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Abstract

Knowledge of population dynamics of threatened species in the wild is key to effective con-

servation actions. However, at present, there are many examples of endangered animals

for which their current situation is unknown, and not just in remote areas and less developed

countries. We have explored this topic by studying the paradigmatic case of the European

wildcat (Felis silvestris silvestris), an endangered small carnivore whose status has been

subjectively established on the basis of non-systematic approaches and opportunistic rec-

ords. Little is known about its demographic situation, prompting the need for information to

improve conservation measures. However, the secretive behaviour of felines along with its

low density in natural conditions have prevented the gathering of sufficient data. We devel-

oped a field sampling strategy for one of the largest populations (Andalusia, South Spain,

87,268 km2), based on a logistically viable systematic non-intrusive survey by camera-trap-

ping. This study offers the first large-scale estimation for any European wildcat population,

based on analytical approaches applied on Species Distribution Models. A hierarchical

approach based on a Maxent model for distribution estimation was used, along with Gener-

alised Linear Models for density estimation from explicit spatial capture-recapture data. Our

results show that the distribution range is smaller and more highly fragmented than previ-

ously assumed. The overall estimated density was very low (0.069 ±0.0019 wildcats/km2)

and the protected areas network seems to be insufficient to cover a significant part of the

population or a viable nucleus in demographic terms. Indeed, the most important areas

remain unprotected. Our main recommendations are to improve the protected area network

and/or vigilance programs in hunting estates, in addition to studying and improving connec-

tivity between the main population patches.
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Introduction

Knowledge of the population dynamics of threatened species in the wild is key to effective con-

servation actions [1, 2]. While this is an obvious idea, at present, there are many examples of

endangered animals for which their current situation is unknown, and not only in remote areas

and less developed countries. This is the paradigmatic case of the European wildcat (Felis silves-
tris silvestris), an emblematic feline that has been the target of several studies on its ecology (e.g.

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) and especially, on its problematic hybridization with

domestic cats [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Today, it is assumed to be an endan-

gered taxa in most of the countries in which it lives [28]. It is a legally protected species in

Europe, both through the Bern Convention and the European Habitats Directive, which con-

sider the wildcat as “strictly protected”. The available distribution maps show a severely frag-

mented range, with the main patches in the Iberian Peninsula, France, Germany and the

eastern countries of Europe (see a compilation in [28]). However, most of these maps (if not all)

have been subjectively built on the basis of non-systematic approaches, using opportunistic rec-

ords which could be assumed to be unchecked following the detailed phenotypic examination

needed for hybridization detection [29, 30, 31]. In fact, these kind of data have traditionally

been the sole source of information to define the wildcat’s conservation status (see e.g. the case

of Spain, where one of the largest populations survives; [32]). Hence, we must ask what is the

current situation of the European wildcat populations? More simply, how many “pure” Euro-

pean wildcats are left and how many live under the umbrella of the protected areas network,

such as in national parks or other reserves? A paradoxical situation has arisen in which the ecol-

ogy of the subspecies is well-known, due to ample research on this topic, while very little is

known about the species’ demographic situation; at the same time, answers to the latter question

are critical for the effective conservation of these endangered European wildcats. However, the

secretive behaviour of felines along with its low densities in natural conditions [33] have pre-

vented answers to these questions until now. A large-scale conservation strategy for a species

must take into account the complexity of density-niche relationships [34] and simultaneously

overcome the huge challenges posed by density estimations over large spatial scales (e.g. [35]).

Fortunately, today there is a set of useful methods available to both calculate densities of

elusive species [36] and to predict potential distribution and density estimates over large

regions based on suitability indexes derived from niche-species models [34]. The use of solid

density estimates and robust predictions of suitable areas for the distribution of species allow

managers to take well-informed conservation decisions over large spatial scales with reduced

field and economic effort. Furthermore, combinations of these methods are also useful to

develop long-term monitoring programs, a key element for any strategic conservation pro-

gramme of an endangered species [37, 38].

For abundance estimations, non-intrusive capture-recapture approaches based on camera-

trapping or molecular identification of scats and hairs [39] have proven highly efficient for

felines (e.g. [39, 40, 41]), including in the case of the rare European wildcat [12, 42, 43, 44, 45,

46, 47]. On the other hand, during the last decades, species distribution models (hereafter

SDMs) have been developed to provide solutions to a wide range of ecological, biogeographical

and conservation problems (reviewed in [48]). Statistical methods to calculate distribution

ranges and suitability indexes of abundance from partially known occurrence data are avail-

able (e.g. [34, 49, 50]). SDMs are especially robust when a good dataset of environmental pre-

dictors is available, as has been established for our target species in Germany [51] or Portugal

[11] and for other felines elsewhere [52, 53, 54, 55]. Finally, non-intrusive surveys of wildcats

have proven to be optimal approaches to estimate the degree of genetic introgression of the

domestic cat [43, 46, 47].
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The present study aims to evaluate the use of these combined sets of field and analytical

methods, to carry out large-scale spatial surveys on the status of European wildcat populations,

as a practical example of the demographic diagnosis of felines by non-intrusive surveys that

can be useful elsewhere. We have developed a field sampling strategy of one of the largest pop-

ulations of the species, located in mid-southern Spain in the Andalusia region, where a logisti-

cally viable survey was designed to be carried out by practitioners and for long-term

monitoring. From the resulting field data, our goals were: (1) to estimate the entire population

of wildcats in Andalusia; (2) to estimate domestic (feral) cat abundance in the wild in order to

approximate the hybridization problem; and (3) to evaluate the contribution of the protected

areas network to European wildcat conservation.

