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Abstract

In group decision making (GDM) dealing with Computing with Words (CW)
has been highlighted the importance of the statement, words mean different
things for different people, because of its influence in the final decision. Dif-
ferent proposals that either grouping such different meanings (uncertainty)
to provide one representation for all people or use multi-granular linguistic
term sets with the semantics of each granularity, have been developed and
applied in the specialized literature. Despite these models are quite useful
they do not model individually yet the different meanings of each person
when he/she elicits linguistic information. Hence, in this paper a personal-
ized individual semantics (PIS) model is proposed to personalize individual
semantics by means of an interval numerical scale and the 2-tuple linguistic
model. Specifically, a consistency-driven optimization-based model to obtain
and represent the PIS is introduced. A new CW framework based on the
2-tuple linguistic model is then defined, such a CW framework allows us to
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deal with PIS to facilitate CW keeping the idea that words mean different
things to different people. In order to justify the feasibility and validity of the
PIS model, it is applied to solve linguistic GDM problems with a consensus
reaching process.

Keywords: computing with words, 2-tuple linguistic model, semantics,
group decision making, preference relations

1. Introduction

Human beings usually employ words in most of their computing and
reasoning processes without the necessity of any precise number. Computing
with words (CW) is a methodology in which the objects of computation are
words and propositions drawn from a natural language [49, 50] that arises
to emulate such human behaviors. Hence a crucial feature of CW is that
its processes deal with linguistic inputs to obtain linguistic outputs easy
to understand by human beings. Different computing schemes have been
proposed for CW that could be summarized in Fig. 1. Yager [48] points out
the importance of the translation and retranslation processes to achieve the
aims of the CW.Linguisticinput LinguisticoutputFig. 1. Yager’s CW schemeTranslation Manipulation Retranslation

It is important to remark that CW involves a wide-ranging ramifications
and applications from learning to decision making passing by many others
[23, 13, 15, 39, 40]. Our interest in this paper is focused on the use of CW in
decision making [28]. Specifically on group decision making (GDM) because
its use implies another key and controversial point about CW, that it is the
fact that words mean different things for different people [1, 16, 29, 30]. In
order to deal with previous fact that increases the difficulty of managing the
uncertainty of linguistic information, two mainstreams have been developed
in the literature:
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1. The use of type-2 fuzzy sets based on low and upper possibility distri-
butions with a third dimension in between [29], that group all meanings
from people in just one representation function and,

2. The use of multi-granular linguistic models [14, 19, 33] in which mul-
tiple linguistic term sets can be used by experts according to either
their degree of knowledge or their comfort or their similarity with the
semantics of each granularity.

In spite of both previous methods are quite useful to deal with the mul-
tiple meanings of words and have been also widely used for CW in multiple
different problems, they do not represent yet the specific semantics of each
individual. For example, when reviewing an article, two referees both think
this article is “Good”, but the term “Good” often has different numerical
meaning for these two referees. Hence, in this paper a personalized individ-
ual semantics (PIS) model is proposed to customize individual semantics by
means of an interval numerical scale [6, 12] and the 2-tuple linguistic model
[18]. In order to do so, this paper develops two main proposals:

a) A new model to represent PIS, such that it will be based on the interval
numerical scale because of its features to deal with different linguistic
representations in a precise way [6, 12].

b) A framework for CW dealing with PIS, based on the 2-tuple linguistic
model [27], including personalized 2-tuple linguistic operators are pro-
posed, because of its good features for managing linguistic information
in CW processes [38]. This framework will cope with PIS and redesign
the CW phases pointed out in Fig. 1 to obtain customized accurate
linguistic results easy to interpret and understand by individuals.

There are a lot of researches regarding GDM problems using linguistic
preference relations, such as aggregation operators [3], consistency measures
[8, 10], consensus models [9, 20, 34] and so on. In order to justify the feasi-
bility and validity of the PIS model, it will be applied to a linguistic GDM
problem with a consensus reaching process, by defining the concept of the
individual linguistic understanding.

The remainder of this paper is arranged as follows. Section 2 introduces
a basic description of the 2-tuple linguistic model, the numerical scale and
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preference relations. Section 3 introduces a consistency-driven optimization-
based model to obtain the interval numerical scale of PIS for decision makers
in linguistic GDM problems. Section 4 proposes a new CW framework based
on the 2-tuple linguistic model for dealing with PIS. Section 5 presents a
consensus reaching process for linguistic GDM problems with PIS. Section 6
then concludes this paper.

2. Preliminaries

This section introduces the basic necessary knowledge to understand our
proposals, regarding the 2-tuple linguistic model, the numerical scale and
preference relations.

2.1. The 2-tuple linguistic model

The 2-tuple linguistic representation model, presented in Herrera and
Mart́ınez [18] represents the linguistic information by a 2-tuple (si, α) ∈ S =
S × [−0.5, 0.5), where si ∈ S and α ∈ [−0.5, 0.5). Formally, let S = {si|i =
0, 1, 2, ..., g} be a linguistic term set and β ∈ [0, g] be a value representing
the result of a symbolic aggregation operation. The 2-tuple that expresses
the equivalent information to β is then obtained as:

∆ : [0, g] → S × [−0.5, 0.5), (1)

where

∆(β) = (si, α), with

{
si, i = round(β)
α = β − i, α ∈ [−0.5, 0.5)

. (2)

Function ∆, it is a one to one mapping whose inverse function ∆−1 : S →
[0, g] is defined as ∆−1(si, α) = i + α. When α = 0 in (si, α) is then called
simple term.

In [18] it was also defined a computational model for linguistic 2-tuples
in which different operations were introduced:

(1) A 2-tuple comparison operator: Let (sk, α) and (sl, γ) be two 2-tuples.
Then:

(i) if k < l, then (sk, α) is smaller than (sl, γ).
(ii) if k = l, then
(a) if α = γ, then (sk, α), (sl, γ) represents the same information.
(b) if α < γ, then (sk, α) is smaller than (sl, γ).

(2) A 2-tuple negation operator:
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Neg((si, α)) = ∆(g − (∆−1(si, α))).
(3) Several 2-tuple aggregation operators have been developed (see [18,

31]).

2.2. Numerical scale to extend the 2-tuple linguistic model

Dong et al. [11, 12] extended the 2-tuple linguistic model by the numer-
ical scale and the interval numerical scale for integrating different linguistic
models and increasing the accuracy of the 2-tuple linguistic computational
model.

(1) Numerical scale
The concept of the numerical scale was introduced in [11] for transforming

linguistic terms into real numbers:

Definition 1. [11] Let S = {si|i = 0, 1, 2, ..., g} be a linguistic term set, and
R be the set of real numbers. The function: NS : S → R is defined as a
numerical scale of S, and NS(si) is called the numerical index of si. If the
function NS is strictly monotone increasing, then NS is called an ordered
numerical scale.

Definition 2. [11] Let S, S and NS be as before. The numerical scale NS
on S for (si, α) ∈ S, is defined by

NS((si, α)) =

{
NS(si) + α× (NS(si+1)−NS(si)), α ≥ 0
NS(si) + α× (NS(si)−NS(si−1)), α < 0

. (3)

To simplify the notation, NS will also be denoted as NS in this paper.
In [11] NS was introduced as a a family of functions, that usually are

ordered functions, if so it was proved that its inverse NS−1 exists. For exam-
ple, setting NS(si) = ∆−1(si) (i.e., NS(s0) = 0, NS(s1) = 1, ..., NS(sg) = g)
yields the 2-tuple linguistic model [18].

(2) Interval numerical scale
The concept of the interval numerical scale [12] extends the numerical

scale model to transform linguistic terms into numerical interval values:

Definition 3. [12] Let S = {si|i = 0, 1, 2, ..., g} be a linguistic term set, and
let M = {[AL, AR]|AL, AR ∈ [0, 1], AL ≤ AR} be a set of interval values in
[0, 1]. The function INS : S → M is defined as an interval numerical scale
of S, and INS(si) is called the interval numerical index of si.
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If INS(si) = [Ai
L, A

i
R], then the functions INSL and INSR are defined as

follows: INSL(si) = Ai
L and INSR(si) = Ai

R. The interval numerical scale
INS is ordered if INSL(si) < INSL(si+1) and INSR(si) < INSR(si+1) for
i = 0, 1, ..., g − 1.

