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Abstract

The numeric computation procedure for the solution of the equation of motion of a single-
degree-of-freedom (SDOF) system subjected to any type of ground acceleration is exhaustively

presented. The followed numeric approach is the Linear Acceleration Method, i.e. Newmark’s
Method with y = % and 8 = %. The approach allows considering any time of multilinear elasto-

plastic behavior. It also allows computing the Complete Hysteretic Curve of the SDOF system.

! Professor. Department of Structural Mechanics, University of Granada (UGR). Campus Universitario de

Fuentenueva s/n. 18072 Granada, Spain. emontes@ugr.es.

? Assistant Professor. Departamento de Mecanica, Universidad de Cérdoba. Campus de Rabanales,

Edificio Leonardo da Vinci, E-14071 Cérdoba, Spain. jcarbonell@uco.es. *Corresponding author


mailto:emontes@ugr.es
mailto:jcarbonell@uco.es




REPORT TEP 190 1-2019

1. Problem statement

Let us consider a single-degree-of-freedom (SDOF) system with some kind of elasto-plastic
behavior, k(u), constant mass m, and viscous damping coefficient ¢, subjected to ground
acceleration i, (t), Fig. 1, the corresponding equation of motion is given by dynamic

equilibrium, Eqg. (1):

mii(t) + cu(t) + fs = —miiy (t) (D)
Relative displacement: u(t) Dynamic equilibrium:
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Ground displacement: ug(t)

Absolute displacement: u.(t)
Fig. 1. SDOF system usually employed in earthquake engineering.

Eqg. (1) can be numerically solved employing the linear acceleration method (LAM), i.e.
Newmark’s method with y = % and g = % [1]. Although the method is originally employed to

compute the response of the SDOF under the action of an earthquake, i, (t), it can be also used
to perform a “snap-back” analysis, as done by Hernandez-Montes et al. [2], in which an initial

displacement is imposed and the SDOF system is freely released afterwards.

In what follows, it is assumed that the system’s hysteretic model f¢ — u is composed by some
linear fg(w) algebraic functions or branches, so that any of them is characterized by a particular
stiffness, k, Fig. 2. The values of the different variables involved in the problem, i.e.
displacement, velocity, acceleration, spring force, etc. relative to time t; will be referred to with

the subscript i henceforth.
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(a) Bilinear (b) Bilinear degrading (c) Trilinear degrading

Fig. 2. Some common multi-linear hysteretic models employed in earthquake engineering.
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2. Fundamentals of the Linear Acceleration Method

Let us consider the difference between the results of Eq. (1) when it is considered in two very
close instants of time t, and tg, So that, At =tz — t4, assuming that u, and ug correspond to

the same branch of the fg — u model, i.e. fg = ku:
m[uB - uA] + C[IlB - uA] + k[uB - uA] =—-m [ﬁgB - iigA] (2)

If the difference iz — i, is rewritten as Aii, and doing the same for velocity, displacement and

ground acceleration, Eg. (2) remains:
mAii + cAu + kAu = —mAii, (3)

Given the mass of the system, m, if its natural circular frequency is written as a function of the

stiffness k, w = /k/m, and its viscous damping coefficient is written as a function of the

damping ratio &, ¢ = 2mwé, then Eq. (3) can be rewritten as:
Ail + 2wEAU + w?Au = —Ail, (4)

Now, let us focus on the system’s acceleration evolution between time instants A and B, Atii. As
A and B are very close, Aii can be considered linear, Fig. 3. Therefore, the system’s acceleration

in atime T between A and B, i.e. t; < T < tg, can be written as:

ii(t) =iy + %T )

Therefore, to get the velocity and displacement of the system at that time 7 Eq. (5) needs to be

integrated so that:

Ail 72

. .. T2 Ai 73
u(r) =uA+uAT+uAT7+A—1;% (7
i
i — Real i

Linear approximation of ii

(1)

Uy

ty T ts

Fig. 3. Linear approximation of the system’s acceleration between two very close instants of time.
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Evaluating Eqgs. (6) and (7) for T = At and expressing the results as increments, i.e At and Au,

remains:
mi = (itg + ) At (8)
M = igyAt + (2 4+ 5) A2 (9)

If, now, Egs. (8) and (9) are introduced in Eq. (4), the increment of acceleration Aii remains:

3(2Aiig+4il 4 AtEw+ 21 g Atw? +usAtw? )
6+6AtEw+At2w?2

Al =

(10)

Therefore, if the values of displacement and velocity at instant A, u, and 1,4, are known, Eq. (1)

can be rearranged to yield the acceleration at that instant ii,:
ity = — (ilg, + w?u, + 20811, ) (11)

Finally, knowing uy,, 1, and ii,, these values can be introduced in Eqg. (10) and, after this, the
increments in velocity A and displacement Au can be obtained by means of Egs. (8) and (9).
These operations can be repeated to compute the system’s time histories for displacement,

velocity and acceleration.
3. Numerical algorithm for the equation of motion resolution.

