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Abstract
A numerical semigroup is parity (P-semigroup) if the sum of two consecutive elements of
S is odd. In this paper we will order the P-semigroups creating a tree with root. This
ordering allows us to give some algorithms to build all the P-semigroups with a fixed
genus and Frobenius number. Also, we will study the maximal P-semigroups with a given
Frobenius number as well as the P-semigroups with maximum embedding dimension.
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1. Introduction
We denote by Z and N the set of integers numbers and the nonnegative integers numbers,

respectively. A numerical semigroup is a subset S of N which is closed by sum, 0 ∈ S and
N\S is finite.

If S is a numerical semigroup, then m(S) = min(S\{0}), F(S) = max(Z\S) and g(S) =
♯(N \ S), where ♯(A) denote the cardinality of a set A, they are three important invariants
of S which we will call multiplicity, Frobenius number and genus of S, respectively.

If S is a numerical semigroup and x ∈ S, we denote by nextS(x) = min{s ∈ S | x < s}
and prevS(x) = max{s ∈ S | s < x}. A numerical semigroup is parity (P-semigroup) if
x + nextS(x) is odd for every x ∈ S. We say that a sequence is a parity sequence if the
sum of two consecutive elements is odd.

Our main goal in this paper is to begin the study of the parity numerical semigroups.
These semigroups are a distinguished class within the so-called perfect numerical semi-
groups introduced in [2]. Indeed, a numerical semigroup is perfect if {x − 1, x + 1} ⊆ S
implies x ∈ S. It is clear then that every parity numerical semigroup is a perfect numerical
semigroup.

In Section 2, we will order the elements of Pm = {S | S is a P-semigroup and m(S) =
m} making a tree with root. We will characterize the children of a vertex and this will
allow us to build recursively the elements of Pm. These results will be used in Section 3
in order to show some algorithms which enable us to compute all the P-semigroups with
fixed genus and fixed Frobenius number.
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In Section 4, we are interested in studying the P-semigroups which are maximal in the
set of all semigroups with fixed Frobenius number. In particular, we will give a construction
that permits to add elements to a P-semigroup with Frobenius number F until it turns
into a maximal P-semigroup with Frobenius number F.

Finally, in Section 5 we will study the P-semigroups with maximun embedding dimen-
sion. In particular, we will show a construction that allows us to compute from a P-
semigroup and one of its odd elements, another a P-semigroup with maximun embedding
dimension.

2. The tree of the P-semigroups
Let S be a P-semigroup with multiplicity m. Then 0 + nextS(0) = 0 + m is odd.

Therefore the multiplicity of a P-semigroup is always an odd number. In addition, if m
is an odd, nonnegative integer then the set {0, m, →} (the symbol → means that every
integer greater than m belongs to the set), is a P-semigroup. Therefore we have the
following result.

Lemma 2.1. Pm ̸= ∅ if and only if m is an odd positive integer.

It is clear that if m is an odd positive integer greater than or equal to 3 and k ∈ N\ {0}
then ∆(k) = {0, m, 2m, . . . , km, →} ∈ Pm. Hence, if Pm ̸= ∅ and m ≥ 3 then Pm has
infinity cardinality.

Lemma 2.2. If S is a P-semigroup then F(S) − 1 /∈ S.

Proof. If F(S)−1 ∈ S, then nextS(F(S)−1) = F(S)+1. Therefore, F(S)−1+nextS(F(S)−
1) = 2F(S) is an even number which is against the fact that S is a P-semigroup. �

Note that if m is an odd positive integer then the set {0, m, →} is the maximun (with
respect to inclusion order) of Pm.

Lemma 2.3. Let m be an odd integer greater than or equal to 3 and S ∈ Pm such that
S ̸= {0, m, →}. Then T = S ∪ {F(S), F(S) − 1} ∈ Pm.

Proof. It is clear that T is a numerical semigroup. Since prevS(F(S)+1) = prevT (F(S)−
1) and S ∈ Pm, it follows that prevT (F(S)−1)+(F(S)−1) = prevS(F(S)+1)+(F(S)+1)−2
is odd. Since both 2F(S) ∓ 1 are odd, T ∈ Pm. �

The above lemma allows us to define recurrently the following sequence of elements of
Pm. If S ∈ Pm then:

• S0 = S,

• Sn+1 =
{

Sn ∪ {F(Sn), F(Sn) − 1} if Sn ̸= {0, m, →},
Sn otherwise.

