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Abstract: In this paper, we study a new family of Gompertz processes, defined by the power
of the homogeneous Gompertz diffusion process, which we term the powers of the stochastic
Gompertz diffusion process. First, we show that this homogenous Gompertz diffusion process
is stable, by power transformation, and determine the probabilistic characteristics of the process,
i.e., its analytic expression, the transition probability density function and the trend functions. We then
study the statistical inference in this process. The parameters present in the model are studied by
using the maximum likelihood estimation method, based on discrete sampling, thus obtaining the
expression of the likelihood estimators and their ergodic properties. We then obtain the power process
of the stochastic lognormal diffusion as the limit of the Gompertz process being studied and go on to
obtain all the probabilistic characteristics and the statistical inference. Finally, the proposed model is
applied to simulated data.

Keywords: powers of stochastic Gompertz diffusion models; powers of stochastic lognormal
diffusion models; estimation in diffusion process; stationary distribution and ergodicity; trend
function; application to simulated data

1. Introduction

Stochastic processes are used to model stochastic phenomena in various fields of science,
engineering, economics and finance. An important category among these processes is that of Stochastic
Diffusion Processes (SDP), which have received considerable attention recently, due on the one hand
to their diverse applications in stochastic modelling, and on the other, to their value in addressing
probabilistic statistical problems, especially those involving statistical inference. In consequence,
these processes have been widely studied, and much research has been undertaken to resolve these
issues of statistical inference, with particular respect to the estimation of parameters; see, among others,
Bibby and Sorensen [1], Prakasa Rao [2], Chang and Cheng [3], Beskos et al. [4], Stramer and Yan [5],
Shoji and Ozaki [6], Durham and Gallant [7] and Fan [8], without forgetting the works of Yenkie and
Diwekar [9] and Kloeden et al. [10] and the important bibliography cited in these works.

There has been much recent interest in applying SDP, and many researchers are working on the
construction of stochastic processes in order to model phenomena of interest. These processes are used
in areas such as the stochastic economy, new technologies, interest rates, courses of action, insurance,
finance in general, cell growth, radiotherapy, chemotherapy, emissions from energy consumption and
the emissions of CO2 and greenhouse gases. Research results have been applied to various processes,
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both in the homogeneous and in the non-homogeneous cases and many particular SDP have been
proposed, such as Katsamaki and Skiadas [11] in the case of the exponential model, Skiadas and
Giovanis [12] in the case of the Bass model, Giovanis and Skiadas [13] in the case of the logistic model,
Gutiérrez et al. [14] in the case of the Rayleigh model and Román-Román et al. [15] in the case of the
lognormal with exogenous factors.

Among the above-mentioned processes is the Stochastic Gompertz Diffusion Process (SGDP),
which was first proposed by Ricciardi [16], who defined it in the homogeneous case by means of
stochastic differential equations, for use in studies of population growth. It was subsequently used by
Dennis and Patil [17] in ecology modelling. With respect to the Kolmogorov equations, it was defined
by Nafidi [18], in a general way and for both the univariate and the multivariate cases.

In various papers, Gutiérrez et al. [19–21], Ferrante et al. [22], Román-Román et al. [23] and
Giorno and Nobile [24], have highlighted the importance of this process, and many subsequent
extensions have appeared, especially regarding the non-homogeneous case with exogenous factors
(external variables) that affect the drift coefficient. In general, these extensions take one of the following
two forms:

With external information (when no functional form is available): the exogenous factors are
completely determined by the observed data (monthly, annual, etc.) and to obtain their functional
forms interpolation methods, among others, can be used. This methodology has been applied by
Gutiérrez et al. [25,26], Rupsys et al. [27] and Badurally Adam et al. [28]. In all these papers
it is assumed that the coefficient drift is a linear combination of exogenous factors, obtained by
linear interpolation.

Without external information: in this case there are no observed data for the exogenous factors,
but they are functions of time and of certain parameters. For example, the case in which the deceleration
factor is affected by exogenous factors was developed by Gutiérrez et al. [29]. Ferrante et al. [30]
studied the Gompertz process in which exogenous factors are obtained as the sum of two exponential
functions and Albano and Giorno [31] did so considering logarithmic exogenous factor.

