
RESEARCH ARTICLE

eXplainable Artificial Intelligence (XAI) for the

identification of biologically relevant gene

expression patterns in longitudinal human

studies, insights from obesity research

Augusto Anguita-RuizID
1,2,3*, Alberto Segura-Delgado4, Rafael AlcaláID
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Abstract

Until date, several machine learning approaches have been proposed for the dynamic

modeling of temporal omics data. Although they have yielded impressive results in terms of

model accuracy and predictive ability, most of these applications are based on “Black-box”

algorithms and more interpretable models have been claimed by the research community.

The recent eXplainable Artificial Intelligence (XAI) revolution offers a solution for this issue,

were rule-based approaches are highly suitable for explanatory purposes. The further inte-

gration of the data mining process along with functional-annotation and pathway analyses is

an additional way towards more explanatory and biologically soundness models. In this

paper, we present a novel rule-based XAI strategy (including pre-processing, knowledge-

extraction and functional validation) for finding biologically relevant sequential patterns from

longitudinal human gene expression data (GED). To illustrate the performance of our pipe-

line, we work on in vivo temporal GED collected within the course of a long-term dietary

intervention in 57 subjects with obesity (GSE77962). As validation populations, we employ

three independent datasets following the same experimental design. As a result, we validate

primarily extracted gene patterns and prove the goodness of our strategy for the mining of

biologically relevant gene-gene temporal relations. Our whole pipeline has been gathered

under open-source software and could be easily extended to other human temporal GED

applications.

Author summary

Biological processes in humans are not single-gene based mechanisms, but complex sys-

tems controlled by regulatory interactions between thousands of genes. Within these gene

regulatory networks, time-delay is a common phenomenon and genes interact each other
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within a four-dimension space. Hence, to fully understand or to control biological pro-

cesses we need to unravel the principles of gene-gene temporal interactions. Until date,

several approaches based on Artificial Intelligence methods have tried to address this

issue. Nevertheless, the research community has claimed for more interpretable and bio-

logically meaningful models. Particularly, scientists claim for methods able to infer gene-

gene temporal interactions that could be later validated with real-life experiments at the

lab. The recent revolution known as “eXplainable Artificial Intelligence” offers a solution

for this issue, where a range of highly interpretable and explicable models has become

available. Many of these methods could be applied to temporal gene expression data in

order to decipher mentioned temporal gene-gene relationships in humans. Here, we pro-

pose and validate a new pipeline analysis including an eXplainable artificial intelligence

method for the identification of comprehensible gene-gene temporal relationships from

human intervention studies. Our method has been validated in six datasets from obesity

research (consisting of low calorie diets interventions), where it was able to extract mean-

ingful gene-gene temporal interactions with relevance the etiology of the disease. The

application of our pipeline to other type of human temporal gene profiles would greatly

expand our knowledge for complex biological processes, with a special interest for drug

clinical trials, in which identified gene-gene regulatory interactions could reveal new ther-

apeutic targets.

Introduction

Biological processes in humans are not single-gene based mechanisms, but complex systems

controlled by regulatory interactions between thousands of genes. Within these gene regula-

tory networks, time-delay is a common phenomenon and genes interact each other within a

four-dimension space [1]. That is to say, it may take a time since the product of a gene is gener-

ated, until it finally causes an effect on its target molecule. Some of the main sources of time-

delay in gene regulation may include; 1) the action of gene expression co-activators or co-

repressors, 2) the influence of external environmental factors, and 3) the natural self-degrada-

tion of messenger RNA and proteins in cells. Time-delayed gene regulation is especially pres-

ent in long-term interventions, in which changes in gene expression reflect the response of

genes to external factors and may cause subsequent changes on the expression of other genes.

DNA microarray technology has provided a powerful vehicle for exploring biological pro-

cesses on the genomic scale. In spite of it, in most of the genome scans performed to date, the

effects of each gene on the trait of interest have been interrogated one at a time; thus presenting

a limited throughput to get the overall picture of gene networks and their temporal relations.

Unsupervised methods implemented in conventional microarray software (such as clustering

solutions) have also failed in the discovery of network phenomena, since genes can participate

in more than one network all at once. As a result, there is not a clear picture of the dynamic

trends in gene-gene interactions and much of the heritability of complex human traits remains

unexplained, a phenomenon termed as the “missing heritability” problem [2].

The creation of public functional genomics data repositories has enabled a huge amount of

genome-wide expression profiles become available to the scientific community [3]. Among

available datasets, the recent increase of massive temporal microarray experiments (such as

clinical and dietary long-term interventions) open up new opportunities to uncover time-

delayed gene-gene relationships. Several machine learning (ML) approaches have been proven

very effective for extracting associations between different genes, highlighting Boolean models,
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Bayesian networks and Neural networks [4–7]. Due to their great predictive ability, these ML

methods have been widely used in this and other field applications. Nevertheless, despite yield-

ing impressive results, most of these techniques output unintelligible and complex gene net-

works, and can not explain how they arrive at specific decisions (which is known as the “black

box” problem) [8–10]. For scientists to trust they must first understand what machines do,

since in many cases it is not so much what an algorithm predicts but the relationships it estab-

lishes and how it predicts it. This is especially important in gene networking, where one of the

main concerns of biologists is how to translate inferred networks into particular hypotheses

that can be tested with real-life experiments. On this sense, there is a recent increased need to

provide ML models with more interpretability and explicability, giving rise to what it is known

as eXplainable Artificial Intelligence (XAI) [8,10,11]. As one of the most naturally interpretable

and popular knowledge discovery techniques, association rule mining has become a highly rel-

evant technique within the XAI revolution, being able to generate practical knowledge under-

standable from the point of view of human experts [12,13]. Practical knowledge in association

rule mining is extracted in the form of association rules and it refers to concrete relationships

between the elements of a database. Association rules constitute representations with the form

of X! Y, which means that when X occurs it is likely that Y also occurs. Due to its natural

explicability, association rule mining methods have emerged as an excellent choice for the data

mining of complex biological datasets in humans [14]. On this sense, they have been success-

fully applied to gene expression data (GED) in order to represent how the expression of one

(several) gene(s) may be linked or associated with the expression of a different set of genes

(gene-gene interactions discovery) [14,15].

Although interesting insights have been derived from the application of association rule

mining to GED, previously mentioned time dependencies between associated genes cannot be

modelled making use of conventional association rule mining methods. To face this problem,

sequential rule mining (SRM) algorithms could be used instead. SRM algorithms are intended

to discover interesting sequential relationships between the elements of a sequence database,

in which the data are represented sequentially (e.g. time ordered or spatially localized). The

concept of a sequential rule is similar to that of association rule but, in this case, X must appear

before Y according to the sequential ordering criterion of the database [13,16]. By way of

example, sequential rules that can be extracted from the application of SRM to temporal

microarray designs has the next form; [gene A", gene B#]! (time delay) [gene C", gene D",

gene E"], which represents that the upregulation of gene A and the significant repression of

gene B are followed by (or cause) a significant upregulation of genes C, D and E after a given

time delay.

Until date, there has been only one adaptation of SRM methods to temporal microarray

data [15], consisting of an Ad-hoc application for in vitro time-series GED in Saccharomyces
cerevisiae. Referred to as temporal ARM (TARM), the employed method is based on the con-

ventional association rule mining algorithm “Apriori” and has been exclusively designed to

work with GED derived from yeast (composed of 799 genes evaluated during five transcrip-

tional time points in the same culture). This method builds a sequence database conformed by

a single sequence of events (i.e. same culture) by converting each continuous gene expression

value into a discrete item by time interval (upregulation, downregulation, or none). Then,

TARM is able to identify concrete and understandable temporal causal relations among genes

with relevance in the yeast cell cycle.

Besides previous approach, it is also remarkable a more recent work published by Liu et al.

(2013) [17], in which a sequential pattern mining algorithm is proposed for the identification

of temporal co-expression networks from in vitro human data. Sequential pattern mining algo-

rithms belong to the ML branch of frequent pattern mining and could be considered as a
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simpler version of SRM (sequential rule mining). The main drawback of sequential pattern

mining algorithms, in comparison to SRM methods, is that they find sequential patterns that

appear frequently in a sequence database but without generating sequential rules from them.

Thus, they are unable of establishing causal relationships between items, and their resulting

sequential patterns could be misleading in certain occasions, especially in the presence of very

frequent elements in a sequence database [16]. For these reasons, although the Liu et al. (2013)

[17] approach interestingly moves forward from yeast models into in vitro human data, and is

based on a highly interpretable ML method, it still presents some drawbacks for its fully appli-

cation in the modeling of temporal gene networks.

As Liu et al. (2013) [17], many other researchers have also explored co-expression for the

reconstruction of gene networks in humans (although not from a pattern mining approach).

These methods have become thereby the gold-standard when studying a microarray experi-

ment from a systems biology perspective [4,5,18,19]. In the case of time course genomics

experiments, most of conducted co-expression approaches have been based in clustering anal-

yses [20]. These temporal co-expression approaches are generally based on similarity or corre-

lation or distance measures for the identification of groups of genes with ‘similar’ temporal

patterns of expression, and reveal hidden patterns in the original data by transforming raw

temporal data into logically structured, clustered, and interconnected graphs [18,19]. Co-

expression graphs can be visualized with nodes representing genes, and with edges indicating

interactions, and have helped to understand how genes interact each other within the context

of an integrated and global biological network. Nevertheless, despite the widespread use of

these approaches [4], there are some drawbacks and limitations remaining for their application

in the inference of causal gene-gene relationships:

• Co-expression networks are good to study the general interactome of an organism (free-

scale network topology), but their results make hard to infer particular details such as the

causal direction or the importance of each individual interaction within the whole net-

work [20]. Thus, they may hinder the translation of inferred networks into particular

hypotheses that can be tested in wet-lab experiments. On the contrary, SRM results (in

the form of individual rules for each interaction) allow a concrete quality evaluation for

each relationship and an easy biological interpretability of findings, which is crucial to

demonstrate that a gene network is functionally meaningful, and not just biostatistical

fluke [4].

• Co-expression is a very strict assumption for the extraction of gene-gene interactions from

time course data [21]. That is to say, co-expression networks with temporal GED generally

do not include the time order information in graphs, and they are not capable of detecting

positive, negative and time-lagged gene correlations at the same time [20]. However, in liv-

ing systems, gene regulations can be positive or negative possibly with time lags, and may

also not span all conditions or time points. For example, some of the target genes could have

a negative feedback loop and could block their own expression, which could explain fast

transient dynamic changes, while other target genes could have a positive feedback loop and

therefore maintain gene expression longer. Additional regulation could happen after a lon-

ger time or very fast without protein translation, i.e. by the action of functional large non-

coding RNAs. All these kind of phenomena, which are missed by most of co-expression

approaches, could be captured by an appropriate SRM approach.

