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Abstract
Technology evolves quickly. Low-cost and ready-to-connect devices are designed to provide new services and applica-
tions. Smart grids or smart health care systems are some examples of these applications. In this totally connected sce-
nario, some security issues arise due to the large number of devices and communications. In this way, new solutions for
monitoring and detecting security events are needed to address new challenges brought about by this scenario, among
others, the real-time requirement allowing quick security event detection and, consequently, quick response to attacks.
In this sense, Intrusion Detection Systems are widely used though their evaluation often relies on the use of predefined
network datasets that limit their application in real environments. In this work, a real-time and ready-to-use tool for
monitoring and detecting security events is introduced. The Multivariate Statistical Network Monitoring–Sensor is based
on the Multivariate Statistical Network Monitoring methodology and provides an alternative way for evaluating
Multivariate Statistical Network Monitoring–based Intrusion Detection System solutions. Experimental results based on
the detection of well-known attacks in hierarchical network systems prove the suitability of this tool for complex scenar-
ios, such as those found in smart cities or Internet of Things ecosystems.
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Introduction

Several technical reports forecast 30 billion IoT
(Internet of Things) devices around the world by 2021
and more than 14 billion M2M (Machine to Machine)
connections by 2023.1,2 This scenario enables new ser-
vices and applications for improving people’s daily life
as well as new business opportunities. However, many
challenges arise too, with security being one of the most
important.
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Underlying systems and communications networks
are continually being threatened by attackers, especially
in these hiper-connected environments. For instance, it
is worth mentioning two recent attacks, Dyn3,4 and
VPNFilter,5 where thousands of IoT devices were com-
promised causing, on one hand, a high economic
impact and, on the other hand, and even worse, per-
sonal costs.

Monitoring and controlling what is happening in
these kinds of scenarios is a great challenge since the
attack exposure surface grows with the number of
devices interconnected. A more challenging issue is to
manage the generated data gathered from different
information sources (ISs) such as applications, net-
working devices, and communications. In this way, key
aspects such as managing the volume, veracity, or velo-
city of the data are crucial for achieving quick and effi-
cient detection and reaction against security attacks.6

Furthermore, these aspects may limit the practical
application of the solutions, especially in the described
scenario.

In this sense, IDS (Intrusion Detection System) tools
are widely used by the specialized community on ICT
(Information and Communication Technologies) secu-
rity. IDS systems are commonly categorized as one of
two types: (1) Network-based IDSs (NIDSs) and (2)
Host-based IDSs (HIDSs). NIDSs monitor network
events such as traffic flows or firewall logs, while
HIDSs behave similarly but consider host (endpoint)-
related events, for example, syslog, CPU load, and so
on.

To evaluate the performance of IDSs, predefined
datasets are widely used. Consequently, choosing one
or another is a very relevant decision with a relevant
impact, not only on the detection performance but also
on the confidence on the conclusions the authors claim.
In this way, Maciá-Fernández et al.7 built a recent and
real network dataset that copes with the main draw-
backs found in the most commonly used network
datasets.

Nevertheless, most of the IDS solutions tested
through network datasets are not valid for its use in
real application scenarios, because there are differences
between the environment where they were built and the
one where the IDS solution will be deployed. Apart
from that, some other functional requirements must be
accomplished by the IDS solutions to be afterward
deployed in real network environment. They are,
among others, to be efficient in managing heteroge-
neous and large amount of data, real-time require-
ments, and adaptability. In this manner, ready-to-use
solutions for real-time monitoring and anomaly detec-
tion are recommended. These types of approaches
could eliminate the need to use previously gathered
datasets, which are, on the contrary, very difficult to
build and time-consuming.

In this work, the Multivariate Statistical Network
Monitoring (MSNM)–Sensor tool is introduced to
address the previous issues. MSNM-Sensor is an effi-
cient tool for real-time network monitoring and anom-
aly detection based on the MSNM approach coined by
Camacho et al.8 The MSNM-Sensor is ready-to-use
and validates the real application of MSNM-based IDS
solutions: the MSNM ecosystem.8–13 Among others
characteristics, the MSNM-Sensor is able to manage
heterogeneous data sources in real-time; reduces the
monitoring network traffic without significant impact
on the detection performance; is lightweight, scalable,
versatile, and dynamically adaptable to changes in the
network environments; keeps privacy on communica-
tions; provides a friendly interactive dashboard; and is
an open source project.

