QþðpÞ ¼
wþ 1

2

C̄LGT
V∥
ðwÞ

C̄LGT
V∥
ð1Þ ΞðwÞ; ðB24Þ

R−ðpÞ ¼
v0

wþ 1

C̄LGT
V⊥ ðwÞ þ ðwþ 1ÞC̄LGT

v0 ðwÞ
C̄LGT
V∥
ðwÞ : ðB25Þ

Thus, to match these quantities to continuum QCD, one
must multiply Qþ and R− by

ρV4ðwÞ
ρV4ð1Þ ≡

ρV∥
ðwÞ

ρV∥
ð1Þ ¼

C̄V∥
ðwÞ

C̄LGT
V∥
ðwÞ

C̄LGT
V∥
ð1Þ

C̄V∥
ð1Þ ; ðB26Þ

ρViðwÞ
ρV4ðwÞ≡

ρVv0 ðwÞ
ρV∥
ðwÞ ¼

C̄V⊥ðwÞþðwþ1ÞC̄v0 ðwÞ
C̄LGT
V⊥ ðwÞþðwþ1ÞC̄LGT

v0 ðwÞ
C̄LGT
V∥
ðwÞ

C̄V∥
ðwÞ ;

ðB27Þ
respectively, to obtainQþ and R− in Eqs. (2.19) and (2.20).
One-loop calculations of the w dependence of these

coefficients are not available, however. (The algebra with
p ≠ 0 is much more voluminous.) We shall proceed with a
further approximation for each of the two factors multi-
plying Qþ and R−. By construction in Eq. (B26),

ρV∥
ðwÞ

ρV∥
ð1Þ ¼ 1þOðαsðw − 1ÞÞ: ðB28Þ

Because the w dependence arises only from the vertex
diagram—the tadpoles on the legs cancel—the computed

coefficient should, like those in Table V, be small.
Furthermore we note that w − 1 < 0.16 and that the w
dependence disappears when mca → 0. Hence we neglect
this one-loop contribution and take ρV4ðwÞ=ρV4ð1Þ ¼ 1.
For the OðαsÞ error we use the following form:

ρV4ðwÞ
ρV4ð1Þ ¼ 1� αVð2=aÞρ½1�V4max

ðw − 1Þm2ca; ðB29Þ

where the values for αVð2=aÞ are listed in Table V, and

ρ½1�
V4max

¼ 0.1 ðB30Þ

is an upper bound on the size of the observed one-loop
corrections to ρV4ð1Þ. In the mass region of interest,

ρ½1�
V4 < ρ½1�

V4max
.

Equation (B29) gives an estimate of the error in the
ratio ρV4ðwÞ=ρV4ð1Þ. The zero-recoil ρV4ð1Þ is calculated at
one-loop order in lattice perturbation theory and tabulated
in Table V. We estimate the Oðα2sÞ truncation error, in
the spirit of Ref. [5], by taking the coefficient as twice the

largest first-order coefficient, 2ρ½1�V4max
¼ 0.2. Hence, the

error due to omitted higher order corrections is estimated as

�2ρ½1�
V4max

α2Vð2=aÞ: ðB31Þ

The two errors are combined in quadrature to obtain the
total systematic error in ρV4ðwÞ:

�ρV4ð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ρ½1�

V4max
αVð2=aÞðw − 1Þm2ca�2 þ ½2ρ½1�V4max

α2Vð2=aÞ=ρV4ð1Þ�2
q

: ðB32Þ

For the factor in Eq. (B27) for R−, note that most of our
ensembles havemca < 0.4 and recall that asmca → 0 with
mba fixed, the short-distance coefficients of the HQETwith
two heavy-quark fields tend to those with one heavy-quark
field (for bottom) and a Dirac field (for charm). As shown
in Ref. [19],

lim
mca→0

Z̄V∥
ðwÞ ¼ ZV∥

; ðB33Þ

lim
mca→0

Z̄V⊥ðwÞ ¼ ZV⊥ ; ðB34Þ

lim
mca→0

Z̄V⊥ðwÞC̄LGT
Vv0
ðwÞ ¼ C̄Vv0 ðwÞ; ðB35Þ

the unbarred coefficients have no w dependence [44]. In
practice, the error in these equations is of order αsðaÞmca.
We shall neglect this contribution and use