Definition 4. [12] Let S, S and NS be as before. For (si, α) ∈ S, the interval
numerical scale INS on S is defined by

INS((si, α)) = [AL, AR], (4)

where

AL =

{
INSL(si) + α× (INSL(si+1)− INSL(si)), α ≥ 0
INSL(si) + α× (INSL(si)− INSL(si−1)), α < 0

(5)

AR =

{
INSR(si) + α× (INSR(si+1)− INSR(si)), α ≥ 0
INSR(si) + α× (INSR(si)− INSR(si−1)), α < 0

. (6)

Dong et al. [12] introduced the inverse operation of INS noted as INS−1

and its generalization, a simplified inverse operation INS−1 is defined as:

Definition 5. Let S = {si|i = 0, 1, 2, ..., g} be a linguistic term set, INS
be an ordered interval numerical scale on S, and M = {[AL, AR]|AL, AR ∈
[0, 1], AL ≤ AR} a set of interval values in [0, 1]. The inverse operation
INS−1 is defined as:

INS−1 : M −→ S, (7)

where for any A ∈ M , INS−1(A) = s and

d(A, INS(s)) = min
x∈S

d(A, INS(x)). (8)

In Eq.(8), d is a distance function for interval values. Different distance
functions might be applied to computing INS−1, and in this paper it is used
the Euclidean distance, i.e., d([a, b], [c, d]) =

√
(a− c)2 + (b− d)2, because it

provides correct results and is generally utilized in the retranslation process
in CW [48].

In [12] was also introduced a way to compute INS and INS−1.
Example 1. Let S = {s0, s1, ..., s4}. Let INS(s0) = [0, 0.1], INS(s1) =

[0.2, 0.25], INS(s2) = 0.5, INS(s3) = [0.75, 0.8], and INS(s4) = [0.751, 1].
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(1) Hence the interval numerical index of a linguistic 2-tuple (s1, 0.3) is
INS((s1, 0.3)) = [AL, AR] and according to Eq.(5):
AL = INSL(s1)+0.3×(INSL(s2)−INSL(s1)) = 0.2+0.3×(0.5−0.2) = 0.29.

Moreover, according to Eq.(6):
AR = INSR(s1)+0.3× (INSR(s2)−INSR(s1)) = 0.25+0.3× (0.5−0.25) =
0.325.

Consequently, INS((s1, 0.3)) = [AL, AR] = [0.29, 0.325].

(2) To illustrate how to obtain the value of INS−1([0.6, 0.8]) it must be
used Eqs. (7) and (8):

min
x∈S

d([0.6, 0.8], INS(s)) = d([0.6, 0.8], INS(s3,−0.246)) = 0.013.

Therefore, INS−1([0.6, 0.8]) = (s3,−0.246).

In the linguistic computational model with the interval numerical scale,
the input are linguistic terms, and the output are 2-tuple linguistic intervals
to avoid the loss of information. Further detail regarding the operations with
the interval numerical scale can be found in [12].
Remark 1[7, 11]. The numerical scale can provide a connection among
the 2-tuple linguistic model and its variants, additionally can set different
numerical scales for the 2-tuple linguistic model [18], the Wang and Hao
model [41] and the unbalanced linguistic model based on a linguistic hierarchy
[17].
Remark 2[11]. The interval numerical scale can be reduced to the numerical
scale. So the interval numerical scale will be used as the basis to develop the
2-tuple linguistic model with PIS in this paper.

2.3. Linguistic and numerical preference relations. Consistency

Let X = {X1, X2, ..., Xm}(n ≥ 2) be a finite set of alternatives. When
a decision maker provides pairwise comparisons using the linguistic term
set S, he/she can construct a linguistic preference relation L = (lij)n×n,
whose element lij estimates the preference degree of alternative Xi over Xj .
Linguistic preference relations based on linguistic 2-tuples can be formally
defined as:

Definition 6. [2] The matrix L = (lij)n×n, where lij ∈ S, is called a simple
linguistic preference relation. The matrix L = (lij)n×n, where lij ∈ S, is called
a 2-tuple linguistic preference relation. If lij = Neg(lji) for i, j = 1, 2, ..., n,
then L is considered reciprocal.
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In addition, the numerical preference relations are often used in deci-
sion making. A kind of numerical preference relations, i.e., fuzzy preference
relations were also introduced.

Definition 7. [22, 36] The matrix F = (fij)n×n, where fij ∈ [0, 1] and
fij + fji = 1 for i, j = 1, 2, ..., n, is called a fuzzy preference relation.

The study of consistency in a preference relation is very important, be-
cause it ensures that preferences are neither random nor illogical. Generally,
ordinal [45] and cardinal [4] consistency are two common types of consistency
for a preference relation. The former is closely related to the transitivity of
the corresponding preference relation meanwhile the latter is a stronger con-
cept because it not only implies the transitivity of preferences, but also the
intensity of preference expressed by comparisons. Here, it is revised the
cardinal consistency index (CI) based on additive transitivity [21] for fuzzy
preference relations, F , because it will be extended in our proposal:

CI(F ) = 1−
2

3n(n− 1)(n− 2)

n∑

i,j,k=1;i 6=j 6=k

|fij + fjk − fik − 0.5|. (9)

Due to the complexity and uncertainty involved in real-world decision
problems, sometimes it is unrealistic to acquire exact judgments. Thus, fuzzy
preference relations are extended to interval fuzzy preference relations.

Definition 8. [46] The matrix Ṽ = (ṽij)n×n, where ṽij = [v−ij , v
+
ij ] ⊆ [0, 1]

and v−ij + v+ji = 1 for i, j = 1, 2, ..., n, is called an interval fuzzy preference
relation.

Definition 9. [5] Let Ṽ = (ṽij)n×n, where ṽij = [v−ij , v
+
ij ], be an interval fuzzy

preference relation. F = (fij)n×n is a fuzzy preference relation associated to

Ṽ if v−ij ≤ fij ≤ v+ij and fij + fji = 1.

Being NṼ the set of the fuzzy preference relations associated to Ṽ .

Remark 3. Reciprocity is an important property of preference relations.
However, when S is not uniformly and symmetrically distributed, the reci-
procity of linguistic preference relations cannot be guaranteed. In this situa-
tion, it is assumed that the decision maker only provides his/her preferences
for the upper/lower triangular entries of L.
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3. Personalized individual semantics based on interval numerical

scales

As aforementioned, the difficulty of carrying out CW processes with the
issue words mean different things for different people that naturally arises in
problems with multiple experts like GDM problems still remains open. Even
though, different proposals have been introduced in the literature based on
type-1 [14] and type-2 [29] fuzzy sets, dealing with multiple linguistic term
sets and grouping individual representations respectively. In fact, neither
of them represents specifically the PIS of each expert involved in the GDM
problem.

Therefore, the first objective of this paper is to introduce an interval nu-
merical scale based method to personalize individual semantics represented
by interval values from the linguistic preference relations elicited by the ex-
perts taking part in the GDM problem. This representation will be managed
in the CW framework presented later in Section 4.

The method to obtain the PIS consists of a consistency-driven optimiza-
tion model. Before introducing this model it is necessary to fix some no-
tations, premises and a consistency measure for interval fuzzy preference
relations introduced in the coming subsections.

3.1. Basics

Let S = {si|i = 0, 1, ..., g} be a linguistic term set, INSk be an ordered in-
terval numerical scale on S associated with the individual ek(k = 1, 2, ..., m),
and Lk = (lkij)n×n be the linguistic preference relation based on S associated

with ek. The matrix Ṽ k = (ṽkij)n×n, in which vkij = [vk−ij , vk+ij ] = INSk(lkij),

is called the numerical preference relation transformed by INSk, associated
with Lk.