In order to demonstrate its suitability to be used in
complex network environments for real-time monitor-
ing and anomaly detection, the MSNM-Sensor has
been successfully tested in hierarchical networks and
systems for detecting well-known attacks like DoS, port
scanning, and data exfiltration. After that, these results
are compared versus those obtained in the work Maciá-
Fernández et al.10 where the authors test the detection
capability of the MSNM approach in the same scenario
but in offline mode. The obtained results validate the
suitability of the tool to be deployed in real network
scenarios with real-time monitoring and detection
requirements.

The article has been organized as follows. The sec-
tion ‘‘Fundamentals of MSNM’’ describes the funda-
mentals of the MSNM methodology, which supports
the core functionality of the sensor. In section
‘‘MSNM-Sensor,’’ the components and operation
modes of the MSNM-Sensor are described. The tool is
validated in realistic network architectures through the
deployment of several MSNM-Sensors for real-time
monitoring and anomaly detection in the section
‘‘Application of MSNM-Sensor for monitoring and
attack detection in complex network environments.’’
Attacks such as DoS, data exfiltration, or port scan-
ning are successfully detected in the proposed network
scenario. Moreover, the tool is also compared with a
state-of-the-art solution. Finally, conclusions and fur-
ther work are described in section ‘‘Conclusions and
future work.’’

Fundamentals of MSNM

In this section, we briefly introduce MSNM, which is
the basis of the MSNM-Sensor tool. MSNM relies on
Principal Components Analysis (PCA), a main tool for
multivariate analysis. PCA has been established as a
promising technology to perform network anomaly
detection.14–17 The unsupervised nature of PCA allows
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to unveil anomalous behavior from unknown attacks,
which is a desired characteristic in those solutions
working in real environments. Apart from its unsuper-
vised nature, PCA is a white-box model. In comparison
to the bulk of machine learning solutions, PCA models
are explainable since trends or relationships in the fea-
tures and observations of the data can be easily
connected.

MSNM has been demonstrated to be a promising
methodology in network anomaly detection through
several works8–13 offering a high detection perfor-
mance. Four stages comprise the MSNM methodology.
They are (1) parsing, (2) fusion, (3) detection, and (4)
diagnosis. All of them are introduced in the following
and integrated in the MSNM-Sensor tool as can be
seen in next section.

Parsing

Information from communication networks usually
comes in the shape of huge logs and traffic-based files
containing heterogeneous information. This makes it
impossible to directly use this information as input of
detection systems and learning models to identify differ-
ent kinds of attacks. However, to overcome this issue,
data sources are processed in order to build a more suit-
able input for automatic detectors or classifiers.

In this sense, the application of some feature engi-
neering technique is proposed to build a well-structured
input, suitable for monitoring and detection systems in
general. Thus, the Feature as a Counter (FaaC)6 tech-
nique is used as a functional solution to the problem of
learning from large heterogeneous datasets. It consists
in transforming different data sources of information
(structured or not) events in the new variables. The new
ones are just counters of the original ones computed in
a given interval of time. For instance, it could be inter-
esting to count the number of accesses to port 22 in a
given time window interval, because a high number
might mean a brute force secure shell (SSH) attack. The
practical implementation tool for the FaaC approach,
named FCParser, is available online for downloading
at Pérez-Villegas et al.18

Fusion

In communication networks and systems, it is expected
to find more than one information data source to be
monitored. Apart from the parsing functionality of
FaaC, the FCParser tool is also able to fuse different
data sources in a single set of features. For each differ-
ent source of data, a set of features (counters) is
defined. All the sources under monitoring are appended
into a simple data stream to build the calibration
matrix for the PCA model. For that, each source is

sampled with equal sampling rate, then parsed, and
finally fused into a unique data stream. This procedure
is periodically repeated at each sample time.

The combination of the parsing and the fusion proce-
dures is specially suited for the subsequent multivariate
analysis, resulting in high-dimensional feature vectors
that need to be analyzed with dimension reduction tech-
niques, like PCA. Moreover, the diagnosis procedure
benefits from the definition of a large number of fea-
tures for a better description of the anomaly taking
place. Finally, counters and their correlation are easy to
interpret.

Detection

PCA is the core of MSNM. PCA identifies a number of
linear combinations of the original variables in a data
set X (contains the data matrix obtained in the previous
two stages), the so-called PCs (Principal Components),
containing most of its relevant information (variability).
This process involves a change from the original vari-
ables in the X space to those in the PC subspace. If X
contains M variables and N observations of each vari-
able, PCA reduces its dimensions from M variables to A

PCs by finding the A-dimensional latent subspace of the
most variability captured.