Given all these concerns and the interesting properties of SRM methods (e.g. existence of

statistical quality measures by rule, possibility of functional validation by interaction, inclusion

of causality or sequential order information, discovery of complex temporal regulatory
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phenomena . . .), SRM approaches are presented as an alternative of great interest and

interpretability against temporal co-expression clustering methods when inferring gene-gene

temporal relations.

Unfortunately, as far as we concern, the work of Nam et al. (2009) [15] in Sacharomyces cer-
evisiae is the only SRM approach developed to the moment and it constitutes no more than an

Ad-hoc application for in vitro experiments (whose extension to in vivo GED would elicits

challenges that could not be solved with simple algorithm modifications). The application of

these methods to human temporal gene profiles otherwise would greatly expand our knowl-

edge for complex biological processes, with a special interest for long-term interventions (such

as clinical trials), in which identified gene-gene regulatory interactions could reveal promising

and new therapeutic targets [22,23]. Among the main issues that may have prevented the adap-

tation of SRM for temporal gene networking in in vivo human data we can highlight:

1. The high dimensionality of human gene expression microarrays. With more than 30.000

probes under study in conventional human microarray platforms, the volume of the search

space is so big that any available data will become sparse (especially in the case of clinical tri-

als where sample sizes are barely composed of a few tens). The low number of temporal rec-

ords that are normally assessed in this kind of interventions (rarely more than four) further

worsens this sparsity. Within this context, most of ML approaches will thus present a detri-

mental performance and reliable results can be obtained only if the study sample size is

exponentially increased or if effective ‘feature-selection’ methods are employed prior to

analysis for dimensionality reduction.

2. The lack of gene expression discretization methods for in vivo datasets. Most of available

SRM algorithms require categorical data as input to perform inference. Thus, the selection

of an appropriate discretization strategy is a key step for a successful performance. A wide

range of in vitro discretization methods has been recently revised and gathered under open-

source software [24]. Of note, performance of these methods have shown strong depen-

dence on the particularities of each biological problem. Regarding human GED, there are

few issues to take into account before performing discretization, including not only the fact

of having multiple sequences but also the great variability between (and within) subjects,

tissues and conditions. Considering all this, the extension of existing in vitro discretization

strategies to humans is not a trivial issue and new approaches should be proposed.

3. The problem of mining sequential rules common to multiple sequences. Contrary to

what happen in vitro, in human or animal experiments the “subject variability” is the main

issue to address, so that databases include multiple sequences instead of a single one. That

is to say, we pass from single-sequence experiments where only one microarray is con-

ducted in the culture by time record, to an experimental framework with N > 1 gene

expression profiles evaluated at each data point (being N the number of subjects under

study). Since classical SRM methods have been originally intended for mining sequential

rules in a single sequence of events, gene networking in human temporal microarrays will

require the adaptation of more modern and specific SRM algorithms.

4. The need for functional validation of results. As it is well known, when facing high-

dimensionality data with low sample sizes, data mining methods may yield results which

seem to be significant; but which do not actually represent real behaviors of the dataset.

Regarding the case of SRM and its application to GED, this problem is presented in the

form of too many output rules even after pruning quality application, which can reach the

order of thousands. In such cases, the extracted SRM-based gene networks will represent a
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chaotic set of “potential” interactions whose biological interpretation will become a serious

challenge for biologists.

In this paper, we present a three-stage and rule-based XAI strategy (including pre-process-

ing, knowledge-extraction and functional validation) for finding biologically relevant sequen-

tial rules from longitudinal human GED. Particularly, our strategy involves the proposal of an

improved version of the well-known SRM algorithm CMRules [25] in order to mine time-

delayed gene relationships from in vivo human temporal microarray data. Furthermore, we

not only adapt the CMRules algorithm to the specific GED problem but also propose a full-

detailed data pre- and post-processing pipeline that solve previously mentioned human data

limitations and increase model explicability. As a result, our methodology is able to generate

temporal gene expression networks in long-term human interventions. The proposed pre- and

post-processing pipeline could be briefly summarized in the following key aspects:

• First, the initial number of probes is reduced to those differentially expressed by time interval

and experimental condition. This way, we simplify the experimental problem and reduce the

search space, further favoring a better performance of the algorithm.

• Secondly, we propose a new discretization approach for the conversion of continuous gene

expression values into discrete categories representing temporal changes in gene expression.

Based on signal log ratios by gene and time interval, this discretization strategy maps data

from a vast spectrum of numeric gene expression values into three discrete categories.

Therefore, it can be viewed as a secondary data dimensionality reduction technique in favor

of model explicability.

• Third, we apply the SRM algorithm CMRules to the discretized dataset and generate sequen-

tial rules from it with the form of [gene A", gene B#]! (time delay) [gene C", gene D",

gene E"]. Each rule is assessed in terms of quality and robustness by means of five interest-

ingness or quality metrics as described in the method section.

• After the knowledge-extraction stage, we propose the integration of output gene rules along

with external biological resources such as functional annotation and gene regulation data-

bases. Three well-known and reliable biological resources (GO, KEGG and TRRUST data-

bases) are consulted in order to compute five new biological quality measures by-rule.

Through this strategy, each interaction result is biologically pruned and placed within the

context of those molecular systems that commonly underlie gene-gene interactions in

humans (e.g. Transcription factor (TF)-target gene regulatory relationships [26]).

• Finally, we propose data visualization for the joint representation of gene patterns and all

accessed biological information. By means of hierarchical edge bundling visualization meth-

ods, we concentrate a lot of information in a single shot and facilitate the identification of a

finite set of genes composing a good quality network.

The whole pipeline of our proposal is illustrated in the S1 Fig and has been fully detailed in

the method section. The strategy presented in this work (with special relevance of the adopted

ML algorithm, and the functional validation and graphical representation of results) constitute

a value proposal whose main objective is to increase model eXplainability and to help biolo-

gists understanding extracted gene interactions. In this way, we pretend to move away from

the black box concept that is usually adopted in most of the current artificial intelligence (AI)

omics applications [27], and to provide researchers with a great power to discern between ran-

dom and causal gene relationships. Our whole pipeline and the SRM adaptation have been

gathered as open-source software in the public hosting GitHub (https://github.com/
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AugustoAnguita/GeneSeqRules) and could be easily extended to other temporal GED applica-

tions. At the end, we hope this proposal becomes a helpful strategy for the identification of

comprehensible genetic interactions in long-term human interventions, with special interest

for the discovery of novel therapeutic targets in clinical datasets.

Since our method is the first application of a SRM strategy for the extraction of gene inter-

actions in longitudinal human in vivo experiments, there is not currently a benchmark tool

that we could use to compare the performance of our pipeline with. At least, not without

implementing algorithm modifications in such comparison methods. In spite of it, from the

biomedical perspective the real challenge issue when inferring gene networks is their reliability

for avoiding false discovery as well as their reproducibility across different patient cohorts. For

this reason, we decided to validate our approach in two alternative ways: 1) First, we applied

our methodology to an example dataset and give the derived results to a group of field-experts

in order them to evaluate the usability of inferred networks for the generation of particular

gene-gene interaction hypotheses; and 2) We repeated the application of the full pipeline to

three additional datasets, following the same experimental design than the discovery sample,

and mined results looking for replication patterns across studies. As a result, we validated

some of the primarily extracted gene patterns and thus proved the goodness of our strategy for

the mining of biologically relevant gene-gene temporal relations (see results section). Full

details for the evaluation guidelines committed by field-experts during the interpretation of

model results have been addressed in the method section.

Main topics covered in this paper include: 1) Preliminary concepts in ARM. 2) Methodo-

logical description of the proposed pipeline (including pre-processing, Knowledge-extraction

stage and Functional validation of results), 3) Description of the research problem and

employed datasets, 4) Results description, where we evaluate the performance of our pipeline

in terms of the insights extracted from a discovery sample and their validation in independent

cohorts and 5) Discussion section, where we deepen the goodness of our proposal and list

some drawbacks and challenges to be faced in future applications.

Methods

Preliminary: Association rules and sequential rules

The concept of association rules was first proposed by Agrawal et al (1993) [12] as a market

basket analysis tool in order to discover what items are bought together during a supermarket

purchase. Many algorithms for mining association rules and other that extend the concept of

association rule mining have been proposed so far to extract useful knowledge from different

types of transactional datasets (T). As previously mentioned, association rules have the form of

Left Hand Side (LHS)! Right Hand Side (RHS), where LHS and RHS are sets of items, and it

represents that the RHS set being likely to occur whenever the LHS set occurs. Interestingly,

association rules move forward from the simpler concept of frequent patterns and allows the

opportunity to uncover true causal relationships between items [13]. In the field of gene net-

working, an example of transactional dataset would be a subset of individuals belonging to an

experimental condition; where each individual from the subset would be considered as a trans-

action of the database, and each gene expression event for that particular individual (e.g. gene

A", gene B#, gene C", gene D", gene E". . .) would be considered as an item composing that

particular transaction. Support and confidence are the most common measures used to assess

association rules’ quality, both of them based on the support of an itemset. In the previously

introduced example, an itemset would refer to any combination of items from the database

(e.g. gene B# & gene C"), being also possible the fact of an itemset composed by only one item.
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In association rule mining, the support for an itemset I is defined as:

SUP Ið Þ ¼
jfe 2 TjI 2 egj

jTj
ð1Þ

where the numerator is the number of examples (t) in the dataset T covered by the itemset I,
and | T | is the total number of examples in the dataset. Thus, the support and confidence for a

rule LHS! RHS are defined as

supportðLHS! RHSÞ ¼ SUPðLHS U RHSÞ ð2Þ

confidence LHS! RHSð Þ ¼
SUPðLHS U RHSÞ

SUPðLHSÞ
ð3Þ

In other words, support could be viewed as the percentage of transactions where the rule

holds, and confidence as the conditional probability of RHS with respect to LHS (i.e. the rela-

tive cardinality of RHS with respect to LHS). The classic techniques for mining association

rules attempt to discover rules whose support and confidence are greater than certain user-

defined thresholds called minimum support (minSup) and minimum confidence (minConf).

