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Abstract: In this paper, we introduce some common fixed point theorems for two distinct
self-mappings in the setting of metric spaces by using the notion of a simulation function introduced
in 2015. The contractivity conditions have not to be verified for all pairs of points of the space because
it is endowed with an antecedent conditions. They are also of rational type because the involved
terms in the contractivity upper bound are expressed, in some cases, as quotients.
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1. Introduction and Preliminaries

The notion of a simulation function, introduced by Khojasteh, Shukla and Radenović [1] in 2015,
has become into one of the most studied concepts in the field of Fixed Point Theory in recent times.
To support this affirmation, we refer the reader to the following recent papers: [2–5] The great success
of simulation functions has inspired many other developments (see, e.g., [6–11]), even in the fuzzy
setting (see, e.g., [12]). In this manuscript, we use the notion of simulation function in order to prove
two common fixed point theorems involving two distinct self-mappings. The importance of these
results can be evaluated through the great number of possible consequences that it can easily be
derived from the main theorems.

Throughout the manuscript, let (X, d) be a metric space. We denote N0 := N∪ {0} where N is the
set of all positive integers. Further, R represents the real numbers and R+

0 := [0,+∞). Background on
Fixed Point theory can be found on [13].

Definition 1. ([1]) Let η : [0,+∞)× [0,+∞)→ R be a mapping, then η is called a simulation function if it
satisfies the following conditions:

(ηii) η(t, s) < s− t for all s, t > 0.
(ηiii) if {tn}, {sn} are sequences in (0,+∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0 implies lim sup
n→∞

η(tn, sn) < 0.

Example 1. We recall some examples of simulation functions given in [1].

(a1) For each s, t ≥ 0, let η(t, s) = αs− t , where α ∈ [0, 1).
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(a2) For each s, t ≥ 0, let η(t, s) = φ(s)− t, where φ : [0,+∞)→ [0,+∞) is a mapping such that for each
s > 0, φ(s) < s and lim supt→s φ(t) < s.

(a3) For each s, t ≥ 0, let η(t, s) = sφ(s)− t, where φ : [0,+∞) → [0, 1) is a mapping such that for each
s > 0, lim supt→s φ(t) < 1.

(a4) For each s, t ≥ 0, let η(t, s) = s− φ(s)− t, where φ : [0,+∞) → [0,+∞) is a mapping such that for
each s > 0, lim inft→s φ(t) > 0 or φ : [0,+∞)→ [0, 1) is a continuous function such that φ(t) = 0 if
and only if t = 0.

(a5) For each s, t ≥ 0, let η(t, s) = ψ(s) − φ(t) where φ, ψ : [0,+∞) → [0,+∞) are two continuous
functions such that ψ(t) = φ(t) = 0 if and only if t = 0 and ψ(t) < t ≤ φ(t) for all t > 0.

The set of all simulation functions is denoted by Z.

Theorem 1. Let (X, d) be a complete metric space and let T : X → X be a Z-contraction with respect to
a certain simulation function η, that is

η(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X. (1)

Then T has a unique fixed point.

We state the following lemma which will be useful for demonstrating our main result.

Lemma 1 (See e.g., [14]). Let (X, d) be a metric space and let {xn} be a sequence in X such that
limn→∞ d(xn, xn+1) = 0. If {x2n} is not a Cauchy sequence then there exists ε > 0 and two sequences
of positive integers {nk} and {mk} such that nk is smallest index for which nk > mk > k and d(x2mk , x2nk ) ≥
ε and

1. limk→∞ d(x2mk , x2nk ) = ε.
2. limk→∞ d(x2mk−1, x2nk ) = ε.
3. limk→∞ d(x2mk , x2nk+1) = ε.
4. limk→∞ d(x2mk−1, x2nk+1) = ε.

Proposition 1. ([7,15]) Let (X, d) be a metric space, let T : X → X be a self-mapping and let {xn} ⊆ X be
a Picard sequence of T (that is, xn+1 = Txn for all n ∈ N). If limn→∞ d(xn, xn+1) = 0, then either {xn} is
almost constant or xn 6= xm for all n, m ∈ N such that n 6= m.

2. Main Results

The symbol Ψ is reserved to denote the set of all continuous and strictly increasing self-mappings
ψ on [0,+∞) so that ψ(0) = 0.

Definition 2. A function η : [0,+∞)× [0,+∞)→ R is called Ψ-simulation function if there exists ψ ∈ Ψ
so that:

(η1) η(t, s) < ψ(s)− ψ(t) for all s, t > 0,
(η2) if {tn}, {sn} are sequences in (0,+∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0, then lim sup
n→∞

η(tn, sn) < 0.

By ZΨ we shall denote the set al all Ψ-simulation functions. Notice that the class of Ψ-simulation
functions covers the class of simulation functions. Then, we highlight that all fixed point results
obtained by simulations functions can be derived via Ψ-simulation functions.

Example 2. Given ψ ∈ Ψ, the following ones are examples of Ψ-simulation functions. For each s, t ≥ 0,
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(e1) let η(t, s) = αψ(s)− ψ(t) , where α ∈ [0, 1).
(e2) let η(t, s) = φ(ψ(s)) − ψ(t), where φ : [0,+∞) → [0,+∞) is a function such that φ(0) = 0,

0 < φ(s) < s for each s > 0 and lim supt→s φ(t) < s. (for instance, φ(s) = αs where 0 ≤ α < 1).
(e3) let η(t, s) = φ(s)ψ(s)−ψ(t), where φ : [0,+∞)→ [0,+∞) is a function such that lim supt→s φ(t) <

1 for each s > 0.
(e4) let η(t, s) = ψ(s) − φ(s) − ψ(t), where φ : [0,+∞) → [0,+∞) is a function such that

lim inft→s φ(t) > 0 for each s > 0.

Remark 1. Every simulation function is a Ψ-simulation function where ψ is taken as the identity function on
[0,+∞).

So all simulation functions presented in Example 1 are Ψ-simulation functions. However,
the following example shows that there are Ψ-simulation function which are not simulation functions.

Example 3. Define η : [0,+∞)× [0,+∞)→ R by η(t, s) = 2sφ(s)− 2t where φ : R→ [0, 1) is a mapping
such that lim supt→s φ(t) < 1 for each s > 0 (for instance, φ(t) = α, where 0 ≤ α < 1). Then it is easy to see
that η is a Ψ-simulation function. However, if φ (s) = α ∈ (1/2, 1), then η(0, s) = 2αs > s, so η does not
satisfy (ηii) and η /∈ Z.

Denote by ZΨ the set of all Ψ-simulation functions. We have just proved that:

Proposition 2. Z ( ZΨ.

The first of our main results is the following one.

Theorem 2. Let (X, d) be a complete metric space and let T, S : X → X be two mappings such that, for all
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies η(d(Tx, Sy), m(x, y)) ≥ 0, (2)

where η ∈ ZΨ and, for all x, y ∈ X,

m(x, y) =

 d (Tx, Sx) , if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Sy)

d(x, y)

}
, if x 6= y.

(3)

If T and S are continuous, then T and S have a unique common fixed point (that is, there is a unique u ∈ X
such that Tu = Su = u). In fact, such a point is the unique fixed point of T and the unique fixed point of S.

Proof. For the sake of clarity, we divide the proof into five steps. The first one is necessary in order to
guarantee that the consecutive terms of the sequence we will construct can be supposed as distinct.

Step (1): We claim that any fixed point of T or S is a common fixed point of S and T.
Suppose that x ∈ X is a fixed point of T, that is, Tx = x (the same argument is valid if x is a fixed

point of S). Reasoning by contradiction, assume that x is not a common fixed of T and S. This means
that Sx 6= x. Therefore,

m (x, x) = d (Tx, Sx) = d(x, Sx) > 0.

Since
1
2

min{d(x, Tx), d(y, Sy)} = 1
2

min{0, d(y, Sy)} = 0 ≤ d(x, y),

using y = x in (2), we deduce that η(d(Tx, Sx), m(x, x)) ≥ 0. In particular, taking into account that
d(x, Sx) > 0 and condition (η1), we deduce that:

0 ≤ η(d(Tx, Sx), m(x, x)) = η(d(x, Sx), d(x, Sx)) < ψ (d(x, Sx))− ψ (d(x, Sx)) = 0,
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which is a contradiction. Therefore, we have proved that any fixed point of T (or S) is a common fixed
point of S and T, so step 1 is completed.