Materials and Methods

Study area

The study was carried out in Andalusia (87,268 km2), southern Spain (Fig 1). Andalusia is a

typical Mediterranean area made up of three main regions (Fig 1), from north to south: (1)

Sierra Morena, is a low mountain range (altitude 50–1298 m a.s.l.) dominated by well-pre-

served Mediterranean oak forests (Quercus ilex, Q. suber, Q. faginea) and scrublands (Arbutus
unedo, Phylliera altifolia, Cistus ladanifer, Lavandula stoechas), and some pine plantations

(Pinus pinea, P. pinaster). The main uses of land are big game (Cervus elaphus, Sus scrofa) and

cattle, with a relatively low human density. It is one of the best-preserved areas in Europe,

holding the largest population of the endangered Iberian lynx (Lynx pardinus). (2) Guadalqui-
vir River valley, is a low-land region (0–500 m a.s.l.) transformed by cultivation, mainly of

olive trees, sunflower and cereal crops and is densely populated by humans. The only remain-

ing patch of wild landscape in this area is the Doñana plain (Fig 1), which is very important for

wildlife conservation at an international level. (3) The Sierras Béticas are a complex mountain

system (0–3478 m a.s.l.) where the impact of crops (olive and almond trees, cereal) and cattle

has led to severe degradation of natural vegetation; the autochthonous forests and scrublands

are fragmented (Fig 1), although they hold one of the highest levels of botanical diversity and

uniqueness in Europe [56], from moist cork oak forests in the west to arid sub-desert scrubs in

the east, with autochthonous boreal relicts of pine forests (P. sylvestris) in the highest moun-

tains. Human density is spatially variable but relatively high on average.

The wildcat is assumed to be well distributed along the Sierra Morena and the Sierras Béti-

cas, a range based on opportunistic unconfirmed records [32]. Twenty-four Natural Parks and

two National Parks cover 17.58% of the study area (15.338,88 km2), providing protection to

most of Doñana, and patches of the Sierra Morena and Sierras Béticas ranges (Fig 1).

Field surveys

Three types of non-intrusive field surveys have been successfully developed for the wildcat:

camera-trapping [44, 45, 46, 47], scat sampling for molecular identification [46] and hair sam-

pling, also for genetics [42]. We used the first two methods, while ongoing field studies by our

team are showing a lesser efficiency of hair traps in our study area. Twenty-two survey blocks

(Fig 1) were distributed in Sierra Morena (10 blocks) and Sierras Béticas (12 blocks) between

2011 and 2015; this distribution was biased towards eastern Andalusia mainly because the hab-

itats there are much more heterogeneous and representative of the other areas. All sampling

blocks were selected first assuming that they were included in the potential habitats of the

wildcat (see study area), and second, attempting to represent the main forest and scrubland

types of the overall potential range within Andalusia. Third, limitations of access facilities and/

or authorizations for private lands were considered.
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For each block, we designed a conventional camera-trapping survey, consisting of the

installation of 8–12 camera traps in most cases (Table 1) following the procedure described by

Gil-Sánchez et al. [47]. Lures were used in all the blocks, both live pigeons in cages (12 blocks)

and lynx urine (9 blocks, Table 1). The urine was employed within areas of high risk of robbery

and vandalism, because this type of lure makes it easy to camouflage the cameras. Lynx urine

was found to be slightly less efficient for wildcats compared to pigeon lures [47], and therefore

we assumed lower effects on the comparative results. The cameras were infrared-triggered

(DLC Covert™, Leaf River™ model IR-5 and Scout Guard™ model SG565F-BM), with a sam-

pling period for each camera ranging from two to three months. To increase the field data set,

we used the results of seven camera-trapping surveys carried out by other teams and data from

two published surveys ([43, 57]; see Fig 1).

Fig 1. Study area showing the distribution of the camera-trapping blocks (dots) within Andalusia and the distribution range assumed for the European wildcat

[94]. Geographic areas considered in the present study: A Sierras Béticas, B Sierra Morena, C Doñana. Block 23 was carried out by Gómez-Chicano et al. [57]; and

blocks 24, 25 and 26 by Soto and Palomares [43].

https://doi.org/10.1371/journal.pone.0227708.g001
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Table 1. Details of the 26 systematic camera-trapping blocks (see Fig 1 for location of each). Grey rows: sampling blocks with SCR calculations (N = 11, see details in

Table 2); lure: (p) pigeon bait, (o) lynx urine, �data from Simón et al. [58].

#Block Coordinates Camera

stations

(lure)

Camera

days

Wildcat Domestic cat Hybrid cat Walked

km

Cat

scats

Rabbit

(latrines/

km)
Individ. Captures Cap/

100

cam-

day

D
(ind./

100

km2)