However, several authors have pointed out some drawbacks of this framework that lead to find

many misleading rules [28]: 1) First, the confidence measure is not able to identify statistical

independence or negative dependence between LHS and RHS, mainly due to the fact that the

RHS support is not taken into account during the computing process, and 2) Second, itemsets

with very high support will be a source of misleading rules because they exist in most of the

examples (transactions) and therefore any itemset could seem to be a good predictor of the

presence of the high-support itemset. The following example is from [29] and it illustrated

very well previous misleading behaviors: in the CENSUS database of 1990, the rule “past active

duty in military) no service in Vietnam” has a very high confidence of 0.9. This rule suggests

that knowing that a person served in military we should believe that he/she did not serve in

Vietnam. However, the itemset “no service in Vietnam” has a support over 95%, so in fact the

probability that a person did not serve in Vietnam decreases (from 95% to 90%) when we

know he/she served in military, and hence the association is negative. Clearly, this rule is

misleading.

To face these problems, researchers have proposed additional quality metrics by rule and

have introduced the concept of “very strong association rules” [30], which are of great aid for

the selection and ranking of rules according to their potential causality and coherence. Next,

we briefly describe some of the additional metrics that have been used in this paper as well as

introduce the framework of “very strong association rules”.

The conviction [29] measure analyzes the dependence between LHS and ¬RHS, where

¬RHS means the absence of RHS. Its domain is [0,1), where values less than one represent

negative dependence, a value of one represents independence, and values higher than one rep-

resent positive dependence. Conviction for a rule LHS! RHS is defined as

conviction LHS! RHSð Þ ¼
SUPðLHSÞSUPð:RHSÞ

SUPðLHS:RHSÞ
ð4Þ

The lift [31] measure represents the ratio between the confidence of the rule and the

expected confidence of the rule. As with conviction, its domain is [0,1), where values less

than one imply negative dependence, one implies independence, and values higher than one
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imply positive dependence. Lift for a rule LHS! RHS is defined as

lift LHS! RHSð Þ ¼
SUPðLHS U RHSÞ

SUPðLHSÞ � SUPðRHSÞ
ð5Þ

The certainty factor (CF) [32] is interpreted as a measure of variation of the probability that

RHS is in a transaction when we consider only those transactions where the LHS is present. Its

domain is [–1,1], where values less than zero represent negative dependence, zero represents

independence, and values higher than zero represent positive dependence. CF for a rule LHS

! RHS is defined in three ways depending on whether the confidence is less than, greater or

equal to SUP(RHS):

if confidence(LHS! RHS) > SUP(RHS)

confidenceðLHS! RHSÞ � SUPðRHSÞ
1 � SUPðRHSÞ

ð6Þ

if confidence(LHS! RHS) < SUP(RHS)

confidenceðLHS! RHSÞ � SUPðRHSÞ
SUPðRHSÞ

ð7Þ

Otherwise is 0.

Some of presented metrics, such as the CF, have been further employed to create a frame-

work intended to make easier the discovery of those patterns known as “very strong associa-

tion rules” [30]. Particularly, a rule will be considered as very strong (and thus not a

misleading relationship) if it fulfills the following conditions (Support > minSup, Not(Sup-

port)> (1- minSup) and CF > 0). The concept of very strong rule is very intuitive, since it is

based on the logical equivalence between a rule and its counter-reciprocal, and it captures the

idea that, since both rules are equivalent, finding evidence of both in data enforces our belief

that the rule is important.

Although association rule mining methods and all presented metrics have shown a good

ability to mine hidden relationships in many different domains (such as genetics [14], biomed-

icine [33], and so on), these methods are aimed at analyzing data where the sequential ordering

of events is not taken into account. Consequently, when such techniques are applied on data

following a specific time or sequential ordering criterion, this information will be ignored.

This situation may result in the failure of association rule mining methods to extract interest-

ing knowledge from the data, or in the extraction of knowledge that may not be useful for the

experts. Otherwise, in many domains, the ordering of events or elements is important and,

particularly in genetics, the temporal information is especially critical for the understanding of

the regulatory mechanisms of biological processes. SRM algorithms [16] have proven to be an

interesting method for discovering sequential relationships between the elements of a

sequence database (in which the data are represented sequentially or time ordered). Whenever

the time dimension appears, SRM approaches will present a greater predictive and descriptive

power than conventional association rule mining algorithms and will provide an additional

degree of interestingness. Furthermore, SRM resolve an important limitation of the previously

introduced simpler technique sequential pattern mining, since a sequence pattern may appear

frequently in a sequence database but may have a very low confidence (which makes it there-

fore not useful for the identification of causal relationships). The concept of a sequential rule

that can be extracted from SRM is similar to that of association rule except that it is required

that LHS must appear before RHS. Previously mentioned quality measures (support and confi-

dence) are also employed in SRM in order to evaluate the interestingness of each mined rule.
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In SRM, rules are extracted from a sequence database. Recovering the same previous example

of gene networking, an example of sequence database could be a subset of individuals belong-

ing to a long-term intervention (with more than two time point records available) in which

each individual from the subset would be considered as a sequence of the database, and each

gene expression change event for a particular individual and a particular time interval (e.g.

gene A" from T1 to T2, gene B# from T1 to T2, gene C" from T2 to T3. . .) would be consid-

ered as items composing that particular sequence. In SRM, the introduced basic quality met-

rics by rule are defined as sequential support (seqSup) and sequential confidence (seqConf)

seqSup LHS! RHSð Þ ¼
supðLHS! RHSÞ

jSDj
ð8Þ

seqConf LHS! RHSð Þ ¼
supðLHS! RHSÞ

supðLHSÞ
ð9Þ

Here, the |SD| refers to the total number of sequences in the sequence database. The element

sup(LHS!RHS) refers to the number of sequences from the sequence database in which all

the items of LHS appear before all the items of RHS (note that items within LHS (or RHS) do

not need to be in the same sequence nor temporal order within each sequence). The notation

sup(LHS) refers to the number of sequences that contains LHS. In addition to seqConf and

seqSup, the rest of previously introduced association rule mining quality metrics (such as con-

viction, lift and CF) have also their extension in SRM based in the definition of sequential sup-

port, keeping their original meaning and domains. All of them have been incorporated by our

methodology for the mining of temporal sequential patterns in GED and allow practitioners a

quick identification of the robustness of each extracted pattern from a frequentist perspective.

Pre-processing stage: Feature selection and data discretization

As input files, our methodology receives raw fluorescence intensity signals (one .cel file per subject

and time point), and perform a transformation into the form of an N xM matrix of gene expres-

sion values, where the N rows correspond to subjects under study and the M columns correspond

to evaluated gene probes. All available time records are then merged into a single primary data-

base so that each subject under study will present as many consecutive entries in the database

(Long-format) as temporal points exist in the experiment (corresponding to the subject’s gene

expression profile at each time point). A primary quality control process is then conducted fol-

lowing straightforward pre-processing analyses in transcriptomics (generating chip pseudo-

images, histograms of log2(intensities) and MA-plots). Finally, all microarray fluorescence signals

are normalized together by means of the robust multichip average (RMA) method and probes are

annotated according to the latest released version of the “org.Hs.eg.db” database [34].

When dealing with Affymetrix microarray technologies, the huge number of probes avail-

able in platforms (often around 33.000) may induce an exponential growth of the search space,

so that the knowledge-extraction process (independently of the ML method used) will become

a difficult and complex task exceeding the processing capability of conventional systems. In

order to solve this problem, prior to knowledge-extraction, our methodology includes a fea-

ture-selection step in which the number of probes is reduced according to the differentially

expressed (DE) genes by time interval and experimental condition. Given a longitudinal GED

experiment, our method identifies DE probes by assessing the changes in gene expression dur-

ing each period of intervention. A probe will be selected for downstream analyses when its

Bonferroni-adjusted P-value is < 0.05 and the associated Log2(FoldChange) (which is also

known as the signal log ratio) is > = 1 or < = -1 in a paired t-test with Bayesian correction.
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After feature-selection, as the second main-step of the data pre-processing process, gene

expression data discretization is also incorporated in our pipeline. Data discretization is a tech-

nique commonly employed in computer science that has been successfully applied to GED

applications [24]. Here, the main motivation behind the application of GED discretization is

allowing the use of ML algorithms, such as SRM, that requires discrete data as an input for the

inference of biological knowledge. Nevertheless, there are many other advantages that arise

from data discretization in genetics; 1) Discrete states favor the inference of qualitative models

[35], which are of special importance in terms of model explicability. The explicability

improvement in qualitative models is achieved due to the fact that for scientists, discrete values

are easier to understand, use and explain than continuous values [35,36]. On this matter, GED

discretization can be viewed as a secondary data pre-processing technique that move ML

approaches closer to the XAI trend. 2) Another advantage emerging from GED discretization

is the homogenization of different datasets in terms of interpretability. If the same semantics is

used for the discretization of heterogeneous datasets, their results will be more easily compara-

ble and the application of the same ML method to all of them will be a more straightforward

and affordable task [37]. 3) Finally, the learning process from discrete data is more efficient

and effective (requiring a reduced amount of data and yielding more compact and shorter

results) [36]. Therefore, this step not only allows the inference of large-size models with a

higher speed of analysis but also facilitate a significant portion of the biological and technical

noise presented in the raw data to be absorbed, which may indirectly lead to a better model

accuracy.

A wide range of in vitro GED discretization methods have been recently revised [24]. In our

method, we adopted an unsupervised discretization approach based on expression variations

between time points and adapted it to the problem of in vivo human data. For that purpose,

continuous gene expression values from the filtered gene expression primary matrix (N xM)

are transformed into three discrete categories (items) representing changes in gene expression.

This approach gives a discretized matrix A of M probes and N—1 conditions, in which each

probe by time interval may have one of three discrete states: 2, 1 and 0, meaning ‘increase’,

‘decrease’ and ‘nochange’ respectively. For the assignation of these discrete states by probe and

time interval, each experimental condition of a dataset is considered separately as the ‘data

scope’ framework and the next criteria are considered:

• For probes ik showing a positive signal log ratio in the previous DE analyses (feature-selec-

tion step):

If log2(FoldChange)ikj> log2(FoldChange)ikJ Then assign the label ‘Upregulation’.

Otherwise type ‘No change’

• For probes ik showing a negative signal log ratio in previous DE analyses (feature-selection

step):

If log2(FoldChange)ikj< log2(FoldChange)ikJ Then assign the label ‘Downregulation’.

Otherwise type ‘No change’

Where the term log2(FoldChange)ikj refers to the signal log ratio (i.e. change in the gene

expression) for the i probe, in the k time interval and the j subject from the group or dataset

under study, and the term log2(FoldChange)ikJ otherwise refers to the mean signal log ratio for

that particular probe i, in the k time interval in all subjects from the group or dataset under

study J.

The discretization approach adopted in this work can be viewed as an extension of two pre-

viously described in vitro temporal methods that have been successfully applied for the recon-

struction of gene regulatory networks [24,35,38]. The main motivation behind its choice is the
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fact that, when facing temporal GED, discretization methods based on transitions between

time-points have been shown to obtain better results than those using absolute values [39].