ρViðwÞ
ρV4ðwÞ≡

ρVv0 ðwÞ
ρV∥
ðwÞ ¼

ZV⊥
ZV∥

: ðB36Þ

The one-loop calculation of the right-hand side can be done
at zero recoil and is, thus, much simpler. The one-loop
result is given in the right-most column of Table V. To
account for the error due to the neglected OðαsmcaÞ
contribution, as in Eq. (B30) we consider the size of the
one-loop coefficient for the range of b-quark masses used

in this calculation, finding ρ½1� ≤ 0.352. With ρ½1�max ¼ 0.352
we take the error as

�αVð2=aÞρ½1�maxm2ca: ðB37Þ

3. Discretization errors at nonzero recoil (w > 1)

Power-law discretization effects arise from the higher-
dimension terms in Eqs. (B20) and (B21). The
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discretization errors can be found by comparing the HQET
description of lattice gauge theory to that of continuum
QCD, as follows: substitute Eqs. (B18) and (B19) into
Eqs. (B16) and (B17), multiply by the matching factors as
in Eqs. (2.19) and (2.20), and form the combinations in
Eqs. (2.22) and (2.23). The resulting HQET descriptions of
the form factors are

hþðwÞ ¼ C̄þðwÞΞðwÞ

þ w − 1

2
fB̄misþ ðwÞ½2ξ3ðwÞ þ Λ̄ξðwÞ�

þ B̄0mis− ðwÞΛ̄ξðwÞg; ðB38Þ

h−ðwÞ ¼
1

2
ðwþ 1ÞC̄−ðwÞΞðwÞ
þ B̄mis− ðwÞ½2ξ3ðwÞ − Λ̄ξðwÞ� − B̄0mis− ðwÞΛ̄ξðwÞ;

ðB39Þ

where4

B̄ð0Þmis
þ ðwÞ ¼ B̄ð0ÞLGTþ ðwÞ

C̄LGT
V⊥ ðwÞ þ ðwþ 1ÞC̄LGT

v0 ðwÞ

×

�
C̄þðwÞ − wþ 1

2

C̄LGT− ðwÞC̄V∥
ðwÞ

C̄LGT
V∥
ðwÞ

�
;

−
B̄ð0ÞLGT− ðwÞ

C̄LGT
V⊥ ðwÞ þ ðwþ 1ÞC̄LGT

v0 ðwÞ

×

�
C̄−ðwÞ −

C̄LGT− ðwÞC̄V∥
ðwÞ

C̄LGT
V∥
ðwÞ

�
; ðB40Þ

B̄ð0Þmis− ðwÞ¼ B̄ð0ÞLGT− ðwÞ
C̄LGT
V⊥ ðwÞþðwþ1ÞC̄LGT

v0 ðwÞ

×

�
C̄þðwÞ−wC̄−ðwÞþ

w−1

2

C̄LGT− ðwÞC̄V∥
ðwÞ

C̄LGT
V∥
ðwÞ

�
;

−
w2−1

4

B̄ð0ÞLGTþ ðwÞ
C̄LGT
V⊥ ðwÞþðwþ1ÞC̄LGT

v0 ðwÞ

×

�
C̄−ðwÞ−

C̄LGT− ðwÞC̄V∥
ðwÞ

C̄LGT
V∥
ðwÞ

�
: ðB41Þ

As long as the matching of the dimension-three currents is
carried out to order αls , the parts of Eqs. (B40) and (B41)
entailing the C̄ coefficients collapses such that

B̄ð0Þmis
� ¼ B̄ð0Þ� þOðαminðk;lÞþ1

s Þ; ðB42Þ

where the dimension-four currents have been matched
through order αks. In particular at the tree level (k ¼ 0),