PCA is described through the following equation

X=TA � Pt
A +EA ð1Þ

where PA is the M 3 A loading matrix, TA is the N 3 A

score matrix, and EA is the N 3 M residual matrix. The
maximum variance directions are obtained from the
eigenvectors of Xt � X, and they are ordered as the col-
umns of PA by the explained variance. The rows of TA

are the projections of the original N observations in the
new latent subspace. EA is the matrix that contains the
residual error, and it plays a key role in the anomaly
detection, as shown later. The projection (score) onto
the PCA subspace of a new observation is obtained as
follows

tnew = xnew � PA ð2Þ

where xnew is a 1 3 M vector that represents a new
object and tnew is a 1 3 A vector that represents the pro-
jection of the latent subspace, while

enew = xnew � tnew � Pt
A ð3Þ

corresponds to the residuals.
In order to detect anomalies in the monitored sys-

tem, Q-st19 and D-st (also known as T2)20 statistics are
commonly used. Q-st compresses the residuals in each
observation, and D-st is computed from the scores.
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Their values for a specific observation can be computed
through the following equations

Dn =
XA

a= 1

tan � ma

sa

� �2

ð4Þ

Qn =
XM

m= 1

enmð Þ2 ð5Þ

where tan represents the score of the nth observation of
the ath PC; ma and sa stand for the mean and standard
deviation for the scores of that PC in the calibration
data, respectively; and enm represents the residual value
corresponding to the nth observation of the mth
variable.

With both statistics (4) and (5) computed from the
calibration data X, Upper Control Limits (UCLs), that
is, detection thresholds, can be established with a cer-
tain confidence level.8,21 Subsequently, new data are
monitored using these limits, and an anomaly is identi-
fied when UCL limits are exceeded by new incoming
observations.

Diagnosis

After detecting something anomalous in the system, it
is necessary to investigate its root causes. Most often,
the diagnosis procedure is manually carried out by a
security analyst alerted by the system.

The diagnosis procedure could be a tricky and
tedious task, due to the large amount of information to
analyze. Feature contributions to a given anomaly can
be a useful tool to identify where the anomalous beha-
vior comes from. Contribution plots or other diagnosis
methods like oMEDA (observation-based Missing-data
method for Exploratory Data Analysis)22 or Univariate
Squared (US)23 can be used to identify the feature con-
tributions. Thus, anomalies are detected in the D -st
and/or Q -st statistics, and then the diagnosis is per-
formed with, for example, oMEDA. For instance, the
output of oMEDA is a 1 3 M vector where each ele-
ment contains the contribution of the corresponding
feature to the anomaly under study. Those contribu-
tions with large magnitude, either positive or negative,
are considered to be relevant.

MSNM-Sensor

In the following section, MSNM-Sensor modules and
operations are introduced and thoroughly explained.
Before that, an illustrative example of use in a hypothe-
tical network scenario is introduced for a better under-
standing of how the tool works.

Example of use: an hierarchical approach

The MSNM-Sensor itself is able to monitor and detect
anomalous behaviors from a wide range of heteroge-
neous data sources. However, the really novel idea
behind the use of Q-st and D-st statistics is their capa-
bility of maintaining the monitoring and anomaly
detection performance when they are included in the
hierarchy of complex network environments. This use-
ful characteristic has been demonstrated by Maciá-
Fernández et al.10

Although the tool will be tested in the section
‘‘Application of MSNM-Sensor for monitoring and
attack detection in complex network environments,’’ in
a realistic network scenario, an example of several
MSNM-Sensors cooperating within a hypothetical and
common network deployment is described as follows.
Figure 1 shows a simple network scenario where several
MSNM-Sensors (orange boxes) are deployed at hosts
and network devices. We can discern in the figure two
involved information flows: the monitoring and diag-
nosis flows. The former (black dashed lines) transports
pairs of monitoring statistics (½Q(n,m),D(n,m)�, where n is
the sensor’s ID and m is the network level in the hierar-
chy) coming from lower to higher levels in the hierar-
chy. In this synthetic example, sensors S1, 3, . . . , Sn, 3 are
deployed at hosts in the deepest architecture level,
sending the generated statistics ½Q(1, 3),D(1, 3)�, . . . ,
½Q(n, 3),D(n, 3)� to the next closest sensor in the hierarchy.
Indeed, they act as remote sources of S1, 2. Now, this
sensor aggregates and processes it, giving the
½Q(1, 2),D(1, 2)� values. Finally, the root sensor (S1, 1)
gathers the statistical information from its immediately
lower levels, processes it, and generates the last statis-
tics to be observed for anomaly detection. This final
monitoring task is commonly carried out under the
supervision of a security analyst, who determines the
presence of an anomaly when certain control limits are
exceeded by the statistics.8