Next, in order to conclude T or S has a fixed point, we define the following sequence. Starting
from an arbitrary point x0 ∈ X, we shall built up a recursive sequence {xn} defined as:

x2n+1 = Tx2n and x2n+2 = Sx2n+1 for each n ∈ N. (4)

If there is some n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point of T or S (either Txn0 = xn0

or Sxn0 = xn0 ). In this case, step 1 shows that xn0 is a fixed point of T and S (and it only remains to prove
that this point is unique as in step 5). On the contrary case, assume, without loss of generality, that

xk 6= xk+1 for all k ∈ N. (5)

We shall consider the following set that will be useful in later stages of the proof.

A :=
{
(x, y) ∈ X× X :

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y)
}

.

Step (2): We claim that lim
k→∞

d(xk, xk+1) = 0.

To prove it, at first we claim that

d(xk+1, xk+2) ≤ d(xk, xk+1) for all k ∈ N. (6)

To see this, suppose that k = 2n for some n ∈ N. We have:

1
2

min{d(x2n, Tx2n), d(x2n+1, Sx2n+1)} =
1
2

min{d(x2n, x2n+1), d(x2n+1, x2n+2)}

≤ d(x2n, x2n+1).

So from (2) and (η1) we have:

0 ≤ η(d(Tx2n, Sx2n+1), m(x2n, x2n+1)) = η(d(x2n+1, x2n+2), m(x2n, x2n+1))

< ψ(m(x2n, x2n+1))− ψ(d(x2n+1, x2n+2)),

so
ψ(d(x2n+1, x2n+2)) < ψ(m(x2n, x2n+1)).

Since ψ is strictly increasing,

d(x2n+1, x2n+2) < m(x2n, x2n+1). (7)

On the other hand,

m(x2n, x2n+1) = max
{

d(x2n, x2n+1),
d(x2n, Tx2n)d(x2n+1, Sx2n+1)

d(x2n, x2n+1)

}

= max
{

d(x2n, x2n+1),
d(x2n, x2n+1)d(x2n+1, x2n+2)

d(x2n, x2n+1)

}
= max{ d(x2n, x2n+1), d(x2n+1, x2n+2) }.

If there is some n0 ∈ N such that d(x2n0+1, x2n0+2) ≥ d(x2n0 , x2n0+1), then m(x2n0 , x2n0+1) =

d(x2n0+1, x2n0+2), which contradicts (7).
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Therefore, for each n ∈ N,

d(x2n+1, x2n+2) < d(x2n, x2n+1)

and so

m(x2n, x2n+1) = d(x2n, x2n+1).

Consequently, (6) is proved when k ≥ 0 is an even number. By the same argument, one can check
that (6) holds when k is an odd number. Thus, the sequence {d(xn, xn+1)}n≥1 is non-increasing and
bounded from below, so it is convergent. Hence there is a real number γ ≥ 0 such that

lim
n→∞

d(xn, xn+1) = lim
n→∞

m(xn, xn+1) = γ. (8)

We claim that γ = 0. To prove the claim, at first suppose that

Ω = { (d(Tx, Sy), m(x, y)) : (x, y) ∈ A}.

By (2) and definition of A, we observe that

η(t, s) ≥ 0 for all (t, s) ∈ Ω \ {(0, 0)}. (9)

For each n ≥ 0 we have

1
2 min{d(x2n, Tx2n), d(x2n+1, Sx2n+1)} = 1

2 min{d(x2n, x2n+1), d(x2n+1, x2n+2)}
≤ d(x2n, x2n+1).

Thus (x2n, x2n+1) ∈ A for each n ≥ 0. Consequently, (9) implies that

η(d(Tx2n, Sx2n+1), m(x2n, x2n+1)) ≥ 0.

So
lim sup

n→∞
η(d(x2n+1, x2n+2), m(x2n, x2n+1)) ≥ 0. (10)

In order to prove that γ = 0, suppose, by contradiction, that γ > 0. From (8) we have

lim
n→∞

d(x2n+1, x2n+2) = lim
n→∞

m(x2n, x2n+1)) = γ > 0.

Therefore, from (η2),

lim sup
n→∞

η(d(x2n+1, x2n+2), m(x2n, x2n+1)) < 0,

which contradicts (10). So the claim is proved, that is,

lim
n→∞

d(xn, xn+1) = lim
n→∞

m(xn, xn+1) = 0. (11)

Step (3): We claim that {xn} is a Cauchy sequence.
Since {d (xn, xn+1)} → 0, Proposition 1 guarantees that xn 6= xm for all n, m ∈ N such that

n 6= m (it cannot be almost constant because xn 6= xn+1 for all n ∈ N). Reasoning by contradiction,
suppose that {x2n} is not a Cauchy sequence. Taking into account Lemma 1, there exist ε0 > 0 and
subsequences {x2mk} and {x2nk} of {xn} such that nk is the smallest index for which nk > mk > k and
d(x2mk , x2nk ) ≥ ε0 and

(l1) lim
k→∞

d(x2mk , x2nk ) = ε0;
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(l2) lim
k→∞

d(x2mk−1, x2nk ) = ε0;

(l3) lim
k→∞

d(x2mk , x2nk+1) = ε0;

(l4) lim
k→∞

d(x2mk−1, x2nk+1) = ε0.

Therefore, from the definition of m(x, y) we have

lim
k→∞

m(x2nk , x2mk−1) = lim
k→∞

max
{

d(x2nk , x2mk−1),
d(x2nk , Tx2nk )d(x2mk−1, Sx2mk−1)

d(x2nk , x2mk−1)

}
= max{ε0, 0} = ε0.

So
lim
k→∞

d(x2mk , x2nk+1) = lim
k→∞

m(x2mk−1, x2nk ) = ε0 > 0.

Hence, (η2) implies that

lim sup
k→∞

η(d(x2mk , x2nk+1), m(x2mk−1, x2nk )) < 0. (12)

On the other hand, we claim that for sufficiently large k ∈ N, if nk > mk > k, then

1
2

min{d(x2nk , Tx2nk ), d(x2mk−1, Sx2mk−1)} ≤ d(x2nk , x2mk−1) (13)

Indeed, since nk > mk and {d(xn, xn+1)} is non-increasing, we have

d(x2nk , Tx2nk ) = d(x2nk , x2nk+1) ≤ d(x2mk+1, x2mk ) ≤ d(x2mk , x2mk−1)

= d(x2mk−1, Sx2mk−1).

So, the left hand side of inequality (13) is equal to

1
2

d(x2nk , Tx2nk ) =
1
2

d(x2nk , x2nk+1).

Therefore, we must show that, for sufficiently large k ∈ N, if nk > mk > k, then

d(x2nk , x2nk+1) ≤ d(x2nk , x2mk−1).

According to (11), there exists k1 ∈ N such that for any k > k1,

d(x2nk , x2nk+1) <
ε0

2
.

There also exists k2 ∈ N such that for any k > k2,

d(x2mk−1, x2mk ) <
ε0

2
.

Hence, for any k > max{k1, k2} and nk > mk > k, we have

ε0 ≤ d(x2nk , x2mk ) ≤ d(x2nk , x2mk−1) + d(x2mk−1, x2mk )

≤ d(x2nk , x2mk−1) +
ε0

2
.

So, one concludes that
ε0

2
≤ d(x2nk , x2mk−1).
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Thus we obtain that for any k > max{k1, k2} and nk > mk > k,

d(x2nk , x2nk+1) ≤
ε0

2
≤ d(x2nk , x2mk−1).

Then (13) is proved. Therefore, by (2) and definition of A, for sufficiently large k ∈ N, if
nk > mk > k, then (x2nk , x2mk−1) ∈ A . Consequently, for sufficiently large k ∈ N, if nk > mk > k then

η(d(Tx2nk , Sx2mk−1), m(x2nk , x2mk−1)) ≥ 0.

Hence
lim sup

k→∞
η(d(x2nk+1, x2mk ), m(x2nk , x2mk−1)) ≥ 0,

which contradicts (12). This contradiction proves that {xn} is a Cauchy sequence and, since X is
complete, there exists u ∈ X such that {xn} → u as n→ ∞.

Step (4): We claim that u is a common fixed point of T and S.
Since T and S are continuous, we deduce that

u = lim
n→∞

x2n+1 = lim
n→∞

Tx2n = T
(

lim
n→∞

x2n

)
= Tu

and
u = lim

n→∞
x2n+2 = lim

n→∞
Sx2n+1 = S

(
lim

n→∞
x2n+1

)
= Su.

Therefore Tu = Su = u, that is, u is a common fixed point of T and S.
Step (5): We claim T and S have a unique common fixed point, and it is the unique fixed point of

T and the unique fixed point of S.
Suppose that T and S have two distinct common fixed points u, v ∈ X. Therefore Tu = Su = u,

Tv = Sv = v and d (u, v) > 0. Therefore

m (u, v) = max
{

d(u, v),
d(u, Tu) d(v, Sv)

d(u, v)

}
= max {d(u, v), 0} = d(u, v) > 0.

