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Abstract. Doppler lidars provide two measured parame-
ters, radial velocity and signal-to-noise ratio, from which
winds and turbulent properties are routinely derived. Atten-
uated backscatter, which gives quantitative information on
aerosols, clouds, and precipitation in the atmosphere, can
be used in conjunction with the winds and turbulent prop-
erties to create a sophisticated classification of the state
of the atmospheric boundary layer. Calculating attenuated
backscatter from the signal-to-noise ratio requires accurate
knowledge of the telescope focus function, which is usu-
ally unavailable. Inaccurate assumptions of the telescope fo-
cus function can significantly deform attenuated backscatter
profiles, even if the instrument is focused at infinity. Here,
we present a methodology for deriving the telescope focus
function using a co-located ceilometer for pulsed heterodyne
Doppler lidars. The method was tested with Halo Photonics
StreamLine and StreamLine XR Doppler lidars but should
also be applicable to other pulsed heterodyne Doppler lidar
systems. The method derives two parameters of the telescope
focus function, the effective beam diameter and the effec-
tive focal length of the telescope. Additionally, the method
provides uncertainty estimates for the retrieved attenuated
backscatter profile arising from uncertainties in deriving the
telescope function, together with standard measurement un-
certainties from the signal-to-noise ratio. The method is best
suited for locations where the absolute difference in aerosol
extinction at the ceilometer and Doppler lidar wavelengths is
small.

1 Introduction

Coherent Doppler lidar systems are capable of providing ac-
curate radial Doppler velocities at high temporal and spatial
resolution and have been employed across a wide range of
scientific and operational fields. Meteorological applications
include the retrieval of turbulent properties to determine the
strength, location, and source of mixing in the atmospheric
boundary layer and, with many systems having scanning ca-
pability, the retrieval of winds. Information on the targets
responsible for the radial Doppler velocities measured by
the Doppler lidar (e.g. aerosol, cloud, precipitation) would
greatly aid the interpretation of both the velocities and the
products derived from them, but this requires quantitative use
of the signal power received by the instrument.

The performance of a Doppler lidar depends on the signal-
to-noise ratio, SNR, of the system, as SNR determines the
radial velocity uncertainty (Rye and Hardesty, 1993; Pear-
son et al., 2009). The outgoing laser beam can be focused to
improve the SNR at ranges close to the focal length (Pearson
et al., 2002), and this is often used to improve the Doppler li-
dar velocity data quality and data availability, particularly in
the atmospheric boundary layer. The optimal choice of focus
will depend on the atmospheric conditions at the deployment
location (Hirsikko et al., 2014).

Knowledge of how the choice of instrument parameters,
such as the effective focal length of the telescope, impacts
the SNR profile is necessary in order to obtain profiles of the
attenuated backscatter coefficient (Zhao et al., 1990). A com-
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prehensive overview of the theoretical considerations in de-
termining the performance of coherent Doppler lidar systems
was given by Frehlich and Kavaya (1991), who provided ana-
lytical expressions for deriving the expected signal measured
by the coherent detector for a given target for a range of in-
strument configurations, including analytical expressions for
the telescope focus function (also termed coherent respon-
sivity). Most analytical expressions assume ideal Gaussian
beams, which may not always be appropriate (Hill, 2018);
hence experimental approaches have also been used to deter-
mine the impact of beam aberrations (Hu et al., 2013).

The profile of the attenuated backscatter coefficient has
the potential to be used in real time by weather forecast-
ers (Illingworth et al., 2019), as it can be used in the same
manner as for ceilometers. This includes the detection of liq-
uid, supercooled-liquid, mixed-phase, and ice clouds (Hogan
et al., 2003; Van Tricht et al., 2014; Tonttila et al., 2015),
aerosol layer and mixing-height determination (Flentje et al.,
2010; Kotthaus and Grimmond, 2018), and the retrieval of
precipitation parameters (Lolli et al., 2018).