The following result can be easily tested.

Lemma 2.4. If S ∈ Pm then there exist k ∈ N and S0, S1, . . . , Sk ∈ Pm such that S =
S0 ( S1 ( . . . ( Sk = {0, m, →}. In addition ♯(Si+1 \ Si) = 2 for every i ∈ {0, . . . , k − 1}

and k = g(S) − (m − 1)
2

.

We illustrate the above result with an example.

Example 2.5. It is clear that S = {0, 7, 10, 13, 14, 15, 16, 17, 20, →} ∈ P7. Then we have
the following sequence of elements of P7:

S0 = {0, 7, 10, 13, 14, 15, 16, 17, 20, →} ( S1 = {0, 7, 10, 13, →} (
S2 = {0, 7, 10, →} ( S3 = {0, 7, →}.

Remark that as an immediate consequence of Lemma 2.4 we have the following result.
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Lemma 2.6. If S is a P-semigroup then g(S) is even. Moreover, for any x, y ∈ S with
x < y if S ∩ [x + 1, y − 1] = ∅ then ♯{x + 1, . . . , y − 1} is even.

A graph G is a pair (V, E) where V is a not empty set and E is a subset of {(u, v) ∈
V × V | u ̸= v}. The elements of V and E are called vertices and edges respectively.

A path (of length n) connecting the vertices x and y of G is a sequence of different edges
of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

A graph G is a tree if there exists a vertex r (known as the root of G) such that for any
other vertex x of G there exists a unique path connecting x and r. If there exists a path
connecting the vertices x and y, then we will call that x is a descendant of y. In particular,
if (x, y) is an edge of the tree, we say that x is a child of y.

We define the graph G(Pm) as follows: Pm is its set of vertices and (S, T ) ∈ Pm × Pm

is an edge if T = S ∪ {F(S), F(S) − 1}.
The following result is a consequence of Lemma 2.4.

Proposition 2.7. If m is an odd positive integer, then G(Pm) is a tree whose root is the
P-semigroup {0, m, →}.

If A is a not empty subset of N, we denote by ⟨A⟩ the submonoid of (N, +) generated
by A, that is ⟨A⟩ = {λ1a1 + · · · + λnan | n ∈ N, a1, . . . , an ∈ A and λ1, . . . , λn ∈ N}. It is
well known that ⟨A⟩ is a numerical semigroup if and only if gcd(A) = 1 (see for instance
[4, Lemma 2.1]).

If S is a numerical semigroup and S = ⟨A⟩, then we say that A is a system of generators
of S. Moreover, if S ̸= ⟨B⟩ for every B ( A then we say that A is a minimal system of
generators of S. In [4, Corollary 2.8], it is shown that every numerical semigroup has a
unique minimal system of generators and this system is finite. We denote by msg(S) the
minimal system of generators of S; its cardinality is called the embedding dimension of S
and it is denoted by e(S). Also it is well known (see [4, Exercise 2.1]), the following result.

Lemma 2.8. Let S be a numerical semigroup and x ∈ S. Then S \ {x} is a numerical
semigroup if and only if x ∈ msg(S).

A tree can be built recurrently starting from its root and adding to each vertex already
built, its children. In the following result we are going to see who are the children of a
vertex of G(Pm).

Proposition 2.9. Let m be an odd integer greater than or equal to 3 and T ∈ Pm. Then
S is a child of T in the tree G(Pm) if and only if S = T \ {x, x + 1} and {x, x + 1} ⊆ {a ∈
msg(T ) | a > F(T ) and a ̸= m}.

Proof. Necessity. T = S ∪ {F(S) − 1, F(S)}, then it is clear that {F(S) − 1, F(S)} ⊆ {a ∈
msg(T ) | a > F(T ) and m ̸= F(S) − 1}.

Sufficiency. It is clear, using Lemma 2.8, that S = T \ {x, x + 1} is a P-semigroup with
multiplicity m and Frobenius number x + 1. Hence, T = S ∪ {F(S), F(S) − 1} and whence
S is child of T . �

Now, we illustrate the before results with an example.
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Example 2.10. We are going to build the tree G(P5) :
⟨5, 6, 7, 8, 9⟩dd

(8,9)

II
II

II
II

I55
(6,7)

jjjj
jjjj

jjjj
jjj OO

(7,8)

⟨5, 8, 9, 11, 12⟩ee
(11,12)

