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Abstract

Over recent decades, gene therapy, which has enabled the treatment of several incurable

diseases, has undergone a veritable revolution. Cell therapy has also seenmajor advances

in the treatment of various diseases, particularly through the use of adult stem cells

(ASCs). The combination of gene and cell therapy (GCT) has opened up new opportuni-

ties to improve advanced therapy medicinal products for the treatment of several dis-

eases. Despite the considerable potential of GCT, the use of retroviral vectors has major

limitations with regard to oncogene transactivation and the lack of physiological expres-

sion. Recently, gene therapists have focused on genome editing (GE) technologies as an

alternative strategy. In this review, we discuss the potential benefits of using GE technol-

ogies to improve GCT approaches based on ASCs. Wewill begin with a brief summary of

different GE platforms and techniques andwill then focus on key therapeutic approaches

that have been successfully used to treat diseases in animal models. Finally, we discuss

whether ASC GE could become a real alternative to retroviral vectors in a GCT setting.
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1 | REASONS FOR USING ADULT STEM
CELLS

Gene and cell therapy (GCT) strategies utilize multiple cell types for

the treatment of different diseases.1 The most common approaches

use adult stem cells (ASCs), also known as somatic stem cells, as well

as T cells. However, other differentiated cell types, such as B, NK and

macrophage cells, as well as pluripotent stem cells (PSCs), have also

been used.2,3 In particular, PSCs, which are essentially embryonic stem

cells (ESCs), and induced PSCs (iPSCs), have been proposed as potent

therapeutic tools due to their ability to produce all types of mature

cells in the human body. However, although PSCs are widely used in

basic research, very few studies have been carried out on their clinical

applications. PSCs are restricted to a small number of applications in

clinical trials according to recent data published on the U.S. National

Institute of Health's web page regarding clinical trials (https://

clinicaltrials.gov). The possibility of PSC-derived products being con-

taminated by potentially tumorigenic undifferentiated cells, as well as

the lack of clear regulatory guidelines, has delayed their clinical appli-

cation. In addition, genetic alterations can be accumulated during PSC

passage and/or differentiation.4,5 Of the 25 clinical studies using

PSCs, 21 use hESCs, 4 are based on iPSCs, while none use genetically

modified PSCs.

Unlike PSCs, multipotent, undifferentiated ASCs, which are found

in all organs of living organisms, are involved in physiological tissue

regeneration.6 ASCs, which have a self-renewal capacity, can give rise

to some or all of the differentiated cells of the tissue in which they

reside. They have been widely used in clinic due to their ability to

regenerate tissues, such as blood and skin, and to dampen immune

responses. Most ASCs used in clinical trials are hematopoietic progen-

itor stem cells (HPSCs) and mesenchymal stem cells (MSCs), with over

3000 clinical trials carried out so far (ClinicalTrials.gov 2019). A major

reason for the success of ASC transplants is their safety. However, in

several applications, genetic modification of ASCs is necessary in

order to achieve the desired therapeutic benefits.1 Genetically modi-

fied ASCs have been successfully employed in the treatment of sev-

eral disorders through the use of integrative viral vectors.7 These

ASCs include HSPCs which are chosen due to their capacity to be

grafted in bone marrow and give rise to all hematopoietic lineages.

Over 120 clinical trials involving genetically modified HSPCs are on-

going or have been completed worldwide, 7 of which are now in

Phase III or IV, with one medicinal treatment (Strimvelis) already

approved by the Food and Drug Administration (FDA) and European

Medicines agency (EMA). In addition to HSPCs, other gene-modified

ASCs have also reached Phase I/II clinical trials, including MSCs,

T stem cell memory (TSCM) cells, epidermal stem cells (EpSCs), endo-

thelial stem cells (EnSCs), and neural stem cells (NSCs) (data obtained

from https://clinicaltrials.gov and http://www.abedia.com/wiley/).

Most of the clinical trials mentioned above rely on semi-random inte-

gration of one or more copies of the therapeutic gene introduced into

the host genome using γ-retroviral or lentiviral vectors. However, this

type of genetic integration has generated concerns regarding the pos-

sibility of cellular transformation and expression variability.8 In this

review, we discuss the potential role of genome editing

(GE) technologies in overcoming the limitations of retroviral vectors.

We will focus on ex vivo strategies using ASC GE in clinical and/or

preclinical settings.