In addition to providing velocity estimates for wind and
turbulence, the inclusion of the profile of the attenuated
backscatter coefficient is advantageous for Doppler lidar
boundary layer classification schemes (Tucker et al., 2009;
Harvey et al., 2013; Manninen et al., 2018) by enhancing
the discrimination between aerosol, cloud, and precipitation,
and it can be used for tracking elevated aerosol plumes (Han-
non et al., 1999). The combination of attenuated backscatter
profiles from coherent Doppler lidars with other profiling in-
struments permits additional retrievals; for example, together
with a ceilometer (Westbrook et al., 2010b), or with a cloud
radar (Träumner et al., 2010), it can yield drizzle drop size
and precipitation rate. There is also an advantage to obtaining
attenuated backscatter and Doppler velocity measurements
in the same measurement volume, since this will simplify
the calculation of cloud or aerosol mass fluxes (Engelmann
et al., 2008).

Therefore, an accurate profile of the attenuated backscat-
ter coefficient requires confidence in the parameters used to
generate the telescope focus function. The parameters may
not be known a priori or may differ from what is assumed,
and incorrect values can result in artefacts and very large bi-
ases in the attenuated backscatter coefficient. We present a
methodology for deriving the parameters of the telescope fo-
cus function experimentally from co-located Doppler lidar
and ceilometer observations, together with the uncertainties
in the function parameters. The ceilometer, for which the
overlap function is known, provides our reference attenu-
ated backscatter profiles. This methodology is relevant for
coherent Doppler lidars designed for meteorological appli-
cations with maximum ranges suitable for observing the full
extent of the boundary layer and beyond. Note that a calibra-
tion constant may still need to be determined and applied af-
ter implementing the calculated telescope focus function to

retrieve the profile of the attenuated backscatter coefficient
(Westbrook et al., 2010a; Chouza et al., 2015).

The theoretical description of the telescope focus func-
tion is outlined in Sect. 2. In Sect. 3, we introduce the in-
struments and the methodology for deriving the parameters
of the telescope focus function experimentally. An iterative
least-squares regression using weighted mean square error
(MSE) is used to find the best solution for the telescope fo-
cus function, where the weights represent the measurement
uncertainties in both instruments. The use of long time pe-
riods (1 year or more) also provides an estimate of the un-
certainties in the parameters for the telescope focus function,
which can then be propagated through to uncertainties in the
retrieved attenuated backscatter coefficients. The methodol-
ogy is applied to different instruments in multiple locations
in Sect. 4, and the validation of the method is presented in
Sect. 5.

2 Theory

2.1 Telescope focus function

Following Frehlich and Kavaya (1991), the coherent Doppler
lidar equation can be expressed as

SNR(R)=
ηcE

2hνB
Ae(R)

R2 β ′(R), (1)

where SNR is the signal-to-noise ratio, varying as a func-
tion of range, R, from the instrument; β ′ is the attenuated
backscatter coefficient; η is the detector quantum efficiency;
c is the speed of light; E is the beam energy; h is Planck’s
constant; ν is the optical frequency; B is the receiver band-
width; and Ae is the effective receiver area.

For a monostatic system emitting a circular Gaussian
beam, using a circular aperture, and having matched filters,
the effective receiver area is given by Frehlich and Kavaya
(1991) and Henderson et al. (2005):

Ae(R)=
πD2

4
(

1+
(
πD2
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)2(
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whereD is the 1/e2 effective diameter of a Gaussian beam, λ
is the laser wavelength, f is the effective focal length of the
telescope for the transmitter and receiver, and ρ0 is a turbu-
lent parameter, also termed transverse field coherence length.

Collecting the range-dependent terms, we obtain a unitless
telescope focus function:

Tf(R)=
Ae(R)

R2 , (3)

which is also termed the coherent responsivity (Frehlich and
Kavaya, 1991).
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The profile of the attenuated backscatter coefficient is then
obtained by rearranging Eq. (1):

β ′(R)=
2hνB
ηcE

SNR(R)
Tf(R)

. (4)

Figure 1a shows how Tf(R) depends on the telescope fo-
cal length, f , and Fig. 1b how Tf(R) depends on D. Both
figures show that the apparent focus – i.e range to the Tf(R)

maximum – is always closer than f and that decreasing D
shortens the apparent focus. This makes estimation of the pa-
rameters by eye in Tf(R) prone to errors, since the apparent
focus cannot be translated into f without knowledge of D.

Figure 1c shows that even if the telescope is focused at in-
finity, knowledge of the D is essential to derive attenuated
backscatter coefficient profiles. While the gradient of Tf(R)

may be independent of D at the near and far ranges, the rel-
ative magnitude is not, and the potential variation is high in
the range of the profile that is commonly of most interest.