Taking into account that

1
2

min{d(u, Tu), d(v, Sv)} = 1
2

min{0, 0} = 0 < d(u, v),

the contractivity condition (2) guarantees that η(d(Tu, Sv), m(u, v)) ≥ 0. Therefore,

0 ≤ η(d(Tu, Sv), m(u, v)) = η(d(u, v), d(u, v)) < ψ (d(u, v))− ψ (d(u, v)) = 0,

which is a contradiction. As a consequence, T and S have, at most, a unique common fixed point.
Furthermore, if x is a fixed point of T or S, step 1 guarantees that x is a common fixed point of T and S,
which is unique, so T and S can only have, at most, a unique fixed point.

Example 4. Let X = [0, 1] endowed with the usual metric d (x, y) = |x− y| for all x, y ∈ X, and let
T, S : X → X given by

Tx =
x
4

and Sx =
x
6

for all x ∈ X.

Clearly (X, d) is complete and T and S are continuous self-mappings on X. Let us show that T and S
satisfy the hypotheses of Theorem 2 associated to the function

η (t, s) =
0.9s− t

2
for all t, s ∈ [0,+∞) .
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If we take α = 0.9 and ψ (t) = t/2 for all t ∈ [0,+∞), then ψ ∈ Ψ and

η (t, s) =
0.9s− t

2
= 0.9

s
2
− t

2
= αψ (s)− ψ (t) for all t, s ∈ [0,+∞) .

Item (e1) in Example 2 guarantees that η ∈ ZΨ. We have to prove that the contractivity condition

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies η(d(Tx, Sy), m(x, y)) ≥ 0

holds for all x, y ∈ X. Therefore, let x, y ∈ X be two arbitrary points such that

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y), (14)

and we have to prove that
η(d(Tx, Sy), m(x, y)) ≥ 0. (15)

The first case occurs when x = y. In this case,(14) shows that Tx = x or Sx = x. Clearly Tx = x or
Sx = 0 implies that x = 0, so

η(d(Tx, Sy), m(x, y)) = η(d(T0, S0), m(0, 0)) = η(0, 0) = 0,

which means that (15) holds when x = y under the assumption (14). Now assume that x 6= y. Notice that

d (x, Tx) =
∣∣∣x− x

4

∣∣∣ = 3x
4

, d (y, Sy) =
∣∣∣y− y

6

∣∣∣ = 5y
6

,

d (Tx, Sy) =
∣∣∣ x
4
− y

6

∣∣∣ = |3x− 2y|
12

.

Therefore, inequality (15) is equivalent to:

0 ≤ η(d(Tx, Sy), m(x, y)) =
0.9m(x, y)− d(Tx, Sy)

2
⇔ d(Tx, Sy) ≤ 0.9m(x, y)

⇔ |3x− 2y|
12

≤ 9
10

max

{
|x− y| ,

3x
4 ·

5y
6

|x− y|

}
=

9
10

max
{
|x− y| , 5xy

8 |x− y|

}
. (16)

Since
1
2

min{d(x, Tx), d(y, Sy)} = 1
2

min
{

3x
4

,
5y
6

}
= min

{
3x
8

,
5y
12

}
, (17)

we will consider the cases x < y and y < x, and the subcases depending on the number that reaches the
minimum in (17).

Case (1) Suppose that x < y. In this case, d(x, y) = |x− y| = y− x.

Subcase (1.1)
3x
8
≤ 5y

12
.

In this subcase,

min
{

3x
8

,
5y
12

}
=

3x
8

.

Hence, (14) is equivalent to

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) ⇔ 3x
8
≤ y− x ⇔ 11x

8
≤ y ⇔ x ≤ 8

11
y. (18)

We show that
|3x− 2y|

12
≤ 9

10
|x− y| = 9

10
(y− x)
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as follows. On the one hand,

3x− 2y
12

≤ 9
10

(y− x) ⇔ 15x− 10y ≤ 54y− 54x ⇔ 69x ≤ 64y ⇔ x ≤ 64
69

y, (19)

which holds because x ≤ 8
11 y by (18). On the other hand,

− 3x− 2y
12

≤ 9
10

(y− x) ⇔ −15x + 10y ≤ 54y− 54x ⇔ 39x ≤ 44y ⇔ x ≤ 44
39

y, (20)

which is true because x < y. Joining (19) and (20), we deduce that

d (Tx, Sy) =
|3x− 2y|

12
≤ 9

10
(y− x) =

9
10

d(x, y) ≤ 9
10

m(x, y),

so the contractivity condition (16) holds.

Subcase (1.2)
5y
12

<
3x
8

.
This subcase is impossible because

5y
12

<
3x
8

⇔ y <
36
40

x ⇔ y <
9
10

x,

which contradicts the fact that x < y.
Case (2) Suppose that y < x. In this case, d(x, y) = |x− y| = x− y.

Subcase (2.1)
3x
8

<
5y
12

.
In this subcase,

min
{

3x
8

,
5y
12

}
=

3x
8

.

Notice that
3x
8

<
5y
12

⇔ 36x
40

< y ⇔ 9
10

x < y.

This fact contradicts (14) because:

3x
8
≤ |x− y| = x− y ⇔ 3x ≤ 8x− 8y ⇔ 8y ≤ 5x ⇔ y ≤ 5

8
x,

which is impossible since

y ≤ 5
8

x ≤ 9
10

x < y.

Therefore, this subcase cannot hold.

Subcase (2.2)
5y
12
≤ 3x

8
.

In this case,

min
{

3x
8

,
5y
12

}
=

5y
12

.

Therefore,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) ⇔ 5y
12
≤ x− y

⇔ 5y ≤ 12x− 12y ⇔ y ≤ 12
17

x. (21)

Since y < x, then 3x− 2y = x + 2 (x− y) > x ≥ 0, so

|3x− 2y|
12

≤ 9
10
|x− y| = 9

10
(x− y) ⇔ 15x− 10y ≤ 54x− 54y ⇔ 44y ≤ 39x ⇔ y ≤ 39

44
x,



Mathematics 2020, 8, 710 10 of 29

which holds because of (21). Hence

d (Tx, Sy) =
|3x− 2y|

12
≤ 9

10
(x− y) =

9
10

d(x, y) ≤ 9
10

m(x, y),

and the contractivity condition (16) holds.
In any case, we have proved that η(d(Tx, Sy), m(x, y)) ≥ 0 for all x, y ∈ X such that

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y).

Finally, notice that η is not a simulation function because if t0 = 2 and s0 = 1, then

η (t0, s0) =
0.9s0 − t0

2
=

0.9− 2
2

= −0.55 > −1 = 1− 2 = s0 − t0.

As a consequence, Theorem 2 is applicable in order to guarantee that T and S have a common fixed point,
which is unique and, in fact, it is the unique fixed point of T and the unique fixed point of S. However, other
results using simulation functions are not applicable to this context.

If we pay attention to all details in Example 4, then we observe that, in fact,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies d(Tx, Sy) ≤ 9
10

d (x, y)

for all distinct points x, y ∈ X. Hence, the reader can imagine that the term

d(x, Tx) d(y, Sy)
d(x, y)

does not play a role in m (x, y) and, indeed, in the proof. Next, we show an example in which this term
is a key piece in order to guarantee that T and S have a common fixed point.

Example 5. Let X = [−1, 1] endowed with the usual metric d (x, y) = |x− y| for all x, y ∈ X, and let
T, S : X → X given by

Tx =
3
10

x and Sx = −2
5

x for all x ∈ X.

Clearly (X, d) is complete and T and S are continuous self-mappings on X. We are going to show that T
and S satisfy all the hypotheses of Theorem 2 associated to

η (t, s) =
0.9s− t

2
for all t, s ∈ [0,+∞) .

Notice that in Example 4 we have proved that η ∈ ZΨ but η is not a simulation function. Before proving
that T and S satisfy the contractivity condition, we want to highlight that condition

d(Tx, Sy) ≤ d (x, y)

is false even when x and y are positive and they satisfy the antecedent condition in the contractivity condition.
To do that, take x0 = 0.53 and y0 = 0.73. Then d (x0, y0) = 0.2 and

1
2

min{d(x0, Tx0), d(y0, Sy0)} =
1
2

min {d (0.53, 0.159) , d (0.73,−0.292)}

=
1
2

min {0.371, 1.022} = 0.371
2

= 0.1855 < 0.2 = d (x0, y0) .
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However
d(Tx0, Sy0) = d (0.159,−0.292) = 0.451 > 0.2 = d (x0, y0) .