2 | GE STRATEGIES

GE involves a group of technologies that enable the cellular genome to

be modified. However, for its successful in-clinic application, GE needs

to be used efficiently either in vitro or in vivo without affecting the nor-

mal physiology of targeted human cells. Nuclease-independent9,10 tech-

nologies, as well as those based on the use of specific endonucleases

(SENs), are used to carry out GE.11 The nuclease-independent strategy

facilitates GE without generating double strand breaks (DSBs) by using

systems that improve homologous directed recombination (HDR) such

as adeno-associated virus (AAV) vectors10 or that introduce distortions

in the target DNA that triggers repair mechanisms, such as triplex-

forming oligonucleotides (TFOs)9 (Figure 1).

Whether GE systems generate DNA breaks or distortions, the tar-

get cell triggers different DNA repair mechanisms, mainly through

non-homologous end joining (NHEJ) or homology-directed repair

(HDR). NHEJ is a type of double-stranded break repair mechanism

that does not require a DNA donor. The targeted sequences are rap-

idly processed by cellular machinery which generates small insertions

or deletions (indels). Although a less efficient DNA repair mechanism,

HDR is more precise than NHEJ. When a compatible donor DNA tem-

plate is delivered to the cell, these DNA molecules are incorporated

into the endogenous locus, thus enabling precise modifications to be

carried out (Figure 2). The most advanced strategy in terms of preclini-

cal and clinical applications is NHEJ-mediated GE which is highly effi-

cient. NHEJ-based GE strategies using SENs and ASCs have already

reached the clinical stage for the treatment of sickle cell disease

(SCD), B-thalassemia, AIDS, and acute lymphoblastic leukemia.

There are four main types of SEN: mega nucleases (MGNs), tran-

scription activator-like effectors nucleases (TALENs), zinc finger

Significance statement

Recent advances in adult stem cells and genome editing tech-

niques have enabled scientists to envisage the generation of

efficient and safe advanced therapy medicinal products for the

treatment of untreatable diseases. Hematopoietic progenitor

stem cells are now clearly regarded as the cell type of refer-

ence. Promising results have been achieved in controlling AIDS

and hemoglobinopathies, resulting in several clinical trials.

Promising results have also been obtained in the treatment of

monogenic diseases, including X-SCID, SCID-ADA, X-CGD, and

Fanconi anemia, indicating that further clinical trials will be

approved in the near future.
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nucleases (ZFNs), and clustered regularly interspaced short palin-

dromic repeat (CRISPR)/CRISPR-associated system 9 (CRISPR-Cas9)

systems.11 The success of GE approaches greatly depends on the type

of gene editing tools used and on how these tools are delivered to the

cells and tissues. Another important feature is safety, which can be

measured by the levels of unwanted off-target modifications outside

the target locus. As both NHEJ and HDR strategies are capable of

introducing undesirable modifications into the host genome, it is cru-

cial to accurately determine the safest system to be used

(a combination of the appropriate GE tool, delivery system, and

strategy).12–16

In order to obtain GE-ASCs, cells must first be isolated from their

original tissue and then edited ex vivo. As explained above, how GE

tools (SENs and/or donor) are delivered to the ASCs is crucial for the

success of the strategy. These delivery methods can be viral,16–19

nonviral,20–22 or a combination of both,13 and should be transient,

highly efficient, and nontoxic. Recently, a hybrid method based on

murine leukemia virus particles has produced interesting results.23,24

A more detailed review of delivery systems for GE can be found

elsewhere.25

The most effective platforms for NHEJ-GE of ASCs are mRNA

nucleofections for ZFNs and the ribonucleoprotein complex for

CRISPR. Nucleofection, a type of electroporation system, is probably

the most successful physical non-viral-based method for delivering

macromolecules to target cell nuclei. It is important to note that

nucleofection produces a spike in SEN expression, thus reducing tox-

icity and increasing GE specificity.7,26 Clinical-grade electroporators,

which can be used in clinical trials for the treatment of AIDS and

blood disorders, have been developed. In addition to nucleofection,

adenoviral (AdV), AAV, and integration-deficient lentiviral vectors

(IDLVs)16,27 are often used in HDR-GE strategies. Although capable of

efficiently delivering large donor DNAs, these viral vectors can also be

used to deliver specific nucleases.