2.2 Uncertainty in the attenuated backscatter
coefficient

Assuming that the parameters Tf(R) and SNR are inde-
pendent, and have uncertainties that can be described as
Gaussian, the relative random uncertainty in the attenuated
backscatter coefficient is

σβ ′ =

√
σ 2

S + σ
2
Tf
, (5)

where σS is the relative uncertainty in the Doppler lidar SNR,
and σTf is the relative uncertainty in Tf(R). An expression
for deriving σS is given by Manninen et al. (2018), and we
describe our method for obtaining σTf in Sect. 4.2.

3 Application to data

There are three range-dependent unknowns in Eq. (2): f , D,
and ρ0. We first assume that we can neglect ρ0 and then de-
scribe a method for estimating f and D, together with their
uncertainties, which can then be propagated to obtain the un-
certainty in the attenuated backscatter coefficient. The impact
of the ρ0 parameter is discussed in Sect. 4.3.

3.1 Instruments

We used measurements taken from the U.S. Department of
Energy Atmospheric Radiation Measurement (ARM, Mather
et al., 2016) observatories. We selected five sites with co-
located ceilometer and Doppler lidar instruments: Southern
Great Plains, US (SGP); tropical west Pacific, Darwin, Aus-
tralia (Darwin); Barrow, Alaska, US (North Slope of Alaska,
NSA); Graciosa, Azores (Graciosa); and Ascension Island,
Atlantic, UK (Ascension).

The Doppler lidars operated by ARM comprise both Halo
Photonics StreamLine and StreamLine XR versions. These

Table 1. Halo Photonics StreamLine and StreamLine XR hetero-
dyne Doppler lidar specifications. Values in parentheses refer to the
specification of the Doppler lidar during the first period in Darwin.

Wavelength 1.5 µm
Pulse repetition rate 15 kHz
Nyquist velocity 19.8 m s−1

Sampling frequency 50 MHz
Points per range gate 10 (16)
Range resolution 30 m (48 m)
Pulse duration 0.2 µs
Divergence 33 µrad
Antenna monostatic fibre-optic

coupled

Table 2. Vaisala CL31 ceilometer specifications.

Wavelength 910 nm
Pulse repetition rate 5.57 kHz
Range resolution 30 m
Lens diameter 14.5 cm
Divergence 0.75 mrad

are commercially available heterodyne pulsed systems capa-
ble of full hemispheric scanning and operated at a temporal
resolution of 1–2 s (see Table 1). The focus for the Stream-
Line version can be set by the operator, whereas the Stream-
Line XR has the focus set by the manufacturer; however
ARM has had some instruments upgraded from their origi-
nal specification.

The ceilometer at all sites was a Vaisala CL31 ceilometer,
which has a coaxial design and full overlap before 100 m and
a temporal resolution of 30 s (more specifications given in
Table 2).

3.2 Methodology

3.2.1 Telescope focus function parameter estimation

The methodology for deriving the parameters of the tele-
scope focus function compares profiles from a co-located
Doppler lidar and ceilometer using an iterative least-squares
regression to find the best solution. The method follows the
process diagram given in Fig. 2.

Before input, the Doppler lidar SNR data had a back-
ground correction applied to reduce bias (Manninen et al.,
2016). Both ceilometer and Doppler lidar data were aver-
aged to a common 30 min, 30 m vertical resolution grid. If
the Doppler lidar vertical resolution was larger than 30 m (as
was the case for one period from Darwin), linear interpo-
lation was used to match resolutions. After averaging, data
below a minimum threshold of −22.2 dB (Manninen et al.,
2018) were discarded. The threshold is based on the expected
noise floor for the instruments considered here (Halo Stream-
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Figure 1. Telescope focus functions for (a) varying f with D = 70 mm, (b) varying D with f = 1000 m, and (c) varying D with f being
infinity.

Line and StreamLine XR) and should probably be modified
for different instruments.

The data were then filtered to select only those portions
of the profiles that are considered reliable for comparison.
Ceilometer data below 195 m were discarded to ensure that
only data with full overlap were used.

