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Abstract: Label Distribution Learning (LDL) is a general learning framework that assigns an instance
to a distribution over a set of labels rather than to a single label or multiple labels. Current LDL
methods have proven their effectiveness in many real-life machine learning applications. In LDL
problems, instance-based algorithms and particularly the adapted version of the k-nearest neighbors
method for LDL (AA-kNN) has proven to be very competitive, achieving acceptable results and
allowing an explainable model. However, it suffers from several handicaps: it needs large storage
requirements, it is not efficient predicting and presents a low tolerance to noise. The purpose of this
paper is to mitigate these effects by adding a data reduction stage. The technique devised, called
Prototype selection and Label-Specific Feature Evolutionary Optimization for LDL (ProLSFEO-LDL),
is a novel method to simultaneously address the prototype selection and the label-specific feature
selection pre-processing techniques. Both techniques pose a complex optimization problem with a
huge search space. Therefore, we have proposed a search method based on evolutionary algorithms
that allows us to obtain a solution to both problems in a reasonable time. The effectiveness of the
proposed ProLSFEO-LDL method is verified on several real-world LDL datasets, showing significant
improvements in comparison with using raw datasets.

Keywords: label distribution learning; evolutionary optimization; protoype selection; label-specific
feature; machine learning

1. Introduction

A supervised learning process is the machine learning task of training a function that maps
an input to an output based on data points with known outputs. Classification is the process of
predicting to which of a set of categories a new observation belongs. Thus, the purpose of classification
is to achieve a model that will be able to classify the right class to an unknown pattern. However,
there are an increasing number of problems where a pattern can have several labels simultaneously
associated. Examples can be found in genetics [1], image classification [2], etc. The generalization of
the classic classification is Multi-Label Learning (MLL) [3–6], where multiple labels can be assigned to
each instance.

Nevertheless, in many real-world problems we may face cases where MLL is still not enough,
as the degree of description of each label is different. To appoint only one dataset used in this paper,
the biological experiments on yeast genes [7] during a period of time yield different levels of gene
expression in a time serie. The exact level of expression at any point in time is of less importance.
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What becomes really decisive is the overall expression distribution over the whole period of time.
If the learning goal is to predict that distribution for a particular gene, it cannot easily fit into the MLL
framework because the role of each output in the distribution is critical, and there is no division of
relevant and irrelevant labels at all.

The proposal of Label Distribution Learning (LDL) appeared for first time in 2013 [8] and was
formally introduced in 2016 [9] in order to handle ambiguity on the label side of the mapping when
one instance is not mandatorily matched to one single label. The main objective of this paradigm is to
respond to the question “how much does each label describe the instance?” instead of “which label
can describe the instance?”.

Numerous studies have been conducted by applying the LDL framework to diverse real-life
problem solving scenarios, e.g., facial age estimation [8], pre-release prediction of crowd opinion on
movies [10], crowd counting in public video surveillance [11], sense beauty recognition [12], image
emotion classification [13], personality recognition on social media [14], head pose estimation [15], etc.
Further research has focused more on the development of new learners or on the adaptation of existing
ones such as: instance-based algorithms (e.g., AA-kNN [9]), optimization algorithms (e.g., SA-IIS,
SA-BFGS [9] or LDL-SCL [16]), decision trees (e.g., LDL forests [17]), deep learning algorithms (e.g.,
Deep Label Distribution [18]), or ensembles strategies (e.g., Logistic boosting regression for LDL [19],
Structured random forest for LDL [20]).

AA-kNN [9] has proven to be a very competitive algorithm in previous experimental studies,
achieving acceptable results and allowing an explainable model [21]. However, like any other
instance-based algorithm, it suffers from several handicaps: it needs large memory requirements
to store the training set, it is not efficient predicting due to the multiple computations of similarities
between the test and training samples and it presents a low tolerance to noise because it uses all the
data as relevant.

Nowadays, one of the main challenges of supervised learning algorithms is still how to deal
with raw datasets. Data collection is usually an unsupervised process, leading to datasets with
redundant information, noisy data or irrelevant features. Hence, data pre-processing is an important
step in the data mining process, that can mitigate this type of problem and generate improved
datasets. The purpose of this paper is to address the LDL problem from the data pre-processing
stage, by applying data reduction techniques which will allow us to have a reduced representation of
the original data while maintaining the essential structure and integrity [22]. These pre-processing
techniques often result in better performance of subsequent learners.

Two of the most widely used data reductions techniques are the instance selection [23], also known
as prototype selection in case of instance-based algorithms [24], and the feature selection or reduction
of the data dimensionality [25]. The first technique focuses on finding an optimal subset of samples
to optimize the performance of the learner while the main idea of the second technique is to replace
the original set of features by a new subset that extract the main information and provide an
accurate classification.