individ. captures Individ. captures

1 38.168266–

3.959968

14 (p) 1333 4 7 0.52 6.59 0 0 0 0 10.9 0 19.08

2 38.175024–

4.010570

16 (p) 924 3 3 0.32 4.68 0 0 0 0 17.3 0 14.68

3 38.229479–

4.167551

9 (p) 769 4 14 1.82 6.55 0 0 0 0 9.9 0 5.03

4 38.305422–

4.187788

5 (p) 335 2 5 1.49 5.95 0 0 0 0 7.5 0 7.38

5 38.182323–

4.156388

5 (p) 336 0 0 0 0 0 0 0 0 5.2 0 0

6 38.491827 -3-

264204

12 (p) 998 2 17 1.70 4.90 0 0 0 0 5.4 0 25.9

7 38.471045–

3.448069

4 (o) 1288 3 9 0.69 4.49 0 0 0 0 9.2 1 35,76

8 38.162388–

3.570727

4 (o) 180 2 16 8.88 19.48 0 0 0 0 14.4 3 34,48

9 38.161735 -3-

512425

4 (o) 148 2 2 1.35 5.70 1 1 0 0 - - -

10 37.479996–

6.658689

10 (o) 180 0 0 0 0 0 0 0 0 - - 0�

11 37.097731–

3,494577

10 (p) 686 1 1 0.14 2.67 0 0 0 0 20.1 2 0

12 36.960573–

3.407763

12 (p) 840 2 3 0.35 4.25 2 2 0 0 10.5 0 0

13 37.191936–

3.251752

9 (p) 544 1 1 0.18 3.18 0 0 0 0 12.8 0 0

14 37.125307–

3.075088

10 (p) 686 1 1 0.14 2.56 0 0 0 0 23.7 0 0,97

15 37.063330–

2.995206

11 (p) 763 3 10 1.31 6.11 0 0 0 0 12.8 0 0.078

16 37.084784–

2.766284

12 (p) 759 5 37 4.87 10.46 0 0 0 0 12.2 0 0.32

17 37.296489–

3.401067

8 (o) 457 1 2 0.43 4.01 0 0 0 0 51.5 0 3.66

18 37.377995–

3.417979

16 (o) 450 7 32 7.11 17.55 0 0 0 0 74.1 2 29,29

19 36.997621–

3.817692

7 (o) 200 1 1 0.50 4.14 0 0 0 0 24.6 0 13.26

20 37.021747–

4.217015

8 (o) 351 0 0 0 0 2 5 0 0 5.0 1 39.5

21 36.499840–

5.460368

10 (o) 647 0 0 0 0 0 0 0 0 6.5 0 0.1

22 36.792605–

5.397782

12 (o) 1020 0 0 0 0 0 0 0 0 108.7 0 0.05

23 36.242679–

5.609176

7 (p) - 0 0 0 0 0 0 0 0 - - 0�

24 37.146208–

6.551801

124 (p,o) 4329 4 23 0.53 4.19 2 2 3 3 - - 5.83�

(Continued)
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For most of the sampling blocks (n = 19, Table 1) and simultaneously for the remote camera

surveys, walking surveys of scats were designed following the protocols of Anile et al. [46].

However, after an effort of 442.3 walked km (see Table 1) carried out by well-trained personnel

(J. M. Gil-Sánchez; J. Herrera-Sánchez), only nine putative wildcat scats were found. There-

fore, this method was inefficient for our study area. The walking surveys were used to sample

rabbit latrines, as a method to estimate the abundance of this key prey species for wildcat in

the Iberian Peninsula [10, 13]. The sampling period lasted from 2011 to 2015.

Identification of cats

We identified each individual as a domestic cat, wildcat or as a hybrid cat after a detailed

examination of the coat patterns and the shape of the tail [29, 30, 45, 47]. Seventeen wildcats of

our study area were genetically examined in order to detect hybridization with domestic cat

[30]; we found that the phenotypic traits of genetically pure individuals of our study area were

very constant, and we only considered typical wildcats from camera trapping as “pure” indi-

viduals (most of them identical to WC1 in Fig 2 of [30]; see some pictures from camera traps

in [47]). Camera traps detected three putative hybrid cats (see Results), which had coat pattern

and tail shape were very close to typical wildcats, but had wide white patches on the pelage.

Environmental data

To model the distribution and abundance of the wildcat in the study area, we incorporated 54

environmental descriptors attending to five conceptual groups (climatic, relief, vegetation,

water availability and human presence) of environmental variables selected to represent differ-

ent resources. All the variables were obtained at 40-metre resolution. Previous to the modelling

approach, we evaluated Pearson correlations among these selected independent variables to

avoid multicolinearity in the models [59]. We chose those with the greatest biological signifi-

cance for wildcats based on our expertise and on the habitat preferences previously described

for this species [7, 11, 13, 51]. We carried out the same exploration, looking for the variables

statistically related to rabbit abundance that were evaluated in the systematic blocks. As a

result, we obtained a list of 25 uncorrelated environmental predictors (Table 2). The unique

climatic variable was cumulative rainfall. To obtain annual averages of rainfall at a 40-metre

resolution we applied the climate mapping method proposed by Ninyerola et al. [60], taking as

an input the daily records of 1000 weather stations contained in the Andalusian Information

Subsystem for Environmental Climatology. Topographic and water availability-related vari-

ables were calculated from a 40 meter resolution terrain elevation model provided by the Envi-

ronmental Information Network of Andalusia (REDIAM, Andalusia Government). The

elevation model was then processed through GRASS GIS software (GRASS Development

Team, 2009) using R.PARAM.SCALE, R.SLOPE.ASPECT, R.TERRAFLOW, R.SUN and R.

Table 1. (Continued)

#Block Coordinates Camera

stations

(lure)

Camera

days

Wildcat Domestic cat Hybrid cat Walked

km

Cat

scats

Rabbit

(latrines/

km)
Individ. Captures Cap/

100

cam-

day

D
(ind./

100

km2)

individ. captures Individ. captures

25 37.004890–

6.505503

35 (p,o) 1190 0 0 0 0 0 0 0 0 - - 6.73�

26 36.964384–

6.450216

7 (p,o) 242 2 5 2.06 6.99 0 0 0 0 10.33

https://doi.org/10.1371/journal.pone.0227708.t001
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RECODE modules. Land cover or land use variables were obtained from the land cover and

land use map of Andalusia (SIOSE Andalusia, year 2003, scale 1:25:000). These vector maps

were then transformed into raster maps and the distance to target entities were calculated

using V.EXTRACT, V.TO.RAST and R.GROW.DISTANCE GRASS GIS modules. Frequen-

cies were also calculated from these rasters using a neighborhood analysis through R.NEIGH-

BORS GRASS GIS module. The result was the number of pixels with a presence of a given

entity within a 1000-metre radius.