This will prove that the second term in the maximum in

m(x, y) = max
{

d(x, y),
d(x, Tx) d(y, Sy)

d(x, y)

}
, when x 6= y,

will be of great importance. Let x, y ∈ X be such that

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y).

If x = y, then the previous condition guarantees that Tx = x or Sx = x. This is only possible when x = 0
and, in this case,

η(d(Tx, Sy), m(x, y)) = η(d(T0, S0), m(0, 0)) = η(0, 0) = 0.

Next, suppose that x 6= y. Notice that

d (x, Tx) =
∣∣∣∣x− 3x

10

∣∣∣∣ = 7 |x|
10

, d (y, Sy) =
∣∣∣∣y−(−2y

5

)∣∣∣∣ = 7 |y|
5

,

d (Tx, Sy) =
∣∣∣∣3x
10
−
(
−2y

5

)∣∣∣∣ = |3x + 4y|
10

.

Then
1
2

min{d(x, Tx), d(y, Sy)} = 1
2

min
{

7 |x|
10

,
7 |y|

5

}
= min

{
7 |x|
20

,
7 |y|
10

}
.

Furthermore, the contractivity condition can be equivalently expressed as:

0 ≤ η(d(Tx, Sy), m(x, y)) =
0.9m(x, y)− d(Tx, Sy)

2
⇔ d(Tx, Sy) ≤ 0.9m(x, y) (22)

⇔ |3x + 4y|
10

≤ 9
10

max

{
|x− y| ,

7|x|
10 ·

7|y|
5

|x− y|

}

⇔ |3x + 4y| ≤ 9 max
{
|x− y| , 49 |xy|

50 |x− y|

}
.

As a consequence, we have to prove that, for all distinct x, y ∈ X,

min
{

7 |x|
20

,
7 |y|
10

}
≤ |x− y| implies |3x + 4y| ≤ 9 max

{
|x− y| , 49 |xy|

50 |x− y|

}
. (23)

We consider some cases and subcases.
Case (1) Assume that x ≤ 0 ≤ y. Then d (x, y) = y− x.
In this case,

7 |x|
20
≤ |x− y| ⇔ −7x

20
≤ y− x ⇔ 13x

20
≤ y, true because x ≤ 0 ≤ y;

7 |y|
10
≤ |x− y| ⇔ 7y

20
≤ y− x ⇔ x ≤ 13y

20
, true because x ≤ 0 ≤ y.

In any case, condition

min
{

7 |x|
20

,
7 |y|
10

}
≤ |x− y|
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holds. Since

3x + 4y ≤ 9 (y− x) ⇔ 12x ≤ 5y, true because x ≤ 0 ≤ y;

− (3x + 4y) ≤ 9 (y− x) ⇔ 6x ≤ 13y, true because x ≤ 0 ≤ y,

we conclude that
|3x + 4y| ≤ 9 |x− y| ,

so (23) holds.
Case (2) Assume that y ≤ 0 ≤ x. Then d (x, y) = x− y.
In this case,

7 |x|
20
≤ |x− y| ⇔ 7x

20
≤ x− y ⇔ y ≤ 13x

20
, true because y ≤ 0 ≤ x;

7 |y|
10
≤ |x− y| ⇔ −7y

20
≤ x− y ⇔ 13y

20
≤ x, true because y ≤ 0 ≤ x.

In any case, condition

min
{

7 |x|
20

,
7 |y|
10

}
≤ |x− y|

holds. Since

3x + 4y ≤ 9 (x− y) ⇔ 13y ≤ 6x, true because y ≤ 0 ≤ x;

− (3x + 4y) ≤ 9 (x− y) ⇔ 4y ≤ 12x, true because y ≤ 0 ≤ x,

we conclude that
|3x + 4y| ≤ 9 |x− y| ,

so (23) holds.
Case (3) Assume that 0 < x < y. Hence d (x, y) = y− x and |3x + 4y| = 3x + 4y.
In this case,

d (x, Tx) =
7x
20

<
7y
20

<
7y
10

= d (y, Sy) .

If

d (Tx, Sy) =
3x + 4y

10
≤ 9

10
|x− y| ,

then (23) holds and this case is finished. On the contrary case, assume that

3x + 4y
10

>
9

10
|x− y| .

Therefore

3x + 4y
10

>
9
10
|x− y| ⇔ 3x + 4y > 9 (y− x) ⇔ 12x > 5y ⇔ 5

12
y < x.

Then we know that:
0 <

5
12

y < x.

In particular, multiplying by x and y,

5
12

y2 < xy and
5

12
x y < x2. (24)



Mathematics 2020, 8, 710 13 of 29

In this case,

d (Tx, Sy) ≤ 9
10

d(x, Tx) d(y, Sy)
d(x, y)

⇔ 3x + 4y
10

≤ 9
10

7x
10 ·

7y
5

|x− y|

⇔ (3x + 4y) (y− x) ≤ 441
50

xy ⇔ 4y2 − 3x2 − xy ≤ 441
50

xy

⇔ 200y2 − 150x2 − 50xy ≤ 441xy ⇔ 200y2 − 150x2 ≤ 491xy. (25)

To prove that this inequality holds, we use (24). Then:

5
12

y2 < xy ⇔ y2 <
12
5

xy ⇔ 200y2 < 200
12
5

xy = 480xy;

5
12

x y < x2 ⇔ −x2 < − 5
12

x y ⇔ −150x2 < −150
5

12
x y = −125

2
xy.

Adding the last two inequalities,

200y2 − 150x2 ≤ 480xy− 125
2

xy =
835
2

xy = 417.5 xy < 491xy,

so (25) guarantees that, in this case,

d (Tx, Sy) ≤ 9
10

d(x, Tx) d(y, Sy)
d(x, y)

≤ 9
10

m (x, y) .

Case (4) Assume that 0 < y < x. In this case, d (x, y) = x− y and |3x + 4y| = 3x + 4y.
If the inequality

d (Tx, Sy) =
3x + 4y

10
≤ 9

10
|x− y| = 9

10
(x− y)

holds, then the contractivity condition (22) is true. On the contrary case, assume that

3x + 4y
10

>
9

10
(x− y) ,

that is,

3x + 4y
10

>
9

10
(x− y) ⇔ 3x + 4y > 9x− 9y ⇔ 13y > 6x ⇔ 6

13
x < y.

Then we know that
0 <

6
13

x < y.

Multiplying by x and y, we deduce that

6
13

x2 < xy and
6

13
xy < y2. (26)

The contractivity condition is equivalent to:

d (Tx, Sy) ≤ 9
10

d(x, Tx) d(y, Sy)
d(x, y)

⇔ 3x + 4y
10

≤ 9
10

7x
10 ·

7y
5

|x− y|

⇔ (3x + 4y) (x− y) ≤ 441
50

xy ⇔ 3x2 + xy− 4y2 ≤ 441
50

xy

⇔ 150x2 + 50xy− 200y2 ≤ 441xy ⇔ 150x2 − 200y2 ≤ 391xy. (27)
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To prove that this inequality holds, we use (26). Then:

6
13

x2 < xy ⇔ x2 <
13
6

xy ⇔ 150x2 < 150
13
6

xy = 325xy;

6
13

xy < y2 ⇔ −y2 < − 6
13

x y ⇔ −200x2 < −200
6

13
x y = −1200

13
xy.

Adding the last two inequalities,

150x2 − 200y2 < 325xy− 1200
13

xy =
3025
13

xy < 233 xy < 391xy,

so (27) guarantees that, in this case,

d (Tx, Sy) ≤ 9
10

d(x, Tx) d(y, Sy)
d(x, y)

≤ 9
10

m (x, y) .

Case (5) Assume that x < y < 0. It is sufficient to apply case 4 to x′ = −x > 0 and y′ = −y > 0 because
0 < y′ < x′, d (x′, Tx′) = d (x, Tx), d (y′, S′) = d(y, Sy), d(x′, y′) = d (x, y) and so on.

Case (6) Assume that y < x < 0. It is sufficient to apply case 3 to x′ = −x > 0 and y′ = −y > 0 because
0 < x′ < y′.

In the following result, we replace the continuity of T and S by a distinct contractivity condition.

Theorem 3. Let (X, d) be a complete metric space and let T, S : X → X be two mappings such that, for all
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies η(d(Tx, Sy), r(x, y)) ≥ 0, (28)

where η ∈ ZΨ and

r(x, y) = max
{

d(x, y),
[1 + d(x, Tx)] d(y, Sy)

1 + d(x, y)

}
. (29)

Then T and S have a unique common fixed point.