A few methods are available to approach the instance selection in the MLL domain [26–28] but,
to the best of our knowledge, there are no studies concerning instance or prototype selection reported
in LDL. With regard to the feature selection, most of LDL algorithms are built on a simple feature space
where all features are used to predict all the labels. However, in real-world applications, an instance is
characterized by all labels, but some labels can only be determined by some specific features of their
own. Although label-specific feature selection has been widely studied in MLL [29,30], the studies we
can find on this subject for LDL are still scarce [31].

Prototype selection and Label-Specific Feature Evolutionary Optimization for Label Distribution
Learning, or from now ProLSFEO-LDL, is our proposal for a pre-processing algorithm adapted to LDL
problems and specifically designed to mitigate the handicaps of the AA-kNN method. We provide a
novel method to simultaneously address the prototype selection and the label-specific feature selection.
Both pre-processing techniques can be considered as a search problem where the search space is huge.
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Therefore, we have devised a search method based on evolutionary algorithms [32] that allows us to
obtain a solution to both problems in a reasonable time. To this end, we have adapted elements of
classical evolutionary algorithms to manage LDL restrictions, we have designed a representation of
the solution and a way to measure its quality, which allows us to address both problems together.

In order to evaluate the proposal proficiency, we will compare an LDL-learner applying our
ProLSFEO-LDL algorithm to the raw training set and measuring six aspects of their performance.
We will repeat the experiment over 13 real-world datasets and validate the results of the empirical
comparisons using Wilcoxon and Bayesian Sign tests [33–35].

The rest of the paper is organized as follows. First, a brief review and discussion of the foundations
of LDL, a description of data reduction techniques and an introduction to the evolutionary optimization
process are given in Section 2. The proposed ProLSFEO-LDL method is described in Section 3. Then the
details of the experiments are reported in Section 4. Finally, the results and conclusions are drawn in
Section 5 and Section 6, respectively.

2. Preliminaries

In this section, the foundations and the most relevant studies carried out on LDL (Section 2.1),
are presented. Furthermore, some basic concepts on instance selection and label-specific features
selection for classification are introduced (Section 2.2), as well as the notions needed to optimize
solutions using evolutionary algorithms (Section 2.3), providing the necessary background required to
properly present the study carried out in this paper.

2.1. Foundations of Label Distribution Learning

We can formalize a LDL problem as a set of m training samples S = {(x1, D1), ..., (xm, Dm)},
where xi = {xi1, xi2, ..., xiq} is a q-dimensional vector. For each instance xi, the label distribution is
denoted by Di = {d

y1
xi , dy2

xi , ..., dyc
xi } where yj ∈ Y|j ∈ {j, · · · , c}, such that Y = {y1, · · · , yc} denotes

the complete set of labels. The constant c is the number of labels and d
yj
xi is the description degree of

the particular jth label yj for a particular ith instance xi. According to the definition, for each xi the

description degree should meet the constraints d
yj
xi ∈ [0, 1] and ∑c

j=1 d
yj
xi = 1.

The solution to an LDL problem can be addressed from several perspectives. According to the
selected approach, the algorithm to be developed may differ significantly, either a brand-new algorithm
designed especially to deal with LDL constraints, or an adaptation of already available classification
algorithms, reformulated to work with those constraints. The LDL study presented in [9] suggested
six algorithms grouped in three categories. The first one is Problem Transformation (PT), a simple
way to convert an LDL problem into a Single-Label Learning or SLL [36] problem. PT transforms
the training samples into weighted single-label examples. Thus, any SLL algorithm may be applied.
Two representative algorithms are PT-Bayes and PT-SVM. The second one is Algorithm Adaptation
(AA), in which the algorithms are tailored to existing learning algorithms to handle directly with the
label distribution. Two suitable algorithms were presented: AA-kNN, an adaptation of the well-known
k-nearest neighbors method [37], and AA-BP, a three-layer backpropagation neural network. Finally,
Specialized Algorithms (SAs), in contrast to the indirect strategy of PT and AA, directly match the
LDL problem. SA-IIS and SA-BFGS are two specialized algorithms that learn by optimizing an energy
function that is based on the maximum entropy model.

Subsequent works have successfully improved the results achieved by these original algorithms
through different approaches. The methods LDLogitBoost and AOSO-LDLogitBoost proposed in [19],
are a combination of the boosting method and the logistic regression applied to LDL framework.
Deep Label Distribution Learning (DLDL) [18] and LDL based on Ensemble Neural Networks
(ENN-LDL) [38] are two examples of success in the application of neural networks in LDL. Modelled on
differentiable decision trees [39], an end-to-end strategy LDL forests proposed in [17] was used as the
basis for Structured Random Forest (StructRF) [20]. BC-LDL [40] and DBC-LDL [41] use the binary
coding strategies to address with the large-scale LDL problem. Classification with LDL (LDL4C) [42] is
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also an interesting approach when the learned label distribution model is considered as a classification
model. Feature selection on LDL [43] shows encouraging results by applying feature selection on
LDL problems.