The lognormal SDP and the SGDP, in turn, have been extended to the multivariate case with delay,
by Frank [32], and to the bivariate case without delay by Gutiérrez et al. [33], and an application has
been devised to model the emissions of CO2 in Spain [34]. Other recent papers that have addressed
questions related to SGDP include Hu [35] and Zou et al. [36].

In the present study, we define and examine a new extension of the Gompertz and lognormal
diffusion processes, based on the homogeneous version of these processes, i.e., their power.
Thus, we obtain two families of homogeneous diffusion processes. Firstly, we show that Gompertzian
and lognormal diffusions are stable by power transformation. Them we define the proposed model
as the solution to a stochastic differential equation. From this, we obtain: the explicit expression of
the process, the Probability Transition Density Function (PTDF), the moments of different orders and,
in particular, the conditioned and unconditioned trends of the process; the ergodicity of the process and
its stationary distribution and the process parameters, estimated by maximum likelihood,with discrete
sampling, determining the asymptotic properties of the likelihood estimators and the approximated
confidence interval of the parameters.

In addition, we obtain the probabilistic and statistical characteristics of the lognormal process
power, as a particular case of the process being studied, when the deceleration factor tends toward
zero. Finally, the process and the methodology presented are applied to simulated data obtained from
the explicit expression of the solution to the characteristic state equation for the process.
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2. The Model and Its Basic Probabilistic Characteristics

2.1. An Overview of the Homogeneous Gompertz Stochastic Diffusion Process

Let {X(t); t ∈ [t0, T]; t0 ≥ 0} be a stochastic process taking values on (0, ∞), X(t) is a Gompertz
diffusion process with parameters α, β and σ and which is denoted by Gomp(α; β; σ) if X(t) satisfies
Ito’s Stochastic Differential Equation (SDE) as follows (see [16,18,20,37]):

dX(t) = [αX(t)− βX(t) log X(t)] dt + σX(t)dwt ; P(X(t0) = Xt0) = 1 (1)

In the literature, the constant α (∈ R) is the intrinsic growth rate; the β (∈ R) constant is the
deceleration factor, the σ > 0 constant is the diffusion coefficient, Xt0 > 0 is a fixed real number and wt

denotes the one-dimensional standard Wiener process.
The analytical expression of the unique solution to Equation (1) is given by (see, for

example, [21,37])

X(t) = exp
{

e−β(t−t0) log Xt0 +
α− σ2/2

β

(
1− e−β(t−t0)

)
+ σ

∫ t

t0

e−β(t−τ)dw(τ)

}
(2)

From this, we deduce that the process X(t) is distributed as the following one-dimensional
lognormal distribution:

Λ1

(
e−β(t−t0) log Xt0 +

(α− σ2/2)
β

(
1− e−β(t−t0)

)
;

σ2

2β

(
1− e−2β(t−t0)

))
It has been shown (see [21]), that for β > 0, X(t) is ergodic and that the stationary distribution

has a lognormal distribution. Hence, we have:

X(∞) ∼ Λ1

(
α− σ2/2

β
;

σ2

2β

)
(3)

2.2. The Proposed Model

Let {X(t); t ∈ [t0, T]; t0 ≥ 0} be a Gomp(α; β; σ). Then, the γ-power of the Stochastic Gompertz
Diffusion Process (γ-PSGDP) X(t) is defined by

xγ(t) = Xγ(t); γ ∈ R∗ (4)

The process {xγ(t); t ∈ [t0, T]; t0 ≥ 0} is also a diffusion process with values in (0, ∞) and has the
drift and diffusion coefficients are shown below.

By applying Ito’s formula to the transform given in Equation (4), we have

dxγ(t) = γXγ−1(t) [αX(t)− βX(t) log X(t)] dt + γσXγ(t)dWt + γ(γ− 1)
σ2

2
Xγ(t)dt

= [αγXγ(t)− βγXγ(t) log X(t)] dt + γσXγ(t)dWt

Then, after some algebraic rearrangement, we obtain

dxγ(t) = [axγ(t)− βxγ(t) log xγ(t)] dt + cxγ(t)dw(t)

This shows that the process xγ(t) is also a Gomp(a; β; c) process, where:
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a = γα + γ(γ − 1) σ2