Due to the wavelength difference between the Doppler li-
dar and the ceilometer, it cannot be assumed that the atmo-
spheric backscattering properties are the same at both wave-
lengths. However, we are only interested in the profile shape,
not the absolute values, so profiles from the Doppler lidar
and the ceilometer can be compared as long as they contain
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Figure 2. Process diagram of the telescope focus function parame-
ter estimation.

only one type of scatterer, and one which can be assumed
to be distributed homogeneously throughout the portion of
the profile used for comparison. Hence, the portion of a pro-
file selected for comparison should contain only one aerosol
layer, no clouds, and no precipitating hydrometeors.

We removed clouds by identifying the range gate 150 m
below the cloud base detected by the ceilometer and exclud-
ing all data beyond this. Elevated aerosol layers and precip-
itating hydrometeors were filtered out by identifying layers
using a convolution of the ceilometer profile with a haar-
wavelet to detect changes in the gradient. The base of the
second layer was identified where the gradient was increas-
ing over two range gates, and all data above this were dis-
carded. This process also eliminates noisy profiles with low
SNR.

The Tf(R) parameter estimation is performed on a profile-
by-profile basis for each profile where the filtering process
leaves eight successive range gates present. From Eq. (4),
dividing the Doppler lidar SNR profile with the appropriate
Tf(R) will generate a Doppler lidar attenuated backscatter
profile whose shape should match that of the ceilometer at-
tenuated backscatter profile.

We use a brute-force approach to iterate through a range
of reasonable f and D values, generating a corresponding
Tf(R) and Doppler lidar attenuated backscatter profile for
each combination of values. The ceilometer profile and re-

sulting Doppler lidar attenuated backscatter profiles are nor-
malised so that the integral value of the unfiltered portion is
unity. We then use a least-squares regression using weighted
MSE to find the best solution (smallest MSE), where the
weights represent the measurement uncertainties in both in-
struments.

Collecting results over many profiles results in a bivariate
distribution; the peak of this distribution is chosen as the best
estimate of f and D, and hence the best estimate of Tf(R),
using Eq. (3).

3.2.2 Outlier removal

Occasionally, data of poor quality pass the filtering step in
Fig. 2. The most common issues are noisy ceilometer data
and a bias in the Doppler lidar SNR profiles. If not screened,
these occasional profiles result in significantly altered Tf(R)

estimation. Any noise in the ceilometer data is magnified by
the profile length often being relatively short, and hence large
uncertainty in even a single range gate can skew the regres-
sion. Doppler lidar SNR bias will impact the normalisation
process, changing the Tf(R) selected by the method due to
the now incorrect profile shape. Due to the non-linearity of
the Tf(R) parameter estimation process, these issues result
in regression solutions wildly inconsistent with the estimates
based on good data. These outliers, which do not fall within
the normal uncertainty observed in good data, are then re-
moved from the bivariate distribution of solutions before cal-
culating the uncertainty estimates.

We used the median absolute deviation, MAD (Huber and
Ronchetti, 2009; Leys et al., 2013), to distinguish outliers in
the bivariate distribution of estimated f andD. MAD can be
calculated using

MAD= b med{|xi −med{xi}|}, (6)

where b = 1.4826 when the distribution excluding the out-
liers is normal. However, the distribution of f and D may
not meet this criterion due to the non-linearity of Tf(R) and
the computational Tf(R) estimation process. We expect the
distributions of D and f−2 to be close to normal and will
use f−2 rather than f to determine outliers. Additionally,
the peak of the bivariate distribution may not always coincide
with the medians of the univariate D and f−2 distributions,
and, hence, we use a modified form of Eq. (6),

MAD= b med{|xi − peak{xi,yi}|}. (7)

We selected three MADs as the threshold for flagging out-
liers:√√√√(f−2

i −med{f−2
i }

MADf−2

)2

+

(
Di −med{Di}

MADD

)2

≥ 3. (8)

Assuming the distribution excluding the outliers to be nor-
mal, three MADs correspond to 3 standard deviations of the
underlying distribution. In cases where f is at infinity, all
estimates with a finite f will be flagged as outliers.
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Figure 3. Distributions of Tf(R) parameter estimates from (a) Darwin from 21 June 2011 to 22 July 2012, (b) SGP from 1 January 2015 to
2 May 2016, and (c) SGP from 3 May 2016 to 5 June 2017. Outliers filtered using MAD ≥ 3 are marked in black.
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Table 3. Best estimates of f andD together with their uncertainties for Doppler lidars at five ARM sites. Total estimates refers to the number
of ceilometer and Doppler lidar profiles suitable for comparison. Good estimates refers to the number of estimates remaining after outlier
filtering with MAD.