2.2. Prototype Selection and Label-Specific Feature Learning

Nowadays, one of the main challenges for supervised learning algorithms is still how to deal
with raw datasets. Data pre-processing is an often unattended but important step in the data mining
process [22]. Data gathering is often a poorly monitored process, resulting in low-quality datasets.
If there is a lot of irrelevant and redundant information or noisy and unreliable data, then knowledge
discovery is more difficult to carry out.

Data reduction techniques [22] allow us to obtain a reduced representation of the original data
but maintaining the essential structure and integrity. Such pre-processing techniques usually lead to
improved performance of subsequent learners.

A frequent problem with real datasets is their big volume, as well as the presence of noise and
anomalies that complicate the learning process. Instance selection is to choose a subset of data to
achieve the original purpose of a data mining application as if the whole data is used [23]. The optimal
outcome of instance selection is a stand-alone model, with a minimal data sample that can perform
tasks with little or no performance degradation.

Instance selection has been successfully applied to various problem types like imbalanced
learning [44], data streams [45], regression [46], subgroup discover in large size datasets [47].
The research conducted in [48] is also of interest to investigate the impact of instance selection
on the underlying structure of a dataset by analyzing the distribution of sample types. However, as of
today, instance selection has not been extensively researched in the domain of MLL and to date only
few methods have been made available [26–28]. As for LDL, we have not been able to find any studies
to date.

Prototype Selection [22] methods are Instance Selection methods that expect to find training sets
that offer the best ranking accuracy and reduction rates by using instances-based classifiers which
consider a certain similarity or distance measure. A widely used categorization of prototype selection
methods consists of three types of techniques [24]: Condensation, where the aim is to retain border
points, preserving the accuracy of the training system; Edition, where the objective is to eliminate
boundary points that are considered noise or do not match their neighbors but without removing the
internal points of each dataset; or Hybrid methods that try to find a small set of training data while
maintaining the performance of the classifier. The best approach considering the trade-off between
reduction and accuracy is usually the hybrid technique.

To name just a few successful cases when applying prototype selection, [49] proposes a prototype
selection algorithm called MONIPS that has proved to be competitive with classical prototype
selection solutions adapted to monotonic classification. The experimental study presented in [50]
shows a significant improvement when prototype selection is applied to dynamic classifier and
ensemble selection.

Another widely used pre-processing technique is the reduction of the data dimensionality by
means of feature selection [25]. The main idea is to replace the original set of features by a new subset
that extract the main information and provide an accurate classification. However, in MLL and LDL,
the strategy of selecting a set of characteristics shared by all labels may not be optimal since each label
may be described by a specific subset of characteristics of their own. Label-specific feature learning
has been widely studied in MLL. For instance, LIFT [29] firstly builds specific features of each label
by performing cluster analysis on its positive and negative instances, and then conducts training and
testing by querying the cluster results. LLSF [30] proposes learning label-specific features for each class
label by considering pairwise (i.e., second-order) label correlations. MLFC [51] is also a multi-label
learning method, which attempts to learn the specific characteristics of each label by exploiting the
correlations between them. However, the studies we can find on this subject for LDL are still scarce.
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LDLSF [31] is a method inspired in LLSF adapted to deal with LDL problems by jointly selecting
label-specific features, selecting common features and exploiting label correlations.

2.3. Evolutionary Optimization

Evolutionary algorithms (EAs) [32] are stochastic search mechanisms based on natural selection
notions. EAs have been applied to a broad range of problems, including search problems [52],
optimization problems [53], and in many areas as in economics, engineering, biology, etc. The primary
idea is to maintain a population of chromosomes, that represent valid solutions to the problem and
which evolve over time through a process of competition and targeted variation. CHC [54], is a
well-known evolutionary model that introduces different techniques to achieve a trade-off between
exploration and exploitation; such as incest prevention, reinitialization of the search process when the
population converges or the search stops making progress and the competition among parents and
offsprings into the replacement process.

Prototype Selection can be considered as a search problem where EAs can be applied. The search
space consists of all the subsets of the training set. This can be represented by using a binary
chromosome with two possible states for each gene. If the gene value is 1 then the associated instance is
included in the subset, if the value is 0, this does not occur. The chromosome will have as many genes
as the number of instances in the training set. EAs have been used to solve the prototype selection
problem with promising results [55–59].

Label-specific feature selection is a very complex task. If the original set contains q features and c
labels, the objective is to find a q× c binary matrix where each ij position indicates if the individual
feature xi will be taken into consideration to predicte the label dj. Many search strategies can be used
to find a solution to this problem but finding the optimal subset can be a huge time-consuming task.
Therefore, it is justifiable to use an evolutionary algorithm that gives us an approximate solution in an
acceptable time. Several studies have successfully applied feature reduction to multi-label problems
using evolutionary algorithms [60–63], but as of today no such technique has been used to solve the
label-specific feature learning problem.