B̄mis
� ¼

1

2mc3
� 1

2mb3
; ðB43Þ

B̄0mis
� ¼ 0; ðB44Þ

while in continuum QCD, B̄� ¼ 1=2mc � 1=2mb and
B̄0� ¼ 0. Thus, we have tree-level matching in the dimen-
sion-four currents, with errors from this source of the form

error3;� ¼ ½f3ðm0caÞ � f3ðm0baÞ�Λ̄a: ðB45Þ

Here af3ðm0aÞ ¼ 1=2m3 − 1=2m2, and the factor of Λ̄ is a
power-counting estimate of the HQET matrix element; Λ̄ is
the scale of nonperturbative QCD as it pertains to heavy-
light mesons, roughly the difference between the heavy-
light-meson and heavy-quark masses.
Another discretization error arises from the function

ΞðwÞ in lattice gauge theory and continuum QCD. In LGT,
the kinetic and chromomagnetic masses appear. In this way,
one finds that the mismatch in ΣB in ΞðwÞ yields an error

errorB ¼ ½fBðm0caÞ þ fBðm0baÞ�ðw − 1ÞΛ̄a; ðB46Þ

taking the functions Ai to be of order Λ̄ and building in the
fact that the contribution vanishes as w → 1. Similarly to
the above, afBðm0aÞ ¼ 1=2mB − 1=2m2, which, for our
choice of cSW, is of order αs.
Combining the two kinds of errors (⊕ means to add in

quadrature),

hþð2.22Þ − hþðcontÞ ¼ errorB⊕
1

2
ðw − 1Þerror3;þ;

ðB47Þ

h−ð2.23Þ − h−ðcontÞ ¼ error3;−: ðB48Þ

Because C̄− vanishes at the tree level, the contribution to
the error in h− from C̄−errorB is suppressed by an addition
factor of αs and, thus, omitted here. Note that error3;þ in
hþðwÞ is multiplied by ðw − 1Þ, whereas error3;− in h−ðwÞ
is not; cf. Eqs. (B38) and (B39). Our choices for the
functions fBðm0aÞ and f3ðm0aÞ are discussed below;
cf. Eqs. (B58) and (B59).

4. Discretization errors at zero recoil (w ¼ 1)

Because the next-to-leading-dimension discretization
effects are suppressed by αs, the next-to-next-to-leading-
dimension effects may be of the same size. This is
especially true at zero recoil, where the next-to-leading

4The continuum QCD analogs of Eqs. (B40) and (B41) can be
obtained by erasing the superscript “LGT” and simplifying with
Eqs. (B20) and (B21). The result becomes, as expected, trivial.
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contributions to hþ vanish. To capture the leading
discretization errors of hþð1Þ, therefore, one needs the
dimension-five temporal vector current (with v0 ¼ v) [56]:

ZV4
cb
V4 ¼ −ZV4

cb
v · V

≐ C̄Vcb
∥
c̄vbv þ zð1;1Þ

Vcb1

c̄vD
 

⊥ ·D⊥bv
2m3c2m3b

þ zð1;1Þ
Vcbs

c̄v← Dα⊥sαβD
β
⊥bv

2m3c2m3b
þ ηð0;2Þ

VcbD2⊥

c̄vD2⊥bv
8m2

D2⊥b

þ ηð0;2Þ
VcbsB

c̄vs · Bbv
8m2

sBb

þ ηð0;2Þ
VcbαE

c̄viEbv
4m2

αEb

þ ηð2;0Þ
VcbD2⊥

c̄v← D2⊥bv
8m2

D2⊥c
þ ηð2;0Þ

VcbsB

c̄vs · Bbv
8m2

sBc

þ ηð2;0Þ
VcbαE

c̄viEbv
4m2

αEc
; ðB49Þ

and similarly for −v · V. For the currents defined in Sec. II,
as well as for the continuum currents, the η-coefficients and
z-coefficients in Eq. (B49) all take the form 1þOðαsÞ. The
η-like coefficients and associated masses in Eq. (B49) drop
out of the analysis.
From Eqs. (7.23)–(7.29) of Ref. [56], the HQET expan-

sions through OðΛ̄2Þ of the matrix elements are

ffiffiffiffiffiffiffi
Rþ

p ¼ ηVW
ð0Þ
00 þ W̄ð2Þ00 ; ðB50Þ

where ηV is an HQET-to-QCD matching factor that starts
with 1 in perturbative QCD, and