Moreover, in our case, the use of a standardized measure of gene expression change (such is

the Signal Log Ratio (SLR)) is a more sophisticated approach than the employment of simple

differences between values. For example, the use of logs in the analysis eliminates difficulties

caused by one very high data point in the set masking information from lower valued data

points. On the other hand, base 2 is further used as the log scale, therefore a SLR of 1 represents

a two-fold increase in abundance of an mRNA and a value of –1 represents a two-fold reduc-

tion in transcript expression. Finally, the use of the mean SLR (log2(FoldChange)ikJ) as the

threshold for discretization allowed us to exclusively focus on general change trends in the

dataset, which most likely will be consequence of the intervention conducted in the cohort and

not particular gene expression changes due to individual’s idiosyncrasy. Mapping data from a

vast spectrum of numeric gene expression values to a reduced subset of three discrete states,

this type of discretization could further be viewed as a secondary data reduction technique in

favor of algorithm efficiency and eXplainability.

Knowledge-extraction stage: Extension of the sequential rule mining

method CMRules

Once the dataset is properly formatted, for performing knowledge-extraction, our method

includes an adaptation of the well-known SRM algorithm CMRules [25]. Contrarily to other

SRM methods that can only discover sequential rules in a single sequence of events, CMRules

is able to mine sequential rules in several sequences, which makes it an excellent choice for

dealing with human microarray temporal data. Furthermore, CMRules proposes a more

relaxed definition of sequential rule with unordered events within each (LHS/RHS) part of the

rule. Thanks to that, it presents a great ability to recognize the fact that similar rules can

describe a same phenomenon; thus avoiding undesirable losses of information. Moreover, this

characteristic also allows the method to detect some particularities of gene temporal interac-

tions in human, such is the fact that gene regulations may not span all conditions or time

points or that they could not occur at the same time-delay interval in all subjects from the

intervention. Generally, CMRules starts applying the classic association rule mining method

Apriori for extracting association rules without taking into account the temporal information.

Next, the sequential support of each extracted rule is calculated in order to generate sequential

rules from them. A detailed description of CMRules algorithm is presented in S2 Fig and has

been reported elsewhere [25]. Besides the classical presented metrics (sequential confidence

and support), we further computed more sophisticated sequential quality measures by rule as

previously introduced (sequential lift, CF and conviction). Altogether included quality metrics

allow practitioners a quick evaluation of the robustness of each extracted rule.

In order to deal with a common particularity of long-term interventions in humans (which

is the fact of having two different intervention groups usually consisting on a placebo and a

treatment group), a particular extension was implemented in the final step of the algorithm.

This modification allows the user to choose that CMRules only show those sequential rules

which besides fulfilling the condition (seqSup(r) >minimum sequential support (MinSeqSup)

& seqConf(r) > minimum sequential confidence (MinSeqConf)), are further exclusive of each

experimental group. These would be thereby all rules that assert the condition (seqSup(r) >

MinSeqSup & seqConf(r) > MinSeqConf) in one experimental group but not in the other, and

viceversa. Thanks to that, this extension of our method is presented as an excellent choice for

the study of human clinical trials in which researchers are commonly interested in the discov-

ery of gene-gene signatures activated by a specific treatment but not by a placebo.
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Functional validation stage: New biological quality measures by rule and

visualization tool

Previous works have demonstrated that the integration of external biological resources within

the gene networking process is a helpful strategy that improves model eXplainability and helps

biologists to better understand genes and their complex relationships [14]. In recent years, a

great variety of external databases containing biological knowledge has become available.

Among the most robust and reliable ones, it highlights those containing information relative

to gene function, protein localization and molecular interaction (e.g. the gene ontology (GO)

project [40] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [41]). The GO proj-

ect is an annotation database that provides a structured and controlled vocabulary to describe

gene and gene product attributes in multiple organisms according to three different categories

or ontologies (cellular component, molecular function and biological process). The KEGG

database, on the other hand, is a bioinformatics resource that integrates current knowledge on

molecular interaction networks, cellular pathways and functional information of genes and

their products. Both GO and KEGG resources have been successfully employed in previous

microarray ARM analyses aiding biological explanation to the extracted associated gene sets

[14].

One of the main mechanisms controlling gene expression changes in living organisms is

the action of gene-specific TFs. By binding to a particular DNA sequence, TFs regulate the—

turn on and off—of target genes in order to make sure that they are expressed in the right cell

and at the right time. Understanding the basis of genetic interactions between TFs and their

targets is therefore likely to be important for the understanding of time-delayed gene regula-

tory relations in humans. For this reason, we propose the use of an additional biological data-

base, known as TRRUST [26], which includes information relative to transcriptional

regulatory relationships between hundreds of genes. The current version of the TRRUST data-

base (version 2) contains 8.444 and 6.552 TF-target regulatory relationships for 800 human

and 828 mouse TFs respectively. Especially for the application of SRM to temporal microarray

data, the integration of TFs information is indispensable if we want to understand the complex

gene relationships that are illustrated in the form of sequential rules.

In this paper, we propose the incorporation of these three well-known biological data

resources (TRRUST, KEGG and GO) in order to evaluate extracted rules within a biological

framework and to aid explicability to output models. For that purpose, we compute five new

by-rule quality measures named “Biological Process (BP)”, “Molecular Function (MF)”, “Cel-

lular Compartment (CC)”, “Signaling Pathway (SP)” and “Transcription Factor (TF)”; that

respectively integrate annotation terms from the three categories of the GO project, metabolic

pathway annotations from the KEGG resource and transcriptional relationships from the

TRRUST database. The computing process for each measure differs according to their biologi-

cal meaning and the external resource in which their are based on. The first four measures

(BP, MF, CC and SP) constitute rankings computed on the identical matches (between LHS

and RHS items) that each rule presents for pathway identifiers and GO-terms annotated at the

gene level in the previously mentioned GO and KEGG resources. Therefore, a lower resulting

value in these biological metrics for a certain rule will indicate that the rule is a good candidate

for representing a potentially causal and biologically relevant gene interaction. For each of

these four quality measures, the final ranking-score by rule is computed based on the type and

number of reported matches between LHS and RHS. According to the encountered types of

matches, rules will be allocated into five different categories and will receive different number

of points (Fig 1). Based on these definitions, the final ranking score for a given rule is
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computed as follows:

MEASURE RS rð Þ ¼ CAT rð Þ þ 1 �
NPðrÞ

ðmaxðNPðiÞÞ; 8i 2 CatðrÞÞ þ 1

� �

ð10Þ

Where MEASURE refers either to “BP”, “MF”, “CC” or “SP”, RS(r) refers to the ranking score

obtained for the rule under study, CAT(r) refers to the designated rule category, NP(r) refers

to the number of points assigned to the rule under study and max(NP(i)), 8i2Cat(r) corre-

sponds to the maximum number of points that have been assigned to a rule from the same cat-

egory. Specific details for the calculation of NP(r) and for the designation of a rule category

CAT(r) are illustrated in Fig 1.

On the other hand, the biological quality measure TF constitutes a range of four possible

values by rules (0, 1, 2 or 3) which are assigned according to the TF-target gene regulatory

information hosted in the TRRUST database. The computing process for the TF measure is

slightly different from the previous ones and is performed as follows; if at least one LHS gene

from the evaluated rule has been reported as a validated TF in the TRRUST resource, then

assign 1 point to the rule. Otherwise, assign 0 points. If the first condition has been fulfilled,

then check if any of the RHS items (genes) from the rule has been presented in the TRRUST

database as one of the previously-identified TF confirmed targets. In such case, assign 2 points

to the rule. Otherwise, assign 0 points. If the previous condition has been further fulfilled, then

check for the type of relationship that is reported in the TRRUST database for both TF and tar-

get genes (upregulation, downregulation or unknown). In the case of match between the rela-

tionship illustrated by the sequential rule (upregulation or downregulation of the target) and

the information hosted in the TRRUST database, then 3 points are assigned to the rule.

The choice of that particular procedure, against other available standard GO-similarity

measurements [42], was argued in the fact that we needed an evaluation method, based on cat-

egories, with the ability to discern the quality of a rule regardless of the items conforming it. If

this were not the case, the rules with the highest number of antecedent/consequent elements

would always have a higher score by the simple chance of coinciding in GO terms due to the

greater number of genes composing them. On the contrary, with our heuristic approach, the

score is adjusted by the number of items (from the total elements that constitute the rule) that

share a specific GO term. Thanks to that, the rules in which all its elements share the same GO

term will be identified as more robust than others, which although perhaps share a greater

number of GO terms among all its antecedent elements, do not share any GO between all LHS

and RHS items.

The computing process of these new five biological quality measures by rule has been

implemented in python environment and can be directly applied to any output generated

from the application of our ML method to temporal GED. The software requires a .pmml file

as input (containing extracted rules with CMRules) and will output a same format file but with

the new biological quality measures computed by rule. The software will also output a second-

ary file with .xml extension in which all the matches between the items of a rule are fully

detailed (including information for genes and GO or KEGG terms composing each match of

the rule). This software constitutes therefore a useful tool for the evaluation of extracted rules

within the context of different human molecular systems and effectively complements the

action of previously introduced classical SRM quality metrics. The main utility of the intro-

duced biological quality measures has been illustrated in Fig 2, were we have tried to show

their capacity to distinguish between true potential causal gene-gene interactions and those

representing spurious biostatistical fluke. This figure represents how, although the statistical

quality metrics by rule have been shown effective for detecting robust associations between
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items, not always a gene in the LHS will be the cause of the change in the gene expression of a

RHS gene (from a biological point of view). In many cases, rules could be just referring to a

range of parallel phenomena that occur simultaneously at the gene level because of co-expres-

sion. Contrarily, in other cases, the method could be effectively representing true causal rela-

tionships between genes (e.g. rules 1 or 4). Precisely to discern these spurious associations

from those true phenomena of interaction is why we propose the functional validation of the

results and why some of the biological quality measures presented, such as the TF measure,

become especially relevant.

Data visualization techniques have been widely employed in data science applications given

their ability to transform model results into useful knowledge [43]. Beside their high ability to

simplify big amounts of extracted information, graphs further allow information to be trans-

ferred in a very intuitive way to the user. In the context of high-dimensional data, such is the

case of biological data, the problem of knowledge-extraction is much greater due to the large

number of rules derived from the application of ML techniques [44]. Under these conditions,

visualization techniques are presented as an attractive solution that serve as an interface

between scientists and the extracted knowledge [45]. In this paper, we propose a new visualiza-

tion tool that integrates output gene networks along with all accessed biological information.