3. ProLSFEO-LDL: Protoype Selection and Label-Specific Feature Evolutionary Optimization for
Label Distribution Learning

ProLSFEO-LDL is an evolutionary algorithm proposal adapted to LDL specificities that combines
prototype selection and label-specific feature learning.

It uses the framework of CHC where the search space will be represented by a chromosome (or
individual) in which we will code the prototype selection and label-specific feature as detailed in the
next Section 3.1. Through the evolutionary algorithm described in Algorithm 1, we will optimize
this initial solution until we reach a solution that meets our expectations. We start from a parent
population P of size N, randomly initialized, to generate a new population P′ obtained by crossing the
individuals of the parent population. The recombination method to obtain the offsprings is detailed
in the Section 3.2. Then, a survival competition is held where the best N individuals from the parent
population P and the offspring population P′ are selected to compose the next generation. To determine
if one individual is better than another we need to evaluate the quality of each chromosome, for this
we use the fitness method described in the Section 3.3. When the population converges or the search
no longer progresses, the population is reinitiated to introduce a new diversity into the search, for this
purpose we use a threshold t to control when the reinitialization will take place, this step is explained
in the Section 3.4. The process of evolution iterates over G generations and finally returns the best
solution B found in the search.

In the following sections, we explain in depth each part of the proposed method.



Appl. Sci. 2020, 10, 3089 6 of 16

Algorithm 1: ProLSFEO-LDL: Prototype selection and Label-Specific Feature Evolutionary
Optimization for Label Distribution Learning

Function ProLSFEO-LDL(S, N, G, t):
1 input : S← Training Dataset ;

N ← Population size ;
G ← Number of generations ;
t← Treshold ;

2 output : B← Best chromosome ;

3 P = Initialize population of size N ;
4 L = t ;
5 g = 0 ;
6 while g < G do
7 Evaluate fitness of chromosomes in P ;
8 P′ = HUX crossover (P) ;
9 Evaluate fitness of chromosomes in P′ ;

10 New_P = best N chromosomes from P ∪ P′ ;
11 if New_P = P then
12 L = L− 1 ;

end
13 if L = 1 then
14 B = best chromosome in P ;
15 P = Initialize population of size N − 1 ;
16 P = P ∪ B ;
17 L = t ;

else
18 P = New_P ;

end
19 g = g + 1 ;

end
20 B = best chromosome from P;

End Function

3.1. Representation of Individuals

Each individual should represent the two parts of the algorithm. On the one hand, we have
the first m genes of the chromosome that represents the selection of instances, if the gene value is
1 then the associated instance is included in the subset, if the value is 0, this does not occur. And,
the second part of the chromosome, consists of q× c genes representing the matrix of label-specific
features. A graphical representation of genes, chromosome and population is exposed in Figure 1,
where genes named as ssi represent if the instance i will be included in the final set or not; and genes
f sjk represent if feature k will be taken into account to predicte the specific label j. The initialization of
the chromosomes that make up the population is randomly performed from the “discrete uniform”
distribution in the closed interval [0, 1].
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Figure 1. Gene, chromosome and population in evolutionary optimization.

3.2. Crossover

The crossover operator, HUX, performs a uniform cross that randomly exchanges exactly half of
the bits that differ between the two parenting chains. No mutation is applied during the recombination
phase of the CHC algorithm.

3.3. Fitness Function

In order to measure the quality of a particular chromosome we need to evaluate it using a
LDL learner as wrapper. As the prototype selection is focused on the optimization of the AA-kNN
method, we have chosen this same learner, but with some adaptations to support the selection of
features. By default AA-kNN uses all features to calculate the distance between each instance. In our
adaptation, each output label j should be individually predicted using only the selected features from
f s = { f sj1, ..., f sjq} coded in the chromosome . The prediction obtained is then normalized so that the
result is compatible with the LDL constraints.

The step sequence for evaluating a chromosome is as follows:

• Create a subset of instances: the selected prototypes are coded in the first m genes of the
chromosome. We create a subset T by keeping only the elements of the original training set
S which have an associated gene value = 1.

• Prediction phase: we use the subset T as the training set for AA-kNN. The prediction is then
computed over a set merged from the test predictions of a 10-fold cross validation set (10-fcv)
created from the original training set S.

• Evaluation phase: in order to measure the fitness of the chromosome, we calculate the
distance between the predicted label distribution D̂ and the real label distribution D using the

Kullback–Leibler divergence formula KL(D, D̂) = ∑c
j=1 dj ln

dj

d̂j
, where dj and d̂j are the description

degree of the particular jth label. In our case the fitness of the chromosome directly matchs with
the KL divergence.