Remark 3 pointed out that when an individual only provides his/her
preference information for the upper/lower triangular entries of the linguistic
preference relations based on S, the reciprocity of the numerical preference

relation Ṽ k will not be violated. Besides, in the 2-tuple linguistic model with
the interval numerical scale, the support of the INSk of S is the interval

[0, 1]. As a result, Ṽ k is an interval fuzzy preference relation. Hence, Lk

and Ṽ k represent the same preference, associated with ek. So, Ṽ k should be
consistent if Lk is consistent. From this reasoning in [6] was provided the
following premise:
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Premise 1 [6]. If linguistic preference relations provided by individuals
are consistent, then the interval fuzzy preference relations, transformed by
the established interval numerical scales, should be as much consistent as
possible.

The Premise 1 implies the need of consistency in interval fuzzy prefer-
ence relations, and the ordinal consistency can be guaranteed by the trans-
formation from linguistic to interval fuzzy preference relations. However, the
cardinal consistency should be still studied with a specific measure, and here
we propose the cardinal interval consistency index based on Eq. (9):

Definition 10. Let Ṽ = (ṽij)n×n be an interval fuzzy preference relation,

let F = (fij)n×n be a fuzzy preference relation associated to Ṽ , and let NṼ

be the set of the fuzzy preference relation associated to Ṽ . The optimistic
consistency index (OCI) of Ṽ is then defined as follows,

OCI(Ṽ ) = max
F∈N

Ṽ

CI(F ), (10)

i.e.,

OCI(Ṽ ) = max
F∈N

Ṽ

(1−
2

3n(n− 1)(n− 2)

n∑

i,j,z=1;i 6=j 6=z

|fij + fjz − fiz − 0.5|),

(11)

and the pessimistic consistency index (PCI) of Ṽ is,

PCI(Ṽ ) = min
F∈N

Ṽ

CI(F ), (12)

i.e.,

PCI(Ṽ ) = min
F∈N

Ṽ

(1−
2

3n(n− 1)(n− 2)

n∑

i,j,z=1;i 6=j 6=z

|fij + fjz − fiz − 0.5|).

(13)

In the proposed interval consistency index, OCI(Ṽ ) and PCI(Ṽ ) reflect
the best and worst consistency indexes of all fuzzy preference relations asso-
ciated to Ṽ , respectively.

In previous studies regarding the consistency measure of Ṽ (e.g., [6, 42]),

OCI(Ṽ ) was considered as the consistency degree of Ṽ . However, OCI(Ṽ )
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cannot accurately measure the consistency degree of Ṽ such as it is illustrated
in Example 2.
Example 2. Consider the following interval fuzzy preference relation:

Ṽ =




[0.5, 0.5] [0.2, 1] [0.1, 0.3]
[0, 0.8] [0.5, 0.5] [0.3, 0.9]
[0.7, 0.9] [0.1, 0.7] [0.5, 0.5]


 .

Solving Eq. (10) obtains max
F∈N

Ṽ

CI(F ) = CI(F 1) = 1, where

F 1 =




0.5 0.5 0.3
0.5 0.5 0.3
0.7 0.7 0.5


,

so, OCI(Ṽ ) = CI(F 1) = 1. Solving Eq. (12) obtains min
F∈N

Ṽ

CI(F ) =

CI(F 2) = 0.133, in which

F 2 =




0.5 1 0.1
0 0.5 0.9
0.9 0.1 0.5


,

so, PCI(Ṽ ) = CI(F 2) = 0.133.

In Example 2, F 1 reflects the best consistency degree of Ṽ , and F 2 reflects
the worst consistency degree of Ṽ . Besides, OCI(Ṽ ) = 1, i.e., Ṽ is fully con-

sistent based on OCI(Ṽ ). But, PCI(Ṽ ) = 0.133 is very low. Hence, OCI(Ṽ )

cannot accurately measure the consistency degree of Ṽ .

Remark 4. Clearly, the consistency index CI of any fuzzy preference rela-
tion F associated to Ṽ is in the interval [PCI(Ṽ ), OCI(Ṽ )], i.e., CI(F ) ∈

[PCI(Ṽ ), OCI(Ṽ )] for any F ∈ NṼ .

Therefore our proposal will use OCI(Ṽ ) and PCI(Ṽ ) because they reflect

better the consistency degree of Ṽ than just the use of OCI(Ṽ ).

3.2. A consistency-driven optimization-based model to obtain personalized
individual semantics

From our view the personal own meaning (semantics) that each individ-
ual provides to words when eliciting linguistic preferences are closely related
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to her/his consistency. Therefore this section introduces a consistency-driven
optimization-based model to obtain the personalized individual interval nu-
merical scales of the 2-tuple linguistic terms.

Let INSk(si) = [Ai,k
L , Ai,k

R ] be the interval numerical index of si, associ-
ated with the decision maker ek. According to Premise 1, if Lk is consistent,

then Ṽ k should be as much consistent as possible. It is then necessary to

maximize PCI(Ṽ k) by,
maxminCI(F 2k), (14)

where
F 2k ∈ N˜V k , k = 1, 2, ..., m. (15)

In the previous studies [6, 42] it was required that OCI(Ṽ k) = 1, so

CI(F 1k) = 1, k = 1, 2, ..., m, (16)

where
F 1k ∈ N˜V k , k = 1, 2, ..., m. (17)

Based on the existing several 2-tuple linguistic models (e.g., the Herrera
and Mart́ınez model [18], the Wang and Hao model [41], and the unbalanced
linguistic model [17]), the ordered initial numerical index ai of si can be
provided by different functions that computes NS. For example, in the
Herrera and Mart́ınez model, ai = NS(si) = ∆−1(si)/g; in the Wang and
Hao model, NS(si) is determined by canonical characteristic values; in the
unbalanced linguistic model, NS(si) is determined by a linguistic hierarchy.
This paper assumes that ai ∈ INSk(si), i.e.,

0 ≤ Ai,k
L ≤ ai ≤ Ai,k

R ≤ 1, i = 0, 1, ..., g; k = 1, 2, ..., m. (18)

Moreover, INSk is ordered, then:

INSk
L(si) < INSk

L(si+1), i = 0, 1, ..., g − 1; k = 1, 2, ..., m, (19)

and
INSk

R(si) < INSk
R(si+1), i = 0, 1, ..., g − 1; k = 1, 2, ..., m. (20)

Based on Eqs. (14)-(20), an optimization model to set individual interval
numerical scales of linguistic terms INSk(si) = [Ai,k

L , Ai,k
R ] can be constructed

as follows,
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maxminCI(F 2k)
s.t. F 2k ∈ N˜V k , k = 1, 2, ..., m
CI(F 1k) = 1, k = 1, 2, ..., m
F 1k ∈ N˜V k , k = 1, 2, ..., m

0 ≤ Ai,k
L ≤ ai ≤ Ai,k

R ≤ 1 i = 0, 1, ..., g; k = 1, 2, ..., m
INSk

L(si) < INSk
L(si+1) i = 0, 1, ..., g − 1; k = 1, 2, ..., m

INSk
R(si) < INSk

R(si+1) i = 0, 1, ..., g − 1; k = 1, 2, ..., m

(21)

Remark 5. Using [PCI(Ṽ ), OCI(Ṽ )] for measuring the consistency degree

of Ṽ , model (21) sets OCI(Ṽ k) = 1 based on the previous studies[6, 42], and

the objective function is set to maximize PCI(Ṽ k). In this way, Ṽ k can be
as much consistent as possible.

Let INSk(si) = [Ai,k
L , Ai,k

R ], and let p(s), where s ∈ S, be the position
index of s. For example, if s = si, then p(s) = i. Thus INSk(lkij) =

[A
p(lkij),k

L , A
p(lkij),k

R ](lkij 6= null).