Based on hierarchical edge bundling methods [46], our tool generates circular plots illustrating

the full picture of sequential rules discovered by our algorithm. In order to be extended to

Fig 1. Assignable categories and ranking scores for a rule in the biological measures “BP”, “MF”, “CC” and “SP”. First, a rule will be assigned to a particular

category from the bottom category 5 to the top category 1. This assignation will be conducted according to the type of matches encountered for a rule in its annotated

terms as is described in the figure. Once a rule is designated to a particular category, a score will be computed for the rule taking into consideration all type of matches

encountered for the rule. Each match is weighted with a number of points as illustrated in the figure. The final score for a rule is computed as detailed in the method

section.

https://doi.org/10.1371/journal.pcbi.1007792.g001

Fig 2. Role of biological quality measurements for the functional assessment of each discovered gene-gene relationship. While all extracted rules present

acceptable and identical quality metrics (support = 90% and confidence = 85%), only the rule 1 presents a good BP measure value (remember that the range of

values available for the BP measure was from 5 to 1, being the values near to 1 the ones corresponding to a higher number of GO matches between LHS and

RHS genes). On the other hand, it is only the rule 4 the one presenting a good value for the TF measure (whose range of values was from 0 to 3, being 3 the

maximal score for indicating a true TF-target gene relationship). The figure illustrate how the functional validation of results is critical to discern between

spurious associations and true phenomena of interaction.

https://doi.org/10.1371/journal.pcbi.1007792.g002
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other temporal GED applications, this visualization method has been implemented as open-

source software in R environment. By modifying circular diameters, edge width, edge type and

the color intensity of each connection, the software generates plots comprising both the new

biological quality measures and the classical SRM metrics computed by rule. Of note, our visu-

alization tool is not restricted to the information presented in figures and can be easily adapted

to each user demands. The greatest virtue of generated plots lays in their ability to concentrate

different types of information in single shot, which further allows an easy identification of the

top and more coherent rules from the both the technical and biological points of view. On

summary, our visualization tool constitutes an additional value proposal in favor of model

explicability and interpretability.

Problem and datasets description: Long-term interventions in obesity

From the clinical or biomedical perspective, the real challenge issue when inferring gene

networks is their reliability for avoiding false discovery as well as their reproducibility across

different patient cohorts. For this reason, and given the lack of benchmark SRM methods,

we decided to validate of our proposal in two alternative ways: 1) First, we applied our

methodology to an example dataset (discovery sample) and give the derived results to a

group of field-experts in order them to evaluate the usability of inferred networks for the

generation of particular gene-gene interaction hypotheses; and 2) Second, we repeated the

application of the full pipeline to three additional datasets, following the same experimental

design than the discovery sample, and mined results looking for replication patterns across

studies.

As an example of long-term human interventions, we chose a discovery dataset consisting

of in vivo temporal GED derived from human adipose tissue (AT) samples collected in differ-

ent time points during the course of a dietary intervention. With up to three time records

available in the dataset, this study constitutes a perfect example of the in vivo temporal micro-

array experiments in which our method could extract biologically relevant gene-gene temporal

relationships. Published by Vink et al. (2016) [47], the original clinical trial investigated the

effects on weight loss (WL) of two different dietary interventions in 57 adults with obesity.

Subjects were randomly assigned to each experimental group: a low-calorie diet (LCD; 1250

kcal/day) for 12 weeks (slow weight loss) or a very-low-calorie diet (VLCD; 500 kcal/day) for 5

weeks (rapid weight loss). In both experimental conditions, the WL period was followed by a

4-week additional phase of weight stabilization (WS). Abdominal subcutaneous AT biopsies

were collected from each subject at each time point (baseline, after WL and after the WS

period) and submitted to microarray analysis using the Human Gene 1.1 ST Affymetrix plat-

form (one array per subject and time). A more detailed description of the study design can be

found in the original publication of the dataset [48].

The full dataset was downloaded from the public repository GEO with identifier GSE77962.

Fluorescence data were transformed into the form of an N x M matrix of gene expression val-

ues, where the N rows correspond to subjects under study and the M columns correspond to

evaluated gene probes. The dataset presented valid fluorescence measures for 33.297 probes

(M columns) mapping 19.654 unique genes across the genome. The number of individuals

presenting valid gene expression data was 24 on the VLCD group and 22 on the LCD group.

Since all available time records were merged into a single primary database, each individual

presented three consecutive entries in the database (long format), corresponding to its gene

expression profile at each temporal point (baseline, after WL and after the WS period). The

final number of rows in the database was N = 138.
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Data were normalized using RMA and submitted to feature-selection. The original number

of probes was thus reduced to those DE genes by time interval and experimental condition.

Time intervals corresponded to the WL period (comprising the end of WL vs baseline), the

WS period (comprising the end of WS vs the end of WL) and the dietary intervention (DI)

period (comprising the end of WS vs baseline). As a result, 431 probes matching 398 unique

genes were selected for further analyses.

Remaining GED for the 431 probes were then submitted to data discretization. In each

experimental group, a discretized matrix A of 431 probes was obtained, in which each probe

by time interval may have one of three discrete states: 2, 1 and 0, meaning ‘increase’, ‘decrease’

and ‘nochange’ respectively. Once discretized, two sequence databases were constructed (one

database per diet group) where each sequence corresponded to a subject and each event repre-

sented the change in the gene expression of a certain probe during a particular time interval

(WL period or WS period). An example of the general structure of each constructed sequence

database in the discovery case of study is presented in the S3 Fig. Details for each sequence

database are presented in the caption of the figure.

Knowledge-extraction was conducted by CMRules in each experimental group separately

and also by contrast (extracting only those association patterns exclusive for each experimental

group). With the aim of avoiding losses of information, only results derived from the mining

of each group separately were employed for functional validation. CMRules results in form of

sequential rules were thus submitted to functional validation and the five biological quality

measures were computed by rule and added to the already present five frequentist quality met-

rics. Finally, derived output were visually represented by means of our hierarchical edge bun-

dling visualization tool.

Field-experts received sequential rules results in the form of both tables and figures with

traditional quality metrics and biological quality measurements included. The evaluation and

interpretation of sequential rules and graphs by field-experts was committed following a few

foundations: 1) Rules were ordered according to SRM quality metrics and biological quality

measures; 2) Rules with very low values for SRM quality metrics were removed according to

the reference values presented in the first method subsection. For this prune, the concept of

very strong association rules was taken into account; 3) Correlation analyses were conducted

between quality metrics and biological quality measures for remaining rules in order to evalu-

ate the ability of CMRules to extract biologically relevant patterns; 4) Identification, on the

help of visual representations, of interesting sequential rules and generation of particular gene-

gene interaction hypotheses; and 5) Exploration of most interesting hypotheses (either by

accessing to the list of GO annotation terms matches or by performing intensive literature

search). Field-experts were selected from the research group “CB12/03/30038”, belonging to

the Spanish research network CIBEROBN (Physiopathology of Obesity and Nutrition), Insti-

tute of Health Carlos III (ISCIII), Madrid, Spain.

In order to validate and contrast the insights derived from this discovery dataset, we further

accessed temporal GED from WL interventions in three independent cohorts (GSE70529 [49],

GSE35411 [50] and GSE103766 [51]). Dataset details and main characteristics of the technical

validation process are presented in Table 1. Each validation dataset was processed and ana-

lyzed following exactly the same pipeline than the discovery population. Results and gene pat-

terns discovered during the validation process are reported in a specific result subsection.Not

restricted to the obesity field, our entire pipeline could be applied to any human long-term

intervention with up to two experimental conditions (e.g. placebo and treatment).
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Results

Discovery approach in the case of study

As we previously explained, with the aim of illustrating the performance of our method on

human long-term intervention data, we accessed and downloaded a discovery dataset com-

posed of 57 subjects with obesity participating in a long-term dietary program [47,48]. The

dataset consisted on temporal GED collected in three different time records during the course

of two dietary interventions (VLCD and LCD). In this dataset, we sought to mine sequential

rules with the form of [gene A", gene B#]! (time delay) [gene C", gene D", gene E"], that

could illustrate the WL-induced gene regulatory responses of AT in obesity. Before the appli-

cation of our SRM methodology to the dataset, all described pre-processing stages were

Table 1. Datasets details and problem description.

GEO Identifier Design Intervention

Details

Time records

available

Nº
subjects

(female/

male)

BMI at the

beginning

of the study

Age

(years)

Sample tissue Array

Platform

Nº
mined

Strong

ARs

Network

representation

GSE77962 (LCD

group)�

[47,48]

Dietary

Intervention

1250 kcal/d

during 12 weeks

and a weight

stable period of

4 weeks

3

(baseline, after

weight

reduction and

after weight

maintenance)

22 (12/

10)

28–35 kg/

m2
51.8 ±
1.9

Abdominal

Subcutaneous

Adipose Tissue

Affymetrix
Human
Gene 1.1 ST

40 Fig 3

GSE77962 (VLCD

group)�

[47,48]

Dietary

Intervention

500 kcal/d

during 5 weeks

and a weight

stable period of

4 weeks

3

(baseline, after

weight

reduction and

after weight

maintenance)

24 (13/

11)

28–35 kg/

m2
50.7 ±
1.5

Abdominal

Subcutaneous

Adipose Tissue

Affymetrix
Human
Gene 1.1 ST

301 Fig 4

GSE70529
[49]

Dietary

Intervention

Low-calorie diet

of self-prepared

foods for

consecutive 5,10

and 15%

weightloss

4

(baseline, after

5, 10 and 15%

weight

reduction)

9 (8/1) 37.9 ± 4.3

kg/m2
44 ± 12 Abdominal

Subcutaneous

Adipose Tissue

Affymetrix
Human
Gene 1.0 ST

551 S5 Fig

GSE35411
[50]

Dietary

Intervention

1200 kcal/d

during 3

months and a

weight stable

period of 4

weeks

3

(baseline, after

weight

reduction and

after weight

maintenance)

9 (6/3) 42.7 ± 1.4

kg/m2
40 ± 3.73 Abdominal

Subcutaneous

Adipose Tissue

Affymetrix
Human
Genome
U133 Plus
2.0 Array

83 S6 Fig

GSE103766
(WeightLosers

group)

[51]

Dietary

Intervention

+ exercise

counselling

800–1000 kcal/d

during 6 weeks

and a less

restrictive diet

plan + exercise

counselling for

12 months

3

(baseline, after

5 months and

after 12

months)

6 (3/3) 34.64 (0.7)

kg/m2
21–48 Abdominal

Subcutaneous

Adipose Tissue

Affymetrix
Human
Genome
U133 Plus
2.0 Array

870 S7 Fig

GSE103766
(WeightRegainers

group)

[51]

Dietary

Intervention

+ exercise

counselling

800–1000 kcal/d

during 6 weeks

and a less

restrictive diet

plan + exercise

counselling for

12 months

3

(baseline, after

5 months and

after 12

months)

13 (9/4) 34.65 (0.85)

kg/m2
20–45 Abdominal

Subcutaneous

Adipose Tissue

Affymetrix
Human
Genome
U133 Plus
2.0 Array

70 S8 Fig

BMI and age data are presented as mean ± SEM, mean (SE) or rather as a range.