Wð0Þ00 ¼ 1 − 1

2
Δ2

2D − 3Δ2ΔBE − 1

2
Δ2

BðR1 þ 3R2Þ; ðB51Þ

W̄ð2Þ00 ¼ − 1

2
Δ2

3½zð1;1ÞV1 μ2π − zð1;1ÞVs μ2G�; ðB52Þ

where D, E, R1, R2, μ2π , and μ2G are HQET matrix elements
of order Λ̄2.5 Also,

ΔI ¼
1

2mIc
− 1

2mIb
; I ¼ 2; B; 3 ðB53Þ

are combinations of the mass coefficients in Eqs. (B1) and

(B14). Beyond the leading 1, the terms in Wð0Þ00 come from
double insertions of the kinetic and chromomagnetic

interactions. W̄ð2Þ00 stems from the dimension-five currents
in Eq. (B49).

Taking the difference between these expressions and the
analogous ones for continuum QCD, one sees that the error

in Wð0Þ00 stems from

1

2mBh
− zB
2m2h

¼ afBðm0haÞ: ðB54Þ

The coefficients zð1;1ÞJ• ¼ 1þOðαsÞ; also 1=m3h → 1=mhþ
OðαsaÞ [compare Eqs. (B12) and (B13)]. Thus, the error

entering W̄ð2Þ00 stems from

Δ2
3z
ð1;1Þ
V• − Δ2

2z
ð1;1Þ
V• ¼ 2a½f3ðm0caÞ − f3ðm0baÞ�Δ2;

ðB55Þ

with f3 of order αs for our choices. Thus, errors in ρV4

ffiffiffiffiffiffi
Rþ
p

stem from the mismatches

Wð0Þ00 ðLGTÞ −Wð0Þ00 ðcontÞ
¼ −aΔ2½fBðm0caÞ − fBðm0baÞ�ðR1 þ 3R2 þ 3EÞ;

ðB56Þ

W̄ð2Þ00 ðLGTÞ − W̄ð2Þ00 ðcontÞ
¼ −aΔ2½f3ðm0caÞ − f3ðm0baÞ�ðμ2π − μ2GÞ: ðB57Þ

In estimating heavy-quark discretization errors, we use
these results at w ¼ 1, where the more generic effects in
Eqs. (B47) and (B48) are much smaller.

5. Numerical estimates

For the mismatch functions fB and f3 in Eqs. (B46) and
(B45), and in Eqs. (B56) and (B57), we use the functional
forms [40]

fBðm0aÞ ¼
αs

2ð1þm0aÞ
; ðB58Þ

f3ðm0aÞ ¼
αs

2ð2þm0aÞ
: ðB59Þ

To estimate the HQET matrix elements, we take
Λ̄ ¼ 450 MeV,6

μ2G ¼
3

4
ðM2

B� −M2
BÞ ¼ 0.364 GeV2 ¼ ð603 MeVÞ2;

ðB60Þ

μ2πð1 GeVÞ ¼ 0.424� 0.042 GeV2 ¼ ð651� 32 MeVÞ2:
ðB61Þ

5Reference. [56] used a notation setting μ2π ¼ −λ1 and
μ2G ¼ 3λ2.

6Here, 450 MeV is not an estimate of MB −mb, but simply a
practical number for power-counting estimates.
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We do not have estimates for D, E, R1, and R2 as good as
Eqs. (B60) and (B61), but in Ref. [5] we found that we
could explain the discretization effects at zero recoil in
B → D� with jR1 þ 3R2 þ 3Ej ≲ ð450 MeVÞ2.
We take the typical αVðq�Þ to be 0.262 on the a ≈