Niche models based on presence-only data

To model the distribution of the wildcat in Andalusia, we first selected a dataset of indepen-

dent samples from camera-trapping. We only used locations separated by at least 1887 metres

(n = 68). This distance was the average wildcat home range radius in Iberian Mediterranean

ecosystems of the southern Iberian Peninsula [11]. SDMs were performed using MaxEnt (ver-

sion 3.4.1k; [61, 62]), after checking recommendations by Merow et al. [63] and Yackulic et al.

[64]. MaxEnt provides SDMs from presence-only species records and shows good predictive

performance when the presence dataset sample is low in comparison to other modelling algo-

rithms, as it was in our case [65]. MaxEnt models were generated, after 500 iterations, with the

dataset of 68 presence records. The final result of the MaxEnt model was a continuous map

that was transformed into binary using a cutoff point where sensitivity equals specificity. This

threshold probability was 0.262. Finally, we removed potential habitat patches of less than 228

Table 2. Estimates of relative contributions of the environmental variables to the MaxEnt model.

Variable Percent contribution Permutation importance

Frequency of cultivated areas 16.8 17.5

Frequency of oak forests 11.1 3.4

Frequency of urban areas 9.7 17.9

Distance to water bodies 9.5 2

Precipitation (accumulated) 5.8 4.4

Frequency of pine forests 4.6 1.7

Frequency of forest 3.7 1.7

Frequency of eucalyptus plantations 1.9 1.6

NDVI (Normalized Difference Vegetation Index) 1.8 2.6

Frequency of dense scrubland 2.7 1.7

Frequency of pasturelands 4.3 3.6

Elevation 4.3 13.3

Convergence index 0.7 0.6

Hour of sun during winter 1.5 0.6

Medium solar radiation during winter 1.5 0.1

Frequency of olive cultivations 1.5 7.3

Topographic exposure 0.6 1.8

Slope 3.2 1.8

Distance to roads 3.2 4.3

Medium solar radiation during summer 3.2 0.5

Frequency of dispersed scrubland 4 4.2

Frequency of water bodies 2 3.1

Solar radiation during summer 0.2 0.1

South-North gradient 1 2.2

East-West gradient 1 2.1

https://doi.org/10.1371/journal.pone.0227708.t002
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hectares, equivalent to the minimum female wildcat home range described within a southern

Iberian Mediterranean ecosystem [11].

Our model performance was evaluated using a receiver operating characteristic (ROC)

curve. From this curve, the area under the ROC curve value (AUC) is a widely-accepted

method to evaluate SDM performance (e.g. [65]). The MaxEnt output was re-evaluated by

comparing the predictive map with radio-tracking data (see [51]). We used 370 independent

locations of nine resident radio-tagged wildcats (four adult females and five adult males),

which were captured within a camera-trapping block (#18, Fig 1) in the Béticas range; radio-

tracking periods were March 2003 to September 2004 and November 2017 to February 2019.

Following a scientific standardized protocol designed and largely used for our target species

[15], animals were captured with box-traps (metal cages of 100 x 50 x 70 cm, porting in our

case a wooden roof to prevent from sun or rains), using live house pigeons (Columba sp.) as

lure, unavailable to captured carnivores thanks to an isolation cage that prevents injuries. The

pigeons were released at the end of the trapping sessions. Box-traps were checked daily after

sunrise and before sunset, in order to minimize animal stress and to supply food and water to

pigeons. Alternatives capture methods for wildcats (e.g. leg-hold traps or snare traps) have a

large risk to fatal injuries and, therefore, were rejected. Following the wildlife laws of Spain

(which include any ethic consideration), this research was approved by the regional environ-

mental authorities (Consejerı́a de Medio Ambiente y Ordenación del Territorio, Dpto. Geodi-

versidad y Biodiversidad, approval number: 201699900550733). Once the cats were captured,

they were immobilized by veterinarians using an anesthetic (Xylazine and ketamine hydro-

chloride) at a dose of 10 mg kg−1. To evaluate the accuracy of MaxEnt, we explored the lineal

distance to the nearest predicted patch by pooling it into five categories: inside optimal patch

(0 m.), at<250 m, at<500 m, at<1000 m and at>1000 m, carrying out a Chi-square test to

evaluate if the observed frequency distribution was different from the null distribution.

Density estimations of wildcats

Only adult or sub-adult individuals were taken into account to avoid seasonal effects. Once the

taxonomic status was established, each cat was individually identified following the protocol of

Anile et al. [45]. We then carried out density estimation within each sampling block by using spa-

tially explicit capture-recapture (SCR) models, that are thinned spatial point process models used

to make inferences about the abundance and distribution of animal activity centres [66, 67]. SCR

models allow for inference about population size and density by modelling capture probability as

a function of the distance between activity centres and detectors (e.g. camera-traps). The SCR cap-

ture probability function typically includes two main parameters: the scale parameter of the half-

normal distribution (sigma), which is determined by home range size; and the baseline detection

rate, that is the probability of encountering an individual at its activity centre. In order to improve

parameter estimates when sample sizes (spatial recaptures) were small [68, 69, 70], we used mod-

els in a Bayesian approach sharing among sites sigma and baseline detection parameters. The

models were fitted using a script written in Nimble [71, 72] and R [73]. Three parallel Markov

chains with 100.000 iterations each (burn-in = 1000 iterations, thinning rate = 1) were run. The

Gelman–Rubin statistic, R-hat [74], was used for checking chain convergence, which compares

between and within chain variation [75]. R-hat values below 1.1 indicate convergence.