The objective is to minimize the fitness function.

3.4. Reinitialization

When the population converges or the search no longer progresses, the population is reinitiated to
introduce a new diversity into the search. The population is considered not sufficiently diverse when
the threshold L reaches 1 (line 13 in Algorithm 1). This treshold is initialized with the parameterized
value t (line 4 in Algorithm 1) and decreased by 1 each time that the population is not evolving (line 12
in Algorithm 1). In such a case, only the chromosome that represents the best solution found during
the search is kept in the new population, and the remaining individuals are randomly generated,
filling in the rest of the population (lines 14–17 in Algorithm 1). In CHC, the typical value used for
threshold t is equal to the total length of the chromosome divided by 4. In our case, due to the length
of the chromosome, we will choose a lower value that allows a faster convergence.
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4. Experimental Framework

This section is devoted to introducing the experimental framework used in the empirical study
conducted in this paper. In our experiments, we have included 13 datasets of a wide variety of
real-world problems, described in the following Section 4.1. In order to evaluate the learners proficiency,
we will employ six measures described in Section 4.2 to evaluate the different aspects of experiments
performed in Section 4.3.

4.1. Datasets

There are a total of 13 real-world datasets employed in the experiments. The summary of their
characteristics is shown in Table 1.

Table 1. Datasets used in experiments.

No. Datasets Examples (m) Features (q) Labels (c)

1 Yeast_alpha 2465 24 18
2 Yeast_cdc 2465 24 15
3 Yeast_cold 2465 24 4
4 Yeast_diau 2465 24 7
5 Yeast_dtt 2465 24 4
6 Yeast_elu 2465 24 14
7 Yeast_heat 2465 24 6
8 Yeast_spo 2465 24 6
9 Yeast_spo5 2465 24 3

10 Yeast_spoem 2465 24 2
11 SJAFFE 213 243 6
12 SBU_3DFE 2500 243 6
13 Natural_Scene 2000 294 9

The first to the tenth datasets were gathered from biological experiments on the budding yeast
Saccharomyces cerevisiae [7]. Each dataset consists of 2465 yeast genes, and an associated phylogenetic
profile vector with a length of 24 is used to characterize each gene. In a biological experiment, the level
of gene expression is usually uneven at each discrete time point, so the labels correspond to the
time point.

Datasets JAFFE [64] and BU_3DFE [65] are two widely used facial expression image datasets.
A total of 213 gray-scale expression images in the JAFFE dataset while BU_3DFE contains 2500 facial
expression images. The images in JAFFE have been rated by 60 people based on the six primary
emotion labels with a 5-level scale, i.e., fear, disgust, happiness, anger, sadness, surprise, and the
images in BU_3DFE have been ranked by 23 people using the same scale as used in JAFFE. Each
dataset is composed by a 243-dimensional feature vector extracted by the Local Binary Patterns method
(LBP) [66]. The score for each emotion is considered the degree of description, and the description
degrees (normalized gene expression level) of the six emotions make a label distribution for a particular
facial expression image.

The Natural Scene dataset is compiled from 2000 natural scene images that have been
inconsistently classified by ten human rankers. A 294-dimensional feature vector extracted in [2]
represents each image and is linked with a multi-label selected from nine possible labels, i.e., sky,
mountain, water, sun, cloud, snow, building, desert and plant. Then rankers are then required to sort
the labels in descending order of relevance. Predictably, the ratings for the same image from different
rankers are highly inconsistent. So, a nonlinear programming process [67] is applied to achieve the
label distribution.
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4.2. Evaluation Measure Selection

Several measures of distance/similarity between probability distributions can be applied to
measure the distance/similarity between label distributions. We propose to use a set of six measures
when comparing different LDL algorithms:

• Chebyshev Distance: is a metric defined on a vector space where the distance between two vectors
is the greatest of their differences along any coordinate dimension.

• Clark Distance: the Clark distance also called coefficient of divergence is the squared root of half
of the divergence distance.

• Canberra Metric: is a numerical measure of the distance between pairs of points in a vector space.
It is a weighted version of Manhattan distance. The Canberra distance is a metric function often
used for data scattered around an origin.

• Kullback–Leibler Divergence: which is closely related to relative entropy, information divergence,
and information for discrimination, is a non-symmetric measure of the difference between two
probability distributions p(x) and q(x). Specifically, the Kullback–Leibler divergence of q(x) from
p(x) is a measure of the information lost when q(x) is used to approximate p(x).

• Cosine coefficient: is a metric used to measure how similar two non-zero vectors are irrespective of
their size. It measures the cosine of the angle between two vectors projected in a multidimensional
space. The smaller the angle, higher the cosine similarity.