Proof. Let ψ ∈ ZΨ be a function associated to η as in Definition 2. First of all, we prove that, under the
contractivity condition, any fixed point of T is a common fixed point of S and T (that is, if x ∈ X is such
that Tx = x, then Sx = x). To prove it, suppose that x ∈ X is such that Tx = x and, by contradiction,
assume that Sx 6= x. Then

r (x, x) = max
{

d(x, x),
[1 + d(x, Tx)] d(x, Sx)

1 + d(x, x)

}
= d(x, Sx) > 0.

Using y = x in (28), since

1
2

min
{

d(x, Tx), d(x, Sx)
}
=

1
2

min
{

0, d(x, Sx)
}

= 0 = d (x, x) ,

then
η(d(Tx, Sx), r(x, x)) ≥ 0.

Since d(x, Sx) > 0, this means that

0 ≤ η(d(Tx, Sx), r(x, x)) = η(d(x, Sx), d(x, Sx)) <

< ψ (d(x, Sx))− ψ (d(x, Sx)) = 0,
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which is impossible. This proves the claim. In fact, swaping T and S, we have checked that any fixed
point of T or S is a common fixed point of T and S.

Next, by starting from an arbitrary point x0, we shall built up a recursive sequence {xn} defined as:

x2n+1 = Tx2n, and x2n+2 = Sx2n+1 for each n ∈ N. (30)

If there is n0 ∈ N such that xn0 = xn0+1, then xn0 is a fixed point of T or S, so xn0 is a common
fixed point of T and S. In this case, the existence of some common fixed point of T and S is guaranteed.
Through the rest of the proof, we suppose that

xn 6= xn+1 for all n ∈ N. (31)

In particular,
r (xn, xn+1) ≥ d (xn, xn+1) > 0 for all n ∈ N.

We shall consider the following set in that will be useful in later stages of the proof.

A :=
{
(x, y) ∈ X× X :

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y)
}

.

Notice that A is non-empty because (x2n, Tx2n) = (x2n, x2n+1) ∈ A for all n ∈ N.
We divide the rest of the proof into five steps.
Step (1): We claim that

d(xk+1, xk+2) ≤ r(xk, xk+1) = d(xk, xk+1) for all k ∈ N. (32)

To see this, suppose that k = 2n for some n ∈ N. We have

1
2 min{d(x2n, Tx2n), d(x2n+1, Sx2n+1)} = 1

2 min{d(x2n, x2n+1), d(x2n+1, x2n+2)}
≤ d(x2n, x2n+1).

So from (28) and (η1) we have:

0 ≤ η(d(Tx2n, Sx2n+1), r(x2n, x2n+1)) = η(d(x2n+1, x2n+2), r(x2n, x2n+1))

< ψ (r(x2n, x2n+1))− ψ (d(x2n+1, x2n+2)) ,

and as ψ is increasing, then

d(x2n+1, x2n+2) < r(x2n, x2n+1). (33)

On the other hand,

r(x2n, x2n+1) = max
{

d(x2n, x2n+1),
[1 + d(x2n, Tx2n)]d(x2n+1, Sx2n+1)

1 + d(x2n, x2n+1)

}

= max
{

d(x2n, x2n+1),
[1 + d(x2n, x2n+1)]d(x2n+1, x2n+2)

1 + d(x2n, x2n+1)

}
= max {d(x2n, x2n+1), d(x2n+1, x2n+2)} .

So, if there exists some n0 ∈ N such that d(x2n0+1, x2n0+2) ≥ d(x2n0 , x2n0+1), then

r(x2n0 , x2n0+1) = d(x2n0+1, x2n0+2)
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which contradicts (33). Hence, for each n ∈ N,

d(x2n+1, x2n+2) < d(x2n, x2n+1)

and also

r(x2n, x2n+1) = d(x2n, x2n+1).

Consequently, (32) is proved when k ≥ 0 is an even number. By the same argument, one can
verify that (32) holds when k is an odd number.

Step (2): We prove that limk→∞ d(xk, xk+1) = 0.

Since the sequence {d(xn, xn+1)}n≥1 is non-increasing and bounded below, it is convergent to
a real number γ ≥ 0. Hence

lim
n→∞

d(xn, xn+1) = lim
n→∞

r(xn, xn+1) = γ. (34)

We claim that γ = 0. To prove the claim, let define

Ω = { (d(Tx, Sy), r(x, y)) : (x, y) ∈ A}.

By (28) and definition of A, it follows that

η(t, s) ≥ 0 for all (t, s) ∈ Ω \ {(0, 0)}. (35)

For each n ≥ 0 we have

1
2 min{d(x2n, Tx2n), d(x2n+1, Sx2n+1)} = 1

2 min{d(x2n, x2n+1), d(x2n+1, x2n+2)}
≤ d(x2n, x2n+1).

Thus (x2n, x2n+1) ∈ A for each n ≥ 0. Consequently, (35) implies that

η(d(Tx2n, Sx2n+1), r(x2n, x2n+1)) ≥ 0 for all n ∈ N.

So

lim sup
n→∞

η(d(x2n+1, x2n+2), r(x2n, x2n+1)) ≥ 0. (36)

Next, reasoning by contradiction, suppose that γ > 0. From (34) we have

lim
n→∞

d(x2n+1, x2n+2) = lim
n→∞

r(x2n, x2n+1)) = γ > 0.

Therefore, from (η2),

lim sup
n→∞

η(d(x2n+1, x2n+2), r(x2n, x2n+1)) < 0,

which contradicts (36). So the claim is proved and we obtain that

lim
n→∞

d(xn, xn+1) = lim
n→∞

r(xn, xn+1) = 0. (37)

Step (3): We claim that {xn} is a Cauchy sequence. To show that {xn} is a Cauchy sequence,
because of (37), it is enough to show that the subsequence {x2n} is a Cauchy sequence. On contrary,
suppose that {x2n} is not a Cauchy sequence. By Lemma 1 there exist ε0 > 0 and subsequences {x2mk}
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and {x2nk} of {xn} such that nk is the smallest index for which nk > mk > k and d(x2mk , x2nk ) ≥ ε0 and

(l1) lim
k→∞

d(x2mk , x2nk ) = ε0.

(l2) lim
k→∞

d(x2mk−1, x2nk ) = ε0.

(l3) lim
k→∞

d(x2mk , x2nk+1) = ε0.

(l4) lim
k→∞

d(x2mk−1, x2nk+1) = ε0.

Therefore, from the definition of r(x, y) we have

lim
k→∞

r(x2nk , x2mk−1) = lim
k→∞

max
{

d(x2nk , x2mk−1),
[1+d(x2nk

,Tx2nk
)]d(x2mk−1,Sx2mk−1)

1+d(x2nk
,x2mk−1)

}
= max{ε0, 0} = ε0.

So
lim
k→∞

d(x2mk , x2nk+1) = lim
k→∞

r(x2mk−1, x2nk ) = ε0 > 0.

Hence, (η2) implies that

lim sup
n→∞

η(d(x2mk , x2nk+1), r(x2mk−1, x2nk )) < 0. (38)

On the other hand, we claim that for sufficiently large k ∈ N, if nk > mk > k, then

1
2

min{d(x2nk , Tx2nk ), d(x2mk−1, Sx2mk−1)} ≤ d(x2nk , x2mk−1). (39)

Indeed, since nk > mk and {d(xn, xn+1)} is non-increasing we have

d(x2nk , Tx2nk ) = d(x2nk , x2nk+1) ≤ d(x2mk+1, x2mk ) ≤ d(x2mk , x2mk−1)

= d(x2mk−1, Sx2mk−1).

So, the left hand side of inequality (39) is equal to

1
2

d(x2nk , Tx2nk ) =
1
2

d(x2nk , x2nk+1)

Therefore, we must show that, for sufficiently large k ∈ N, if nk > mk > k, then

d(x2nk , x2nk+1) ≤ d(x2nk , x2mk−1).

According to (37), there exists k1 ∈ N such that for any k > k1,

d(x2nk , x2nk+1) <
ε0

2

There exists k2 ∈ N such that for any k > k2,

d(x2mk−1, x2mk ) <
ε0

2
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Hence, for any k > max{k1, k2} and nk > mk > k, we have

ε0 ≤ d(x2nk , x2mk ) ≤ d(x2nk , x2mk−1)d(x2mk−1, x2mk )

≤ d(x2nk , x2mk−1) +
ε0

2
.

So, one concludes that
ε0

2
≤ d(x2nk , x2mk−1).

Thus we obtain that for any k > max{k1, k2} and nk > mk > k,

d(x2nk , x2nk+1) ≤
ε0

2
≤ d(x2nk , x2mk−1).