We carried out the SCR calculations for eleven blocks holding more than nine camera sta-

tions (Table 1); with them, we carried out a regression analysis between density estimations

(individuals /km2) and relative abundance (captures/100 camera-days) with the goal of ob-

taining a formula for transforming to density the relative abundance of the rest of the blocks

[76, 77].
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Population size-niche predictor relationships

We used generalised linear models (GLM) where the response variable was the density of wild-

cats. In these models, we used as explanatory variables the 25 variables cited above (Table 2).

These variables were quantified within a 3-km circle centred at the centre of each remote cam-

era-sampling block, resulting in a buffer that included the whole minor convex polygon of

every block. We also excluded the four blocks with the highest presence of Iberian lynx (#1, #2,

#3 and #9, Table 1; data from our survey) since strong competitive exclusion was expected [58]

independently of the environmental descriptors, which hampered the accuracy of the results

as we confirmed in early GLM calculations. We carried out a GLM analysis with normal error

distribution (confirmed by Kolmogorov-Smirnov tests and q-q plots) and identity link func-

tion. For model selection, we first selected explanatory variables with significant associations

with the response variable in univariate tests (Rp correlation). To find the best model explain-

ing wildcat density we used a multi-model selection approach where the importance of vari-

ables and the values of estimate coefficients were averaged across similarly supported models

[78]. In brief, we evaluated all combinations of predictors and models with different levels of

complexity. We selected only the models with AICc values lower than two in relation to the

best model (lower value of AICc). We also computed the relative importance of the variables

from their Akaike weights (Wi) and the average values of the estimated coefficients and their

standard errors [78]. To analyse the model fit, we calculated the R-squared of the final model.

We carried out the statistical analyses with R software version 3.4.2 [73] using the package

MuMIn [79] for multi-model selection.

Population size estimation and coverage of protected areas

The best GLM model was resampled from a 40-metre resolution raster to a UTM 5x5 km

square net (using the spatial analysis extension on ArcMap 10). The 5x5 UTM square is a geo-

graphic unit similar in size (25 km2) to the average camera sampling circle (28.2km2), and thus

it has a remarkable biological significance for European wildcat spatial ecology (range of terri-

tory in southern Mediterranean Iberian Peninsula = 1.70–13.71km2 [11, 15]). We overlapped

the 5x5 km square net with the resulting MaxEnt wildcat distribution map of Andalusia, and

then removed the 5x5 km squares with less than 10% of potential presence (<2.5 km2), since

they did not reach the minimum size for a female wildcat territory (2.28 km2 [11]). The popu-

lation size N (mean, standard error and 95% of confidence interval) was calculated from the

spatial estimate values of density as: N = (∑di/d)�S, with di being the density of each 5x5 km

square, d the total number of squares and S the total range size (km2) derived from the MaxEnt

presence surface within the 5x5 km squares.

To estimate the wildcat population covered by each National or Natural park (hereafter

Natural Protected Areas or NPAs), we carried out the same calculations previously described.

For our analyses, we only considered UTM 5x5 with at least 75% of its area included in the

NPA.

Results

Distribution range inference

The MaxEnt model shows a very high predictive performance, in that the training AUC was

0.96. Thus, the model can be considered as potentially useful (see ROC curve in S1 Fig). The

most important environmental predictor was agricultural lands frequency with a negative

response curve, followed by the frequency of oak forests with a positive response, the frequency

of urban areas with a negative response, the distance to water bodies with a positive response

Fragmentation and low density in southernmost populations of the European wildcat

PLOS ONE | https://doi.org/10.1371/journal.pone.0227708 January 28, 2020 9 / 21

https://doi.org/10.1371/journal.pone.0227708


and altitude with a positive (but partially semi-quadratic) response (Table 2; S2 Fig). The rest

of the predictors showed low contribution ranging from 0.1–5.8% of contribution and permu-

tation importance (Table 2; see response curves in S1 Fig and Jackknife test in S3 Fig).

The surface defined by our model shows a potential distribution for the European wildcat

in the study area of 8558.73 km2. This area is distributed in 476 patches with an average size of

15.89 km2 (range 2.28–5651.14 km2). Eighty percent of the total area is concentrated in 7.8%

of the largest patches and this implies that the majority of the distribution area of the European

wildcat in Andalusia is restricted to 37 localities. The distribution model results showed two

main populations (Fig 2): the largest one with a continuous distribution at Sierra Morena

(4652.87 km2), and another largely fragmented one at Sierras Béticas (3730.61 km2), where

the main optimal patches were located in the western mountains. Doñana (175.24 km2)

appeared as a secondary and somewhat isolated optimal area, but spatially related to Sierra

Morena (Fig 2).

A percentage of 48.1 of the radio-tracking locations fell within the predicted range, 24.8% at

<250 m, 11.6% at<500 m, 7.0% at<1000 m and 8.1% at>1000 m. The Chi-square test

showed that this observed frequency distribution was different from the null distribution (Chi-

square = 85.9; P<0.00001). The average lineal distance to the nearest predicted patch was

323.5 m (ES = 40.9 m). Only the home range of one male in 2003–2004 fell outside of the pre-

dicted range; this home range was unoccupied during 2018 (J.M. Gil-Sánchez data from inten-

sive camera-trapping).

Fig 2. Wildcat potential distribution in the study area modelled with MaxEnt (patches of more than 228 hectares, see text for further details).

https://doi.org/10.1371/journal.pone.0227708.g002
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Density estimations of wild-living cats

Forty-four wildcats were captured on 189 occasions at 19 systematic blocks (Table 1). SECR

calculations showed a wide range of densities, from 0.02 to 0.17 wildcats/km2, although low

densities were the most frequent (Table 3). We found a significant relationship (Rs = 0.92,

P = 0.0001) between D and the capture rate for the eleven available blocks with D estimation.