Proposition 1. Model (21) can be equivalently transformed into model (22)-
(30), denoted as P .

max min 1−
2

3n(n− 1)(n− 2)

n∑

i,j,z=1;i 6=j 6=z

∣∣f 2k
ij + f 2k

jz − f 2k
iz − 0.5

∣∣ (22)

s.t.

A
p(lkij),k

L ≤ f 2k
ij ≤ A

p(lkij),k

R , i, j = 1, 2, ..., n, i 6= j; k = 1, 2, ..., m; lkij 6= null
(23)

f 2k
ij + f 2k

ji = 1, i, j = 1, 2, ..., n, i 6= j; k = 1, 2, ..., m (24)

f 1k
ij + f 1k

jz − f 1k
iz = 0.5, i, j = 1, 2, ..., n, i 6= j; k = 1, 2, ..., m (25)

A
p(lkij),k

L ≤ f 1k
ij ≤ A

p(lkij),k

R , i, j = 1, 2, ..., n, i 6= j; k = 1, 2, ..., m; lkij 6= null
(26)

f 1k
ij + f 1k

ji = 1, i, j = 1, 2, ..., n, i 6= j; k = 1, 2, ..., m (27)

0 ≤ Ai,k
L ≤ ai ≤ Ai,k

R ≤ 1, i = 0, 1, ..., g (28)

Ai,k
L < Ai+1,k

L , i = 0, 1, ..., g − 1; k = 1, 2, ..., m (29)

Ai,k
R < Ai+1,k

R , i = 0, 1, ..., g − 1; k = 1, 2, ..., m (30)
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The proof of Proposition 1 is provided in Appendix.
Model P can be easily transformed into a max-min linear programming

model. By solving P , it is obtained the individual interval numerical indexes
INSk(si) = [Ai,k

L , Ai,k
R ] that reflect in the best possible way the individual

meaning of words because it reflects the best consistency in their preferences.
According to Miller [32], an individual cannot simultaneously compare more
than 7 ± 2 objects without producing confusion. So, the size of matrices,
i.e., n, should be smaller than 9. As a result, the proposed model P is a
small-scale optimization problem, and can be effectively and rapidly solved
by several software packages (e.g., Matlab and Lingo).

3.3. Illustration of the consistency-driven optimization-based model

The following example illustrates the consistency-driven optimization-
based model.
Example 3. Let’s suppose a set of five decision makers, E = {e1, e2, ..., e5}
and a set of five alternatives, X = {X1, X2, ..., X5}. Let S = {s0 = extremely
poorer, s1 = much poorer, s2 = fair, s3 = better, s4 = extremely better}
be an established linguistic term set. The decision maker ek supplies the
linguistic preference relation based on S, Lk, to express his/her opinions
over X . These preference relations Lk(k = 1, 2, ..., 5) are listed as follows.

L1 =




null s3 s4 s1 s1
null null s3 s0 s1
null null null s0 s0
null null null null s3
null null null null null




, L2 =




null s2 s0 s0 s0
null null s1 s1 s1
null null null s2 s1
null null null null s1
null null null null null




,

L3 =




null s3 s0 s1 s1
null null s0 s1 s1
null null null s3 s3
null null null null s1
null null null null null




, L4 =




null s2 s1 s0 s0
null null s1 s1 s1
null null null s2 s2
null null null null s2
null null null null null




,

L5 =




null null null null null
s2 null null null null
s3 s3 null null null
s4 s3 s2 null null
s4 s4 s3 s3 null




.
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Without loss of generality, let the initial numerical index ai of si be
{0, 0.25, 0.5, 0.75, 1}. Solving model P obtains the interval numerical indexes
that represent the PIS of each decision maker INSk(si) = [Ai

L, A
i
R], which

are listed in Table 1.

Table 1. Values of INSk(si)(k = 1, 2, ..., 5; i = 0, 1, ..., 4)
INS1(si) INS2(si) INS3(si) INS4(si) INS5(si)

i = 0 [0, 0.125] [0, 0.375] [0, 0.249] [0, 0.249] 0
i = 1 [0.25, 0.375] [0.25, 0.376] [0.25, 0.499] [0.249, 0.25] 0.25
i = 2 0.5 0.5 0.5 0.5 0.5
i = 3 [0.625, 0.75] [0.625, 0.75] [0.748, 0.75] 0.75 [0.75, 0.751]
i = 4 [0.75, 1] [0.626, 1] 1 1 [0.751, 1]

Using the obtained interval numerical scale INSk transforms Lk into the

interval fuzzy preference relation Ṽ k = (ṽkij)5×5, where ṽkij = [vk−ij , vk+ij ](k =
1, 2, ..., 5).

Ṽ 1 =




null [0.625, 0.75] [0.75, 1] [0.25, 0.375] [0.25, 0.375]
null null [0.625, 0.75] [0, 0.125] [0.25, 0.375]
null null null [0, 0.125] [0, 0.125]
null null null null [0.625, 0.75]
null null null null null




,

Ṽ 2 =




null 0.5 [0, 0.375] [0, 0.375] [0, 0.375]
null null [0.25, 0.376] [0.25, 0.376] [0.25, 0.376]
null null null 0.5 [0.25, 0.376]
null null null null [0.25, 0.376]
null null null null null




,

Ṽ 3 =




null [0.748, 0.75] [0, 0.249] [0.25, 0.499] [0.25, 0.499]
null null [0, 0.249] [0.25, 0.499] [0.25, 0.499]
null null null [0.748, 0.75] [0.748, 0.75]
null null null null [0.25, 0.499]
null null null null null




,

Ṽ 4 =




null 0.5 [0.249, 0.25] [0, 0.249] [0, 0.249]
null null [0.249, 0.25] [0.249, 0.25] [0.249, 0.25]
null null null 0.5 0.5
null null null null 0.5
null null null null null




,
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Ṽ 5 =




null null null null null
0.5 null null null null

[0.75, 0.751] [0.75, 0.751] null null null
[0.751, 1] [0.75, 0.751] 0.5 null null
[0.751, 1] [0.751, 1] [0.75, 0.751] [0.75, 0.751] null




.

The optimistic consistency index of Ṽ k, OCI(Ṽ k), and the pessimistic

consistency index of Ṽ k, PCI(Ṽ k)(k = 1, 2, ..., 5), are listed in Table 2 show-
ing high values of consistency according to Remark 5.

Table 2. Values of OCI(Ṽ k) and PCI(Ṽ k)(k = 1, 2, ..., 5)

Ṽ 1 Ṽ 2 Ṽ 3 Ṽ 4 Ṽ 5

PCI(Ṽ k) 0.825 0.825 0.816 0.933 0.883

OCI(Ṽ k) 1 1 1 1 1

Remark 6. Despite the representation of PIS is a very challenging and
complex task in Proposition 1 has been introduced an interval based repre-
sentation of PIS. This solution is valid but still improvable. It seems relevant
for future research to study models that provide fuzzy representations for
PIS, but it is not the aim of the current research in this paper.

4. A CW framework with PIS based on the 2-tuple linguistic model

his section, a framework for CW dealing with PIS based on 2-tuple lin-
guistic model is proposed.

4.1. A 2-tuple linguistic framework based on Yager’s CW scheme

This subsection introduces a CW linguistic framework to manage the lin-
guistic information with PIS in real-world problems, which fulfils the phases
of the CW scheme showed in Fig. 1, such that it will be able:

• To obtain linguistic inputs
• To represent the personalized individual semantics
• To carry out the CW processes
• Finally, to return linguistic outputs taking into account PIS
The numerical interval individual semantics obtained from the consistency-

driven optimization-based model allows reflecting individual differences in
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understanding the meaning of words. Thus, the new CW framework to deal
with individual semantics, in which S = {s0, s1, ..., sg} is the established lin-
guistic term set, Φ = {A|A ⊆ [0, 1]} the established numerical domain, and
E = {e1, e2, ..., en} the set of n individuals, should extend the scheme of
Fig. 1. Therefore, our proposal consists of the scheme depicted in Fig. 2,
composed by the following three processes:

• Individual semantics translation. This process translates linguistic terms
in S into the individual semantics defined by interval values in the es-
tablished numerical domain Φ. The individual semantics translation
process can be carried out by the consistency-driven optimization-based
model introduced in Section 3. Formally, it can be expressed as the
mapping INSk : S → Φ, where INSk is called the individual seman-
tics translation, associated with ek.