So (39) is proved. Therefore, by (28) and the definition of A, for sufficiently large k ∈ N, if
nk > mk > k, then (x2nk , x2mk−1) ∈ A . Consequently, for sufficiently large k ∈ N, if nk > mk > k then

η(d(Tx2nk , Sx2mk−1), r(x2nk , x2mk−1)) ≥ 0.

So
lim sup

k→∞
η(d(x2nk+1, x2mk ), r(x2nk , x2mk−1)) ≥ 0,

which contradicts (38). This contradiction demonstrates that {xn} is a Cauchy sequence and, since X
is complete, there exists u ∈ X such that {xn} → u as n→ ∞.

Step (4): u is a common fixed point of T and S.
If u is a fixed point of T or S, we have demonstrated at the beginning of the proof that u is

a common fixed point of T and S, and this step is finished. Next, suppose that d (u, Tu) > 0 and
d (u, Su) > 0, and we will get a contradiction.

If there are infinitely many positive even integers {2nk} such that x2nk = u for all k ∈ N, then
x2nk+1 = Tx2nk = Tu for all k ∈ N, and as {x2nk+1} → u, then Tu = u, which is false. The same is true
if there are infinitely many positive odd integers {2nk + 1} such that x2nk+1 = u for all k ∈ N, because
x2nk+2 = Tx2nk+1 = Su for all k ∈ N. In general, if there is a subsequence {xnk} such that xnk = u for
all k ∈ N, then we can guarantee that u is a common fixed point of T and S. On the contrary case,
without loss of generality, suppose that

d(xn, u) 6= 0 for each n ≥ 0.

Since {d(x2n, u)} → 0 and {d(x2n, x2n+1)} → 0, then

lim
n→∞

r(u, x2n) = lim
n→∞

max
{

d(x2n, u),
[1 + d(x2n, Tx2n)] d(u, Su)

1 + d(x2n, u)

}
= lim

n→∞
max

{
d(x2n, u),

[1 + d(x2n, x2n+1)] d(u, Su)
1 + d(x2n, u)

}
= max{0, d (u, Su)} = d (u, Su) > 0.

This proves that
lim

n→∞
r(u, x2n) = d(u, Su). (40)

In the same way, one can show that

lim
n→∞

r(u, x2n+1) = d(Tu, u). (41)
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Now, we claim that for each n ≥ 0, at least one of the following inequalities is true:

1
2

d(x2n, x2n+1) ≤ d(x2n, u) (42)

or
1
2

d(x2n+1, x2n+2) ≤ d(x2n, u). (43)

If these inequalities are both false for some n0 ≥ 0, then we get

d(x2n0 , x2n0+1) ≤ d(x2n0 , u) + d(u, x2n0+1) <
1
2
[
d(x2n0 , x2n0+1) + d(x2n0+1, x2n0+2)

]
≤ 1

2
[
d(x2n0 , x2n0+1) + d(x2n0 , x2n0+1)

]
= d(x2n0 , x2n0+1),

which is a contradiction, and the claim is proved. So, one can consider the following two subcases.
Subcase (4.1): The inequality (42) holds for infinitely many n ≥ 0. In this case, for infinitely many

n ≥ 0 we have

1
2

min{d(x2n, Tx2n), d(u, Su)} = 1
2

min{d(x2n, x2n+1), d(u, Su)}

≤ 1
2

d(x2n, x2n+1) ≤ d(x2n, u).

Therefore (x2n, u) ∈ A. Thus

η(d(Tx2n, Su), r(x2n, u)) ∈ Ω \ {(0, 0)}.

Consequently, from (35) it is seen that for infinitely many n ≥ 0,

η(d(Tx2n, Su), r(x2n, u)) ≥ 0.

Therefore, for infinitely many {nk}k≥0,

lim sup
k→∞

η(d(x2nk+1, Su), r(x2nk , u)) ≥ 0. (44)

However,
lim
k→∞

d(x2nk+1, Su) = lim
k→∞

r(x2nk , u) = d(u, Su) > 0,

and from (η2) we have
lim sup

k→∞
η(d(x2nk+1, Su), r(x2nk , u)) < 0,

which contradicts (44).
Subcase (4.2): The inequality (42) only holds for finitely many n ≥ 0.

In this case, there exists n0 ≥ 0 such that (43) is true for any n ≥ n0. Similar to subcase (4.1), one can
prove that (43) also leads to a contradiction unless u is a fixed point of T or S.

As a consequence, in any case, u is a common fixed point of T and S.
Step (5): The common fixed point of T and S is unique.
Suppose that u and v are two distinct common fixed points of T and S, that is, Tu = Su = u and

Tv = Sv = v. Hence d (u, v) > 0 and

r(u, v) = max
{

d(u, v),
[1 + d(u, Tu)] d(v, Sv)

1 + d(u, v)

}
= d (u, v) > 0.
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Since
1
2

min{d(u, Tu), d(v, Sv)} = 0 < d(u, v),

we deduce from (28) that

0 ≤ η(d(Tu, Sv), r(u, v)) = η(d(u, v), d(u, v))

< ψ (d(u, v))− ψ (d(u, v)) = 0,

which is a contradiction. Hence, T and S have a unique common fixed point.

3. Consequences

In this section, we illustrate the applicability of the previous theorems by showing they cover a lot
of distinct cases which permit us to deduce several results under different hypotheses and contractivity
conditions. For instance, the following corollary is an immediate consequence of Theorem 2 by
removing the restriction

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y).

Corollary 1. Let (X, d) be a complete metric space and T and S be two continuous self-maps on X such that,
for all x, y ∈ X,

η(d(Tx, Sy), m(x, y)) ≥ 0, (45)

where η ∈ ZΨ and

m(x, y) =

 d (Tx, Sx) , if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Sy)

d(x, y)

}
, if x 6= y.

Then T and S have a unique common fixed point.

Corollary 2. Let (X, d) be a complete metric space and let T be continuous self-map on X. If there exists
η ∈ ZΨ such that, for all x, y ∈ X,

1
2

d(x, Tx) ≤ d(x, y) implies η(d(Tx, Ty), mT(x, y)) ≥ 0,

where

mT(x, y) =

 0, if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Ty)

d(x, y)

}
, if x 6= y,

then T has a unique fixed point.

Proof. Choose S = T in Theorem 2 and we get the proof.

The following corollary is a consequence of Corollary 2.

Corollary 3. Let (X, d) be a complete metric space and let T be a continuous self-map on X. If there exists
η ∈ ZΨ such that, for all x, y ∈ X,

η(d(Tx, Ty), mT(x, y)) ≥ 0,

where

mT(x, y) =

 0, if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Ty)

d(x, y)

}
, if x 6= y,

then T has a unique fixed point.
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Corollary 4. Let (X, d) be a complete metric space and let T and S be two continuous self-maps on X such that,
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− φ(m(x, y)),

where ψ : [0,+∞)→ [0,+∞) is continuous nondecreasing function such that ψ(t) = 0 if, and only if, t = 0,

m(x, y) =

 d (Tx, Sx) , if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Sy)

d(x, y)

}
, if x 6= y,

and φ : [0,+∞)→ [0,+∞) is a function such that lim inf
s→t

φ(s) > 0 for each t > 0, and φ(t) = 0 if, and only

if, t = 0. Then T and S have a unique common fixed point.

Proof. Define η(t, s) = ψ(s)− φ(s)− ψ(t) for all t, s ≥ 0. Then η is a Ψ-simulation function. Indeed,
ψ ∈ Ψ and (η1) clearly holds. On the other hand, if {tn}, {sn} are two sequences in (0,+∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then, we have

lim sup
n→∞

η(tn, sn) = lim sup
n→∞

(ψ(sn)− φ(sn)− ψ(tn)) ≤ 0− lim inf
n→∞

φ(sn) < 0.

So (η2) holds and we can apply Theorem 2 to complete the proof.

Remark 2. In some of the following results we will consider two functions ψ, φ : [0,+∞)→ [0,+∞) such that:

(i) ψ is a continuous non-decreasing function and ψ(t) = 0 if, and only if, t = 0.
(ii) φ is lower semi-continuous with φ(t) = 0 if, and only if, t = 0.

Corollary 5. Let (X, d) be a complete metric space and let T and S be two continuous self-maps on X such that,
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− φ(m(x, y)),

where ψ and φ are given as in Remark 2 and

m(x, y) =

 d (Tx, Sx) , if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Sy)

d(x, y)

}
, if x 6= y.

Then T and S have a unique common fixed point.

Proof. Since φ is lower semi-continuous, if

lim
n→∞

sn = ` > 0,

then
lim inf

n→∞
φ(sn) ≥ φ(`) > 0.