Therefore, we used this lineal regression formula (wildcats/100 km2 = (1.83�captures/100 cam-

era-days) + 3.23) to estimate D for the rest of the blocks (Table 1). The captures of wild-living

domestic cats (both feral cats sensu stricto and roaming house cats) did not allow for density

calculations; there were only seven individuals with nine captures (Table 1). They were

detected in 14.8% of the sampling blocks. Only four putative hybrids were detected in four

blocks, three of them in Doñana (see pictures in [43]) and another in a non-systematic block

in Sierra Morena. The capture rates (individuals/100 camera days) were 1.39 for wildcats,

0.098 for domestic cats and 0.029 for putative hybrids (2.04% of apparent hybridization rate).

Population size modelling

We only detected two significant predictors with wildcat density: olive crop cover (Rp = 0.66,

P = 0.002) and precipitation (Rp = -0.49, P = 0.049). Rabbit abundance index (latrines/km)

showed a positive relationship with wildcat density (Rp = 0.54, P = 0.009) and olive crops (Rp =

0.74, P = 0.0001), and a negative relationship with precipitation (Rp = -0.39, P = 0.032). The multi-

model GLM performed with the two predictors generated a final model including both variables,

although olive crop cover showed higher relative importance than precipitation (1 vs 0.32). The

multimodel approach laid two equally probable models, one including only olive crop cover and

another including the two predictors. The model with only olive crop cover showed a lower AICc

value, and higher Akaike Weight (Table 4). Adjusted R-squared values indicated a good fit of the

model including both variables, which explained 59.73% of the total variance of wildcat density.

Parameter estimates of the full-averaged coefficients of the model can be seen in Table 4.

The distribution of the regional wildcat abundance is shown in Fig 3, where three core

areas can be observed: central-eastern Sierra Morena, central-western Sierra Morena and

north-eastern Sierras Béticas, whereas the rest of the range usually holds low or very low densi-

ties. Total estimation was near one thousand individuals, with more than five hundred in

Table 3. Density estimations (individual/km2) by Bayesian Spatial Explicit Capture Recapture models (block #18 to #14). See Table 1 for details of each sampling

block. λ0 is the baseline detection rate, and σ the parameter of scale from the half-normal distribution, related to the home range.

Quantiles

# block mean sd CV 2.50% 50% 97.50%

18 0.1755 0.0677 0.39 0.0745 0.1663 0.3383

16 0.1046 0.0437 0.42 0.0438 0.0938 0.2126

1 0.0659 0.0290 0.44 0.0270 0.0595 0.1351

3 0.0655 0.0288 0.44 0.0243 0.0582 0.1359

15 0.0611 0.0301 0.49 0.0226 0.0566 0.1359

6 0.0490 0.0286 0.58 0.0135 0.0404 0.1211

2 0.0468 0.0232 0.50 0.0175 0.0437 0.1048

12 0.0425 0.0252 0.59 0.0109 0.0382 0.1036

17 0.0318 0.0237 0.74 0.0060 0.0240 0.0960

11 0.0267 0.0200 0.75 0.0049 0.0197 0.0789

14 0.0256 0.0191 0.75 0.0049 0.0198 0.0741

λ0 0.0287 0.0068 0.24 0.0182 0.0278 0.0444

σ 1.3828 0.1678 0.12 1.0953 1.3678 1.7511

https://doi.org/10.1371/journal.pone.0227708.t003
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Sierra Morena, close to four hundred in Sierras Béticas and less than a dozen in Doñana (see

details in Table 5).

Protected areas cover

The estimated population of wildcats under spatial protection by NPAs is shown in Table 5.

Our SDM shows that the potential area of the European wildcat in Andalusia includes 23 of 24

Table 4. Upper bold line: best selected models in multimodel GLM with the wildcat density as a response variable

and olive crop cover and precipitation as predictors. We show the AICc values, ΔAICc and Akaike weights of each

supported model. Lower bold line: model-averaged coefficients from the multimodel GLM with wildcat density as a

response variable and olive crop cover and precipitation as predictors. We show parameter estimates and their stan-

dard errors, and the Z values.

Model AICc ΔAICc Akaike weight

Olive crop cover

Olive crop cover+precipitation

-42.68

-41.13 1.54

0.68

0.32

Predictor Estimate SE estimate Z value

Intercept

Olive crop cover

Precipitation

0.043

0.010

0.00002

0.032

0.0027

0.00004

1.28

3.47

0.50

https://doi.org/10.1371/journal.pone.0227708.t004

Fig 3. GLM-estimated density of the European wildcat in the UTM 5x5 squares with presence predicted by the MaxEnt model.

https://doi.org/10.1371/journal.pone.0227708.g003
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Natural Parks and the two existing National Parks (Fig 2). Despite this, only 33.46% of the

potential area is protected, and only eight Natural Parks and one National Park have more

than one-third of its total area covered by potential wildcat areas. Overall, 25.9% of the esti-

mated wildcats would be under protection: 16.9% in Sierra Morena, 8.1% in the Sierras Béticas

and 1.0% in Doñana, out of the total estimated population.

Discussion

Camera-trapping for large-scale surveys

Our study represents the first large-scale estimation for any European wildcat population,

based both on systematic field surveys and analytical approaches applied on SDMs. For this

purpose, the use of camera-trapping has proven to be a logistically viable method for these

types of surveys designed for the target species, showing: (1) its utility in situations of very low

density (see also the case of the tiger Panthera tigris [75, 76]), and (2) its utility for practitioners

performing large-scale and long-term monitoring schemes (see the case of the Iberian lynx

[80]). These are key advantages over intrusive surveys like radio-tracking, which was previ-

ously used for modelling the habitat and distribution of the wildcat in central Europe [51].