2 and c = γσ and the drift and diffusion coefficients are given
respectively by:

A1(x) =

(
γα +

γ(γ− 1))σ2

2

)
x− βx log(x)

A2(x) = γ2σ2x2

The model proposed in this paper belongs to the family of processes γ-PSGDP
{xγ(t); t ∈ [t0, T]; t0 ≥ 0} defined by the following SDE:

dxγ(t) = A1(xγ(t))dt +
√

A2(xγ(t))dw(t) ; P(xγ(t0) = xt0) = 1

2.3. Probabilistic Characteristics of the γ-PSGDP

Under the initial condition given, the unique solution of the SDE Equation (5) can be obtained
using the relations expressed by Equations (2) and (4), from which we have

xγ(t) = exp
{

e−β(t−t0) log xt0 +
γ(α− σ2/2)

β

(
1− e−β(t−t0)

)
+ γσ

∫ t

t0

e−β(t−τ)dw(τ)

}
(5)

We then deduce that xγ(t) is distributed as a one dimensional lognormal distribution
Λ1(µ(s, t, xt0), γ2σ2λ2(t0, t)), where µ(s, t, xt0) and λ2(t0, t) are given by

µ(s, t, xt0) = e−β(t−t0) log xt0 +
γ(α− σ2/2)

β

(
1− e−β(t−t0)

)
λ2(t0, t) =

1
2β

(
1− e−2β(t−t0)

)
From the homogeneity of the process, we know that xγ(t) | xγ(s) = xs has the lognormal

distribution Λ1(µ(s, t, xs), σ2λ2(s, t)), and then the PTDF of the process is

f (y, t | x, s) =
1
y

[
2πγ2σ2λ2(s, t)

]−1/2
exp

(
− [log(y)− µ(s, t, x)]2

2γ2σ2λ2(s, t)

)

The rth conditional moment of the process is given by

E
(

xr
γ(t) | xγ(s) = xs

)
= exp

{
rµ(s, t, xs) +

r2γ2σ2

2
λ2(s, t)

}
from which the Conditional Trend Function (CTF) gives

E (xγ(t) | xγ(s) = xs) = exp
{

e−β(t−s) log xs +
γ(α− σ2/2)

β

(
1− e−β(t−s)

)
+

γ2σ2

4β

(
1− e−2β(t−s)

)}
(6)

Assuming the initial condition P(xγ(t0) = xt0) = 1, the Trend Function (TF) of the process is

E (xγ(t)) = exp
{

e−β(t−t0) log(xt0) +
γ(α− σ2/2)

β

(
1− e−β(t−t0)

)
(7)

+
γ2σ2

4β

(
1− e−2β(t−t0)

)}
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From Equation (3), we deduce that for β > 0, the stationary distribution of the process is also a
lognormal distribution and thus we have:

xγ(∞) ∼ Λ1

(
γ(α− σ2/2)

β
;

γ2σ2

2β

)
(8)

Therefore, the asymptotic trend function of the process (for β > 0) is given by

E[xγ(∞)] = exp

(
γ
(
α− σ2/2

)
β

+
γ2σ2

4β

)

The limit of the trend function in Equation (7) (when t tends to ∞) coincides with this asymptotic
trend function.

3. Statistical Inference on the Model

3.1. Likelihood Parameter Estimation

In the present study, with discrete sampling, we estimate the parameters α, σ2 and β of the
model by applying Maximum Likelihood (ML) methodology, following the same scheme as in
Gutiérrez et al. [21]. To do so, we consider a discrete sampling of the process xγ(t1) = x1, xγ(t2) =

x2, . . . , xγ(tn) = xn for times t1, t2, . . . , tn and assume, moreover, that the length of the time intervals
[ti−1, ti] (i = 2, ..., n) is equal to constant h i.e., ti − ti−1 = h and an initial distribution P [xγ(t1) = x1] =

1. Then the associated likelihood function can be obtained by the following expression:

L(x1, . . . , xn, α, β, σ2) =
n

∏
j=2

f
(

xj, tj | xj−1, tj−1
)

The variable change can be used to work with a known probability function and to calculate
the maximum probability estimators in a simpler way, considering the following transformation:
v1 = x1,vi,β = λ−1

β (log(xi) − e−βh log(xi−1)), for i = 2, . . . , n and denoting Vβ = (v2,β, . . . , vn,β)
′.