• Intersection similarity: has its largest value, 1, when all the terms of the first probability
distribution are identical to the corresponding terms of the second probability distribution.
Otherwise, the similarity is less than 1. In the extreme case, when both distributions are very
different, then the similarity will be close to 0.

Each of these measures come from a different syntactic family: Minkowski family, the X2 family,
the L1 family, the Shannon’s entropy family, the inner product family, and the intersection family,
respectively [68]. Taking into account that they come from different families and are significantly
different in both syntax and semantics, they have a good chance to reflect different aspects of an LDL
algorithm. Supposing that the real label distribution is D = {d1, d2, ..., dc}, and the predicted label
distribution is D̂ = {d̂1, d̂2, ..., d̂c}, then the formulation of the six measures is summarized in Table 2.

Table 2. Evaluation measure for LDL learners. ↓means that the lowest value is the best and ↑means
the opposite.

Name Formula

Chebyshev(Cheby)↓ Dis(D, D̂) = maxj|dj − d̂j|

Clark↓ Dis(D, D̂) =

√
∑c

j=1
(dj−d̂j)2

(dj+d̂j)2

Canberra(Can)↓ Dis(D, D̂) = ∑c
j=1

|dj−d̂j |
dj+d̂j

Kullback–Leibler(KL)↓ Dis(D, D̂) = ∑c
j=1 dj ln dj

d̂j

Cosine(Cos)↑ Sim(D, D̂) =
∑c

j=1 dj d̂j√
∑c

j=1 d2
j

√
∑c

j=1 d̂2
j

Intersection(Inter)↑ Sim(D, D̂) = ∑c
j=1 min(dj, d̂j)

4.3. Experimental Setting

The proposed ProLSFEO-LDL algorithm is firstly applied, in a pre-preprocessing step, to the raw
datasets obtaining a subset of training instances and a matrix of label-specific features. The subset
of selected instances will make up the new pre-processed training set that the learner will train
with. As we mentioned before, the selected learner is AA-kNN. Regarding the label-specific features,
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we have adapted the AA-kNN algorithm to support the selection of features, for this, each label is
predicted separately using only the characteristics marked as selected. The prediction obtained is
normalized to make it compatible with the LDL constraints.

The results will be compared with those obtained by the same learner without applying data
reduction as a pre-processing step. All measures were computed over a merged set from the test
predictions using a wrapped 10-fcv. Note that this procedure is over the entire process and differs
from the cross-validation used to estimate the fitness function within the optimization process.

The parameters used in experiments are summarized in Table 3. The AA-kNN algorithm used in
the fitness function of ProLSFEO-LDL method and in the subsequent learner requires a value for k, set
to four neighbors. We have selected a small value for k in order to provide the most flexible fit with a
low bias.

Table 3. Summary of the parameters.

Algorithm Parameter Description Value

ProLSFEO-LDL N Population size 100
G Number of generations 500
t Threshold 10
k Number of selected neighbors 4

in AA-kNN used for fitness function

AA-kNN k Number of selected neighbors 4

5. Results and Analysis

This section presents the results of the empirical studies and their analyses. We will compare
the results obtained by AA-kNN with the results obtained by applying the pre-processing step
ProLSFEO-LDL. In Table 4 the best outcome for each dataset and measure is highlighted in bold.
The last row is the average aggregation result of each column. The best average is also highlighted
in bold. As those algorithms have been tested using 10-fcv, the performance is represented using
“mean±standard deviation”.

The Wilcoxon test and Bayesian Sign test [33,34] are used to validate the results of the empirical
comparisons. In the Bayesian Sign test, a distribution of the differences of the results achieved
using methods L (AA-kNN) and R (ProLSFEO-LDL) is computed into a graphical space divided into
three regions: left, rope and right. The location of most of the distribution in these sectors indicates the
final decision: the superiority of algorithm L, statistical equivalence and the superiority of algorithm
R, respectively. KEEL package [69] has been used to compute the Wilcoxon test and the R package
rNPBST [70] was used to extract the graphical representations of the Bayesian Sign tests analyzed in
the following empirical studies. The Rope limit parameter used to represent the Bayesian Sign test
is 0.0001.

The outcome of both statistical tests applied to our method is represented in Table 5 (Wilcoxon
test) and Figure 2 (Bayesian Sign test).

Comparing ProLSFEO-LDL with the standard LDL learner AA-kNN, we reach the following
conclusions:

• The results of the different measures shown in Table 4 highlights the best ranking of
ProLSFEO-LDL in the large majority of the datasets and measures.

• The Wilcoxon Signed Ranks test corroborates the significance of the differences between our
approach and AA-kNN. As we can see in Table 5, all the hypotheses of equivalence are rejected
with small p-values.

• With regard to the Bayesian Sign test, Figure 2 graphically represent the statistical significance
in terms of precision between ProLSFEO-LDL and AA-kNN. The following heat-maps clearly
indicate the significant superiority of ProLSFEO-LDL, as the computed distributions are always
located in the right region.
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Table 4. Experimental Results (mean ± std).