Radio-tracking is usually biased towards areas that maximize the chances for captures of indi-

viduals to be tagged, and thus is carried out at a priori known areas of good density, as revealed

by studies carried out on European wildcats [11, 15, 51]. Our camera-trapping survey has

allowed for more randomly distributed surveys, hence covering a wider range of density situa-

tions. On the other hand, this non-intrusive survey may offer larger sample sizes in the sense

of the number of “captured” individuals, preventing redundancy of data. However, in contrast,

camera-trapping offers much less data for each individual and cannot allow accurate estimates

of home range areas, movements and spatial use of all elements of the landscape. Moreover,

for the wildcat, it may present some limitations for correctly identifying individuals, particu-

larly to determine if they are hybrids. Nonetheless, recent studies show that there is a great

concordance between external physical features (such as coat pattern) and genetic identity of

wildcats, allowing for reliable identifications [30]. Indeed, the presence of cryptic hybrids is

very low in the European wildcat populations, <10% [31, 81]. In any case, we recognise that

molecular sampling is a necessary tool to obtain the most precise information on the genetic

introgression of the domestic cat. Anyway, camera-trapping represents an optimal method to

Table 5. Wildcat population estimations in Andalusia, and percentages of the population under spatial protection by national and natural parks (n: number of 5x5

km squares).

Wildcat total area

(km2)

Wildcat protected area

(km2)

Dtotal
(indiv./100km2) 95%

IC

Dprotected
(indiv./100km2) 95%

IC

Ntotal
95%IC

Nprotegida
95%IC

% protected N

Andalusia 7563.33 2530.78 11.37

10.50–12.24

n = 793

8.81

7.76–9.87

n = 237

860

794–

926

223

196–250

25.9

Sierra Morena

range

4479.62 1296.86 11.65

10.54–12.76

n = 448

11.31

8.67–11.94

n = 100

522

472–

571

146

112–155

27.9

Sierras Béticas

range

2850.07 1060.99 11.18

9.73–12.63

n = 323

6.60

5.25–7.95

n = 115

319

277–

360

70

56–84

21.9

Doñana range 233.64 172.92 8.49

4.02–12.96

n = 22

5.35

5.31–5.40

n = 13

20

9–30

9

9–9

45

https://doi.org/10.1371/journal.pone.0227708.t005
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survey the demographic situation of domestic cats in the wild [47], as the main source of inter-

breeding risk.

In fact, camera-trapping is useful for density estimations, a widely acknowledged advantage

over other methods [82]. This is true for scat and hair samplings for molecular identification

applied to the wildcat as well [42, 46]. However, neither method, especially scat surveys, were

useful in our study area. This result could point to severe limitations of scat surveys for Euro-

pean wildcats (see, however, Lozano et al. [83]), again indicating the utility of camera-trapping

surveys over large areas.

Distribution and abundance modelling at a large scale

Our results show the reliability of SDMs to infer the distribution and abundance of an endan-

gered and elusive carnivore. Interestingly, we found that environmental variables can impact

distribution and abundance in largely different ways (see next section), supporting the use of

our hierarchical approach, beginning with a MaxEnt-based distribution map and then apply-

ing a GLM-based abundance analysis on the prior distribution map. This analytical procedure

improved the accuracy of results: e.g. if only the abundance model is applied on the whole

Andalusia region, then a largely unreliable map is obtained since olive trees are one of the

main crops in the Guadalquivir Valley, where wildcats are absent (see Study Area). For our

study case, MaxEnt allowed us to perform models using presence-only data, since this algo-

rithm can show a solid performance with small data sets [65, 84], as may be the case in the

majority of studies on elusive and rare species. Our distribution model shows a high predictive

ability following AUC, suggesting that even in limited sample size scenarios, modelling based

on presence data was useful to study wildcat distributions at broad scales. However, we recog-

nize that our results must be taken with some caution. First, the radio-tracking data suggest

that the MaxEnt output was conservative. Secondly, environmental covariates and individual

behaviour responses (e.g. related to baiting strategies) could affect detection probability [64].

Regardless, we were very cautionary and consistent with the sampling design. In fact, both

SCR estimations and the relationship of D with relative abundance shows that the positive rec-

ords were strongly related to the real abundance of wildcats.

The study of abundance patterns at a regional scale based on GLM models also showed

robust results in the case of wildcat in Andalusia. A weakness of our approach was that the

smaller optimal patches were penalized, whereas the spatial association of some of them could

result in more potential territories than predicted. In any case, this was a marginal situation

(see Fig 2) that could be assumed to be of negligible impact at our broad scale, although it

should be considered in more local studies.

Habitat inferences

It is well known that the European wildcat is associated with forests in central Europe [51] and

scrublands in Mediterranean landscapes of the Iberian Peninsula [7, 11, 13, 14, 15]. For the

Andalusia region, the crops had a key (and negative) effect on the predicted wildcat presence,

as it is a landscape feature dictating the significant fragmentation observed in the wildcat dis-

tribution. On the other hand, Mediterranean oak forests (mainly made up of holm oaks) had a

key positive effect on the predicted wildcat presence, as a habitat that represents one of the

main natural landscapes of the Iberian Peninsula [56]. Andalusian wildcats trend to inhabit

patches of oak forests (especially xeric ones) somewhat separated from villages and water

courses. The positive selection of the oak forest is not supported by some previous studies on

wildcat habitat selection in Mediterranean landscapes, which locally described scrublands as

key habitats but not oak forests ([7, 11, 13] but see Oliveira et al. [15]). Nonetheless, the
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Mediterranean scrublands show a huge diversity and geographic variability. In our study area,

most scrubland types in the southern middle of the Iberian Peninsula were available [56].