• Numerical computation. The output of individual semantics translation
activates numerical computation over Φ, whose output is an interval
numerical value.

• Individual semantics retranslation. It is the inverse operation of indi-
vidual semantics translation, and it is applied to retranslate the output
of numerical computation into linguistic 2-tuples in S easy to under-
stand for individuals. The individual semantics retranslation can be
expressed as the inverse of INSk, denoted as INSk,−1.

Individual semantics 

translation

1
INS

2
INS

n
INS

1, 1
INS

Fig. 2. The framework for the 2-tuple linguistic model with individual semantics 

Linguistic 

input 

Numerical 

computation 

Linguistic 

output 

2, 1
INS

, 1n
INS

Individual semantics 

retranslation

Following, different operators for numerical computation based on the
linguistic 2-tuple are further detailed, the other two processes are based on
results presented in previous sections and not further detailed here.
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4.2. Comparison and aggregation: The personalized 2-tuple linguistic opera-
tors

The comparison and aggregation operators in the computational model of
the 2-tuple linguistic model have been investigated extensively. However, the
existing 2-tuple linguistic models only can be suitable to deal with decision
problems in the context that a word has the same numerical meaning for
different people.

In this subsection, following the CW framework in Fig. 2, it is proposed
the personalized 2-tuple linguistic comparison and aggregation operators for
the numerical computation phase to deal with the problem that words mean
different things to different people.

Let S = {s0, s1, ..., sg} be a linguistic term set, and let E = {e1, e2, ..., em}
be the set of decision makers. Let INSk be the interval numerical scale over
S, associated with the decision maker ek. In the following personalized 2-
tuple linguistic comparison and aggregation operators are presented.

(1) Personalized 2-tuple linguistic comparison operator

Let rκ and rρ be two linguistic terms provided by decision makers eκ and
eρ, then

(i) rκ ≻ rρ if and only if INSκ(rκ) > INSρ(rρ);
(ii) rκ ∼ rρ if and only if INSκ(rκ) = INSρ(rρ);
(iii) rκ ≺ rρ if and only if INSκ(rκ) < INSρ(rρ).

Remark 7. There are many proposals for comparing interval values. With-
out loss of generality, in this paper it is used the comparison operator intro-
duced in [43] to compare interval values.
Example 4. Let E = {e1, e2, e3} be three decision makers, and let S =
{s0, s1, ..., s4} be the linguistic term set. As shown in Section 3, different
decision makers have different interval numerical scales over S. Without loss
of generality, the individual interval numerical scale INSk over S, associated
with ek, is set as follows,

INS1(s0) = [0, 0.25], INS1(s1) = [0.3, 0.45], INS1(s2) = 0.5, INS1(s3) =
[0.6, 0.7], and INS1(s4) = [0.75, 1];

INS2(s0) = 0, INS2(s1) = [0.1, 0.25], INS2(s2) = 0.5, INS2(s3) =
[0.8, 0.9], and INS2(s4) = [0.9, 1];

INS3(s0) = [0, 0.1], INS3(s1) = [0.2, 0.4], INS3(s2) = 0.5, INS3(s3) =
[0.75, 0.8], and INS3(s4) = [0.8, 1].
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Let r1, r2 and r3 be the linguistic terms provided by decision makers e1,
e2 and e3, respectively.

If r1 = s1, r2 = s1, and r3 = s3, using the personalized 2-tuple linguistic
comparison operator it can be obtained r2 ≺ r1 ≺ r3 because of INS1(r1) <
INS3(r3) < INS2(r2).

(2) Personalized 2-tuple linguistic aggregation operators

Definition 11. Let S = {s0, s1, ..., sg}, E = {e1, e2, ..., em} and INSk be
defined as before. Let R = {r1, r2, ..., rm} be a set of linguistic terms to
aggregate, where rk ∈ S are the linguistic terms given by decision makers
ek(k = 1, 2, ..., m), and let W = {w1, w2, ..., wm} be a weighting vector that

satisfies wk ≥ 0 and
m∑
k=1

wk = 1, then the personalized 2-tuple linguistic

weighted averaging (PTLWA) operator is defined as

PTLWAW (r1, r2, ..., rm) = (r̃1, r̃2, ..., r̃m)
T , (31)

where r̃k = INSk,−1(q) and q = w1× INS1(r1)+w2× INS2(r2)+ ...+wm×
INSm(rm). The personalized 2-tuple linguistic ordered weighted averaging
(PTLOWA) operator is computed as

PTLOWAW (r1, r2, ..., rm) = (r̃1, r̃2, ..., r̃m)
T , (32)

where r̃k = INSk,−1(q), q = w1 × INSσ(1)(rσ(1)) + w2 × INSσ(2)(rσ(2)) +
... + wm × INSσ(m)(rσ(m)), and (σ(1), σ(2), ..., σ(m)) is the permutation of
(1, 2, ..., m) such that INSσ(k−1)(rσ(k−1)) ≻ INSσ(k)(rσ(k)) for k = 2, 3, ..., m.

In Definition 11, q is the numerical computation result over the linguistic
terms {r1, r2, ..., rm}, and r̃k (k = 1, 2, ..., m) are the linguistic 2-tuples, which
show the different understanding of the decision makers ek to the numerical
computation result q.

Below, Example 5 illustrates the calculation of the PTLOWA operator.
The calculation of the PTLWA operator is similar.
Example 5. Let E = {e1, e2, e3}, S = {s0, s1, ..., s4} and INSk (k = 1, 2, 3)
be as Example 4. Let r1, r2, and r3 be the linguistic terms provided by
decision makers e1, e2, and e3, respectively. Without loss of generality, let
r1 = s1, r2 = s1, and r3 = s3.

(1) Individual semantics translation. According to INSk (k = 1, 2, 3)
in Example 4, we have INS1(s1) = [0.3, 0.45], INS2(s1) = [0.1, 0.25] and
INS3(s3) = [0.75, 0.8].
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(2) Numerical computation. Without loss of generality, let the weighting
vector W = {1

3
, 1
3
, 1
3
}, then q = 1

3
×INS1(s1)+

1
3
×INS2(s1)+

1
3
×INS3(s3) =

[0.383, 0.5].

(3) Individual semantics retranslation. Since r̃1 = INS1,−1(q) = (s1, 0.449),

r̃2 = INS2,−1(q) = (s2,−0.207) and r̃3 = INS3,−1(q) = (s2,−0.345), we
have PTLOWAW (s1, s1, s3) = (r̃1, r̃2, r̃3)

T = ((s1, 0.449), (s2,−0.207), (s2,−0.345))T .
Some desired properties of the PTLOWA operator are introduced. The

properties of the PTLWA operator can be analyzed similarly.

Proposition 2. Let S = {s0, s1, ..., sg}, E = {e1, e2, ..., em}, R = {r1, r2, ..., rm},
W = {w1, w2, ..., wm}, and INSk be defined as before. Then the PTLOWA
operator satisfies the following properties,

(1) Boundary. Let q1 = min
α∈{1,...,m}

m∑
k=1

(wk×INSk(rα)) and q2 = max
α∈{1,...,m}

m∑
k=1

(wk×

INSk(rα)). Then (INS1,−1(q1), INS2,−1(q1), ..., INSm,−1(q1))
T ≤ PTLOWAW

(r1, r2, ..., rm) ≤ (INS1,−1(q2), INS2,−1(q2), ..., INSm,−1(q2))
T .

(2) Idempotency. PTLOWAW (r1, r2, ..., rm) = (r1, r2, ..., rm)
T if rk ∼ rt

for any k, t ∈ {1, 2, ..., m}.
(3) Commutativity. If (r′1, r

′
2, ..., r

′
m) is any permutation of (r1, r2, ..., rm),

then we have PTLOWAW (r′1, r
′
2, ..., r

′
m) = PTLOWAW (r1, r2, ..., rm).