A major concern with using GE technologies as a treatment

option arises from the possibility of introducing off-target unwanted

alterations into the modified genome.12,28 However, none of the

methods for detecting the distribution and frequency of off-targets

introduced by SENs are regarded as sufficiently robust to be

implemented in clinical trials.14 Nevertheless, it is very useful to com-

pare different off-target SEN activities in order to develop more effec-

tive and safer strategies. Some research groups have focused on

CRISPR-based systems which have no endonuclease activity but

maintain the capacity to bind to the site indicated by the gRNA. New

CRISPR/Cas9, such as cytosine base editors and adenine base

editors,29,30 have been developed. These editors combine a catalyti-

cally dead Cas9 (dCas9) with a cytosine or adenosine deaminase

domain in order to facilitate direct single-base pair substitutions (C:G

to T:A and A:T to G:C) without generating DSBs. More recently, the

group led by Dr. Liu has developed “prime editing” technology by

combining a dCas9, a reverse transcriptase and a prime editing guide

RNA (pegRNA). This technique enables DNA to be edited with

unprecedented precision, with fewer errors being introduced than

previous gene-editing technologies.31

Although technical issues still need to be addressed, 23 GE clini-

cal trials using ZFNs (14 clinical trials), CRISPR/Cas9 (16 clinical tri-

als), and TALENs (3 clinical trials) for the treatment of infectious

F IGURE 1 Current genome editing technology platforms can be divided into two main groups: specific endonuclease (SEN)-based (right) and
nuclease-independent (left) platforms. The three main types of SEN-based genome editing platforms are the transcription activator-like effector
nuclease (TALEN), zinc finger nuclease (ZFN), and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein
9 (Cas9) systems. The principal SEN-free gene editing platforms use recombinant adeno-associated virus (rAAV) vectors and triplex-forming
oligonucleotides (TFOs)
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diseases (HIV-1 and HPV), cancer, as well as blood and metabolic dis-

orders, are currently on-going (Clinicaltrials.gov Dec 2019). Six of

these clinical trials use ex vivo ASC techniques to treat AIDS and

blood disorders.

3 | GE of ASCs

As mentioned above, the vast majority of clinical trials involving gene-

edited stem cells use ASCs. Although those using HPSCs are by far

the most successful,1 EpSCs, MSCs, TSCM cells, and NSCs have also

produced promising results.

3.1 | Genome-edited HSPCs

The engraftment of HSPCs in a recipient's bone marrow, which gives

rise to all types of hematopoietic cells, provides a wide range of inter-

vention opportunities for a large number of disorders.7 Despite being

some of the most desirable target cells for stem cell-based therapies,

HSPCs are highly resistant to gene modification and preferentially use

NHEJ rather than HR pathways to repair damage to DNA.11 This pref-

erence explains why the vast majority of HSPC GE studies and clinical

trials use NHEJ-based strategies rather than HR-based approaches

(Figure 3). Table 1 summarizes important preclinical studies of HSPC

gene therapies (GTs).

F IGURE 2 Genome editing strategies based on the activity of specific nucleases (SENs). Once SENs generate a double strand break in the
target locus (top), the cell triggers two main repair pathways depending on the availability of homologous DNA and cell type. Non-homologous
end joining (NHEJ, left) preferentially occurs on G1 phase and quiescence cells, whereas homologous recombination (HR, right) generally requires
cell division and takes place in the S phase of the cell cycle. In the NHEJ pathway, the donor or template DNA are not available and, after SEN
cleavage, the binding of the proteins Ku70-Ku80 protects the DNA ends against excessive resection and promotes DNA repair by recruiting the
Artemis, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and DNA ligase IV complex. This repair pathway introduces short DNA
insertions or deletions (indels) into the target site and facilitates different GE approaches: (a) generation of knockout genes by eliminating the
ATG or by changing the open reading frame, thus generating premature stop codons, (b) repair of the correct open reading frame on mutated
genes, or (c) elimination/alteration of enhancers/promoter regions. In contrast to NHEJ, in the HR pathway, the cell uses a donor DNA to fix DNA
breaks introduced by SENs. HR repair is initiated by the combined action of the MRE11-RAD50-NBS1 (MRN) complex and RBBP8 generating
single strand DNA where replication protein A (RPA), in association with Rad and BRC proteins bind and promote HR by invading the
homologous template. By providing abundant homologous DNA donors, the HR pathway can also be used for different GE strategies: (a) insertion
of a cDNA sequence under the regulation of a specific locus in order to provide locus-specific, physiological expression of the particular cDNA.
(b) Insertion of an expression cassette (promoter and cDNA) into a safe location (harbor). (c) Alternatively, HR can be used for HR-directed repair
(HRDR) of disease-causing mutations (precise gene editing) by providing DNA donor harboring the corrected DNA sequences
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3.1.1 | HSPC GT for infectious diseases (HIV-1)