KK
KK

KK
KK

K33
(8,9)

hhhhh
hhhhh

hhhhh
hhhh

⟨5, 6, 9, 13⟩ ⟨5, 6, 7⟩

⟨5, 11, 12, 13, 14⟩gg
(13,14)

NNN
NNN

NNN
NNOO

(12,13)

77
(11,12)

ppp
ppp

ppp
pp

⟨5, 8, 9⟩

⟨5, 13, 14, 16, 17⟩ ⟨5, 11, 14, 17, 18⟩ ⟨5, 11, 12, 18, 19⟩OO O O OO

The pair that appears on the edge indicates the minimal generators that we eliminate
from T. Therefore, if on the edge (S, T ) appears the pair (x, x+1) then S = T \{x, x+1}.
Note that in this case F(S) = x + 1.

3. The P-semigroups with fixed Frobenius number and fixed genus
If G = (V, E) is a tree and x is a vertex of G, then the depth of x, that we will denote

by d(x), is the length of a unique path that connects x with the root. If k ∈ N we denote
by N(G, k) = {x ∈ V | d(x) = k}. The height of G, that we will denote by h(G), is the
maximun of the set {k ∈ N | N(G, k) ̸= ∅}.

Using Lemma 2.4, it is easy to prove the following result.

Lemma 3.1. Let m be an odd integer greater than or equal to 3 and S ∈ Pm. Then
S ∈ N(G(Pm), k) if and only if g(S) = m − 1 + 2k.

We are now in a position to give an algorithm that calculates us all the P-semigroups
with fixed multiplicity and fixed genus. Note that if S is a numerical semigroup then
g(S) ≥ m(S) − 1. Remember also that by Lemma 2.6 we know that if S is a P-semigroup
then g(S) is even.

Algorithm 1 Sketch of the algorithm to compute the set of P-semigroups with a fixed
multiplicity and genus.

INPUT: m odd positive integer with m ≥ 3 and g even positive integer such that
g ≥ m − 1.

OUTPUT: {S ∈ Pm | g(S) = g}.
1: Set i = m − 1 and A = {⟨m, m + 1, . . . , 2m − 1⟩}
2: while True do
3: if i=g then
4: return A
5: for S ∈ A do
6: BS = {{x, x + 1} ⊆ msg(S) | x > F (S) and x ̸= m}
7: A =

∪
S∈A

{S \ {x, x + 1} | {x, x + 1} ∈ BS}, i = i + 2.

Now we will illustrate how the previous algorithm works with an example.
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Example 3.2. We are going to compute all the P-semigroups with multiplicity 5 and
genus 8. For this we will use the Algorithm 1:

• A = {⟨5, 6, 7, 8, 9⟩}, i = 4
• B⟨5,6,7,8,9⟩ = {{6, 7}, {7, 8}, {8, 9}}
• A = {⟨5, 8, 9, 11, 12⟩, ⟨5, 6, 9, 13⟩, ⟨5, 6, 7⟩}, i = 6
• B⟨5,8,9,11,12⟩ = {{8, 9}, {11, 12}}, B⟨5,6,9,13⟩ = ∅, B⟨5,6,7⟩ = ∅
• A = {⟨5, 11, 12, 13, 14⟩, ⟨5, 8, 9⟩}, i = 8
• {S ∈ P5 | g(S) = 8} = {⟨5, 11, 12, 13, 14⟩, ⟨5, 8, 9⟩}.

Given two integers a and b with b ̸= 0, we denote by a mod b the remainder of the
division of a by b. Let m and F be positive integers. Our next aim in this section will be
to show an algorithm that allows us to compute the set {S ∈ Pm | F(S) = F}.

Proposition 3.3. Let m and F be positive integers. The following conditions are equiva-
lent:

1) {S ∈ Pm | F(S) = F} ̸= ∅.
2) F ≥ m − 1 ≥ 2, m odd and F mod m /∈ {0, 1}.

Proof. 1) implies 2). Let S ∈ Pm such that F(S) = F. As Pm ̸= ∅, then we know, by
Lemma 2.1, that m is odd. As m − 1 /∈ S then F ≥ m − 1 ≥ 2. If F mod m = 0 then
F ∈ ⟨m⟩ ⊂ S, which makes no sense. If F mod m = 1 then F−1 ∈ ⟨m⟩ ⊆ S, contradicting
Lemma 2.2.
2) implies 1). If F = m − 1 then {0, m, →} ∈ {S ∈ Pm | F(S) = F} . Therefore, we will
assume that F > m, whence F = qm + r with q ∈ N \ {0} and r = F mod m. We
distinguish two cases:

(1) If r is even not zero, then {0, m, 2m, . . . , qm, qm + r + 1, →} is an element of Pm

with Frobenius number F.
(2) If r is odd different from one, then {0, m, 2m, . . . , qm, qm + 1, qm + r + 1, →} is an

element of Pm with Frobenius number F.
�

We are already able to give the announced algorithm.