Once the anomaly is detected, a deeper inspection
should be done to determine, for example, where the
anomaly comes from and its root causes. This is the
diagnosis procedure, which is represented in Figure 1
with solid green and dashed brown lines. In this exam-
ple, the anomaly comes from S1, 3, which is in charge of
monitoring firewall traffic logs. First, a command mes-
sage ½Cm� to find the anomaly origin is sent. The
Diagnosis Routing Table (DRT) defines how this mes-
sage should be routed across the multilevel scenario. To
determine which data source motivates the anomaly at
a certain timestamp, a diagnosis algorithm is invoked.
In this work, the oMEDA algorithm is currently used,
though some other methods could easily be integrated.
This procedure is repeated until the data source origin
is found. Shortly thereafter, the involved piece of
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information (raw) falling into the observation period of
time is returned to the root sensor to be analyzed in
detail. A new message called response ½Rm� allows this
operation.

MSNM-Sensor modules

The MSNM-Sensor functional modules, depicted in
Figure 2, are described as follows:

IS. The IS module handles the data coming from the
ISs. Two types of data sources, according to their loca-
tion, are considered:

� Local (LIS). The information gathered from
these data sources is generated by the device
where the MSNM-Sensor is deployed. For
instance, local ISs can be obtained from firewall
log files, NetFlow traffic flows, and host-based
information (e.g. syslog in Linux-based systems),
among others. LIS data are processed by the
parsing and fusion modules.

� Remote (RIS). The incoming data from other
MSNM-Sensors are handled as a remote IS.
Most of the data from other MSNM-Sensors

will be the computed values of the monitoring
statistics Qn,m-st and Dn,m-st.

Parsing and fusion. As mentioned in section
‘‘Fundamentals of MSNM,’’parsing and fusion modules
do, on one hand, a transformation of LIS data sources
(structures or not) into a new structured form where
new features are counters of the original. On the other
hand, in case of considering several LIS data sources,
all of them are fused by appending one after another.
As a result, we have a homogeneous data stream of
quantitative values to be subsequently used in the
detection module for anomaly detection. Both processes
are carried out by the FCParser18 which implements
the FaaC approach.

Detection. This module represents the sensor functional
core for anomaly detection. It provides multivariate
statistical-based methods and algorithms to compute
the monitoring statistics Qn,m-st and Dn,m-st in real
time. This module enables the detection of anomalies in
the monitored system when statistics computed from a
new observation exceed certain control limits. Two
control limits are calculated: UCLq and UCLd for
Qn,m-st and Dn,m-st, respectively. Detailed information

Figure 1. A hypothetical deployment of several MSNM-Sensors (orange boxes) throughout an interconnected system for
hierarchical monitoring, anomaly detection (dashed black lines), and diagnosis (solid green and dashed brown lines).
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on monitoring statistics and UCL limits construction
can be found in Camacho et al.8

The detection module supports three different
functions:

� Preprocessing. The detection module performs
data preprocessing for new observations and
learning models. The standard normalization is
used by default, but additional methods are also
available and ready to use.

� Modeling. This operation is in charge of the sen-
sor calibration from a set of observations that
are, ideally, under Normal Operation Conditions
(NOCs), that is, without known anomalies.
Currently, the PCA model is used, but other
machine-learning-based techniques can be easily
integrated.24,25

� Monitoring. This operation computes the above-
mentioned statistics for each incoming observa-
tion. In addition to the precomputed control
limits, the monitoring operation is able to detect
anomalous behavior when these limits are
exceeded.

Because of the dynamic nature of information com-
ing from networks and systems, learning models should
periodically be re-calibrated or re-trained in order to
adapt them to normal changes in the environment and
avoid high false positive (FP) rates. Usually, such
changes are due to the normal cyclo-stationary nature
of the information from network communications and
systems,7 which make variables vary depending on the
hour, day, week, and so on. These behavioral patterns
are periodically repeated. The Exponentially Weighted
Moving Average (EWMA) approach is used to dyna-
mically calibrate the sensors every 60 min.26 Each sam-
ple rate, new UCL limits are also computed.

Diagnosis. The diagnosis procedure takes place when an
anomaly is detected on the monitored system. It is neces-
sary to find out where the anomalous event came from
and its root causes, to afterward deploy the adequate
response measures to counteract the attack. How to man-
age this problem is the duty of the diagnosismodule.

The diagnosis module relies on the use of statistical
multivariate techniques to determine the source of the
anomaly. Currently, the oMEDA22 method is

Figure 2. Functional modules of a generic sensor Sn,m. n corresponds to the sensor’s ID, and m is the hierarchical level ID where
the sensor n is deployed.