0.09 fm lattices, and we use one-loop running to obtain
αVðq�Þ at the other lattice spacings.
In Table XIII, we show results from using these inputs to

compute the differences that Eqs. (B56) and (B57) predict,
using the lattice with a ≈ 0.09 fm as the baseline. The
estimates of the differences are compatible with the lattice-
spacing dependence that can been seen for w ¼ 1 in Fig. 7,
and can be inferred for w > 1 from Fig. 3. For example, the
error in hþðwÞ grows slowly with w, both from Table XIII
[adding in quadrature the right-most column with ðw − 1Þ
times the fifth column] and Fig. 3. Because the differences
from lattice to lattice are well described by the theory, we
can proceed to use the same ideas to estimate the difference
from each lattice to the continuum. The results of these
calculations are shown in Table XIV. For our final error

estimates on the vector and scalar form factors, we take the
absolute errors on hþ and h− in Table XIV at a ≈ 0.06 fm,
and combine them in quadrature following Eqs. (2.5) and
(2.6) that relate fþ and f0 to hþ and h−. The resulting
expressions for the absolute errors as a function of recoil
are

errorþ ¼
�
0.0198ðw − 1Þ 1þ r

2
ffiffiffi
r
p

�
⊕
�
0.0019

1 − r
2

ffiffiffi
r
p

�

⊕ 0.0012
1þ r
2

ffiffiffi
r
p ; ðB62Þ

error0 ¼
�
0.0198ðw2 − 1Þ

ffiffiffi
r
p
1þ r

�
⊕
�
0.0019ðw − 1Þ

ffiffiffi
r
p
1 − r

�

⊕ 0.0012ðwþ 1Þ
ffiffiffi
r
p
1þ r

: ðB63Þ

These lead to estimates that range from 0.1%–0.4% for
both fþ and f0 in our range of simulated lattice w values.

TABLE XIV. Absolute error on h�ðwÞ from mismatches in the heavy-quark Lagrangian and current. We take Λ̄ ¼ 450 MeV,
μ2π ¼ 0.424 GeV2, and μ2G ¼ 0.364 GeV2. We further estimate the quantity jR1 þ 3R2 þ 3Ej with Λ̄2. The columns for hþðwÞ
correspond to the chromomagnetic mismatch [“B,” Eq. (B46)], the current mismatch [“3,” Eq. (B45)], and their quadrature sum [“⊕,”
Eq. (B47)]; these columns must be multiplied by ðw − 1Þ. The column for h−ðwÞ comes from the mismatch in Eq. (B48). The columns

for hþð1Þ correspond to the second-order mismatch of the Lagrangian [“Wð0Þ00 ,” Eq. (B56)] and the second-order mismatch of the current

[“W̄ð2Þ00 ,” Eq. (B57)], and their quadrature sum (“⊕”).

hþðwÞ h−ðwÞ hþð1Þ
a (fm) αVðq�Þ m0ba m0ca B 3 ⊕ ∀w Wð0Þ00 W̄ð2Þ00

⊕

0.120 0.300 2.462 0.532 0.0382 0.0125 0.0402 0.0069 0.0033 0.0005 0.0033
0.090 0.261 1.664 0.362 0.0293 0.0092 0.0307 0.0040 0.0023 0.0003 0.0023
0.060 0.220 1.123 0.240 0.0190 0.0057 0.0198 0.0019 0.0012 0.0001 0.0012
0.045 0.198 0.808 0.176 0.0141 0.0041 0.0147 0.0010 0.0007 0.0001 0.0007

TABLE XIII. Absolute difference of h�ðwÞ from mismatches in the heavy-quark Lagrangian and current. We take Λ̄ ¼ 450 MeV,
μ2π ¼ 0.424 GeV2, and μ2G ¼ 0.364 GeV2. We further estimate the quantity jR1 þ 3R2 þ 3Ej with Λ̄2. The totals are obtained from
Eqs. (B47), (B48), and (B56) and (B57) for hþðwÞ, h−, and hþð1Þ, respectively. The column for hþðwÞ must be multiplied by ðw − 1Þ.
The difference is estimated using the a ¼ 0.09 fm lattice as a baseline.

a (fm) αVðq�Þ m0ba m0ca hþðwÞ h−ðwÞ; ∀ w hþð1Þ
0.120 0.300 2.462 0.532 −0.0095 −0.0030 −0.0011
0.090 0.261 1.664 0.362 0.0000 0.0000 0.0000
0.060 0.220 1.123 0.240 0.0109 0.0021 0.0011
0.045 0.198 0.808 0.176 0.0160 0.0029 0.0016
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