Although several strategies based on GE technology have been designed

to fight different infectious agents, only human immunodeficiency virus

type I (HIV-1) has been targeted using HSPC GE. Initial studies have

demonstrated that long-term HSCP-CCR5-KO repopulation can be

achieved using ZFN43,44 and CRISPR/CAS942,54 strategies, both of which

provide protection for HIV-1 in humanized NOD/SCID/IL2R gamma

mice. Paterson et al. were the first to use nonhuman primates (NHPs) to

demonstrate multilineage repopulation of genome-edited HSPCs.45

These preclinical studies led to the first two clinical trials to evaluate the

feasibility, safety, and engraftment of allogeneic and autologous HSCP-

CCR5-KO in China (NCT03164135) and the United States

(NCT02500849), respectively (Figure 4). The clinical trial being carried

out in the United States using autologous HSPCs (CCR5-KO) and ZFNs,

for which patients were recruited in September 2019, is sponsored by

the City of Hope Medical Center in collaboration with Sangamo Thera-

peutics. These patients were placed on either a 2- or 3-day course of

busulfan prior to product infusion in order to enhance HSPC engraft-

ment. The clinical trial in China has already produced an initial report on

HIV-1-infected patients treated with genome-edited HSPCs.55 Paterson

et al. treated HIV-infected patients with acute lymphocyte leukemia

(ALL) at the Academy of Military Medical Sciences in China using

CRISPR/CAS9 to edit the CCR5 locus of allogeneic HSPCs. The patients

with ALL achieved complete remission, with CD4+ cells in CCR5KO mice

found to increase following a pause in antiretroviral therapy. However,

the percentage (5%) of CCR5 disrupted was relatively low, indicating the

need for further improvement.

3.1.2 | GE-HPSCs for monogenetic diseases

Monogenetic diseases are a series of inherited pathologies associated

with alterations in a single gene that can be point mutations, indels, or

large deletions. These diseases include hemoglobinopathy, X-linked

severe combined immunodeficiency (X-SCID), and Fanconi anaemia

(FA), which were initially considered to be targets for treatment with

gene-corrected HPSCs.

Hemoglobinopathies

Hemoglobinopathies, characterized by defective hemoglobin synthesis,

include SCD, and β-thalassemia. Lentiviral vector (LV)-based GT has

been highly successful in integrating the normal β-globin gene into

HPSCs, a strategy which has reached clinical trial phase III using

F IGURE 3 Diagram showing potential clinical HPSCs genome editing applications using either NHEJ- or HR-based approaches (blue and red
arrows, respectively). The target conditions are indicated in gray boxes, and each arrow points to the locus targeted in each case
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LentiGlobin (NCT03207009). Despite their considerable success, LVs,

which are integrated into the transcriptionally active locus, represent a

potential risk of cellular transformation.8 GE appears to be a potentially

safer alternative for restoring normal β-globin expression either through

insertion of the healthy β-globin gene via the HR pathway or through

reactivation of the fetal γ-globin gene34–38,56–58 (Figure 5). The most

successful strategies are aimed at reactivating fetal γ-globin gene

expression by disrupting the negative regulatory region of the γ-globin

gene.59, 60 These were the first human GE strategies to be investigated

in clinical trials using CRISPR/CAS9 (CTX001, NCT03745287) and later

ZFNs (ST-400; NCT03432364) for the treatment of β-thalassemia and

SCD. New clinical trials have been approved for these diseases using

CRISPR (iHSCs; NCT03728322) and ZFNs (PRECIZN-1;

NCT03653247). Recently, CRISPR Therapeutics and Vertex published

the initial results of monitoring the CTX001 trial at month 9 for a patient

with β-thalasemia and at month 4 for a patient with SCD (www.crisprtx.

com). The β-thalasemia patient in the transfusion-independent clinical

trial had total hemoglobin levels of 11.9 g/dL, fetal hemoglobin of

10.1 g/dL, and erythrocyte-expressing fetal hemoglobin of 99.8%, with

no severe side effects. The SCD patient also underwent significant

TABLE 1 Examples of successful preclinical studies, combining different type of ASCs and genome editing tools, for the treatment of
different genetic and infectious diseases

Cells type Diseases GE strategies Tools Ref

Hematopoietic progenitor stem cells Primary immune deficiency HR - insertion in safe harbor