(4) Monotonicity. PTLOWAW (r1, r2, ..., rm) > PTLOWAW (r′1, r
′
2, ..., r

′
m)

if rk ≻ r′k for k = 1, 2, ..., m.

The proof of Proposition 2 is provided in Appendix.

Once it has been introduced different operators for carrying out the Nu-
merical Computation process of the CW framework with PIS (see Fig. 2), it
is convenient to show the differences between CW processes carried out by
previous models in the literature and our proposal to clarify the differences
and advantages of using PIS in those problems in which can be necessary. To
do so, below it is proposed a comparison among different functions to com-
pute the numerical indexes according to the linguistic modelling and using
the PTLOWA operator.

Let S, E, W , and rk be defined as Examples 4 and 5., then consider five
different cases:

Case A. The numerical index is computed by the 2-tuple linguistic model
[18]:

INS1 = INS2 = INS3 = ∆−1
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Case B. The numerical index is computed by:
INS1 = INS2 = INS3 = {[0, 0.25], [0.3, 0.45], 0.5, [0.6, 0.7], [0.75, 1]}
Case C. The numerical index is computed by:
INS1 = INS2 = INS3 = {0, [0.1, 0.25], 0.5, [0.8, 0.9], [0.9, 1]}
Case D. The numerical index is computed by:
INS1 = INS2 = INS3 = {[0, 0.1], [0.2, 0.4], 0.5, [0.75, 0.8], [0.8, 1]}
Case E. The numerical index is computed by using the personalized 2-

tuple linguistic operators, in which:
INS1 = {[0, 0.25], [0.3, 0.45], 0.5, [0.6, 0.7], [0.75, 1]},
INS2 = {0, [0.1, 0.25], 0.5, [0.8, 0.9], [0.9, 1]},
INS3 = {[0, 0.1], [0.2, 0.4], 0.5, [0.75, 0.8], [0.8, 1]}.

Comparing the results obtained, among the numerical indexes in differ-
ent 2-tuple linguistic modelling showed in Table 3, can be found out that
the personalized 2-tuple linguistic operators provide not only obvious differ-
ent results because of computations but also different rankings due to the
consideration of different meaning of linguistic information by each expert.

Table 3. Results for different numerical indexes
Comparison Weighted averaging operator

Case A r1 ∼ r2 ≺ r3 (s2,−0.333)
Case B r1 ∼ r2 ≺ r3 (s2,−0.432)
Case C r1 ∼ r2 ≺ r3 (s2,−0.337)
Case D r1 ∼ r2 ≺ r3 (s2,−0.317)
Case E r3 ≻ r1 ≻ r2 ((s1, 0.449), (s2 ,−0.21), (s2,−0.351))T

5. Solving a linguistic GDM problem with PIS: A consensus based

model

This section presents the application of the PIS model to deal with the
consensus-based linguistic GDM with individual semantics. Specifically, it
is introduced the notation for GDM problems with individual semantics to-
gether a resolution framework and finally a consensus reaching process is
provided and developed.

5.1. A GDM framework with PIS

Let S = {s0, s1, ..., sg} be a linguistic term set, X = {X1, X2, ..., Xn} be
a set of alternatives, and E = {e1, e2, ..., em} be a set of decision makers. In
the GDM with individual semantics, each decision maker provides his/her
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preferences over X by a linguistic preference relation Lk = (lkij)n×n (k =
1, 2, ..., m), where lkij ∈ S estimates the preference degree of decision maker ek
for alternative Xi over Xj . Meanwhile, decision makers have their individual
semantics over S, namely, they use different interval numerical scales of S.
Consequently, it is necessary to support decision makers, who have individual
semantics described by individual interval numerical scales INSk over S, to
reach an agreed solution for the linguistic GDM problem.

Therefore, a new framework to deal with the consensus-based linguistic
GDM with individual semantics is introduced. It includes three processes
depicted in Fig. 3: individual semantics translation process, selection process
and consensus reaching process.

Individual linguistic 

preference relations 
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Fig. 3. The framework for the consensus-based linguistic GDM with PIS 
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(1) Individual semantics translation process

The individual semantics translation process uses the consistency-driven
optimization-based model proposed in Section 3.2 to generate the individual
interval numerical scales of S, INSk, by applying the individual linguistic
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preference relation Lk as data resource. Using the individual interval numeri-
cal scale INSk to quantify Lk obtains the individual interval fuzzy preference

relation Ṽ k = (ṽkij)n×n, where

ṽkij = [vk−ij , vk+ij ] = INSk(lkij) (k = 1, 2, ..., m). (33)

(2) Selection process

It aims at obtaining the collective ranking of alternatives by applying two
phases: aggregation phase and exploitation phase.

The aggregation phase aggregates individual interval fuzzy preference re-

lations {Ṽ 1, Ṽ 2, ..., Ṽ m} into a collective preference relation Ṽ c = (ṽcij)n×n.
The aggregation operation can be carried out by means of either the weighted
average (WA) operator or ordered weighted average (OWA) operator [47]. In
this paper, the WA operator is used, i.e.,

ṽcij = [vc−ij , v
c+
ij ] = [

m∑

k=1

λk · v
k−
ij ,

m∑

k=1

λk · v
k+
ij ], (34)

where λ = {λ1, λ2, ..., λm} is the weighting vector of decision makers {e1, e2, ..., em}

that satisfies λk ∈ [0, 1] and
m∑

k=1

λk = 1.

In the exploitation phase, the collective preference vector Zc = (zc1, z
c
2, ..., z

c
n)

T

is obtained from Ṽ c to order alternatives, where

zci = [

n∑

j=1

wj · v
c−
ij ,

n∑

j=1

wj · v
c+
ij ], (35)

and W = {w1, w2, ..., wn} is an associated weighting vector that satisfies

wj ∈ [0, 1] and
n∑

j=1

wj = 1.

From the values zci , the ranking of alternatives {X1, X2, ..., Xn} is ob-
tained. The larger the value of zci , the better the alternative.

(3) Consensus reaching process

It aims at reaching a higher agreement level among decision makers. The
details of the consensus reaching process are introduced in Section 5.2.
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5.2. Consensus reaching process

A consensus reaching process can be viewed as an iterative process with
several consensus rounds, in which the decision makers adjust their prefer-
ences following the consensus rules until the maximum possible consensus
level is achieved. Generally consensus reaching process includes two parts
[34]: (i) A consensus measure process computes the level of agreement among
experts and, (ii) A feedback mechanism guides the process to improve the
agreement among them.

(1) Consensus measure

Let Zk = (zk1 , z
k
2 , ..., z

k
n)

T be the individual preference vector obtained

from Ṽ k to rank alternatives, where

zki = [
n∑

j=1

wj · v
k−
ij ,

n∑

j=1

wj · v
k+
ij ], for i = 1, 2, ..., n. (36)

Let Oc = (oc1, o
c
2, ..., o

c
n)

T , where oci is the position of alternative Xi in
Zc. For example, if Zc = ([0.1, 0.2], [0.6, 0.7], [0.3, 0.4], [0.8, 0.9]), then Oc =
(4, 2, 3, 1)T . Similarly, we get Ok = (ok1, o

k
2, ..., o

k
n)

T , where oki is the position
of alternative Xi in Zk.

The consensus measure used in our proposal for consensus reaching pro-
cess is defined as:

Definition 12. The consensus level associated with decision maker ek, CLk ∈
[0, 1], is given by

CLk = 1− 2
n∑

i=1

∣∣oci − oki
∣∣

n2
. (37)

The consensus level of all decision makers {e1, e2, ..., em}, CL ∈ [0, 1], is
given by

CL = 1− 2
m∑

k=1

n∑

i=1

∣∣oci − oki
∣∣

mn2
. (38)

A larger CL value indicates a higher consensus degree among the decision
makers {e1, e2, ..., em}.