� Datasets employed as discovery population.

https://doi.org/10.1371/journal.pcbi.1007792.t001
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conducted. Once the data were properly formatted as described in methods, the data mining

process was initiated. Specific minimum sequential support and sequential confidence thresh-

olds were set by experimental condition during the knowledge-extraction stage (min-

SeqSup = 0.45 and minSeqConf = 0.4 for the VLCD group, and minSeqSup = 0.4

minSeqConf = 0.4 for the LCD group). Standard quality measures employed in SRM (lift, CF

and conviction) were further computed in order to estimate the interestingness of each mined

pattern. Beside conventional quality measures, the method also computed five new biological

quality measures by rule based on external biological information (including functional and

pathway annotations, and TF-target gene regulatory data). Through this strategy, interaction

results were biologically pruned and placed within the context of already well-explored molec-

ular systems [26,40,41]. Finally, the method applied a data visualization technique for the joint

representation of output gene networks and all accessed biological information.

From the application of this pipeline to the discovery dataset, 50 output sequential rules

were identified from the LCD group and 325 from the VLCD group (S1 and S2 Tables respec-

tively). With up to seven times more number of rules mined from the VCLD group than from

the LCD group, our results are in accordance with previous findings from Vink et al. (2016)

[47], which showed a higher impact in the gene expression of AT elicited by a rapid and

aggressive WL in comparison to the effects derived from a light but more prolonged WL.

From all extracted rules, only very strong sequential rules were considered for further evalua-

tion (SeqSup >minSeqSup, Not(SeqSup) > (1- minSeqSup) and CF > 0), which constitute a

suitable framework to discard misleading rules. During the evaluation process, output sequen-

tial rules were biologically assessed by means of the five new biological quality measures and

graphically represented in two circular plots (Figs 3 and 4). Main descriptive statistics for the

extracted rules by experimental condition are presented in Table 2. In general, extracted rules

presented robust values for all computed quality measures, which indicates a good perfor-

mance of the algorithm during the gene association mining process. With robust quality met-

rics values, we refer to a minimum support higher than established threshold, a confidence

higher to 0.8, a conviction value higher than 1, a lift higher than 1.1, and CF distinct of zero

and as near as possible to 1 (see preliminary method subsection). According to mean values by

group, slightly better metrics values were obtained for the VLCD than for the LCD, which

probably was motivated on the higher impact elicited by this intervention in AT. In both

groups, top rules (presenting higher values in the traditional quality measures) involved genes

participating in molecular processes previously reported as part of the WL-induced AT

response (e.g. mitochondrial function, angiogenesis, inflammation and lipid and glucose

metabolism) [47,50] (S4 Fig). Of note, top sequential rules also presented good rates in the

new proposed biological quality measures (Fig 5). Especially for the case of biological quality

measures TF and BP, we showed significant correlations with the traditional quality metrics

CF, conviction and confidence. This fact reflects a good performance of the knowledge-extrac-

tion process, where the best sequential patterns identified (from the ML perspective) are also

the more biologically soundness. On the other hand, the fact of absence of correlation between

some other biological quality measures and traditional metrics (Fig 5) reinforces the need for

the functional validation of results. That is to say, although traditional metrics may indicate

that some rules are good from the technical point of view, the biological information is not

always what it could be expected.

In order to assess the biological utility of our gene networking strategy, obesity-field experts

evaluated all extracted rules making use of the computed biological quality measures and the

graphical representations as previously described (Figs 3 and 4). Since the most plausible

mechanisms underlying gene regulation is the action of TFs on their target genes, the TF met-

ric was the first measure employed by experts for filtering and evaluating output sequential
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rules. Through the application of a specific TF threshold (> = 1), four rules were selected from

the LCD group and sixty-two from the VLCD group. Along with them, a subset of biologically

meaningful rules are described in Table 3. From both intervention groups, several similar rules

were identified sharing the same TF gene (Notch3) as an LHS item. In these rules, the gene

Notch3 emerged as a TF factor whose downregulation (provoked by the WL intervention) elic-

ited later secondary changes in the expression of other genes during the WS period. Since each

group was mined independently during the knowledge-extraction process, the fact of finding

similar rules from each diet speaks well of the performance and the validation ability of our

method. Notch3 is mammalian transmembrane protein that bind membrane-bound ligands

expressed by adjacent cells in human tissues. By triggering intracellular proteolytic cleavages

and through the release of active intracellular domains of Notch (NICD), Notch3 controls the

expression of a wide range of target genes participating in different obesity-related processes

such as differentiation, proliferation, angiogenesis and apoptosis. Interestingly, several Notch3
target sequences have been identified within and near the genomic sequences of a few of its

RHS genes (such is the case of Nmt2 and Clmn) [52]. In these cases, sequential rules illustrate

how a downregulation of the Notch3 is followed by a downregulation and upregulation

(respectively) of mentioned RHS genes. Despite these interesting results, it is important to clar-

ify that the identification of sequential rules including a TF as LHS does not necessarily imply

a causal relationship between the TF and its reported RHS gene. In these cases, functional in

Fig 3. Visual representation of the sequential rules discovered by our method in the GSE77962 dataset (LCD group). Node names refer to (probe/gene).

https://doi.org/10.1371/journal.pcbi.1007792.g003
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Fig 4. Visual representation of the sequential rules discovered by our method in the GSE77962 dataset (VLCD group). Node names refer to (probe/gene).

https://doi.org/10.1371/journal.pcbi.1007792.g004

Table 2. Descriptive statistics on quality metrics for strong association rules discovered in the whole GSE77962 dataset (LCD and VLCD groups).

VLCD

Support Confidence Lift CF Conviction BP CC MF SP TF

n 301 301 301 301 301 301 301 301 301 301

Minimum 11.00 0.71 1.13 0.22 1.27 1.001 1.001 1.001 1.2 0

Mean 11.08 0.88 1.55 0.71 Inf 2.19 1.94 2.17 3.8 0.21

Standard Dev. 0.27 0.09 0.23 0.22 - 1.1 0.48 1.06 2.4 0.41

Median 11.00 0.85 1.56 0.69 3.25 1.91 1.9 1.91 6 0

Maximum 12.00 1.00 2.00 1 Inf 6 6 6 6 1

LCD

[ort Confidence Lift CF Conviction BP CC MF SP TF

n 40 40 40 40 40 40 40 40 40 40

Minimum 9.00 0.69 1.08 0.27 1.36 1.002 1.002 1.002 1.2 0

Mean 9.72 0.81 1.38 0.54 Inf 2.39 1.77 2.71 4.56 0.1

Standard Dev. 1.26 0.09 0.17 0.18 - 1.55 0.16 1.8 2.23 0.3

Median 9.00 0.82 1.38 0.55 2.21 1.84 1.84 1.84 6 0

Maximum 15 1 1.69 1 Inf 6 1.96 6 6 1

https://doi.org/10.1371/journal.pcbi.1007792.t002
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vitro studies should be performed for validating proposed interactions. From the LCD group it

is also remarkable a rule with the Notch3 as LHS and the Egfl6 gene as RHS (Fig 3). Although

no target sites for Notch3 have been identified within the genetic sequence of Egfl6, a special

functional connection has been evidenced between both genes in the context of obesity and

Fig 5. Correlation between traditional quality metrics and biological quality measures by rule in the sequential rules discovered from the whole GSE77962 dataset

(LCD and VLCD groups). R2 values quantify the level of correlation for each pair of measures while the level of statistical significance (adjusted by Bonferroni multiple

test correction) is evidenced with an X for P-values> 0.05 and nothing for P-values< 0.05.

https://doi.org/10.1371/journal.pcbi.1007792.g005
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angiogenesis [53,54]. In general, despite only a few previous evidences support an implication

of the Notch3 gene in obesity molecular pathways [55], the findings presented in this paper

seem to point this TF as an important element for the proper regulation of AT cellular

responses to WL.

For investigating the sequential rules discovered in the VLCD group (Fig 4), the use of

other biological quality measures instead of TF (such as BP and MF) allowed experts to identify

several interesting patterns. On the one hand, it highlights a sequential rule involving the loci

Fasn (Fatty Acid Synthase) and the Gpam (Glycerol-3-Phosphate Acyltransferase 1, Mitochon-

drial); both of them genes coding for enzymes with a central role in the process of lipogenesis.

The sequential rule between these genes was easily identified from its color intensity in the cir-

cular plot and may suggest a special relevance of the lipogenesis process as part of the

responses of obese AT after a strong caloric restriction. Another interesting insight extracted

from the graph is the fact that most of the gene expression changes elicited by the dietary inter-

vention in the VLCD group ended in a later and secondary downregulation of the gene expres-

sion levels of Adam9 during the WS period. Among all sequential rules illustrating this

behavior, there are a few ones with special biological relevance (Fig 4); one highlighted by the

BP metric and involving the gene Hgf, and another one including a TF-target gene regulatory

relationship with the protooncogene protein Ski. Adam9 is a cell-surface metalloprotease pres-

ent in almost all cells and tissues of the body that participates in key processes such as cell

migration, proliferation and cell-cell interactions. Mostly expressed by white cells, Adam9 has

been reported to get upregulated during many pathological processes including cancers.

Regarding obesity, previous transcriptomics analyses have demonstrated how Adam9 is signif-

icantly up-regulated in obese AT and how it plays a major mediating role in a chain of interac-

tions that connect local inflammatory phenomena to the alteration of AT metabolic functions

[56,57]. On this sense, the downregulation of Adam9 evidenced in our study might constitute

a biologically meaningful finding with relevance for the understanding of the AT metabolic

Table 3. Subset of biologically meaningful extracted sequential rules in the whole GSE77962 dataset (LCD and VLCD groups).