Location Period f D Available profiles Total estimates Good estimates

Ascension 20160906–20170930 550± 34 m 25.3± 0.5 mm 18 586 62 56
Darwin 20110621–20120722 590± 62 m 24.0± 0.7 mm 18 988 3684 3528
Darwin 20120921–20140626 545± 53 m 25.0± 0.8 mm 30 836 5046 4878
Graciosa 20150124–20161114 625± 80 m 23.5± 0.7 mm 31 124 3737 3161
NSA 20140730–20171231 Infinity 11.8± 1.5 mm 56 832 1132 589
SGP 20150101–20160502 440± 29 m 25.0± 0.7 mm 22 916 9198 8426
SGP 20160503–20170605 425± 74 m 14.0± 0.4 mm 14 212 5814 5337

4 Results

4.1 Parameter estimation

We applied the Tf(R) estimation method to Doppler lidars
at five ARM atmospheric observatories. Figure 3a shows the
distribution of f andD calculated for the Doppler lidar oper-
ating at Darwin in northern Australia between 21 June 2011
and 22 July 2012. This Doppler lidar is a StreamLine and
the distribution of f is positively skewed, as explained in
Sect. 3.2.2. The distribution displays a slightly wider peak
than expected for a normal distribution.

Figure 3b shows the distribution of f and D for the
StreamLine Doppler lidar operating at SGP from 1 Jan-
uary 2015 to 2 May 2016. The distribution close to the peak is
really tight, while the outliers have substantial spread. Many
of the poor estimates responsible for the outlier spread oc-
cur during January and February in both years, while for
the rest of the period the estimates are remarkably consis-
tent. On 3 May 2016 the Doppler lidar at SGP was changed
to a StreamLine XR, and Fig. 3c shows the distribution of
f and D from 3 May 2016 to 5 June 2017. The change in
instrument version, from StreamLine to StreamLine XR, is
clearly seen in the change in D, whereas the best estimate
for f did not change. However, inspecting the data by eye
would suggest a significantly shorter apparent focus, and the
Tf(R) calculated using the best estimates for f and D also
exhibits a significantly shorter apparent focus. Consequently,
the StreamLine XR in SGP has been noted to suffer from
poor SNR at the boundary layer top.

The bivariate distributions of f and D show notable vari-
ations in how tight they are around the peak, likely a re-
sult of differences in data quality between the instruments.
The best estimates of f and D and their uncertainties for all
sites are presented in Table 3. The Doppler lidar measure-
ments at Darwin were split into two periods, as there was a
2-month break in the measurements between these two pe-
riods. We performed the Tf(R) parameter estimation sepa-
rately for both periods. The best estimates from these peri-
ods differ from each other, which is expected as some ad-
justments were made to the instrument. The telescope focal

length for this instrument is directly adjustable by any opera-
tor, while the beam diameter is set by the manufacturer and is
not modifiable by the operator. We note that the D estimates
are the same for these two periods within the margin of error
calculated.

For the sites and instruments selected here, only the
Doppler lidar at NSA had f set to infinity. In fact, all Stream-
Line lidars have D in the vicinity of 25 mm, whereas D for
the StreamLine XR versions is about half this. Nevertheless,
the variation between instruments of the same version is not
negligible and should be taken into account when calculating
Tf(R) and then attenuated backscatter.

The final step to obtain attenuated backscatter profiles is
to apply a calibration constant, which can be achieved using
the liquid cloud calibration method (Westbrook et al., 2010a;
O’Connor et al., 2004).

The parameters f and D calculated for period 1 in Dar-
win have been used to derive Tf(R) and the results applied
in Fig. 4. This shows the utility of the method, able to pro-
vide reliable Doppler lidar attenuated backscatter profiles in
Fig. 4b that show no overcorrection below 1 km and dis-
play similar in-cloud values to the ceilometer in Fig. 4c.
It is expected that the aerosol attenuated backscatter coef-
ficients will differ due to the different scattering properties
of aerosol at the different wavelengths; the scattering proper-
ties of cloud droplets remain similar at the two wavelengths
(O’Connor et al., 2004; Westbrook et al., 2010a).