However, although they may be well represented in the wildcat habitat in Andalusia [14],

scrublands had marginal effects in the best predictive model of presence. This could be a result

of pooling this complex vegetation into only two types (Table 2), which may not allow differ-

entiation between some types of scrubs selected by wildcats [11, 13] from others avoided by

wildcats, such as the hyper-xeric formations of the eastern Andalusian sub-deserts (present

study). Scrub–pasture mosaics had a positive effect on wildcats in central Spain [7, 13], and

distance to meadows was a key variable for the wildcat prediction models carried out in central

Europe [51], showing some positive effects of pasturelands, which we did not find in our study

area. This is likely due to the xeric conditions of most of southern Spain.

Regarding wildcat abundance, the only two variables selected by the best model (% of olive

tree crops and accumulated annual rainfall) could be related to prey availability. This was con-

firmed for the case of the olive tree crops, which, although having a lower presence in the habi-

tat of wildcats, they showed a positive relationship to rabbit abundance (see as well Martı́n-

Dı́az et al. [14]). During the field walking surveys, we observed that the greater abundances of

rabbits were usually associated with mosaics of oak forest/scrublands together with olive tree

crops. We detected a negative effect of rainfall on wildcat abundance, being the main reason

for the low estimated densities within two of the largest and best conserved patches of Mediter-

ranean forests in Spain: the Alcornocales and Sierra de Grazalema Natural Parks at the western

Sierras Béticas, and the Sierra de Cazorla, Segura y las Villas Natural Park at the eastern Sierras

Béticas (compare Fig 1 and Fig 2). These two protected areas have the most precipitation for

the entire region, along with local areas of western Sierra Morena [56]. The abundance of rab-

bits is an important variable for the habitat selection models carried out in the Iberian Penin-

sula [10, 11, 13], where this lagomorph is a key prey for the species [9]. However, for our large-

scale survey we found that areas with low rabbit availability were not an exception within the

wildcat range (Table 1). Since rodents become a key prey group where rabbits are scarce in

southern Spain [8, 85], research on abundance of these preys and its relationships to landscape

features is needed to explain the observed negative effect of rainfall.

Implications for conservation and management

Our results show that the distribution range of one of the largest populations of the European

wildcat is actually lower than previously assumed (compare Fig 1 and Fig 2). Moreover, the

overall average estimated density in the 19 sampling blocks with confirmed wildcats, 0.069

±0.0019 wildcats/km2, could be evaluated as very low compared to densities reported by cam-

era-trapping elsewhere: 0.28 ±0.1 wildcats/ km2 in Sicilia [45] and 0.22 ±0.06 wildcats / km2 in

Turkey [86]. The protected areas network seems to be insufficient to cover a significant part of

the population or a viable nucleus for short-term conservation in genetic terms (with effective

population size Ne>50 individuals [87]). Indeed, the most important areas are unprotected

(Fig 3). Most of the distribution of wildcats is under hunting estates and it is known that the

species severely suffers from illegal and legal control of carnivore mammals to protect lesser

game [28]. Moreover, large game hunting can produce indirect negative effects on wildcats by

reducing the prey base [10]. The situation is worse for the Sierras Béticas, where the predicted

distribution range is both more restricted and fragmented, and probably unconnected to the

large and continuous population of Sierra Morena. On the other hand, the whole population

seems to be little affected by the hybridisation problem (except in Doñana National Park),

which was previously reported by local studies [30, 47]. We found very few domestic cats in

the sampled blocks, supporting at a large scale the hypothesis that severe ecological barriers
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may be preventing genetic introgression in Mediterranean mountain ranges [47, 88, 89]. In

fact, genetic surveys at the Iberian scale have shown very low levels of domestic cat introgres-

sion (see e.g. Oliveira, et al. [23]). Nevertheless, in other sites in the Iberian Peninsula, near

farms and villages, a relevant presence of domestic cats has been detected [12, 90].

Taking into account this large-scale diagnosis, we have three major recommendations for

the studied population: (1) improve monitoring programs of hunting states at least in the

main populations; (2) study and improve the connectivity between Sierra Morena and Sierras

Béticas, paying special attention to the internal connectivity within the largely fragmented Sier-

ras Béticas population; (3) review the protection laws, since in Andalusia the wildcat is not

listed in any threatened category [91], but its present situation does not appear optimistic:

<1000 individuals with Ne<100 individuals (10% of N [92]) distributed in a very fragmented

range. A similar scenario is highly likely for the rest of Spain, where this species is also not

included in any threat category [93].

Our approach can be used not only to update information about the European wildcat at

large spatial scales, but also to design viable long-term monitoring programs. Both are actions

that have yet to be implemented for such endangered European taxa, or for other felines

worldwide. The methodological scheme presented and evaluated here for the wildcat can be

useful to better design the limits of protected areas elsewhere.
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Garcı́a, Ángel Arredondo, Miguel A. Dı́az-Portero and Emilio González provided information
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86. Emre Can Ö, Kandemir I, Togan I. The wildcat Felis silvestris in northern Turkey: assessment of status

using camera trapping. Oryx. 2011; 45: 112–118.

87. Allendorf FW, Ryman N. The role of Genetics in population viability. In: Beissinger SR, McCullough DR,

editors. Population Viability Analysis. The University Chicago Press, Ltd., London; 2002. pp. 50–85.

88. Ferreira JP, Leitao I, Santos-Reis M, Revilla E. Human-related factors regulate the spatial ecology of

domestic cats in sensitive areas for conservation. PLoS ONE. 2011; 6: e25970. https://doi.org/10.

1371/journal.pone.0025970 PMID: 22043298

89. Recio MR, Arija CM, Cabezas-Dı́az S, Virgós. Changes in Mediterranean mesocarnivore communities

along urban and ex-urban gradients. Curr Zool. 2015; 61: 793–801.
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