Intervention

Group

LHS RHS SUP CONF LIFT CF CONV BP MF CC SP TF

VLCD {8140556/HGF = 2} {8146000/

ADAM9 = 1}

11.00 0.77 1.35 0.49 1.94 1.002 1.002 1.002 6.00 0.00

VLCD {7897068/SKI = 1} {8146000/

ADAM9 = 1}

12.00 0.92 1.58 0.81 5.42 1.39 1.39 1.39 1.20 1.00

VLCD {8034940/NOTCH3 = 1} {7981142/CLMN = 2} 11.00 0.85 1.45 0.63 2.71 1.79 1.79 1.79 6.00 1.00

LCD {8034940/NOTCH3 = 1} {8166079/EGFL6 = 1} 12.00 0.86 1.11 0.37 1.59 1.79 1.79 1.79 6.00 1.00

LCD {7928872/SNCG = 1 & 8034940/NOTCH3 = 1} {7932227/NMT2 = 1} 9.00 0.90 1.52 0.76 4.09 1.83 1.83 1.83 6.00 1.00

VLCD {8131326/SLC29A4 = 1} {8101992/

SLC39A8 = 1}

11.00 0.79 1.26 0.43 1.75 1.88 1.88 1.88 1.20 0.00

VLCD {8129045/HDAC2 = 2} {8101992/

SLC39A8 = 1}

12.00 0.92 1.48 0.79 4.87 1.93 1.93 1.93 6.00 1.00

VLCD {7929201/BTAF1 = 2} {8101992/

SLC39A8 = 1}

11.00 0.79 1.26 0.43 1.75 1.94 1.94 1.94 1.20 1.00

VLCD {7929201/BTAF1 = 2 & 7940153/

FAM111A = 2}

{8101992/

SLC39A8 = 1}

11.00 0.92 1.47 0.78 4.50 1.94 1.94 1.94 1.20 1.00

VLCD {7929201/BTAF1 = 2 & 8106141/FCHO2 = 2} {8101992/

SLC39A8 = 1}

11.00 0.85 1.35 0.59 2.44 1.95 1.95 1.95 1.20 1.00

LCD {8087224/SLC25A20 = 1& 8034940/

NOTCH3 = 1}

{8166079/EGFL6 = 1} 9.00 1.00 1.29 1.00 Inf 1.96 1.96 1.96 6.00 1.00

LCD {7980970/ITPK1 = 1 & 8034940/

NOTCH3 = 1}

{8032829/PLIN4 = 2} 9.00 0.75 1.50 0.50 2.00 6.00 6.00 1.90 6.00 1.00

https://doi.org/10.1371/journal.pcbi.1007792.t003
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health amelioration achieved with dietary intervention in this case of study. All quality metrics

for the sequential patterns highlighted in this section have been resumed in Table 3, while the

full list of sequential rules identified can be explored in S1 and S2 Tables. Taking all these into

consideration, the model and its output results were considered by field-experts as an easily

interpretable approach that could be successfully extended to other human long-term inter-

vention datasets for the identification of biologically relevant molecular signatures.

Validation approach in independent cohorts

In order to validate and contrast the insights derived from the discovery dataset, we accessed

additional temporal GED from three WL interventions performed in independent cohorts

(GSE70529 [49], GSE35411 [50] and GSE103766 [51]). Dataset details and main characteristics

of each population are presented in Table 1. Although there were slight differences in the

study design of each cohort, all studies constituted dietary interventions (caloric restriction

programs) performed during a long-term intervention period in adult subjects with obesity.

Each experimental group (in the case of datasets presenting more than one study condition)

was again considered as an individual dataset. During the knowledge-extraction stage, min-

SeqSup = 0.5 and minSeqConf = 0.6 thresholds were set and only “very strong rules” were

selected for subsequent evaluation. In Table 1, we report the number of very strong association

rules mined from each dataset. Visual representations of output gene patterns by dataset are

presented in S5, S6, S7 and S8 Figs. Graphs illustrated again coherent gene-gene interactions

within the context of obesity research (e.g. the gene association patterns governed by the locus

Abca1 reported in the dataset GSE70529 (S5 Fig)) [58]. These figures display information fol-

lowing the same code of colors and format than previously presented Figs 3 and 4.

Very strong rules extracted from all datasets were pulled together for the identification of

replicated patterns. During the process of contrasting rules between datasets, probe informa-

tion was removed from each rule and only the locus tag of each item was considered. That is to

say, we considered two sequential rules as replicates when they contain the same genes within

LHS and RHS (but not necessarily the same probes). As a result, we found gene expression

changes in 11 loci acting as trigger mechanisms (LHS items) concurrently in sequential rules

extracted from different datasets (these were C6 = Up-regulation, Hnrnpa1 = Up-regulation,

Srsf7 = Up-regulation, Gsap = Up-regulation, Sncg = Downregulation, Notch3 = Downregula-

tion, Srpx = Up-regulation, Itpka1 = Downregulation, slc-transporters = Downregulation,

Tmem-proteins = Downregulation and Znf-proteins = Up-regulation). Interestingly, these vali-

dated trigger loci included TFs, splicing factors, mRNA processing molecules and cell surface

transporters with a great implication in the control of the global gene expression cell profiles

[59–62]. In the same manner, we found the gene expression change of 1 loci represented as a

consequence (RHS item) in several ARs extracted from different datasets. This gene expression

change corresponded to a downregulation of the locus C6, which encodes a component of the

complement cascade with implication in the innate immune system and inflammation path-

ways. Among all extracted rules, those containing at least one of the described common LHS

and RHS loci were selected for further evaluation (S3 Table). The graphical representation of

all these rules allowed the identification of very interesting gene patterns and replicated inter-

actions which have been shown in S9 Fig. On the one hand, we found rules from different

datasets illustrating a sequential association between the downregulation of Slc-transporter
genes and a subsequent downregulation of proteins from the Adam-family (S9A Fig). In the

same manner, we replicated a sequential relationship between the gene expression change of

Tmem genes and the later modification in the expression of loci from the Srsf-family (S9A

Fig). Particularly, while a relationship of the type (down-regulation -> down-regulation) was
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found between these genes in the weight losers of the dataset GSE35411, a relationship of the

type (up-regulation–> up-regulation) was found between these genes in the GSE103766 data-

set (a cohort composed of weightregainers) (S9A Fig). The target loci of these rules corre-

sponded to serine/arginine-rich (SR) proteins, a conserved RNA-binding protein family,

which consists of 12 members, serine/arginine-rich splicing factor (SRSF)1-12 in humans [60].

SR proteins have demonstrated multiple key roles in the control of gene expression, including

constitutive and alternative pre-mRNA splicing, transcription, mRNA transport, mRNA sta-

bility and translation [60]. Therefore, these genes could perfectly be key regulatory points

through which the WL intervention elicit long-term changes in adipocytes. Beside these repli-

cated patterns, during the investigation of the set of rules containing common LHS or RHS (S3

Table), we also noticed a rebound effect in the gene expression of certain loci during the die-

tary intervention program (S9B Fig). Particularly, we observed how although certain genes

experimented a downregulation of their gene expression in response to WL, these genes

returned to their original gene expression status as soon as a normal-calorie diet was restored

(exhibiting some kind of negative and positive feedback loop regulations of their own expres-

sion, which could be the explanation of fast transient dynamic changes or the maintaining in

time of their expression levels). Altogether, these validated patterns might represent the

sequence of genetic changes that occur in AT during a long-term weight loss intervention.

Indeed, some of the identified loci have already been drawn as key genes or targets for the

management of many complex diseases [62].

Discussion

Temporal gene networking has emerged as an effective approach for filling the missing herita-

bility gap of complex human traits. Until date, several ML approaches have been proposed for

the dynamic modelling of time course omics data, highlighting co-expression clustering meth-

ods [1]. Although they have yielded impressive results in terms of model accuracy and predic-

tive ability, most of these applications are based on “Black-box” algorithms and more

interpretable models have been claimed by the research community [10]. Especially during the

reconstruction of gene networks, one of the main concerns of biologists has been how to trans-

late inferred networks into particular hypotheses that can be tested with real-life experiments.

Fortunately, the recent XAI revolution offers a solution for this issue [63–65], were rule-based

approaches are highly suitable for explanatory purposes [16,17]. Within this context, SRM

approaches have emerged as an interesting XAI method for the modelling of temporal gene-

gene interactions in vitro [15]. Some of the best characteristics of SRM methods for this task

include the existence of statistical quality measures by interaction, the possibility of biological

validation by relationship, the inclusion of time (causality) order information in networks or

their ability to discover complex regulatory phenomena. Taking all these into account, and

given the fact that temporal co-expression clustering methods present some drawbacks as

described earlier, we propose that SRM could serve as an alternative of great interest and

interpretability for mining particular temporal relations between genes in humans. The further

integration of the data mining process along with functional annotation and pathway

resources is an additional way towards more explanatory and biologically soundness models

[4].

In the present study, we propose a full pipeline for extracting sequential rules from tempo-

ral GED through the application of SRM in longitudinal microarray human studies. As far as

we concern, this is the first application of a naturally interpretable method for the modelling of

temporal gene-gene relationships in humans. The whole pipeline of our method is illustrated

in the S1 Fig. Gathered under open-source software, our proposal could be extended to any

PLOS COMPUTATIONAL BIOLOGY Finding biologically relevant temporal patterns in longitudinal human gene expression data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007792 April 10, 2020 26 / 34

https://doi.org/10.1371/journal.pcbi.1007792


temporal GED human study, with special applicability in long-term interventions or clinical

trials. The presented pipeline is organized on three main blocks:

1. Data Pre-processing stage, involving feature-selection and data discretization.

2. Knowledge-extraction stage, consisting of the adaptation of the algorithm CMRules to the

problem of temporal GED.

3. Functional validation of results, in which we propose five new biological quality measures

by rule and a tool for visualizing the results.

The two strategies adopted during the data pre-processing stage were intended to deal with

some of the well-known human omics data complexities. As evidenced in the case of study,

both strategies resulted useful for increasing model interpretability and for reducing the search

space into a high quality data subset. During the second phase of the approach (knowledge-

extraction), an SRM algorithm was adapted to the temporal GED problem given the previously

proven ability of rule mining methods for extracting biologically meaningful gene association

patterns both in static [14] and dynamics datasets [15]. Particularly, a method known as

CMRules was chosen as a good technique for this task. CMRules implementation was accom-

plished following published recommendations in gene association analysis [14] and the biolog-

ical knowledge played an important role during the mining process.

With this work, we have tried to move away from the “black-box” concept that is adopted

in many of the current AI omics highthroutput applications, in which complex genetic net-

works are extracted from datasets without obtaining useful knowledge for the experts. An

example of this kind of “poorly explanatory” models is the work recently published by Tareen

et al. (2018) [66], with one of the datasets employed here. Although some interesting gene net-

works are reported in the work, the output format of co-expression networks and their visual

representation are poorly explainable by itself, especially for the generation of particular

hypotheses of gene-gene interactions. Moreover, the approach lacks of a method for the func-

tional validation of established gene-gene relationships, thus hindering the biological interpre-

tation of results.