4.2 Uncertainty

A computational method was used to calculate the uncer-
tainty in the estimated Tf(R) as it is a non-linear function
of f and D. We used Monte Carlo simulation (MCS) (Mor-
gan and Henrion, 1990), where a distribution of input values
is fed into a model, here the effective receiver area Eq. (2),
and the uncertainty is obtained from the distribution of the
output. The input values can be created either from observed
statistics or by bootstrapping, i.e. resampling the data. We
created three different sets of input values for our MCS:

https://doi.org/10.5194/amt-13-2849-2020 Atmos. Meas. Tech., 13, 2849–2863, 2020
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Figure 4. (a) Doppler lidar attenuated backscatter coefficient assuming a generic Tf(R), (b) corrected Doppler lidar attenuated backscatter
coefficient, and (c) ceilometer attenuated backscatter coefficient, from Darwin on 28 May 2012.
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Figure 5. Distributions of the Monte Carlo simulation (MCS) input values used for calculating σTf(R). Values are obtained from (a) resam-
pling, (b) assuming N(f−2,D), and (c) assuming N(f,D). All distributions contain 5337 samples.

Table 4. σTf(R) uncertainty envelopes generated using MCS with three different sets of input values.

Location Period Resampling N(f−2,D) N(f,D)

Ascension 20160906–20170930 0.15 0.14 0.16
Darwin 20110621–20120722 0.21 0.23 0.25
Darwin 20120921–20140626 0.23 0.21 0.28
Graciosa 20150124–20161114 0.23 0.19 0.30
NSA 20140730–20171231 0.32 0.32 0.30
SGP 20150101–20160502 0.20 0.18 0.22
SGP 20160503–20170605 0.13 0.13 0.23

1. Resampling the individual estimates of f and D pro-
vided directly by the Tf(R) estimation method (i.e. those
displayed in Fig. 3) after excluding outliers.

2. Generating the values from the statistics presented in
Table 3, assuming that D and f−2 are normally dis-
tributed and independent, N(f−2,D).

3. Generating the values from statistics presented in Ta-
ble 3, assuming D and f to be normally distributed and
independent, N(f,D).

For each set of input values, the relative uncertainty in
Tf(R) is calculated as

σTf(R)=
σTφ (R)

Tf(R)
, (9)

where σTφ (R) is expressed in terms of the mean-squared
deviation of the MCS-simulated telescope focus function,

Tφ(R), from the best estimate of Tf(R),

σTφ (R)=

√
1

N − 1
6Ni=1(Tφi (R)− Tf(R)), (10)

to avoid underestimating the uncertainty resulting from the
asymmetry in Tφ(R). This also allows us to estimate the im-
pact of refractive turbulence on the uncertainty estimate.

Examples of the three input parameter distributions are
presented in Fig. 5. Resampling (Fig. 5a) is the most accurate
method as it does not require assumptions about the parame-
ter distributions and their independence. We recommend re-
sampling as the primary method for uncertainty calculation.
Using the N(f−2,D) distribution (Fig. 5b) produces a set of
input values that appear to be a reasonable approximation,
except that the distribution is not as tight around the peak.
Using theN(f,D) distribution (Fig. 5c) produces a set of in-
put values that tend to overemphasise shorter values of f and
underemphasise higher values. We also note that the central
bin of the resampled distribution contains 50 % more samples
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than the central bin of the statistically generated distributions
do. We presume that this is a consequence of the variation in
SNR not being necessarily normally distributed.

Figure 6a displays σTf(R) for Darwin showing the range
dependence of the uncertainty, with much larger uncertain-
ties for ranges close to either side of the focus (f = 590 m).
The profile of uncertainties obtained with each set of MCS
input values exhibit a similar shape, with N(f−2,D) being
closer to resampling than N(f,D) in the near field.

Figure 6b displays σTf(R) for the Doppler lidar at NSA,
which has f set to infinity; therefore σTf(R) is only depen-
dent on the uncertainty in D. Note the reduced uncertain-
ties around 200–400 m, which are expected when examining
Fig. 1c.

The largest value of σTf(R) provides the uncertainty enve-
lope value for each site, which is presented in Table 4. Re-
sampling provides values ranging from 0.12 for the updated
instrument at SGP to 0.32 at NSA. MCS values created us-
ing N(f−2,D) provided similar values, whereas MCS using
N(f,D) often provided much larger uncertainties.