The input for the approach are the assumed constant mass m and fraction of critical damping &
of the SDOF system, the hysteretic model with known basic rules to compute fs in terms of u,
the time sampling frequency, 1/Atgenerqr Hz, time when simulation stops, t.,q, and initial
conditions of the system, uy, = u(t = 0) and 1, = u(t = 0). If the system is to be subjected to
the action of an earthquake, the samples of ground acceleration need to be presented in a list i,
so that they have been sampled at the frequency 1/Atgenerq Hz. Given that the sampling time
step for earthquake records is usually 0.02 s, taking time steps Atgenerq: like that ensure

stability and low computational errors [3]. The obtained output will consist on system’s

displacement, velocity, acceleration, spring force and damping force for each time ¢;.

The followed algorithm is presented as a flowchart in Fig. 4. In a first iteration (i = 0), the

branch of the f¢ — u model is set, providing the stiffness current branch, k., and restoring force,
fso» Of the system. Knowing k., the natural circular frequency w¢ = /k¢c/m and the initial

damping force, Eq. (12), can be also computed.

fDo = 2méwciy (12)
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Input: Constant dynamic properties of the SDOF system: m, &
Inelastic model: fg — u relationship
If ground motion: ii, list with ii, () sampled at At enerq
Time to stop computations: t,,,4
Initial conditions: u,, &,

Set initial values
i=0
ke = k(uy) we =kc/m

fso = fs(uo) fDo =2méw iy

ty=0 i, 6t=0
| v

> At = Atgineml -5t | From BLOCK 3

Compute
ﬁi=—l(fs-+fu-+mu ) T
m\’°t L 9i Save: t;, u;, w;, iy, fs o fr;
fKi = mul
Al =g, — iy,

Linear acceleration method

3 (20sly, + 41l At Ew; + 20t wF + wAtw? )
6 + 6At;{w; + AtZw?

A = At + AuT‘ >y =1 + Al

Aii = —

2
i

2
1+Aﬁ?—>ui+1=ui+Au

. . At
Au = w;At; + 1 2

Compute
fsin = fs; + kchu

Condition to change YES |y, & i1, are

branch of f5 —u, (k)? invalid | '10BLOCKI

NO

Siani..) +Sign(ic)? YES | u, &i;, 4 are To BLOCK 2
ign(t;,1) #Sign(i;)? invalid °

Compute
fDi+1 = 2méw gy
tiyg = t; + AL

NO

ti+1 > tend?

YES

Fig. 4. General flowchart representing the algorithm to compute the response of a SDOF with elasto-plastic behavior.

Therefore, given the system in a particular branch of the f; —u model (i.e. k. is fixed) each i
iteration starts knowing the corresponding values of time t;, relative displacement and velocity,
u; and w, restoring force fg; and damping force fj; so that the relative acceleration ii; can be
computed by means of Eq. (1). The values of u;,, and ;. are then computed by LAM

according to:
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3(ZAilgi+41’liAti$wC+ZuiAtiw%+uiAtiw(2; )

Al = —
6+6AtiEwC+Ati2w(2:

At = At + AL (13)
2 2
Au = wAt; + ulATt + Au%

so that;

'l:l.i+1 = ’I:Ll' + Au

Ui = U; +Au (14)

Eq. (13) is similar to Egs. (8) to (10). The only differences are that in Egs. (8) to (10) At is
assumed to be constant whereas in Eq. (13) the value of At; can be Atgeperq; OF @ lower value

(Atgenerar — 6t) due to a change of branch in the fg — u model.
Knowing Au, the next restoring force is computed as:
fsiv1 = [fs; T kcAu (15)

Finally in this iteration i, next step time t;,, is set and damping force fj, , is calculated

similarly as done in Eq. (12). After this, a new iteration is performed.

However, after LAM and f; , computations some checks need to be done. Firstly, it is
necessary to verify if any condition to change the branch of the f; — u model has been met, Fig.

5. If so, the computed value f;,, should lie on the next branch, fs (u), instead of remaining on
the current one, fs_.(u). Block 1, Fig. 6, computes the value of displacement and time interval to
get to the point of intersection of both branches, fs.(u) and fs, (u). In this block, knowing

fs. () and fs (w), the displacement for branch change (BC) ug can be determined by solving:

fsc(usc) = fsn, (upc) (16)

/. A%T fs )
Stpe

fsn (W)

Wrong fs;., /
New fs; 5 Computed W/LAM in

.| general flowchart
Ake |
1 Computed wiblock 1

fsi

u

U; Upc Original
Uitq

Fig. 5. Condition to branch change in the f; — u model activating computations in block 1.

Then, using the LAM equations (Eg. (13)), i.e. introducing the value of Aii within the equation

Au = uge — u;, the time interval after u; at which ug- occurs, 8tgc, can be determined:
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. StBC, 4 : 2 2
. 5t§c ZAugiA—ti+4ui5tBC§wC+2ui5tBCwC+ui6tBCa)C

Upe = w; + 18t e + 1l 2EC t
BC l iZ"BC L 2(6+68tpcEwc+btE ws) BC

(17)

From condition to change branch of f; — u

Compute displacement for
branch change (ugc)
fSC(uBC) = fsn(usc)

l

Upc

Compute (LAM) time interval for branch change (6tgc)

St3c
6

Uge = U; + 1;8tge + il % + Al 1
3 (ZAu' Obe | 441, StpeEwe + 20 8t5ew? + uStgewl ) (” Ot

9 At

Al = —

6 + 68tpcéwc + Sti w?