Algorithm 2 Sketch of the algorithm to compute the set of all P-semigroup with a fixed
multiplicity and Frobenius number.

INPUT: Integers m and F such that m is odd, F > m ≥ 3 and F mod m /∈ {0, 1}.
OUTPUT: {S ∈ Pm | F(S) = F}.
1: B = ∅ and A = {⟨m, m + 1, . . . , 2m − 1⟩}
2: while True do
3: for S ∈ A do
4: Compute BS = {{x, x + 1} ⊆ msg(S) | x ̸= m, x > F (S) and x + 1 ≤ F}
5: B = B ∪ {S \ {x, x + 1} | S ∈ A, {x, x + 1} ∈ BS and x + 1 = F}
6: A =

∪
S∈A{S \ {x, x + 1} | {x, x + 1} ∈ BS and x + 1 < F}

7: if A = ∅ then
8: return B

Next we illustrate this algorithm with an example.

Example 3.4. We are going to compute all the P-semigroups with multiplicity 5 and
Frobenius number 12. For this we will use the Algorithm 2:

• B = ∅ and A = {⟨5, 6, 7, 8, 9⟩}
• B⟨5,6,7,8,9⟩ = {{6, 7}, {7, 8}, {8, 9}}
• B = ∅
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• A = {⟨5, 8, 9, 11, 12⟩, ⟨5, 6, 9, 13⟩, ⟨5, 6, 7⟩}
• B⟨5,8,9,11,12⟩ = {{8, 9}, {11, 12}}, B⟨5,6,9,13⟩ = ∅, B⟨5,6,7⟩ = ∅
• B = {⟨5, 8, 9⟩}
• A = {⟨5, 11, 12, 13, 14⟩}
• B⟨5,11,12,13,14⟩ = {{11, 12}}
• B = {⟨5, 8, 9⟩, ⟨5, 13, 14, 16, 17⟩}
• A = ∅
• {S ∈ P5 | F(S) = 12} = {⟨5, 8, 9⟩, ⟨5, 13, 14, 16, 17⟩}.

Our next goal in this section will be to show explicitly the minimal elements (with
respect to inclusion order) of the set {S ∈ Pm | F(S) = F}. We will distinguish two cases
depending on whether F mod m is odd or even.

Proposition 3.5. Let m and F be integers such that F > m ≥ 3, m odd and F mod m
an even number not zero. Then ⟨m⟩ ∪ {F + 1, →} = min{S ∈ Pm | F(S) = F}.

Proof. From the proof of the Proposition 3.3 we know that ⟨m⟩∪{F+1, →} ∈ {S ∈ Pm |
F(S) = F}. The proof is finished by the fact that if S ∈ Pm and F(S) = F then clearly
⟨m⟩ ∪ {F + 1, →} ⊆ S. �

Next, we are going to study the case where F mod m is an odd integer different from 1.
Note that if m = 3 and F mod m is odd then F mod m = 1. This justifies the fact that
in the following proposition, we suppose m ≥ 5.

Proposition 3.6. Let m ≥ 5 be an odd integer and F = qm + 2k + 1 where q ∈ Z+ and
1 ≤ k ≤ m−3

2 . Then for every 0 ≤ i ≤ k − 1,

S(i) = ⟨m⟩ ∪ {qm + 2i + 1, F + 1, →}

is a minimal element of {S ∈ Pm | F(S) = F}.

Proof. It is clear that S(i) = {0, m, 2m, . . . , qm, qm + 2i + 1, qm + 2k + 2, →}. Then we
easily deduce that S(i) ∈ {S ∈ Pm | F(S) = F} for every 0 ≤ i ≤ k − 1.

If S ∈ Pm and F(S) = F, then {0, m, . . . , qm, F + 1, →} ⊆ S. As qm + F + 1 =
qm + qm + 2k + 2 is even and S is a P-semigroup, then there exists s ∈ S such that
qm < s < F + 1 and qm + s is odd. So, we can easily deduce that s = qm + 2i + 1 for
some i ∈ {0, . . . , k − 1}. Hence S(i) ⊆ S.