4.3 Impact of refractive turbulence

So far we have neglected the potential impact of turbulence
on Tf(R) arising from the refractive turbulent parameter, ρ0,
in Eq. (2). An expression for ρ0 is given in Frehlich and
Kavaya (1991),

ρ0(R)=

Hk2

R∫
0

Cn
2(z)(1− z/R)5/3dz

−3/5

, (11)

where H = 2.914383, k = 2π/λ, and Cn2(z) is the refrac-
tive turbulence at range z. We chose three profiles with con-
stant Cn2(z) and a realistic vertical profile based on the most
turbulent case presented by Roadcap and Tracy (2009). Fig-
ure 7 shows the impact that these different profiles have on
Tf(R) and the resulting resampling calculation of σTf(R) for
two Doppler lidar instruments with different Tf(R). Values
of Cn2 up to 10−14 m−2/3 have negligible impact on Tf(R),
and even the realistic profile only showed a slight increase in
σTf(R) for the instrument with a focus set closer than infin-
ity. This suggests that the impact of turbulence can be safely
neglected for low values of Cn2, and for most applications, it
can also be neglected when operating in the vertical. Hence,
turbulence has no significant impact on the methodology de-
scribed here for deriving the parameters f and D and their
uncertainties from vertical profiles but can be included for
completeness.

However, it is clear that the turbulent impact should not
be ignored when measuring at low elevation angles close to
the horizon, where a profile similar to Cn2

= 10−13 m−2/3

may be possible. Figure 7 shows that such a profile has a
major impact on Tf(R), especially in the far range. In these
cases, the parameters f and D obtained from vertical mea-

surements are still applicable, but ρ0(R) must also be calcu-
lated or estimated in order to derive the profile of attenuated
backscatter, β ′(R).

5 Validation

The liquid cloud calibration method (O’Connor et al., 2004;
Westbrook et al., 2010a) is used to determine a calibration
constant by integrating attenuated backscatter profiles con-
taining fully attenuating liquid clouds, which have a well-
constrained apparent lidar ratio, ηS, where η is a multiple
scattering factor and S is the lidar ratio. In the absence of
multiple scattering, ηS can be assumed to be independent of
the height of the cloud.

This calibration method can be used to evaluate the esti-
mated Tf(R) for Doppler lidar by checking whether the at-
tenuated backscatter profiles obtained for the Doppler lidar
after applying Tf(R) indeed provide similar ηS values for liq-
uid clouds at different heights.

Figure 8 shows examples of Doppler lidar attenuated
backscatter profiles after calibration and the derived apparent
lidar ratio at two sites, Darwin and NSA. These sites have dif-
ferent values of f : Darwin has f = 590 m and NSA has f set
to infinity. For both cases, liquid clouds are present through-
out the day, with altitudes varying from 2 to 6 km. When fully
attenuating liquid clouds are present, the apparent lidar ratio
is close to the expected value of 20 sr, regardless of the height
of the cloud, thus confirming that the method of estimating
Tf(R) is valid.

Limitations

Table 3 shows that the proportion of data that can be used for
the Tf(R) parameter estimation varies significantly from site
to site. Over a third of the available profiles from SGP are
used, whereas only 0.3 % pass the filtering for Ascension.
The lack of suitable profiles at Ascension is explained by the
almost constant low cloud cover at this site, with very few
profiles having a sufficient number of successive range gates.

Data quality is also a limiting factor, so at sites with very
low aerosol optical depth, AOD, such as NSA, the Doppler
lidar SNR decreases so rapidly that again there are few pro-
files having a sufficient number of successive range gates.
Low AOD also impacts the performance of the ceilometer,
with 48 % of the estimates at NSA discarded as outliers even
after the initial filtering was performed. While the outlier
removal can separate the good and the poor estimates, the
largest uncertainty in D was at NSA. We attempted to per-
form the Tf(R) parameter estimation on a Doppler lidar from
an ARM campaign in Cape Cod but could not obtain reliable
estimates due to the low SNR of the ceilometer data.