HR - insertion in affected locus

CRISPR-Cas9/ZFNs 32, 33

ZFNs 27

Hematoglobinopathies HR - gene repair CRISPR-Cas9 34

ZFNs 35

NHEJ - therapeutic mutation TALENs 36

CRISPR-Cas9 37

ZFNs 38

Fanconi anemia HR - insertion - safe harbor ZFNs 39

Cancer HR - therapeutic mutation

NHEJ - exon deletion

CRISPR-Cas9 40, 41

Infectious diseases NHEJ - gene disruption CRISPR-Cas9 42

ZFNs 43–45

Other stem cells

Mesenchymal stem cells Liver fibrosis HR - insertion in safe harbor TALENs 46

Parkinson's disease 47

Epidermal stem cells Dystrophic epidermolysis bullosa NHEJ - therapeutic mutation CRISPR-Cas9 48, 49

TALENs 50

Junctional epidermolysis bullosa HR - insertion in affected locus CRISPR-Cas9 51

Neural stem cells Krabbe disease HR - insertion in safe harbour CRISPR-Cas9/TALENs 52

Muscle stem cells Duchenne muscular dystrophy HR - gene repair CRISPR-Cas9 53

F IGURE 4 Diagram showing the
principal steps in a clinical trial using
autologous as compared to allogenic
HSPCs. HPSCs were harvested from
patients and healthy donors and
cultivated in vitro. Once an optimal
number of cells with the appropriate

phenotype were obtained, they were
subjected to gene editing and then
infused back into the patient who was
treated with the appropriate conditioning
regimen
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improvement, with the occurrence of novaso-occlusive crisis (VOC) epi-

sodes (total hemoglobin levels of 11.3 g/dL and 94.7% of erythrocytes

expressing fetal hemoglobin).

Fanconi anemia (FA)

FA, characterized by congenital malformation and cancer susceptibil-

ity, with defective repair of DNA inter-strand crosslinks (ICLs), is a rare

disease associated with genetic mutations in one or more of the

22 FANC genes. FA is an excellent target for genetic correction, as

corrected stem cells and their progeny have a strong selective in vivo

advantage.61 Five on-going GT trials, including one at the phase II

stage (NCT02931071), are investigating the efficacy and safety of

HSPCs expressing the correct version of the FANCA gene through

the use of LVs (ClinicalTrials.gov Sept 2019). Despite the positive out-

come of the latest clinical trial using LVs,61 GE is also being studied as

a potential alternative to FA GT. However, the intrinsic problems of

repairing ICL lesions in the cells of FA patients have made gene ther-

apists cautious about using gene editing to treat these patients. Nev-

ertheless, several studies have demonstrated the feasibility of the GE

of fibroblasts from FA patients harboring mutations.62 Diez et al.,

who have demonstrated the feasibility of phenotypic correction of

FA HPSCs by inserting a FANCA donor in an AAVS1 locus via HR,

have also shown that GE can be effective in HPSCs when ZFNs are

used.39

Primary immunodeficiencies (PIDs)

Several PIDs, including severe combined immune deficiencies

(SCID-X1, SCID-ADA), Wiskott-Aldrich syndrome (WAS), chronic

granulomatous disease (CGD), and X-linked hyper-IgM (X-HIM), have

been successfully treated using GT-based approaches involving both

γ-retroviral and LVs.63 Given the mutagenic nature of first-generation

γ-retrovirus-based vectors, some patients developed leukemia. How-

ever, the latest generation of these vectors has produced better

results, with physiological promoter-driven, self-inactivating γ-retrovi-

rus64 and lentivirus65,66 vectors, in particular, found to be safer and

more effective in clinical settings.1 As a result, a new advanced ther-

apy medicinal product (ATMP), named Strimvelis, has been approved

for the treatment of SCID-ADA, with several others on the way. GE

has opened up the possibility of further improvements in GT strate-

gies by expressing the therapeutic transgene in a more physiological

manner through the use of endogenous regulatory sequences and/or

reductions in genotoxicity caused by semi-random integration of ret-

roviral vectors. Different cell models have been used to test the feasi-

bility of using GE to correct genetic mutations causing PIDs.67

However, HPSC GE is problematic due to poor permissiveness to

gene transfer and limited HD DNA repair pathways in these cells. In

2014, Genovese et al. demonstrated, for the first time, successful cor-

rection of target genes in human HPSCs.27 Using a HR-based

approach based on ZFN mRNA nucleofection and IDLV-DNA donors,

they repaired the mutated IL2RG gene of HPSCs from a patient with

SCID-X1 and successfully engrafted genome-edited HPSCs, giving rise

to functioning hematopoietic cells. In recent years, using gene-editing

tools, other research groups, who have produced new studies on

SCID-X132,33 using AAV6 for donor delivery and ZFN mRNA,32 as

well as CRISPR/Cas9 RNP33 nucleofection, have confirmed the feasi-

bility of correcting HPSCs from different PIDs.32,33,68,69 Kuo et al.