(2) Feedback mechanism

In our proposal the feedback mechanism is based on different consen-
sus rules that help decision makers to make their opinions closer across the
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consensus reaching process. Before introducing the consensus rules, it is pro-
posed the concept of the individual linguistic understanding of the collective
interval fuzzy preference relation, associated with each decision maker (see
Definition 13), which provides the basis of the consensus rules.

Definition 13. Let INSk be an ordered interval numerical scale on S, as-
sociated with the decision maker ek, and let Ṽ c = (ṽcij)n×n be a collective

interval fuzzy preference relation. Then Lk∗ = (lk∗ij )n×n, where

lk∗ij = INSk,−1(ṽcij), (39)

is called the individual linguistic understanding of the collective interval fuzzy
preference relation Ṽ c, associated with the decision maker ek.

The individual linguistic understanding reflects the linguistic meaning of
the collective interval fuzzy preference relation Ṽ c, associated with individual
decision makers. According to Eqs. (33), (34) and (39), the individual

linguistic understanding of Ṽ c can be expressed by a PTLWA operator, i.e.,

(l1∗ij , l
2∗
ij , ..., l

m∗
ij ) = PTLWAλ(l

1
ij, l

2
ij, ..., l

m
ij ). (40)

Naturally, different decision makers have different linguistic understanding
over Ṽ c. The individual linguistic understanding of Ṽ c is illustrated in Ex-
ample 6.
Example 6. Let E = {e1, e2} and let S = {s0, s1, ..., s4}. According to Sec-
tion 3, different decision makers set different interval numerical scales over S.
Without loss of generality, the individual interval numerical scales INS1 and
INS2 over S, associated with e1 and e2, respectively, is defined as follows:
INS1(s0) = [0, 0.25], INS1(s1) = [0.3, 0.45], INS1(s2) = 0.5, INS1(s3) =
[0.6, 0.7] and INS1(s4) = [0.75, 1].
INS2(s0) = 0, INS2(s1) = [0.1, 0.25], INS2(s2) = 0.5, INS2(s3) = [0.8, 0.9]
and INS2(s4) = [0.9, 1].

Let the collective interval fuzzy preference relation Ṽ c be as follows,

Ṽ c =




null [0.3, 0.4] [0.4, 0.6] [0.75, 1]
null null [0.2, 0.6] [0, 0.3]
null null null [0.7, 0.8]
null null null null


 .
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Then, the individual linguistic understandings of Ṽ c, associated with de-
cision makers e1 and e2, are L1∗ and L2∗, respectively, i.e.,

L1∗ =




null (s1,−0.25) (s1,−0.235) s4
null null (s2,−0.4) (s0, 0.46)
null null null (s4,−0.333)
null null null null


 ,

and

L2∗ =




null (s2,−0.472) (s2,−0.345) (s3, 0.25)
null null (s2, 0.16) (s1, 0.18)
null null null (s3,−0.12)
null null null null


 .

According to L1∗ and L2∗, decision makers e1 and e2 have different linguis-
tic understanding over Ṽ c. Based on the individual linguistic understanding
of the collective interval fuzzy preference relation and the consensus level
CLk associated with ek, two consensus rules namely, identification rule and
direction rule to guide the feedback process are introduced:

(1) Identification rule. The identification rule identifies the decision mak-
ers contributing less to reach a high degree of consensus.

From the ranking position of each decision maker ek according to CLk,
the larger the CLk, the higher position of decision maker ek. If the decision
maker’s position is high, then the decision maker does not need to change
his/her preferences, but if it is low then the decision maker has to change
his/her preferences.A satisfaction consensus threshold CL is computed to
calculate how many decision makers need to change their preferences. If
CLk < CL, CL ∈ [0, 1], the decision maker ek needs to change his/her
preferences. Generally, the decision maker eτ , whose consensus level CLτ =
min
k

CLk (k = 1, 2, ..., m), needs to change his/her preferences.

(2) Direction rule. The direction rule finds out the direction to change
the preferences of decision makers.

Let Lk∗ = (lk∗ij )n×n be the individual linguistic understanding of the

collective interval fuzzy preference relation Ṽ c, associated with ek. Let
Lk = (lkij)n×n be the adjusted linguistic preference relation associated with
ek. Then the direction rules are as follows:

(i) If lkij is smaller than lk∗ij , then decision maker ek should increase the
evaluation associated with the pairwise (Xi, Xj). Specifically, the adjusted
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preference value should be lkij ∈ {s
∣∣s ∈ S, s ∈ (lkij, l

k∗
ij ]}.

(ii) If lkij = lk∗ij , then the decision maker ek should not change the evalua-
tions associated with the pairwise (Xi, Xj).

(iii) If lkij is larger than lk∗ij , then the decision maker ek should decrease the
evaluation associated with the pairwise (Xi, Xj). Specifically, the adjusted

preference value should be lkij ∈ {s
∣∣s ∈ S, s ∈ [lk∗ij , l

k
ij)}.

The following Algorithm 1 provides a formal description of the consensus
reaching process.

Algorithm 1

Input: The individual linguistic preference relation based on S, Lk =
(lkij)n×n (k = 1, 2, ..., m), the weighting vectors λ={λ1, λ2, ..., λm} and W =

{w1, w2, ..., wn}, the established consensus threshold CL, and the established
maximum number of iterations hmax.

Output: Adjusted linguistic preference relation Lk = (lkij)n×n (k = 1, 2, ..., m).

Step 1: Let h = 0 and Lk
h = (lkij,h)n×n = (lkij)n×n (k = 1, 2, ..., m)

Step 2: The consistency-driven optimization-based model presented in
Section 3.2 is used to set the individual interval numerical scales INSk.

Step 3: Using INSk to quantify Lk
h obtains the individual interval fuzzy

preference relation Ṽ k
h . Then, using Eq. (34) obtains the collective interval

fuzzy preference relation Ṽ c
h . Next, using Eqs. (35) and (36) obtains the

collective preference vector Zc = (zc1, z
c
2, ..., z

c
n)

T and the individual preference
vector Zk = (zk1 , z

k
2 , ..., z

k
n)

T . Finally, based on Definition 12, the consensus
level CLh is calculated. If CLh > CL or h > hmax, then go to Step 6;
otherwise, continue with the next step.

Step 4: Using Eq. (39) obtains the individual linguistic understanding

of the collective interval fuzzy preference relation Ṽ c
h , associated with ek,

Lk∗
h = (lk∗ij,h)n×n (k = 1, 2, ..., m).
Step 5: Based on the identification rule, the decision maker eτ , who has

the lowest consensus level, needs to change his/her preferences. Then, accord-
ing to the direction rule, the adjusted suggestions associated with decision
maker eτ and the pairwise (Xi, Xj) are obtained, i.e.,

lτij,h+1 ∈





{s
∣∣s ∈ S, s ∈ (lτij,h, l

τ∗
ij,h]} if lτij,h ≺ lτ∗ij,h

lτij,h if lτij,h = lτ∗ij,h
{s

∣∣s ∈ S, s ∈ [lτ∗ij,h, l
τ
ij,h)} if lτij,h ≻ lτ∗ij,h

(41)

Based on Eq. (41), construct the new individual linguistic preference
relation Lτ

h+1 = (lτij,h+1)n×n. Let h = h + 1. Then, go to Step 2.
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Step 6: Let Lk = Lk
h. Output the adjusted linguistic preference relation

Lk = (lkij)n×n (k = 1, 2, ..., m).
Next, we provide Example 7 to illustrate the selection process and the

consensus reaching process.
Example 7. Once finished the individual semantics translation process in
Example 4, we keep solving the problem (Example 3) to apply the selection
process and the consensus reaching process to it.

(1) Selection process

Without loss of generality, let the weighting vectors λ = W = {1
5
, 1
5
, 1
5
, 1
5
, 1
5
}.

Using Eq. (34) obtains the collective interval fuzzy preference relation,

Ṽ c = (ṽcij)5×5, i.e.,

ṽcij = [vc−ij , v
c+
ij ] = [(1/5)

5∑

k=1

vk−ij , (1/5)
5∑

k=1

vk+ij ].