The Tf(R) parameter estimation method is suitable only in
situations where there is minimal difference in atmospheric
extinction within the aerosol layer between the two instru-
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Figure 6. Relative telescope focus function uncertainties, σTf(R), generated using MCS with three different sets of input values for (a) Darwin
from 21 June 2011 to 22 July 2012 and (b) NSA from 30 July 2014 to 31 December 2017.

ment wavelengths of 910 and 1500 nm. Using AERONET
(Aerosol Robotic Network) AOD measurements co-located
at the ARM atmospheric observatories, the median differ-
ence in AOD at 870 and 1640 nm varied between 0.016 and
0.027, which should correspond closely to what might be ex-
pected for the difference between the ceilometer and Doppler
lidar. Very occasional periods of notable AOD differences
were observed at some sites, but including these profiles in
time series extending beyond a year will have negligible im-
pact on the Tf(R) parameter best estimate. However, there
were breaks in the AOD measurements, and some periods ex-
periencing a significant differential extinction may have gone
unnoticed. An additional filter using AERONET AOD mea-
surements to remove profiles experiencing significant differ-
ential extinction could be included in Fig. 2 for those sites
where this may be an issue.

6 Conclusions

We have developed a method for deriving the telescope focus
function and its uncertainty for pulsed heterodyne Doppler
lidars, and we applied the method to Halo Photonics Stream-
Line and XR Doppler lidars. The method compares pro-
files of the Doppler lidar SNR to profiles of the attenuated
backscatter coefficient from a co-located ceilometer, produc-
ing estimates for two parameters of the Tf(R): the effective
focal length for the telescope, f ; and the 1/e2 effective di-
ameter of a Gaussian beam, D. This method was developed
because it also provides uncertainties in f , D, and Tf(R),
which are necessary for quantitative use of the subsequently
derived attenuated backscatter profiles. The method can be
used to check the manufacturer specifications for these pa-
rameters, calculate them if not known, and also check their
stability over time. The method does not necessarily require a
permanently co-located ceilometer as the estimates of f and
D can be made from a short time series with a co-located
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Figure 7. Impact of turbulent parameter, ρ0, on the telescope focus function, Tf(R), and relative uncertainties, σTf(R), for different Cn2

profiles. (a) Selected profiles of Cn2 with range; (b) Tf(R) and (c) σTf(R) for Darwin from 21 June 2011 to 22 July 2012; (d) Tf(R) and
(e) σTf(R) for NSA from 30 July 2014 to 31 December 2017.
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Figure 8. Doppler lidar attenuated backscatter coefficient and apparent lidar ratio, ηS, from (a) Darwin on 8 May 2012 and (b) NSA on
20 August 2014.

ceilometer; the Doppler lidar can then be moved to another
location without a co-located ceilometer using the Tf(R) es-
timated previously, assuming that there has been no modifi-
cation to the instrument parameters.

The method was applied to data from Doppler lidars with
different configurations deployed at five ARM sites. Rela-
tive uncertainties in f for these instruments ranged from 6 %
to 17 %, with the median uncertainty being 10 %; the rela-
tive uncertainty in D ranged from 2 % to 12 %, with a me-
dian of 3 %. The uncertainty in Tf(R) was calculated using
Monte Carlo simulation, using three methods to prepare the
input values. We recommend the direct resampling method,
but reasonable results were obtained using statistically de-

rived input values assuming a normal distribution. The en-
velope of relative uncertainties in Tf(R) ranged from 13 %
to 32 % and depended on both the instrument configuration
and the instrument location. We also show that, even for a
Doppler lidar with the focus set at infinity, uncertainty re-
mains in estimating Tf(R) arising from the uncertainty in D.
The method was validated by calculating the apparent lidar
ratio of fully attenuating liquid clouds from Tf(R) corrected
profiles of Doppler lidar attenuated backscatter.

The impact of turbulence on Tf(R) was also investigated
and was found to have no significant impact on the methodol-
ogy described here for deriving the parameters f and D and
their uncertainties from vertical profiles. However, the tur-

https://doi.org/10.5194/amt-13-2849-2020 Atmos. Meas. Tech., 13, 2849–2863, 2020



2862 P. Pentikäinen et al.: Methodology for deriving the telescope focus function and its uncertainty

bulent impact should not be ignored when measuring at low
elevation angles close to the horizon, as it can modify Tf(R)

considerably, especially in the far range. In these cases, the
parameters f and D obtained from vertical measurements
are still applicable, but the turbulent contribution to Tf(R)

should be included when deriving the attenuated backscatter
coefficient.

The Tf(R) estimation method is suitable only for con-
ditions where the differential extinction at the two wave-
lengths of the Doppler lidar and the ceilometer is small,
which can be identified, for example, using AOD from co-
located AERONET observations.
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