F IGURE 5 NHEJ GE strategies for treating β-thalassemic and sickle cell disease (SCD) patients. Schematic representation of the β-globin
cluster in healthy individuals (top drawing). Only adult globins, δ-globin and β-globin, are expressed in healthy adult individuals. The Bcl11a gene is
expressed thanks to the erythroid-specific enhancer and blocks fetal globin (γG and γA) expression. In β-thalassemia and SCD patients (middle
drawing), mutations in the β-globin gene abrogate its normal expression, preventing the generation of the predominant adult hemoglobin form
(αβ). Three different clinical trials are currently on-going to investigate the feasibility of eliminating the erythroid-specific enhancer of the Bcl11a
gene on HSPCs (Bottom drawing) using ZFNs (NCT03432364 and NCT03745287) or CRISPR/Cas9 (NCT03653247). By disrupting Bcl11a gene
expression in erythroid cells, the fetal γ-globin will be expressed in adults forming fetal hemoglobin (αγ) which should restore normal function
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have shown that AAV6 harboring the donor DNA could also be com-

bined with TALEN mRNA or CRISPR/Cas9 RNP to restore X-linked

hyper-IgM syndrome.68 Using a different platform (Cas9 mRNA, gRNA

and ssODN), De Ravin et al.69 repaired up to 20% of HSPCs from

patients with X-linked chronic granulomatous disease (X-CGD). See

Table 1 for further information on GE for PID.

HLA gene editing enables the generation of HSPC universal donor

cells

In recent decades, unmodified allogeneic HLA-matched HSPCs have

been used to treat malignant and non-malignant blood disorders.

However, the success of transplants depends on the existence of

compatible donors, whereas the risk of graft rejection is still a major

concern. A definitive approach could be developed through the

genetic elimination of HLA mediated by GE. Torikai et al. have used

ZFNs to fully disrupt HLA-A in T cells.70 Recognition of GE-T cells by

natural killers was circumvented by the expression of non-classical

HLA molecules. This research group later demonstrated the feasibility

of their approach with HSCs which maintains the engraftment of the

engineered cells and reconstitutes hematopoiesis in immunocompro-

mised mice.71 Other strategies could benefit from using universal

HLA−HSPCs as ATMP cells by, for example, enabling the manufacture

of erythrocytes and/or platelets from universal HLA−HSPCs.

3.1.3 | HSPC GE for cancer GT

Genetically modified T cells expressing a chimeric antigen receptor

(CAR) are a powerful new class of advanced therapy medicinal prod-

uct.72 CD19-targeting CAR-T cells were recently approved by the FDA

for the treatment of refractory type B leukemia and lymphomas. This

approach does not discriminate between normal and malignant B cells,

although patients can live almost normal lives without B cells if treated

with immunoglobulins. CD33 is an interesting target for acute myeloid

leukemia (AML).73 Unfortunately, CD33 is expressed in both malignant

and in normal myeloid cells (including progenitors), which are destroyed

by CD33-CAR-T cells. In order to overcome this limitation, several

research groups have targeted CD33 from normal HSPCs using

CRISPR/Cas9 in order to generate functional myeloid cells resistant to

CAR-T αCD33.40,41,74 Gene-edited HSPCs showed normal myeloid

function and resistance to CD33 therapy mediated by T cells engineered

to express CAR-targeting CD33.40,41,74 It is important to note that

multilineage reconstitution has been demonstrated in both mouse and

NHP models.40,41,74

3.2 | Other stem cells

GE of other types of cells, such as EpSCs, MSCs, as well as muscle and

neural stem cells, has also produced interesting results in the treat-

ment of several diseases. However, except for EpSCs, the results have

been insufficiently conclusive to test these strategies in clinical trials.

The most important studies in the field are summarized below.

3.2.1 | Epidermal stem cells

The genetic modification of EpSCs has important applications in the treat-

ment of diseases such as recessive dystrophic epidermolysis bullosa

(RDEB) and junctional epidermolysis bullosa (JEB). Major advances have

beenmade using gamma-retroviral and LV vectors to generate autologous

artificial skin expressing Col7a1 for RDEB and LAMB3 for JEB; JEB can be

genetically corrected by transplanting genetically modified EpSCs.75,76 As

discussed above, EPSC GE could be a good alternative to retroviral vec-

tors, as several research groups have managed to restore Col7Aa148–50

and LAMB351 expression by genetically editing EpSCs from RDEB and

JEB patients, respectively. In both these pathologies, artificial skin gener-

ated using genetically modified EpSCs has enabled long-term engraftment

of phenotypically normal skin. This provides strong support for future

ex vivoGE clinical trials for the treatment of RDEB and JEB patients.