6 International Journal of Distributed Sensor Networks



implemented, but other methods can be included, for
instance, contribution plots or diagnosis methods like
the one proposed in Fuentes-Garcı́a et al.23

Although the diagnosis module solves the anomaly
diagnostic by itself, it is done locally, that is, in the
device where the sensor was deployed. In addition,
defining the device and data source(s) involved in an
anomalous behavior in the whole system under moni-
toring is not a trivial task. For this reason, we create
the DRT, which acts similarly to the well-known rout-
ing IP tables but adds together the information of local
and remote sources. The diagnosis flow, diagnosis rout-
ing procedure, and the role of ½Cm� and ½Rm� messages
were already introduced in the section ‘‘Example of
use: a hierarchical approach’’ and will be explained in
detail in section ‘‘Operations.’’

COMmunications. The COMmunications (COM) mod-
ule allows each MSNM-Sensor to exchange informa-
tion. It handles the exchange of specific messages. The
system supports (but is not limited to) two types of
messages: data and command. The messages mainly
differ in the payload and type. For instance, a data
message can include any information required in sensor
operations, for example, the monitoring statistics. On
the contrary, command messages are devised to control
these processes.

Depicted in Figure 2, two information flows are dif-
ferentiated: monitoring and diagnosis. It is worth men-
tioning that only the first one (monitoring) is currently
implemented, while the second one is an ongoing work
(see the project in Magán-Carrión et al.27). However,
we decided to mention and describe both of them
because they are complementary. In this way, monitor-
ing information flow exchanges data messages contain-
ing the computed statistics Qn,m and Dn,m, while the
diagnosis flow controls the entire diagnostic procedure.

In this early stage, there is no specific routing algo-
rithm between sensors. Instead, each sensor must be
manually configured to send and receive data to and
from others. A self-deployed sensor process will be
added in future releases.

Manager. As depicted in Figure 2, all modules work
together following an execution pipeline and sharing
the necessary information. The module in charge of
orchestrating and managing the others is the manager.

As mentioned above, there are two different infor-
mation flows: monitoring and diagnosis. The first one
(monitoring) involves four main modules (IS, parsing,
fusion, and detection) that should be invoked sequen-
tially, because the output of each module is the input of
the next one. However, the second flow (diagnosis)
involves the diagnosismodule, which is invoked if a spe-
cific message is received. Finally, manager handles the

orchestration of which MSNM-Sensor module should
run and when.

MSNM-Sensor operations

Thus far, the main functional MSNM-Sensor modules
have been described. However, high-level operations,
including several modules, are devised in accordance
with the principal MSNM-Sensor functionalities: moni-
toring and diagnosis. The diagnosis process is still an
ongoing work; however, we decide to briefly describe it
for completeness. Both operations are managed
through the MSNM-Sensor dashboard which is
described at the end of this subsection.

Monitoring operation. To be aware of what is happening
in systems or networks, it is important to detect anoma-
lous behaviors. However, this is not a trivial task, since
a previous work must be done to select which element
and information should be supervised. In this manner,
the monitoring flow and the involved modules offer a
versatile and scalable tool allowing the user to freely
select data sources and variables to be monitored.

Figure 3 shows a detailed view of module interac-
tions and the exchanged information. In the figure, we
show a hypothetical local data source LISv with Mv vari-
ables to monitor a total of Nv gathered observations,
the latter being split into k batches (bv1, bv2, . . . , bvk).
Each batch has j=Mv variables and i different num-
bers of observations each. As a result, we are able to (1)
process less information, reducing the computation
time, which is a key point for real-time applications,
and (2) adapt the monitoring time step granularity,
sometimes hardly limited by the monitored data source
or the anomaly to be detected. As explained in section
‘‘Application of MSNM-Sensor for monitoring and
attack detection in complex network environments,’’ 60
s is enough to monitor NetFlow-based data sources in
the detection of DoS attacks, for example.

For each bvk batch of observations, a new one is gen-
erated by parsing and fusing the original (raw) infor-
mation. This task is the duty of the parsing and fusion
modules (see section ‘‘Parsing and fusion’’). At the time
of writing this article, the implemented module was the
FCParser18 which implements the FaaC approach, a
new feature engineering methodology that transforms
the original information variable space into a new one
where the new variables (z) are counters (Cv) of the
original ones. This smart transformation makes the sys-
tem highly versatile and scalable, allowing the user to
define a large number of different new variables from a
limited original set. For instance, counting the number
of different destination ports in a certain period of time
could be relevant for port scanning or port knocking
attacks.