In contrast, our approach presents a high eXplainability, which is mainly achieved by two

consecutive ways: 1) given the type of employed knowledge-extraction algorithm, and 2)

thanks to the third proposal of the pipeline, which includes the functional validation and visual

representation of results.

Regarding the knowledge-extraction algorithm, the chosen SRM method CMRules con-

stitutes a methodological advance in comparison to previous SPM approaches. It greatest

virtue emanates from the format in which its results are presented. This is the form of rules:

X -> (time delay) Y, where each interaction between two or more genes could be suggesting a

causal time-lagged relationship between them. For example, sometimes, these interactions

could be indicating how the increase in the amount of a TF causes a subsequent increase or

decrease in the expression of a target gene, while other times they could suggest how two dis-

tinct genes (participating in a same metabolic route) increase their expression consecutively

after an intervention. In the latter case, for example, the interaction would be illustrating how

the activation of certain biological pathways is maintained over time in response to an inter-

vention, after a first trigger event. Additionally, in other cases, when it is the same gene the one

that occupies both LHS and RHS positions, rules could be suggesting negative or positive feed-

back phenomena (which could serve as explanation for fast transient dynamic changes or the

maintaining in time of expression levels of certain genes in long-term interventions). Interest-

ingly, all introduced types of relationships have been reported in our tested datasets (see results

section) and assert with the two core ideas of XAI:
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• Explainable models, while maintaining a high level of learning performance (e.g. support,

confidence, conviction, CF, lift).

• Enabling human users to understand, appropriately trust, and effectively manage the emerg-

ing generation of artificially intelligent methods.

On the other hand, eXplainability is also achieved in our pipeline with the creation of five

new biological quality measures by rule and by the visual representation of results. Although

previous association rule mining studies have already employed the GO and KEGG resources

for the functional validation of extracted rules [14], this is the first time specific biological qual-

ity measures by rule are computed taking into consideration external molecular knowledge.

The creation of biological quality measures by rule constitute an ideal initiative to sort and

explore identified gene patterns according to any desired biological criterion. Moreover, it is

also the first time that TF-target gene regulatory information has been taken into account for

the functional interpretation of gene rules. Since TF gene regulation is the most plausible

molecular mechanism underlying gene-gene and gene-environment interactions, this initia-

tive could be extended to any other gene association analysis. Finally, although the results

obtained directly from the CMRules algorithm in the form of sequential rules are perfectly

interpretable themselves, their exploration from a global perspective may be somewhat com-

plicated. For this reason, we though that the evaluation of these rules including their biological

quality information would greatly benefit from a visual group approach, where all the rules

could be studied together. Thus, we decided to incorporate our visualization tool as a stage for

the functional validation of the results. We chose a type of plots whose greatest virtue lays in

their ability to concentrate different types of information in single shot, which would allow

practitioners an easy identification of the top and more coherent rules from the both the tech-

nical and biological points of view. On this matter, our visualization tool it is not intended as a

network analysis tool (for generating networks from raw data) but only an additional value

proposal in favor of model explicability and interpretability.

From the analyzed datasets, computed biological quality measures and the visualization

tool demonstrated utility for the biological interpretation of results and the transference of

large gene patterns to the expert eye. Thanks to them, field-experts were able to identify several

rules corresponding to known biological relationships among genes. Moreover, although our

CMRules algorithm does not strictly output a network-format like result such as co-expression

approaches do, when one visualizes all sequential rules at a single shot, It is evidenced how

SRM interestingly keep the scale-free network topology for inferred interactions. This network

topology, which is also evidenced by co-expression approaches results, it is in tune with the

concept of “good enough solutions” that seems to rule most biological systems and it consists

on the existence of a few nodes with many connections (”hubs”) and many nodes with few

connections [18]. This, again, demonstrates the suitability of our SRM approach alongside the

visualization tool for the modeling genetic interactions in humans.

Given the absence of a gold-standard which to compare with our approach, and taking into

account that the important thing when inferring genetic networks in the biological field is to

validate results in independent cohorts, in this work we decided to validate our proposal

through its direct application to different cases of study. Within the context of the chosen

research problem (“WL interventions in obesity”), this is the first study implementing a XAI

analytic approach in temporal gene networking. Moreover, by incorporating data from up to 4

independent cohorts and 6 experimental groups (N = 83 subjects), this analysis also consti-

tuted one of the biggest omics applications in the field of omics interventions. After applying

our whole pipeline on these datasets, we not only identified interesting gene networks within

each of the mined datasets but also validated some of the patterns primarily extracted from the
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discovery sample. Altogether, these results further reinforce the goodness of our strategy for

the mining of biologically relevant gene-gene temporal relations under different conditions

and clinical designs. An exhaustive study of all the results from the case of study is needed oth-

erwise to understand the concrete molecular patterns underlying WL-induced responses in

obesity. In order to make this pipeline analysis extensible to any other temporal GED, we have

implemented all described methods in open-source scripts and the codes have been shared

online. Our method is not necessarily restricted to microarray data and could also be extended

to RNAseq and other NGS technologies. For example, for applying our methodology to RNA-

seq datasets, it would be enough by simply counting on an N XM gene expression matrix of

normalized reads. In future works, it would be of great interest testing our approach with

RNAseq expression datasets given the stronger reliability of these data in term of the technical

robustness of sequencing platforms. Approaches like this would greatly expand our knowledge

for complex biological processes, with a special interest for long-term intervention experi-

ments (such as clinical trials), in which gene regulatory mechanisms could reveal new drug

targets.

The high dimensionality of microarray data is a permanent problem for this kind of

approaches. For future analyses, it would also be advisable to test the effect of employing differ-

ent “feature selection” and “discretization” strategies on the performance of the algorithm. In

addition, it would be convenient that the biological quality measures could be computed at the

same time that the rule extraction process, in such a way that they can guide the method within

the search space. As a result, methods will be able to find fewer rules but with higher biological

quality, which may otherwise remain hidden.

Finally, future works could also be focused on improving the computing of biological qual-

ity measurements based on GO ontology terms. For that purpose, we will combine our heuris-

tic approach alongside the available tools that have been developed to evaluate the biological

similarity of two genes based not only on the identical GO terms that they share, but also on

the rest of GO terms that are annotated (not identical) [42]. In the future, a combined

approach like this could be of great interest to improve the functional validation of our method

and will be taken into consideration for the continuation of the work. Besides this modifica-

tion, other future approaches could also consist of performing the visual representation of the

rules with ontology terms representing nodes instead of genes. This would allow us to visualize

networks in terms of functionality and to understand how cellular functions follow each other

in human tissues after long-term interventions. In this case, the difficulty would be to identify

which GO terms are the most characteristic for each gene in order to represent them within

the network. Once achieved, the way in which the nodes of the network are connected could

be different to our current representations and thereby reveal novel information extracted by

the method that is not observed with our current approach.

Code availability

All data manipulation and processing steps as well as all secondary statistical GED analyses

were conducted in R environment using the next list of libraries (“Matrix”, “lattice”, “fdrtool”,
“rpart”, “affy”, “oligo”, “affydata”, “ArrayExpress”, “limma”, “Biobase”, “Biostrings”, “genefilter”,
“affyQCReport”, “affyPLM”, “simpleaffy”, “ggplot2”, “dplyr”, “pd.hugene.1.1.st.v1”, “FGNet”,
“RGtk2”, “RDAVIDWebService”, “topGO”, “KEGGprofile”, “GO.db”, “KEGG.db”, “reactome.
db”, “org.Hs.eg.db”, “arules”, “arulesViz”). All employed codes have been gathered under a

unique pre-processing R script, which is available online. The implementation of CMRules

was carried out in Java using the open-source data mining library “SPMF” (http://www.

philippe-fournier-viger.com/spmf/). The computing process for the five new biological quality
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measures was implemented in Python version 3.7 (http://www.python.org). The data visualiza-

tion process instead was implemented in R environment. The codes for running all described

processes (pre-processing, CMRules mining, computing of biological quality measures and the

data visualization tool) have been shared online and can be easily extended to any other appli-

cation. This software is distributed as open source software under the terms of the GNU Public

License GPLv3 and it is hosted in the public hosting GitHub (https://github.com/

AugustoAnguita/GeneSeqRules).

Supporting information

S1 Fig. Description of the proposed pipeline for the inference of sequential gene-gene

interactions (pre-processing, knowledge-extraction and functional validation stages). The

values (0,1 and 2) from the discretization step correspond to (‘No change in gene expression’,’-

Downregulation’ and ‘Upregulation). In order to simplify the figure, the data from the example

only represent gene expression values from one individual in the population. Thus, and since

our discretization approach uses the mean SLR (from all individuals in a dataset) for comput-

ing discrete states, they should not be intended as an example of a real discretization process in

our approach.

(TIF)

S2 Fig. Example of the execution of the CMRules algorithm. This figure is a modification of

the Fig 3 available in the original publication of CMRules [25].

(TIF)

S3 Fig. Structure of the input sequence databases required by CMRules. Each database

must contain discrete temporal information (events) for changes in gene expression. Events

were represented using a 4-digit code (where the first digit represents the change in gene

expression (1 = Downregulation, 2 = Upregulation, NA = no change) and the next three digits

represent the identifier for the i probe under study). Section A refers to the sequence database

constructed in the GSE77962 dataset (VLCD group) and B to the sequence database con-

structed in the GSE77962 dataset (LCD group).

(TIF)

S4 Fig. Functional enrichment analysis of the genes included in sequential rules discovered

from the whole GSE77962 dataset (LCD and VLCD groups).

(TIF)

S5 Fig. Visual representation of the sequential rules discovered by our method in the

GSE70529 dataset.

(TIF)

S6 Fig. Visual representation of the sequential rules discovered by our method in the

GSE35411 dataset.

(TIF)

S7 Fig. Visual representation of the sequential rules discovered by our method in the

GSE103766 dataset (WeightLosers group).

(TIF)

S8 Fig. Visual representation of the sequential rules discovered by our method in the

GSE103766 dataset (WeightRegainers group).

(TIF)
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S9 Fig. Highlights among the sequential rules with common LHS and RHS loci discovered

in the validation datasets. The complete set of sequential rules that contain at least one of the

identified key LHS and RHS loci (from the validation study) is available in the S3 Table. A

refers to validated patterns between datasets while B illustrates rebound effects in the gene

expression of certain loci during the dietary intervention program evidenced in different data-

sets.

(TIF)

S1 Table. 50 output sequential rules identified from the discovery GSE77962 dataset in the

LCD group.

(PDF)

S2 Table. 350 output sequential rules identified from the discovery GSE77962 dataset

(VLCD group).

(PDF)

S3 Table. The complete set of sequential rules that contain at least one of the identified key

LHS and RHS loci (from the validation populations).

(PDF)
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