So one can apply Corollary 4.
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Corollary 6. Let (X, d) be a complete metric space and let T and S be two continuous self-maps on X such that,
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ(d(Tx, Sy)) ≤ ρ(m(x, y))ψ(m(x, y))

where ψ ∈ Ψ, m(x, y) is defined as in Corollary 5 and ρ : [0,+∞)→ [0, 1) is a function such that ρ(t) = 0 if,
and only if, t = 0, and lim sup

t→s
ρ(t) < 1 for each s > 0. Then T and S have a unique common fixed point.

Proof. Take η(t, s) = ρ(s)ψ(s)− ψ(t) for all t, s ≥ 0. One can easily show that η is a Ψ-simulation
function. Now this consequence follows from Theorem 2.

Corollary 7. Let (X, d) be a complete metric space and let T and S be two continuous maps on X such that,
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ((d(Tx, Sy)) + φ(d(Tx, Sy)) ≤ ψ(m(x, y)),

where ψ ∈ Ψ, m(x, y) is defined as in Corollary 5 and φ : [0,+∞) → [0,+∞) is a function such that
lim inf

s→t
φ(s) > 0 for each t > 0, and φ(t) = 0 if, and only if, t = 0. Then T and S have a unique common

fixed point.

Proof. Take η(t, s) = ψ(s) − φ(s) − ψ(t) for all t, s ≥ 0. Then similar to the proof of Corollary 4,
one can see that η is a Ψ-simulation function. So by applying Theorem 2 the proof is completed.

Corollary 8. Let (X, d) be a complete metric space and let T and S be two continuous self-maps on X such that,
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ((d(Tx, Sy)) ≤ φ(ψ(m(x, y))),

where ψ ∈ Ψ, m(x, y) is defined as in Corollary 5 and φ : [0,+∞)→ [0,+∞) is a function such that for each
t > 0, φ(t) < t and lim sup

s→t
φ(s) < t and φ(t) = 0 if, and only if, t = 0. Then T and S have a unique common

fixed point.

Proof. Define η(t, s) = φ(ψ(s))−ψ(t) for all t, s ≥ 0. Then (η1) holds. On the other hand, if {tn}, {sn}
are two sequences in (0,+∞) such that

lim
n→∞

sn = ` > 0,

then, the continuity of ψ and the properties of φ show that

lim sup
n→∞

η(tn, sn) = lim sup
n→∞

φ(ψ(sn))− ψ(tn) < ψ(`)− ψ(`) = 0.

Therefore (η2) holds and one can apply Theorem 2 to complete the proof.
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Remark 3. Suppose that ψ ∈ Ψ and φ : [0,+∞)→ [0,+∞) is an upper semi-continuous function such that
φ(t) < t for each t > 0 and φ(t) = 0 if, and only if, t = 0. Then for any sequence {sn} in (0,+∞) with
lim

n→∞
sn = ` > 0, one can obtain that

lim sup
n→∞

φ(ψ(sn)) < ψ(`).

So, by applying the same argument as in Corollary 8, one can prove the following consequence.

Corollary 9. Let (X, d) be a complete metric space and T and S be two continuous self-maps on X such that
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ((d(Tx, Sy)) ≤ φ(ψ(m(x, y))),

where ψ ∈ Ψ, m(x, y) is defined as in Corollary 5 and φ : [0,+∞) → [0,+∞) is an upper semi-continuous
function such that φ(t) < t for each t > 0, and φ(t) = 0 if, and only if, t = 0. Then T and S have a unique
common fixed point.

Definition 3. Let (X, d) be a complete metric space, let T : X → X be a continuous mapping and let η ∈ Z.
Then T is called a generalized Z-contraction with respect to η if the following condition is satisfied:

η(d(Tx, Ty), mT(x, y)) ≥ 0

for all x, y ∈ X, where

mT(x, y) =

 0, if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Ty)

d(x, y)

}
, if x 6= y.

Theorem 4. Every generalized Z-contraction on a complete metric space has a unique fixed point.

Proof. It is an obvious consequence of Corollary 1 by letting S = T.

Theorem 5. Let (X, d) be a complete metric space and let T : X → X be continuous mapping such that, for all
x, y ∈ X,

1
2

d(x, Tx) ≤ d(x, y) implies ψ(d(Tx, Ty)) ≤ ψ(mT(x, y))− φ(mT(x, y)),

where ψ and φ are given as in Remark 2 and

mT(x, y) =

 0, if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Ty)

d(x, y)

}
, if x 6= y.

Then T has a unique fixed point.

Proof. It follows from Corollary 5 when S = T.

Theorem 6. Let (X, d) be a complete metric space and let T and S be two continuous self-maps on X such that,
for every x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− φ(m(x, y)),
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where ψ and φ are given as in Theorem 5 and

m(x, y) =

 d (Tx, Sx) , if x = y,

max
{

d(x, y),
d(x, Tx) d(y, Sy)

d(x, y)

}
, if x 6= y.

Then T and S have a unique common fixed point.

Proof. Since φ is lower semi-continuous, if limn→+∞ Sn = ` > 0, then lim infn→+∞ φ(Sn) ≥ φ(`) > 0.
Hence, by applying Corollary 4, we get the result.

The following example shows that Theorem 2 is a genuine generalization of the Corollary 1.

Example 6. Let X = {(0, 0), (0, 10), (10, 0), (10, 10), (10, 12)} be endowed with the metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.

Let T and S be the continuous self-mappings on X defined as follows:

T(x1, x2) = (min{x1, x2}, 0),

and
S(x1, x2) = (0, min{x1, x2})

for all (x1, x2) ∈ X. For any η ∈ ZΨ, the mappings T and S do not satisfy the condition (45) of Corollary 1 at
x0 = (10, 12) and y0 = (10, 10). However, by choosing η(t, s) = 11

100 s− t for all t, s ∈ [0,+∞), it is readily
verified that η is a Ψ-simulation function where ψ is the identity function on [0,+∞), and all the hypothesis of
Theorem 2 are verified.

The following corollary is a consequence of Theorem 3.

Corollary 10. Let (X, d) be a complete metric space and let T and S be two self-maps on X such that, for all
x, y ∈ X,

η(d(Tx, Sy), r(x, y)) ≥ 0, (46)

where η ∈ ZΨ and

r(x, y) = max
{

d(x, y),
[1 + d(x, Tx)]d(y, Sy)

1 + d(x, y)

}
.

Then T and S have a unique common fixed point.

Corollary 11. Let (X, d) be a complete metric space and let T be self-map on X. If there exists η ∈ ZΨ such
that, for all x, y ∈ X,

1
2

d(x, Tx) ≤ d(x, y) implies η(d(Tx, Ty), r(x, y)) ≥ 0,

where

rT(x, y) = max
{

d(x, y),
[1 + d(x, Tx)]d(y, Ty)

1 + d(x, y)

}
,

then T has a unique fixed point.

Proof. Putting S = T in Theorem 3 we get the proof.

The following corollary is an application of Corollary 11.
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Corollary 12. Let (X, d) be a complete metric space and let T be self-map on X. If there exists η ∈ ZΨ such that,
for all x, y ∈ X,

η(d(Tx, Ty), rT(x, y)) ≥ 0,

where rT(x, y) is defined as in Corollary 11, then T has a unique fixed point.

Corollary 13. Let (X, d) be a complete metric space and let T and S be two self-maps on X such that, for every
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ(d(Tx, Sy)) ≤ ψ(r(x, y))− φ(r(x, y)),

where ψ : [0,+∞)→ [0,+∞) is a continuous nondecreasing function and ψ(t) = 0 if, and only if, t = 0,

r(x, y) = max
{

d(x, y),
[1 + d(x, Tx)]d(y, Sy)

1 + d(x, y)

}
,

and φ : [0,+∞)→ [0,+∞) is a function such that lim infs→t φ(s) > 0 for each t > 0, and φ(t) = 0 if, and
only if, t = 0. Then T and S have a unique common fixed point.

Proof. Define η(t, s) = ψ(s)− φ(s)− ψ(t) for all t, s ≥ 0. In the proof of Corollary 4 we showed that η

is a Ψ-simulation function. Hence, we can apply Theorem 3 to complete the proof.

Corollary 14. Let (X, d) be a complete metric space and let T and S be two self-maps on X such that, for every
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies ψ(d(Tx, Sy)) ≤ ψ(r(x, y))− φ(r(x, y)),

where ψ and φ are given as in Remark 8, and

r(x, y) = max
{

d(x, y),
[1 + d(x, Tx)]d(y, Sy)

1 + d(x, y)

}
.

Then T and S have a unique common fixed point.