Matrix Ṽ c is listed as follows,

Ṽ c =




[0.5, 0.5] [0.575, 0.6] [0.25, 0.425] [0.1, 0.349] [0.1, 0.349]
[0.4, 0.425] [0.5, 0.5] [0.275, 0.375] [0.2, 0.3] [0.2, 0.35]
[0.575, 0.75] [0.625, 0.725] [0.5, 0.5] [0.45, 0.475] [0.349, 0.4]
[0.651, 0.9] [0.7, 0.8] [0.525, 0.55] [0.5, 0.5] [0.375, 0.475]
[0.651, 0.9] [0.65, 0.85] [0.6, 0.651] [0.525, 0.625] [0.5, 0.5]




.

Then using Eq. (35) yields zci = [(1/5)
5∑

j=1

vc−ij , (1/5)
5∑

j=1

vc+ij ]. The values

of zci (i = 1, 2, ..., 5) are listed below,
zc1 = [0.305, 0.445], zc2 = [0.315, 0.39], zc3 = [0.5, 0.57], zc4 = [0.55, 0.645], and
zc5 = [0.585, 0.705].

The larger the value of zci , the better the alternative. Based on the
comparison operations of interval numbers [43], the collective ranking of al-
ternatives is X5 ≻ X4 ≻ X3 ≻ X1 ≻ X2.

Similarly, we can get the individual rankings of alternatives, they are as
follows,

e1 : X4 ≻ X5 ≻ X1 ≻ X2 ≻ X3

e2 : X5 ≻ X4 ∼ X3 ≻ X2 ≻ X1

e3 : X3 ≻ X5 ≻ X4 ≻ X1 ≻ X2

e4 : X5 ≻ X4 ≻ X3 ≻ X2 ≻ X1
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e5 : X5 ≻ X4 ∼ X3 ≻ X2 ≻ X1

(2) Consensus reaching process

According to Eq. (37), CL1 = 0.52, CL2 = 0.76, CL3 = 0.68, CL4 =
0.84, and CL5 = 0.76. Then, based on Eq. (38), the consensus level of all
decision makers is CL = 0.712.

The consensus rules are then applied to help decision makers reach a high
consensus. The consensus rules are carried out in the following two steps:

(i) Identification rule
From the position ranking of each decision maker ek according to CLk,

it is found that the position of the decision maker e1 in the ranking is the
lowest. Clearly, the decision maker e1 needs to change his/her preferences.

(ii) Direction rule
Firstly, the individual linguistic understanding of collective interval fuzzy

preference relation Ṽ c, associated with the decision maker e1, L
1∗, is obtained:

L1∗ =




null (s2, 0.01) (s1, 0.08) (s1,−0.352) (s1,−0.352)
null null (s1, 0.08) (s1,−0.25) (s1,−0.15)
null null null (s1,−0.2) (s1, 0.357)
null null null null (s2,−0.44)
null null null null null




.

Then, let the decision maker e1 change his/her preference values according
to the direction rule, the new preference relation L1 is obtained as follows:

L1 =




null s2 s1 s0 s1
null null s1 s0 s1)
null null null s1 s1
null null null null s3
null null null null null




.

Applying the selection process again,the individual ranking of alternatives
is obtained, associated with decision maker e1, that isX4 ≻ X5 ≻ X3 ≻ X1 ∼
X2, and the collective ranking of alternatives, X5 ≻ X4 ≻ X3 ≻ X2 ≻ X1.
Then, applying the consensus reaching process again, the consensus level of
all decision makers is obtained: CL = 0.824.

6. Conclusions

In this paper it has been introduced a Personalized Individual Semantics
(PIS) approach to model and solve linguistic GDM problems with prefer-
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ence relations to improve the management of different meanings of words for
different people.

First a consistency-driven optimization-based model to personalize and
represent the individual semantics based on the interval numerical scale is
introduced. Second a new CW framework based on the 2-tuple linguistic
model for dealing with personalized individual semantics is developed and
eventually both are applied to linguistic GDM problem with a consensus
reaching process.

In the future, we plan to work on the potential use of PIS for large scale
decision making [24, 25, 26, 35, 37, 44] to handle large groups with different
PIS according to their preferences.
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Appendix

The proof of Proposition 1

In model P , constraints (23)and (24)guarantee that F 2k ∈ N˜V k , con-

straint (25) guarantees that CL(F 1k) = 1, constraints (26) and (27) guar-
antee thatF 1k ∈ N˜V k , constraint (28) guarantees that ai ∈ INSk(si), and

constraints(29) and (30) guarantee that INSk is ordered.
This completes the proof of Proposition 1.

The proof of Proposition 2

The properties of the PTLOWA operator (1)-(4) are proved as follows,

(1) Let q1 = min
α∈{1,...,m}

m∑
k=1

wkINSk(rα), q2 = max
α∈{1,...,m}

m∑
k=1

wkINSk(rα),

and q =
m∑
k=1

wkINSk(rk).

Since INS is ordered, it is clear that q1 ≤ q ≤ q2. So, we can get
INSk−(q1) ≤ INSk−(q) ≤ INSk−(q2) for k = 1, 2, ..., m, and
(INS1−(q1), INS2−(q1), ..., INSm−(q1))

T ≤ PTLOWAW (r1, r2, ..., rm) ≤
(INS1−(q2), INS2−(q2), ..., INSm−(q2))

T , which completes the proof of prop-
erty (1).

(2) Since rk ∼ rt for k = 1, 2, ..., m, it follows that INSk(rk) = INSt(rt),
and zt = w1 × INS1(r1) + w2 × INS2(r2) + ... + wm × INSm(rm) = w1 ×
INSσ(1)(rσ(1)) + w2 × INSσ(2)(rσ(2)) +... + wm × INSm(rσ(m)) = INSt(rt).
So, PTLOWAW (r1, r2, ..., rm) = (INS1−(zt), INS2−(zt), ..., INSm−(zt))

T =
(r1, r2, ..., rm)

T , which completes the proof of property (2).

(3) Let PTLOWAW (r1, r2, ..., rm) = (INS1−(z), INS2−(z), ..., INSm−(z))T ,
where z = w1×INSσ(1)(rσ(1))+w2×INSσ(2)(rσ(2))+...+wm×INSσ(m)(rσ(m)).
Let PTLOWAW (r′1, r

′
2, ..., r

′
m) = (INS1−(z′), INS2−(z′), ..., INSm−(z′))T ,

where z′ = w1×INSσ(1)(r′σ(1))+w2×INSσ(2)(r′σ(2))+...+wm×INSσ(m)(r′σ(m)).

Because (r′1, r
′
2, ..., r

′
m) is any permutation of (r1, r2, ..., rm), so we have

PTLOWAW (r′1, r
′
2, ..., r

′
m) = PTLOWAW (r1, r2, ..., rm), which completes the

proof of property (3).

(4) Let PTLOWAW (r1, r2, ..., rm) = (INS1−(z), INS2−(z), ..., INSm−(z))T ,
where z = w1×INSσ(1)(rσ(1))+w2×INSσ(2)(rσ(2))+ ...+wm×INSm(rσ(m)).

Let PTLOWAW (r′1, r
′
2, ..., r

′
m) = (INS1−(z′), INS2−(z′), ..., INSm−(z′))T ,

where z′ = w1 × INS1(r′σ(1)) + w2 × INS2(r′σ(2)) + ...+ wm × INSm(r′σ(m)).
Since rk ≻ r′k and INS is ordered, it follows that rσ(k) ≻ r′σ(k) and z > z′,
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then we can get
PTLOWAW (r1, r2, ..., rm) = (INS1−(z), INS2−(z), ..., INSm−(z))T >

PTLOWAW (r′1, r
′
2, ..., r

′
m) = (INS1−(z′), INS2−(z′), ..., INSm−(z′))T .

This completes the proof of Proposition 2.
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