Therefore we conclude

{S(i) | i ∈ {0, . . . , k − 1}} = minimals⊆{S ∈ Pm | F(S) = F}.

�

Note that in the conditions of Proposition 3.6, if m = 5 then k = 1 and i = 0. Hence
S(0) = ⟨m⟩ ∪ {qm + 1, F + 1, →} = min{S ∈ Pm | F(S) = F}. If m ≥ 7 and F = qm + 3
then ⟨m⟩ ∪ {qm + 1, qm + 4, →} = min{S ∈ Pm | F(S) = qm + 3}. If m ≥ 7 and F mod m
is an odd integer greater than or equal to 5 then {S ∈ Pm | F (S) = F} has not minimum
and it has at least two minimal elements.

Example 3.7. We have that
• By Proposition 3.5, we know that S = ⟨7⟩ ∪ {19, →} = {0, 7, 14, 19, →} is the

minimun of the set {S ∈ P7 | F(S) = 18}.
• For the previous comment to this example, we know that S = ⟨7⟩ ∪ {15, 18, →} =

{0, 7, 14, 15, 18, →} = min{S ∈ P7 | F(S) = 17}.
• By Proposition 3.6, we know that S(0) = ⟨7⟩ ∪ {15, 20, →} = {0, 7, 14, 15, 20, →}

and S(1) = ⟨7⟩ ∪ {17, 20, →} = {0, 7, 14, 17, 20, →} are the minimal elements of
{S ∈ P7 | F(S) = 19}.
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4. The maximal P-semigroups with fixed Frobenius number
In this section we are interested in studying the P-semigroups that are maximal in the

set of all P-semigroups which have a fixed Frobenius number.

Lemma 4.1 ([5, Lemma 10]). Let S and T be two numerical semigroups such that S ( T .
Then S ∪ {max(T \ S)} is also a numerical semigroup.

Remark that the previous lemma is not true if we replace numerical semigroup by
P-semigroup. It is enough to note that by Lemma 2.6 all the P-semigroups have even
genus.

Proposition 4.2. Let S and T be two P-semigroups with S ( T . If x = max(T \ S) then
prevT (x) /∈ S.

Proof. First of all notice that prevT (x) + nextT (x) is an even number. Then let y =
max{s ∈ S | s < x} which is clearly exists. Assume that y = prevT (x). Since nextS(y) =
nextT (x), it follows that y +nextS(y) = y +nextT (x) = prevT (x)+nextT (x) is even which
is a contradiction. Thus y ̸= prevT (x) and so prevT (x) /∈ S. �

As an immediate consequence of the above proposition, we have the following result.

Corollary 4.3. Let S and T be two P-semigroups such that S ( T , x = max(T \ S) and
y = max(T \ (S ∪ {x})). Then S ∪ {x, y} is a P-semigroup.

Now we illustrate the previous results with an example.

Example 4.4. (1) It is clear that S = ⟨5, 11, 14, 17, 18⟩ and T = ⟨5, 8, 9, 11, 12⟩ are
two P-semigroups and S ( T . Moreover 13 = max(T \ S) and 12 = max(T \ (S ∪
{13})). Then by Corollary 4.3, we have that S ∪ {12, 13} = ⟨5, 11, 12, 13, 14⟩ is a
P-semigroup.

(2) It is clear that S = {0, 11, 22, 33, →} and T = {0, 11, 22, 23, 24, 25, 32, →} are P-
semigroups and S ( T . Furthermore, 32 = max(T \ S) and 25 = max(T \ (S ∪
{32})). Applying Corollary 4.3, we have that S ∪ {32, 25} is a P-semigroup.

Let S be a numerical semigroup. An element a ∈ S is called refinable if there exists
{x, y} ⊆ {b ∈ N | a < b < nextS(a)} such that F(S) > x > y, S∪{x, y} is a numerical semi-
group and a, y, x, nextS(a) is a parity sequence. Denote by R(S) = {a ∈ S | a is refinable}.

Corollary 4.5. Let S be a P-semigroup with Frobenius number F. Then the following
conditions are equivalent:

1) S is a maximal element in the set {T | T is P-semigroup and F(T ) = F}.
2) R(S) = ∅.