Proof. Since φ is lower semi-continuous, if

lim
n→∞

sn = ` > 0,

then
lim inf

n→∞
φ(sn) ≥ φ(`) > 0.

So, one can apply Corollary 13.

Corollary 15. Let (X, d) be a complete metric space and let T and S be two self-maps on X such that, for every
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ(d(Tx, Sy)) ≤ ρ(r(x, y))ψ(r(x, y)),
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where ψ ∈ Ψ, r(x, y) is defined as in Corollary 14 and ρ : [0,+∞)→ [0, 1) is a function such that ρ(t) = 0 if,
and only if, t = 0 and lim sup

t→s
ρ(t) < 1 for each s > 0. Then T and S have a unique common fixed point.

Proof. Take η(t, s) = ρ(s)ψ(s)− ψ(t) for all t, s ≥ 0. One can easily show that η is a Ψ-simulation
function. Now the corollary follows from Theorem 3.

Corollary 16. Let (X, d) be a complete metric space and let T and S be two maps on X such that, for every
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ((d(Tx, Sy)) + φ(d(Tx, Sy)) ≤ ψ(r(x, y)),

where ψ ∈ Ψ, r(x, y) is defined as in Corollary 14 and φ : [0,+∞) → [0,+∞) is a function such that
lim inf

s→t
φ(s) > 0 for each t > 0, and φ(t) = 0 if, and only if, t = 0. Then T and S have a unique common

fixed point.

Proof. Take η(t, s) = ψ(s)− φ(s)− ψ(t) for all t, s ≥ 0. Then similar to the proof of Corollary 13,
one can see that η is a Ψ-simulation function. So, by applying Theorem 3, the proof is completed.

Corollary 17. Let (X, d) be a complete metric space and let T and S be two self-maps on X such that, for every
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ((d(Tx, Sy)) ≤ φ(ψ(r(x, y))),

where ψ ∈ Ψ, r(x, y) is defined as in Corollary 14 and φ : [0,+∞)→ [0,+∞) is a function such that, for each
t > 0, φ(t) < t, lim sup

s→t
φ(s) < t and φ(t) = 0 if, and only if, t = 0. Then T and S have a unique common

fixed point.

Proof. Define η(t, s) = φ(ψ(s))− ψ(t) for all t, s ≥ 0. In the proof of Corollary 8 we proved that η is
a Ψ-simulation function. Then we can apply Theorem 3 to complete the proof.

Remark 4. Suppose that ψ ∈ Ψ and φ : [0,+∞)→ [0,+∞) is an upper semi-continuous function such that
φ(t) < t for each t > 0 and φ(t) = 0 if, and only if, t = 0. Then for any sequence {sn} in (0,+∞) with
lim

n→∞
sn = ` > 0, one can obtain that:

lim sup
n→∞

φ(ψ(sn)) < ψ(`).

Applying the same argument as in Corollary 17, one can prove the following result.

Corollary 18. Let (X, d) be a complete metric space and let T and S be two self-maps on X such that, for every
x, y ∈ X,

1
2

min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ((d(Tx, Sy)) ≤ φ(ψ(r(x, y))),
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where ψ ∈ Ψ, r(x, y) is defined as in Corollary 14 and φ : [0,+∞) → [0,+∞) is an upper semi-continuous
function such that φ(t) < t for each t > 0, and φ(t) = 0 if, and only if, t = 0. Then T and S have a unique
common fixed point.

Definition 4. Let (X, d) be a complete metric space, let T : X → X be a mapping and let η ∈ Z. Then T is
called a generalized Z-contraction with respect to η if the following condition is satisfied:

η(d(Tx, Ty), rT(x, y)) ≥ 0,

for all x, y ∈ X, where

rT(x, y) = max
{

d(x, y),
[1 + d(x, Tx)] d(y, Ty)

1 + d(x, y)

}
.

Theorem 7. Every generalized Z-contraction on a complete metric space has a unique fixed point.

Proof. It follows from Corollary 11.

Theorem 8. Let (X, d) be a complete metric space and let T : X → X be a continuous map such that, for all
x, y ∈ X, 1

2 d(x, Tx) ≤ d(x, y) implies that:

ψ(d(Tx, Ty)) ≤ ψ(rT(x, y))− φ(rT(x, y))

where

rT(x, y) = max
{

d(x, y),
[1 + d(x, Tx)]d(y, Ty)

1 + d(x, y)

}
and ψ and φ satisfy:

(i) ψ : [0,+∞)→ [0,+∞) is a continuous non-decreasing function and ψ(t) = 0 if and only if t = 0;
(ii) φ : [0,+∞)→ [0,+∞) is lower semi-continuous with φ(t) = 0 if and only if t = 0.

Then T has a unique fixed point.

Proof. It follows from Corollary 14 when S = T.

Theorem 9. Let (X, d) be a complete metric space and T and S be two self-maps on X such that for every
x, y ∈ X, 1

2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

ψ(d(Tx, Sy)) ≤ ψ(r(x, y))− φ(r(x, y))

where ψ and φ are given as in Remark 8 and

r(x, y) = max
{

d(x, y),
[1 + d(x, Tx)]d(y, Sy)

1 + d(x, y)

}
.

Then T and S have a unique common fixed point.

Proof. Since φ is lower semi-continuous, if lim
n→+∞

Sn = ` > 0, then lim inf
n→+∞

φ(Sn) ≥ φ(`) > 0. Therefore,

applying Corollary 13, we get the result.

The following example shows that Theorem 3 is a genuine generalization of the Corollary 10.

Example 7. Let X = {(0, 0, 0), (5, 5, 5), (5, 6, 5), (5, 0, 0), (0, 0, 5)} be endowed with the metric d defined by

d((x1, x2, x3), (y1, y2, y3)) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.
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Let T and S be the self-mappings on X defined as follows:

T(x1, x2, x3) = (min{x1, x2, x3}, 0, 0),

and
S(x1, x2, x3) = (0, 0, min{x1, x2, x3}).

For any η ∈ ZΨ, the mappings T and S do not satisfy the condition (46) at x = (5, 5, 5), y = (5, 6, 5).
However, by choosing η(t, s) = 1

64 s− t, it is readily verified that η is a Ψ-simulation function where ψ is the
identity function on [0, ∞) and all the hypothesis of Theorem 3 are verified.

To conclude the manuscript, we introduce the following application. Consider the problem f (x (t)) =
∫ t

0
k (s, x (s)) ds, t ∈ [0, A] for A > 0,

x (0) = 0
(47)

where f : [0,+∞)→ [0,+∞) and k : [0, A]× [0,+∞)→ [0,+∞) are continuous mappings. Let X be
the family of all continuous functions x : [0, A] → [0,+∞) such that x (0) = 0 and x (t) ≥ 0 for all
t > (0, A]. Define T, S : X → X as follows:

T (x) (t) = f (x (t)) and S (x) (t) =
∫ t

0
k (s, x (s)) ds

for al x ∈ X and all t ∈ [0, A]. Then problem (47) can be seem as the coincidence point problem
Tx = Sx for x ∈ X. Let d be the standard metric on X, that is,

d (x, y) = max ({ | x (t)− y (t) | , t ∈ [0, A] }) for all x, y ∈ X.

Then (X, d) is a complete metric space.

Theorem 10. Consider the problem (47). Assume that f and k are continuous mappings and f (0) = 0.
Assume also that there are α ∈ [0, 1) and ψ ∈ Ψ such that, for all x, y ∈ X,

ψ

(∣∣∣∣ f (x (t))−
∫ t

0
k (s, x (s)) ds

∣∣∣∣) ≤ α ψ (m (x, y))

where

m (x, x) = max
t∈[0,A]

{∣∣∣∣ f (x (t))−
∫ t

0
k (s, x (s)) ds

∣∣∣∣}
and, if x 6= y,

m (x, y) = max

 max
t∈[0,A]

| x (t)− y (t) | ,
max

t∈[0,A]
{| x (t)− f (x(t)) |} · max

t∈[0,A]

∣∣∣ y (t)−
∫ t

0 k (s, y (s)) ds
∣∣∣

max
t∈[0,A]

| x (t)− y (t) |

 .

Then problem (47) has a unique solution.

Proof. The proof follows from Corollary 1 by taking η (t, s) = ψ (s)− αψ (t) for all t, s ∈ [0,+∞).

4. Conclusions

The notion of a simulation function is a very interesting tool in fixed point theory that makes it
possible to merge and unify several existence fixed point theorems in a single theorem. In this paper,
in the setting of a complete metric space, we consider new contractions via the extended simulation



Mathematics 2020, 8, 710 29 of 29

function by involving two distinct types of rational expressions. It is clear that this approach can be
applied to the different abstract structures.
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