Cheby ↓ Clark ↓ Can ↓
Dataset AA-kNN ProLSFEO-LDL AA-kNN ProLSFEO-LDL AA-kNN ProLSFEO-LDL

Yeast_alpha 0.0148 ± 0.0007 0.0145 ± 0.0007 0.2321 ± 0.0112 0.2280 ± 0.0111 0.7577 ± 0.0372 0.7451 ± 0.0376
Yeast_cdc 0.0177 ± 0.0010 0.0174 ± 0.0009 0.2375 ± 0.0134 0.2316 ± 0.0129 0.7179 ± 0.0395 0.6972 ± 0.0395
Yeast_cold 0.0554 ± 0.0021 0.0545 ± 0.0015 0.1509 ± 0.0070 0.1485 ± 0.0050 0.2611 ± 0.0129 0.2563 ± 0.0090
Yeast_diau 0.0393 ± 0.0009 0.0397 ± 0.0013 0.2122 ± 0.0042 0.2125 ± 0.0055 0.4560 ± 0.0109 0.4528 ± 0.0126
Yeast_dtt 0.0393 ± 0.0016 0.0381 ± 0.0013 0.1068 ± 0.0045 0.1035 ± 0.0036 0.1836 ± 0.0075 0.1778 ± 0.0050
Yeast_elu 0.0177 ± 0.0005 0.0174 ± 0.0004 0.2182 ± 0.0048 0.2137 ± 0.0048 0.6444 ± 0.0155 0.6285 ± 0.0137
Yeast_heat 0.0451 ± 0.0012 0.0445 ± 0.0007 0.1955 ± 0.0044 0.1928 ± 0.0035 0.3924 ± 0.0096 0.3867 ± 0.0078
Yeast_spo 0.0643 ± 0.0024 0.0637 ± 0.0030 0.2715 ± 0.0112 0.2690 ± 0.0124 0.5594 ± 0.0232 0.5499 ± 0.0248
Yeast_spo5 0.0962 ± 0.0043 0.0951 ± 0.0052 0.1933 ± 0.0099 0.1914 ± 0.0110 0.2972 ± 0.0145 0.2938 ± 0.0169
Yeast_spoem 0.0924 ± 0.0036 0.0887 ± 0.0036 0.1374 ± 0.0053 0.1320 ± 0.0055 0.1913 ± 0.0074 0.1837 ± 0.0076
SJAFFE 0.1155 ± 0.0180 0.1088 ± 0.0090 0.4137 ± 0.0489 0.4070 ± 0.0285 0.8527 ± 0.0962 0.8359 ± 0.0624
SBU_3DFE 0.1350 ± 0.0048 0.1272 ± 0.0056 0.4255 ± 0.0134 0.4068 ± 0.0146 0.8746 ± 0.0290 0.8332 ± 0.0313
Natural_Scene 0.3168 ± 0.0081 0.3046 ± 0.0118 1.8253 ± 0.0343 1.9161 ± 0.0347 4.2609 ± 0.0866 4.5848 ± 0.1206
Average 0.0807 ± 0.0038 0.0780 ± 0.0035 0.3554 ± 0.0133 0.3579 ± 0.0118 0.8038 ± 0.0300 0.8174 ± 0.0299

KL ↓ Cos ↑ Inter ↑
Dataset AA-kNN ProLSFEO-LDL AA-kNN ProLSFEO-LDL AA-kNN ProLSFEO-LDL