Magán-Carrión et al. 7



Although just one data source has been considered
so far, additional local (LIS) or remote (RIS) data
sources can also be included if needed. Figure 3 shows
the procedure to add new data sources. In this case (but
not limited to it), there are three data sources involved:
two local (LISv and LISl) and one remote (RISr). At each
monitoring step, a new fused observation is created. In
this way, the extended space will have e variables, with
e= z+ p+ 2, where z is the number of variables (coun-
ters) from a batch k of source LISv; p is the number of
variables (counters) from the same batch of source LISl;
and RISr has two variables as the number of statistics
generated by the remote sensor. This observation is the
input of the detectionmodule which is in charge of com-
puting the monitoring statistics (Q(n,m)k ,D(n,m)k). At this
point, the system can detect anomalous behaviors when
the control limits are exceeded. In addition, if this sen-
sor is not the root in the hierarchy, the generated statis-
tics will also be sent to the corresponding remote sensor
for hierarchical monitoring and anomaly detection.

Diagnosis operation. As aforementioned, after detecting
an anomaly in the system, the diagnosis procedure
should be launched to determine its origin. Figure 4
depicts the operation steps launched to determine which
IS is involved in the anomaly. For instance, we suppose
that a security event arose from the LISv local data
source. This hypothetical data source represents an
iptables firewall.

Once the corresponding observation to be inspected
has been retrieved from the sensor, the oMEDA

algorithm is launched. This algorithm outputs the con-
tribution of each variable, where the higher the contri-
bution, either positive or negative, the more relevant
the variable was in the anomaly. In this case, the vari-
able with a high positive value is C3vk (the one in red in
Figure 4), which belongs to the LISv data source accord-
ing to the DRT. The DRT structure and role in this
operation are described in the next section.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 3. Involved modules and the information exchanged among them for a Sn,m monitoring flow. The information comes from
different data sources, namely, two local (LISv and LISl) and one remote (RISr), to be divided into k batches (bv1, bv2, . . . , bvk). LIS
sources (raw) are parsed for each batch. The new variables, counters of the original ones, are fused together with the remote ones.
All variables together conform the observation to be monitored. After that, the Qn,m and Dn,m statistics are computed by the MSNM
module.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 4. Diagnosis operation steps to determine the origin of
an anomaly in the system. In this case, the anomaly comes from
a variable (C3vk) with a high contribution in the observation
under inspection. This variable corresponds with a local data
source LISv , which is a firewall log.
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Together, the timestamp and the diagnosis under
investigation allow the sensor to extract the correspond-
ing piece of raw information to be afterward analyzed
by the security analyst Camacho et al.13

Management and control. The MSNM-Sensor application
comes with an interactive dashboard. Thanks to this
dashboard, the security analyst or the application oper-
ator can, in real-time, access the monitoring and diag-
nosis information and manage the sensor deployment.
A snapshot of the monitoring main section of the dash-
board is shown in Figure 5. The upper part shows the
logical connections created among the sensors. The
operator can see the direction of the monitoring flow as
indicated by arrows. In this specific scenario, it is
clearly shown how the sensors in routers R1, R2, and
R3 are configured to send their monitoring information
to the Border Router (BR) router. In addition, the
monitoring graphs will appear in the bottom part by
clicking on a specific sensor. Among other actions, the
operator can interact with these graphs to pause/play
the updating procedure for a better inspection. The
dashboard is needed for whatever monitoring system

that allows the operator to reduce the response/reaction
time when an attack takes place.

Application of MSNM-Sensor for
monitoring and attack detection in
complex network environments

Experimental environment

To validate the monitoring and anomaly detection per-
formance of the MSNM-Sensor in complex systems,
we deployed several sensors over a controlled scenario
with virtual machines running in a cluster. This sce-
nario has been previously devised in work of Maciá-
Fernández et al.10 to theoretically prove the hypothesis
of the application of MSNM for hierarchical systems.
A performance comparison between the previous work
and the MSNM-Sensor’s deployment throughout the
same network scenario, is provided in subsection
‘‘Comparative study.’’

The complete scenario with the different machines is
depicted in Figure 6. This environment simulates a typi-
cal network architecture of a corporation so we can
observe several subnetworks, network devices, and end

Figure 5. Snapshot of the monitoring view of the MSNM-Sensor dashboard. The logical connections of the sensors (orange boxes)
are shown in the upper section of the figure, while the monitoring graphs are in the bottom part.
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devices. A demilitarized zone (DMZ) is located in the inner
network, separated from the outside world (Internet) with
a BR and departmental networks in turn delimited by the
corresponding routers (R1, R2, and R3).

In this scenario, we generated two types of network
traffic: normal and malicious. Normal traffic comprises
all HTTP communications from all departmental hosts
requesting HTTP resources allocated at the several web
servers placed in the Internet and DMZ. As shown in
Figure 6, the incoming traffic from and outgoing traffic
to the Internet goes through the BR. On the contrary,
Rx routers, with x= 1, 2, 3, relay the corresponding
portion of the previous HTTP traffic, which is gener-
ated by the hosts in their networks. In addition, depart-
mental hosts request HTTP resources to the web server
in the DMZ.