To BLOCK 3

Fig. 6. Block 1 employed to compute displacement and time at which branch in the f; — u model is switched.

If the SDOF is subjected to an earthquake signal, it must be noticed that ground acceleration

increment Ailgi =g, — iigi employed in the computation of Aii needs to be proportional to
At;, so that ilgi has been sampled at t; and ilgi+1 at t;, 1. As Eq. (17) is employed to compute a
time interval dtg. < At;, then the used increment of ground acceleration needs to be

. .. Otpgc
proportional and Alig, —>

is introduced instead of the original Aiigl_, Fig. 7. After &ty is

determined, further computations need to be done by means of block 3 prior to coming back to
the general flowchart.

Original iy,

New i, .
S i+1
. St
Aiiy
i At; i
9i

Al :

At;
5t ¢

t; New Original

iyt i1

Fig. 7. Correspondence between time intervals and ground acceleration increments to be employed in LAM and
computation of new value of i, to be introduced in iig.

If after LAM computations within the general flowchart no condition to switch the branch of the
fs —u model has been fulfilled, another check prior to a new iteration is needed to know
whether the system has changed the direction of its displacement or not. If so,
Sign(w; +1)#Sign(w;). Therefore, the computed value f;,, after LAM is wrong again because
the system has changed the sense of loading (from loading to unloading or vice versa) and a

different branch of the f; — u model must be adopted for further computations, Fig. 8.

6
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New f5i+1
Wrong fs;,,
fsi
u
u \ Atl
U —Cs EtDR
New u;,, =0 \ =

(s

i
Original

Original 7ty |

Fig. 8. Computations made in block 2: time interval 5ty after u; to make velocity %;,, = 0 is sought.

Block 2, Fig. 9, computes the interval of time after u; at which displacement reversal (DR)
occurs. Therefore, employing LAM equations (Eq. (13)), i.e. introducing the value of Aii within
the equation Au = 0 —1u;, block 2 computes the interval of time &tpp that makes

velocity 1;,; = 0:

. 8t . .
3(2Au9ﬁ+4—ui&DR€wc+ZuidtDRw%+ul-6tDRwé )

O = ui + iliStDR - 6tDR (18)

2(6+66tDR$wC+8t5Rw%)

From Sign(z;,,) # Sign(w,)

Compute (LAM) time interval for displacement reversal: i;,.; = 0 (5tpg)

st
0 = 1 + i;6tpp + Ail ZDR ]
3 (24, 536 + 4Lt ppE g + 20, 8tpp? + U Blpre? ) } > Otpp
A= :
u 6+ 60tppEwe + OL2pwe J
To BLOCK 3

Fig. 9. Block 2 employed to calculate time that makes velocity zero and at which displacement reversal occurs.

Right after block 1 or 2, block 3 is employed to compute the valid values of u; 4 and ;.4
needed for the next iteration. In block 1 or 2, a new interval of time 8t to perform the LAM
computations has been determined. Therefore, block 3 makes use of LAM equations, Eq. (13),
with this new 6t taking into account that the increment of ground acceleration Ailgi (if present)
employed to calculate Aii needs to be proportional to that time interval, as explained before, Fig.
7. Consequently, a new sample of ground acceleration needs to be introduced in the list iig

between ii, . and the original ii,. ,nowii,. _.Hence, the new value introduced in ii, is:
9i i+1 Yit+2 ]
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. .. . 8t
g, ,, = lg, + AugM—ti (19)
Once LAM is performed in block 3, the next iteration valuesu;,q, i1, fs;,4 fp;, @Nd
t;y1 = t; + 6t are computed. Finally, the values of the stiffness and natural circular frequency
to be employed in the following iterations, k. and w. respectively, are actualized according to
the new branch of the fs — u driving the process. A new iteration in the general flowchart can

be now performed.

From BLOCK 1 or 2

Employing §t compute (LAM):

Ait, At & Au: Eq. (13) with Ay <

v y ¥
Add new value Compute Actualize k. according to
(itg, + Bty 20) to i list Uy = i+ At new branch in fs — u
9i 9 ) = 8=
between it, & ii Ui = W+ Au i
T E T i fsion = fs; +kcbu
fDH.l = 2méwcllyyy Compute
tign =t + 6t we = Jkc/m
\ |

Back to general flowchart

Fig. 10. Block 3 used to recompute the valid values of next iteration variables with the modified time interval &t
computed in block 1 or 2.

The above explained approach has been implemented in a Mathematica® notebook that can be
downloaded from http://hdl.handle.net/10396/18478 or requested to the corresponding author

(jcarbonell@uco.es). It allows to plot the Complete Hysteretic Curve of the system by plotting
together the fs and . histories against u.
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