Yeast_alpha 0.0066 ± 0.0006 0.0064 ± 0.0006 0.9935 ± 0.0006 0.9937 ± 0.0006 0.9581 ± 0.0020 0.9588 ± 0.0021
Yeast_cdc 0.0083 ± 0.0009 0.0080 ± 0.0009 0.9920 ± 0.0008 0.9924 ± 0.0008 0.9527 ± 0.0025 0.9541 ± 0.0026
Yeast_cold 0.0142 ± 0.0014 0.0137 ± 0.0012 0.9866 ± 0.0012 0.9871 ± 0.0010 0.9356 ± 0.0031 0.9368 ± 0.0022
Yeast_diau 0.0150 ± 0.0008 0.0146 ± 0.0009 0.9862 ± 0.0008 0.9866 ± 0.0009 0.9367 ± 0.0017 0.9372 ± 0.0018
Yeast_dtt 0.0073 ± 0.0007 0.0069 ± 0.0006 0.9931 ± 0.0005 0.9934 ± 0.0004 0.9547 ± 0.0017 0.9561 ± 0.0011
Yeast_elu 0.0074 ± 0.0003 0.0071 ± 0.0003 0.9928 ± 0.0003 0.9932 ± 0.0003 0.9545 ± 0.0011 0.9556 ± 0.0003
Yeast_heat 0.0146 ± 0.0007 0.0142 ± 0.0005 0.9861 ± 0.0007 0.9865 ± 0.0005 0.9356 ± 0.0017 0.9365 ± 0.0013
Yeast_spo 0.0302 ± 0.0024 0.0287 ± 0.0026 0.9716 ± 0.0020 0.9730 ± 0.0023 0.9076 ± 0.0036 0.9093 ± 0.0040
Yeast_spo5 0.0333 ± 0.0033 0.0315 ± 0.0030 0.9705 ± 0.0025 0.9720 ± 0.0024 0.9038 ± 0.0043 0.9049 ± 0.0052
Yeast_spoem 0.0285 ± 0.0023 0.0256 ± 0.0021 0.9754 ± 0.0019 0.9777 ± 0.0019 0.9076 ± 0.0036 0.9113 ± 0.0036
SJAFFE 0.0730 ± 0.0162 0.0672 ± 0.0091 0.9308 ± 0.0163 0.9366 ± 0.0085 0.8529 ± 0.0176 0.8572 ± 0.0106
SBU_3DFE 0.0907 ± 0.0048 0.0816 ± 0.0061 0.9118 ± 0.0047 0.9197 ± 0.0058 0.8394 ± 0.0053 0.8474 ± 0.0060
Natural_Scene 1.1924 ± 0.0765 0.9908 ± 0.0654 0.7043 ± 0.0137 0.7295 ± 0.0126 0.5634 ± 0.0098 0.5705 ± 0.0125

Average 0.1170 ± 0.0085 0.0997 ± 0.0072 0.9534 ± 0.0035 0.9570 ± 0.0029 0.8925 ± 0.0045 0.8951 ± 0.0041

Another interesting information to analyse is the reduction ratio obtained by the proposed method.
In Figure 3 we show the percentage of selected prototypes and features with respect to the initial
training set. In the case of features we represent the average percentage since each of the output labels
can be represented by a different number of features.

The average percentage is around 53% for both, prototypes and features, varying more
significantly for the SJAFFE and SBU_3DFE datasets where the reduction ratio decreases significantly.
This percentaje of data reduction will have a huge impact in the performance of the learner.
In instance-based methods like AA-kNN, the fact of handling about half of the prototypes and
features, will lead to a reduction of computation time in the prediction phase.

Table 5. Wilcoxon Signed Ranks test comparing ProLSFEO-LDL vs. AA-kNN.

Measure R+ R− p-Value

Cheby 87 4 0.0017
Clark 77 14 0.0266
Can 78 13 0.0215
KL 91 0 0.0002
Cos 91 0 0.0002
Inter 91 0 0.0002
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Figure 2. Bayesian Sign test comparing AA-kNN(L) vs. ProLSFEO-LDL(R). (a) Chebyshev Distance.
(b) Clark Distance. (c) Canberra Metric. (d) Kullback–Leibler Divergence. (e) Cosine Coefficient.
(f) Intersection Similarity.

Figure 3. Number of selected prototypes and features (%).

6. Conclusions

In this paper, we proposed a novel data reduction algorithm that adapts to LDL constraints.
It simultaneously address the prototype selection and the label-specific feature selection with two
objectives: finding an optimal subset of samples to improve the performance of the AA-kNN learner
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and selecting a subset of characteristics specific for each one of the output label. Both tasks have
been addressed as search problems using an evolutionary algorithm, based on CHC, to optimize
the solution.

In order to verify the effectiveness of the solution designed, ProLSFEO-LDL has been applied
on several real-world LDL datasets, showing significant improvements compared to the use of the
raw training set. The results of the different measures highlights the best ranking of ProLSFEO-LDL,
outcomes subsequently corroborated by statistical tests. In addition, the percentaje of data reduction
reached leads to a significant improvement of prediction time.

In future studies we may introduce some further comparisons between already existing
approaches and also make improvements to the presented proposal such as:

• It might be interesting to compare the results obtained by this study with the following techniques:
LDLSF [31] and Binary Coding bases LDL [40].

• Complement the experimental analysis by dealing with larger datasets (Big Data). To this end,
we will complement the current proposal with some of the big data reduction techniques
presented in [71].

• The experimental settings use the AA-KNN learner to measure the quality of the solution applied
over the pre-processed dataset. Other more powerful LDL learners could be considered for this
task but they must previously be adapted to support the label-specific feature selection. With this
we will be able to carry out more adequate comparisons with state-of-the-art LDL methods like
LDLFs proposed in [17] or StructRF [20].

• Another interesting study that we will undertake is how the presence of noise at the label side can
affect the performance. In real scenarios the data gathering is often an automatic procedure that
can lead to incorrect sample labelling. It would be interesting to inject some artificial noise to the
training labels in order to check the robustness of the implemented approach.
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