However, the malicious traffic is generated from dif-
ferent locations in the predefined architecture, simulat-
ing very well-known and state-of-the-art attacks. These
are (1) DoS (high and low rate); (2) port scanning, a
relevant step in the recognition phase in a penetration
testing procedure; and (3) data exfiltration for privacy
violation purposes.

We run our scenario during a period of 25 h. In the
first 23.5 h, only normal traffic is generated. During

the last hour and a half, the attacks previously
described are generated sequentially in 5-min intervals:
high-rate DoS, low-rate DoS, scanning attack, and
data exfiltration.

The different routers in the network (R1, R2, R3,
and BR) are equipped with NetFlow inspectors that
generate NetFlow v5 information. These data are after-
ward consumed in real time by the corresponding
MSNM-Sensors, allocated in the mentioned network
devices. These sensors are named S1, 2, S2, 2, S2, 3, and
S1, 1, and represented by orange-colored boxes in Figure
6. Sensors in the inner routers R1 to R3 consider only a
local data source: the generated information of the cor-
responding NetFlow inspectors. Sensor S1, 1 BR is in
charge of aggregating the monitoring information in
the form of statistics coming from the sensors in the
network lower level. Every minute, a new observation
is gathered by each sensor, meaning that two statistics
are generated every minute.

Experimental results

As we stated in previous sections, a key characteristic
of the MSNM-Sensor is its applicability for real-time
monitoring and detection in complex network

Figure 6. Experimental scenario. Four MSNM-Sensors (S1, 2, S2, 2, S2, 3, S1, 1) are deployed at each router. Each sensor monitors a
NetFlow local data source generated from each router, while S1, 1 also aggregates all the statistics generated by the lower-level routers.
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environments with a variety of devices and communica-
tions (to reproduce the obtained results, related data
and scripts are available at the official GitHub
repository).

There are several ways to evaluate the performance
of the MSNM-Sensor as a detection system. In this
work, the so-called monitoring plots21 and the widely
used AUC (Area Under the Curve) and ROC (Receiver
Operating Characteristic)24,28 are used. The first ones
allow the security analyst to be alerted when anomalies
are taking place in the system, that is, when the moni-
tored statistics exceed the predefined control limits. In
regard to the second ones, the AUC is a quantitative
measurement of the area under the ROC curve. The
ROC curve compares the evolution of the TP (True
Positive) rate versus the FP rate for different values of
the classifying threshold. The AUC is a performance
indicator such that classifiers with AUC = 1 behave
perfectly, that is, it is able to correctly classify all the
observations, while a random classifier would get an
AUC value around 0.5.

Anomaly detection. Figure 7 shows the Q-st (blue inverted
triangles) and D-st (orange filled circles) statistics evolu-
tion with time obtained from the BR sensor. In addi-
tion, UCLs are also shown for the Q-st (UCLq),
represented by a green dashed line, and for the D-st
(UCLd), represented by a red continuous line. Figure
7(a) shows the statistics values for the total duration of
the experiment, while Figure 7(b) shows the last 1.5 h,
when the attacks were launched. In Figure 7(a), we can
discern between three different intervals. In the first
one, we experience a high FP rate, which is caused by
the initial random calibration of the sensor. Due to the
dynamism nature of the network traffic, each sensor
uses the EWMA approach to dynamically calibrate the
sensors every 60 min.26 The effect of the EWMA-based

calibration can be seen in the second period that covers
almost all the experimental time. We can see the effec-
tiveness of the dynamic adaptation in comparison to
the first period: most of the statistics values are below
the control limits. Finally, the third one shows a clear
deviation in the values of the statistics.

It is worth paying special attention to the attack
period. In this way, Figure 7(b) clearly shows devia-
tions in the statistics values when the attacks take
place. First deviation corresponds to the high-rate DoS
attack being the low-rate DoS attack in second place.
Five minutes after the port scanning attack is taking
place and the data exfiltration attack is the last one. In
addition, the MSNM-Sensor deployment allows us to
distinguish where the anomaly is coming from by
inspecting similar monitoring plots from each of the
inner routers R1 to R3. For instance, the port scanning
attack is originated somewhere in the R1 network as it
can be seen in Figure 8. Similarly, Figures 9 and 10
show that the data exfiltration and DoS-related attacks
have been originated in R2 and R3 networks,
respectively.