Proof. 1) implies 2). If R(S) ̸= ∅ then there exists a ∈ R(S). Let {x, y} ⊆ {b ∈
N | a < b < nextS(a)} such that F(S) > x > y, S ∪ {x, y} is a numerical semi-
group and a, y, x, nextS(a) is a parity sequence. Then it is clear that S ∪ {x, y} ∈ {T |
T is P-semigroup and F(T ) = F} and S ( S ∪ {x, y} contradicting the maximality of S.
2) implies 1). We suppose now that S is not maximal. Therefore there exists a P-
semigroup T such that F(T ) = F and S ( T. Arguing as in the proof of the Proposition
4.2, we deduce that R(S) ̸= ∅. �
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5. P-semigroups with maximal embedding dimension
It is well known (see for instance Proposition 2.10 of [4]) that if S is a numerical semi-

group then e(S) ≤ m(S). A numerical semigroup S has maximal embedding dimension
(MED-semigroup) if e(S) = m(S). The following result is a consequence of Proposition
I.2.9 from [1].

Lemma 5.1. Let S be a numerical semigroup. Then S is a MED-semigroup if and only
if S′ = {s − m(S) | s ∈ S \ {0}} is a numerical semigroup.

The following result relates S and S′ in the case where S is also a P-semigroup.

Proposition 5.2. Let S be a MED-semigroup. Then S is a P-semigroup if and only if
S′ = {s − m(S) | s ∈ S \ {0}} is a P-semigroup and m(S) is odd.

Proof. Necessity. By Lemma 2.1, we know that if S is a P-semigroup, then m(S) is odd.
From Lemma 5.1 we know that S′ is a numerical semigroup. Now we see that S′ is a
P-semigroup. It is clear that if S = {s0 = 0, s1, s2, . . . } then S′ = {0, s2 − s1, s3 − s1, . . . }.
As s1 + s2 is odd, then 0 + s2 − s1 is also odd. If i ∈ N \ {0, 1}, then si − s1 + si+1 − s1 =
si + si+1 − 2s1 is odd. Hence S′ is a P-semigroup.

Sufficiency. It is clear that if S = {s0 = 0, s1, s2, . . . } then S′ = {0, s2 −s1, s3 −s1, . . . }.
As s1 = m(S), then s0 + s1 is odd. Applying that S′ is a P-semigroup we have that
0 + s2 − s1 is odd and so, s1 + s2 is odd. If i ∈ N \ {0, 1} then si + si+1 is odd because
si − s1 + si+1 − s1 is odd. Therefore S is a P-semigroup. �

The following result is a consequence of Lemma 5.1.

Lemma 5.3. Let S be a numerical semigroup and x ∈ S\{0}. Then S(x) = ({x} + S)∪{0}
is a MED-semigroup with multiplicity x. Moreover, every MED-semigroup has this form.

A PMED-semigroup is a MED-semigroup that in addition is a P-semigroup.

Proposition 5.4. Let S be a P-semigroup and x ∈ S such that x is odd. Then S(x) =
({x} + S) ∪ {0} is a PMED-semigroup. Moreover, every PMED-semigroup has this form.

Proof. By Lemma 5.3, we know that S(x) is a MED-semigroup. It is clear that S =
{s − m(S(x)) | s ∈ S(x) \ {0}}. Therefore, applying Proposition 5.2, we have that S(x) is
a P-semigroup. Thus, S(x) is a PMED-semigroup.

Let T be a PMED-semigroup. Then, using Proposition 5.2, we deduce that S = {t −
m(T ) | t ∈ T \ {0}} is a P-semigroup and m(T ) is odd. Thus T = ({m(T )} + S) ∪ {0}
with m(T ) ∈ S and m(T ) odd. �

The following result can be deduced from [3, Proposition 9].

Proposition 5.5. Let S be a P-semigroup, x ∈ S \ {0, 1} and S(x) = ({x} + S) ∪ {0}.
Then F(S(x)) = F(S) + x and g(S(x)) = g(S) + x − 1.

Next we illustrate the previous results with an example.

Example 5.6. Let S = ⟨5, 8, 9⟩ = {0, 5, 8, 9, 10, 13, →}. It is clear that S is a P-semigroup,
F(S) = 12 and g(S) = 8. As 9 ∈ S and 9 is odd, then applying Proposition 5.4 and
Proposition 5.5, we have that S(9) = ({9} + S) ∪ {0} = {0, 9, 14, 17, 18, 19, 22, →} is a
PMED-semigroup with Frobenius number 12 + 9 = 21 and genus 8 + 9 − 1 = 16.
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