3.2.2 | Mesenchymal stem cells

Due to their regenerative potential and anti-inflammatory properties,

MSCs have been widely used in clinical trials for multiple diseases.

However, despite the major successes of MSCs in some disorders,

which have led to the approval of MSC therapies,77–79 they have had

limited therapeutic benefits in other applications. To overcome these

limitations, several research groups are investigating the feasibility of

genetically modifying MSCs to express different genes that enhance

their therapeutic efficacy.80 As previously described with respect to

other cell types, GE has also become an alternative to GT vectors.

GE-MSCs, which are being studied as a platform for the delivery of

proteins into the blood stream,81 are an interesting tool in the treat-

ment of blood disorders caused by the absence of plasma proteins. In

this setting, GE has been used to insert hFIX and hFVIII into the

AAVS1 locus of MSCs through homologous recombination (HR) in

order to treat hemophilia A and B.82,83 GE-MSCS are also considered

a potential alternative treatment for neurodegenerative diseases such

as Parkinson's disease (PD). Using this approach, MSCs have been

engineered to secrete soluble receptors of advanced glycation end

products from AAVS1 loci.47 The aim is to reduce advanced glycation

end product concentrations involved in PD and Alzheimer's disease.

GE-MSCs have also been used in the treatment of ischemia in an ani-

mal infarct model. Meng et al. have used TALENs to integrate the

IL-10 gene into the AAVS1 safe harbor locus of MSCs and have per-

formed an intra-myocardial transplant in the infracted myocardium,

which reduced pro-inflammatory factor expression and increased vas-

cular density.84,85 The same approach was used to ameliorate liver

fibrosis.46 All these data indicate that GE is becoming a real alternative

to viral and nonviral vectors in generating genetically modified MSCs.

3.2.3 | Neural stem cells

Neural stem cells (NSCs), whose regenerative capacity, as with MSCs,

can be improved by GE, have promising, although not immediate,
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clinical potential as a cellular treatment for neurological diseases.

Recently, Dever et al. demonstrated that NSCs can be modified genet-

ically at multiple loci using Cas9 mRNA and DNA donors. They

showed that, upon transplantation, GE-NSCs can migrate and differ-

entiate into astrocytes, neurons and myelin-producing oligodendro-

cytes. They also highlighted the therapeutic potential of GE-NSCs by

generating NSCs overexpressing the GALC enzyme which can cross-

correct the GALC enzyme activity of fibroblasts obtained from Krabbe

disease patients.52 These findings highlight the therapeutic potential

of GE-NSCs, not only for the regeneration of neural cells but also as a

Trojan horse to deliver proteins to the central nervous system.

3.2.4 | Muscle stem cells

Muscle stem cells are undifferentiated cells capable of producing new

muscle tissue and of fusing with pre-existing myofibers in order to

repair damaged myofibers. Muscle satellite cells (MuSCs) are probably

the most studied muscle stem cells, a population of cells that are capa-

ble of self-renewal and differentiation into muscle fibers which repre-

sent an ideal target for therapeutic GE.86 Zhu et al. have developed a

fibrin gel culture system to selectively expand MuSCs from an mdx

mouse model for Duchenne muscular dystrophy (DMD) research. These

cells were successfully corrected using CRISP/Cas9-based GE and,

following transplantation to mdx mice, restored dystrophin expression

in skeletal muscle.53 This demonstrates the feasibility of using ex vivo

GE-MuSCs to target and correct DMD.

3.2.5 | T stem cell memory cells

TSCM cells, which constitute a recently described 2% to 3% circulat-

ing T-cell subpopulation,87 have a naive T-cell phenotype, express a

CD62L memory marker, proliferate, self-renew, and generate effec-

tor/memory T cells. TSCM cells have emerged as a highly interesting

population for adoptive T-cell therapies for cancer88 and inherited

immunodeficiency.89 As with other ASCs, GE has also been applied to

TSCM cells to enhance the potency of CAR T cells for the treatment

of hematological malignancies and solid tumors. Eyquem et al.90

inserted a α-CD19 CAR into the T-cell receptor A constant (TRAC)

locus using Cas9 mRNA and gRNA electroporation followed by trans-

duction with AAV6 harboring the donor DNA containing the CAR.