Detection performance. Figure 11 shows the ROC curves
and AUC values obtained at BR. In this figure, on one
hand, we consider the detection performance of all
involved attacks (the black continuous line in the fig-
ure). On the other hand, we can see the corresponding
detection performance per attack. In this case, only the
attack’s positive samples are considered, leaving the
rest out. As expected, data exfiltration (or data leakage)
is one of the most difficult attack to detect mainly due
to its nature: it periodically sends little and randomly
chosen portions of files to the attacker. On the con-
trary, the port scanning attack was almost completely
detected. This is motivated by the high rate among scan
attack occurrences. Finally, high-rate DoS attacks are

(a) (b)

Figure 7. Q-st and D-st statistics evolution for the entire experiment (25 h) (a) and for the attack period (last 1.5 h) (b).
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easy to detect since their network traffic pattern highly
differs from the normal network traffic in comparison
to low-rate DoS attacks.

Comparative study

Aiming to validate the real-time monitoring and detec-
tion capabilities of the MSNM-Sensor, we compare the
previous results with the ones provided by Maciá-
Fernández et al.,10 hereafter, the WIFS’16 results. This
work confirms the hypothesis of that MSNM approach
is able to monitoring hierarchical communication net-
works by aggregating statistics at the different network
segments or levels. The authors use the gathered
network traffic once the experiment has been finished
to prove the MSNM hierarchical approach. Instead,
the MSNM-Sensor deployment monitors and detects
anomalies in real-time.

Figures 12 and 13 show the contribution plots and
ROC curves, respectively, from the above mentioned
work. In comparison to those obtained by the MSNM-
Sensor deployment experiment (see Figures 7(b) and
11), we can visually observe a similar pattern in regard
to the Q-st and D-st evolution for every considered
attack. In regard to the detection performance, the
WIFS’16 results are slightly better than those provided
here, mainly due to temporal synchronization issues in
communications among sensors. They can add certain
detection delay in comparison to the experiment
ground-truth. Moreover, it is worth noting the influ-
ence of the dynamic calibration used here that could
lead the system to reduce their detection performance.
Different EWMA temporal windows of observations
has been empirically considered, being 60 min the one
getting better dynamical adaptation. However, extra
work should be done in this direction, for example, to
optimize this interval to reduce the calibration error.

Figure 8. Q-st and D-st statistics evolution for the attack time
interval in R1. It is clearly shown when the port scanning attack
is taking place.

Figure 9. Q-st and D-st statistics evolution for the attack time
interval in R2. It is clearly shown when the data exfiltration
attack is taking place.

Figure 10. Q-st and D-st statistics evolution for the attack
time interval in R3. It is clearly shown when the DoS attacks are
taking place.

Figure 11. ROC curve and AUC values at BR for all involved
attacks (black continuous line) and per attack.
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In general terms, the MSNM-Sensor deployment
performs similar to the compared work. It proves its
usefulness and suitability to be used in real network
environments for real-time monitoring and anomaly
detection.

Conclusions and future work

This work introduces the MSNM-Sensor, a ready-to-
use tool for real-time monitoring and detection of secu-
rity events in complex systems and network environ-
ments. The MSNM-Sensor offers an alternative way
for testing MSNM-based IDS solutions in comparison to
conventional approaches based on the use of predefined
network datasets. Last approaches could limit the applica-
tion of IDS solutions in real network environments.

Inherited from the MSNM methodology, MSNM-
Sensor reduces and efficiently handles the monitoring
information, maintaining its detection performance.
On the contrary, existing IDS or security information
and event management (SIEM) solutions consider raw
data, thus adding extra monitoring traffic overhead.
Moreover, MSNM-Sensor inherently adds privacy in
monitoring communications since no sensible or raw
data are sent to the central station just the statistics
instead.

The solution relies on the use of lightweight algebraic
and statistics operations that allow it to be embedded in
less powerful devices, for example, wearable devices,
environmental sensors, and IoT devices in general.

The MSNM-Sensor detection performance has been
successfully tested for MSNM-based IDSs in hierarchi-
cal networks though some other IDS approaches can
be also evaluated. The MSNM-Sensor should be tested
in real scenarios, for example, IoT ecosystems or those
found in smart cities in order to test its scalability and

detection performance. Finally, the anomaly diagnosis
operation is still in development; thus, we will focus our
future work on it too.

Supplemental material

The current version of the MSNM-S is released under a GPL
license, and we encourage readers to be an active part of the
project, which is available at Magán-Carrión et al.27
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7. Maciá-Fernández G, Camacho J, Magán-Carrión R, et
al. UGR’16: a new dataset for the evaluation of

cyclostationarity-based network IDSs. Comput Secur

2018; 73: 411–424.
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