This strategy generated off-the-shelf CAR-T cells (without TCR) which

expressed the CAR physiologically through the endogenous TCR pro-

moter. This approach has also been used to improve efficiency thanks

to the maintenance of the TSCM phenotype following repeated expo-

sure to the antigen. Recently Sachdeva et al. used a similar approach,

involving TALENs instead of CRISPR/Cas9, to insert CAR cDNAs into

the TRAC locus and to insert the proinflammatory cytokine IL12 into

the CD25 or PD1 loci.91 This resulted in the physiological expression

of the CAR and a transient secretion of IL12 which depends on tumor

engagement (following the expression patterns of CD25 or PD1

locus). In addition, the targeted integration of IL12 at the PD1 locus

inactivated PD1, a major T-cell immune checkpoint, and increased the

cell surface of CD62L, a marker of TSCM cells. This strategy resulted

in increased CAR-T cell cytotoxicity and extended survival of mice

engrafted with solid tumors. A further potential improvement in gen-

erating universal off-the-shelf CAR-T cells involves simultaneously

deleting TCR and beta-2 microglobulin (B2M) genes to reduce graft-

vs-host disease (GVHD) and CAR-T-cell rejection. Recently, Choi

et al.92 generated αEGFRvIII CAR-T cells lacking the expression of the

TCR, B2M, and PD1 electroporating RNP (Cas9 protein and sgRNAs

targeting TRAC, B2M, and PD1 loci) and transducing with AAV6 vec-

tors containing donor DNAs for insertion of the EGFRvIII CAR con-

struct at the different loci. The authors showed increased survival of

mice in mouse models of glioma, which correlated with the increased

presence of CAR-T cells with a TSCM phenotype.92

4 | CONCLUSION

In recent decades, genetic modification of ASCs using traditional GT

vectors has opened up new opportunities to improve ATMPs for the

treatment of several diseases. Most approaches use retroviral vectors

to achieve stable transgene expression in ASCs upon expansion and

differentiation. However, the use of retroviral vectors has several

drawbacks associated with oncogene activation and the lack of physi-

ological transgene expression. Recent advances in GE technologies

have enabled researchers to design next-generation GM-ATMPs

based on ASCs. Using cellular HR- and NHEJ-based repair pathways,

GE achieves precise, and safe ASC genetic modifications such as gene

disruption, addition and repair, as well as the generation of therapeu-

tic mutations. Six ongoing phase I and II clinical trials are currently

being carried out to study the safety and effectiveness of GE-ASCs in

the treatment of AIDS, SCD, and β-thalassemia. The trials are based

on GE-HSPCs and NHEJ disruption of CCR5 for the treatment of

AIDS and on the inactivation of regulatory regions controlling the fetal

γ-globin gene repression for the treatment of SCD and β-thalassemia.

GE-HSPCs have also produced promising results in preclinical models

for monogenetic diseases such as severe X-SCID, SCID-ADA, X-CGD,

and FA, as well as for cancer and transplantation. In addition to

HSPCs, several other ASCs have been studied as GE targets in thera-

peutic applications. GE of EpSCs, MSCs, NPCs, and MuSCs has also

produced interesting results in animal models of RDEB, JEB, hemo-

philia, PD, and Krabbe disease.

5 | FUTURE PERSPECTIVES

It is still too early to speculate whether GE-ASC clinical trials for the

treatment of AIDS, SCD, and β-thalassemia will lead to the approval

of ATMPs for clinical use. For that to happen, these strategies need to

demonstrate improved therapeutic effectiveness as compared to

other GT approaches based on retroviral vectors already in phase III.

Some of these GT techniques are about to be authorized as ATMPs.7

For example, Lentiglobin, a HSPC-LV-based ATMP, has demonstrated
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excellent, long-term therapeutic benefits in β-thalassemia patients,

with no severe secondary effects. Therefore, provided GE-ASC clinical

trials demonstrate a similar level of therapeutic efficiency and reduced

genome alterations as compared to RV-based GT, GE-ASCs will be

approved as ATMPs. Regardless of the results achieved in ongoing

clinical trials, we believe that, in the near future, next-generation

ATMPs will incorporate GE-ASCs in their arsenal. The field of GE is

advancing at an unprecedented pace, with new, more efficient and

safer tools being developed each year. Advances in the specificity and

versatility of SENs,28,93–95 in strategies to improve HR repair96,97 and

in delivery methods13,16,98–100 have been and will remain crucial. In

addition, the field of ASCs is evolving exponentially due to their safety

and potential applications in regenerative medicine.26,101–105 New

developments in both GE and ASCs are bound to provide opportuni-

ties to improve the safety and efficacy of GE-ASCs in order to achieve

the final objective: the approval by official medical authorities of GE-

ASCs as ATMPs.
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