Thus, in terms of Vβ, the likelihood function is expressed as follows:

LVβ
(aγ, β, c2

γ) =
[
2πc2

γλ2
β

]−(n−1)/2
exp

(
− 1

2c2
γ
(Vβ − νβaγU)′(Vβ − νβaγU)

)

where aγ = γ
(

α− σ2

2

)
, cγ = γσ, νβ = λ−1

β (1− e−βh)/β, λ2
β = 1

2β (1− e−2hβ) and U = (1, . . . , 1)′ is a
vector of the order (n− 1).

By differentiating the log-likelihood function with respect to aγ and c2
γ, we obtain the

following equations:

U′Vβ = âγνβU′U

(n− 1)ĉ2
γ = (Vβ − âγνβU)′(Vβ − âγνβU)

The third likelihood equation is obtained by differentiating the log-likelihood function with
respect to β and by using the effect that Vβ = λ−1

β (Jx − e−βhIx) with Jx = (log(x2), . . . , log(xn))′ and
Ix = (log(x1), . . . , log(xn−1))

′. After various operations, we have

I′x
(
Vβ − âγνβU

)
= 0
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Taking into account that U′U = n− 1 and after algebraic rearrangement (not shown), the ML
estimators of aγ and c2

γ are

(n− 1)âγ = ν−1
β U′Vfi (9)

(n− 1)ĉ2
γ = V′βHUVβ (10)

The ML estimator of β is given by

β̂ =
1
h

log
(

I′xHUIx

I′xHUJx

)
(11)

where HU = In−1 − 1
n−1 UU′is idempotent and a symmetric matrix and In−1 denotes the

identity matrix.

3.2. Asymptotic Properties of the Parameter Drift Estimators

Let X be a random variable with a distribution function given by Equation (8); then log(X) is

distributed as a normal distribution N1

(
γ(α−σ2/2)

β ; γ2σ2

2β

)
. If β > 0, the process under consideration

has ergodic properties, and for θ∗ = (aγ, β) ∈ (aγ,1, aγ,2)× (β1, β2), with β1 > 0, we have

Lθ

(√
T(θ̂ − θ)

)
→ N2

(
0, I−1(θ)

)
; when T → ∞ (12)

I(θ) is the information matrix and is given by I(θ) = Eθ

(
Ȧ1(X)Ȧ∗1(X)

A2(X)

)
where Ȧ1(x) is the following vector: Ȧ1(x) =

(
∂A1(x)

∂α
;

∂A1(x)
∂β

)∗
Then, we have

I(θ) = 1
γ2σ2Eθ

 γ2 −γ log(X)

−γ log(X) log2(X)

 =
1
σ2

 1 − α−σ2/2
β

− α−σ2/2
β

σ2

2β + (α−σ2/2)2

β2


and the inverse is

I−1(θ) =

 σ2 + 2
β (α−

σ2

2 )2 2α− σ2

2α− σ2 2β

 (13)

An approximated, asymptotic confidence region of θ and an approximated, asymptotic marginal
confidence interval of α and β can be obtained from Equations (12) and (13). The above-mentioned
region is given, for a large T, by

P
[

T
(
θ − θ̂

)∗ Î(θ) (θ − θ̂
)
≤ χ2

2,ξ

]
= 1− ξ

obtaining Î(θ) by replacing the parameters by their estimators and where χ2
2,ξ represents the upper

100ξ per cent points of the chi squared distribution with two degrees of freedom.
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The ξ% confidence (marginal) intervals for parameters α and β are given, for a large T, by

P

α ∈

α̂± 1
γ

λξ

(
β̂σ̂2 + 2(α̂− σ̂2/2)2

β̂T

)1/2
 = 1− ξ (14)

P
(

β ∈
[

β̂± λξ(2β̂/T)1/2
])

= 1− ξ (15)

where λξ represents the 100ξ per cent points of the normal standard distribution.

Note that in Equations (14) and (15) we have assumed that σ is known with a value σ = σ̂.

4. Powers of the Lognormal Diffusion Process

The Stochastic Lognormal Diffusion Process (SLDP) is known to be a particular case of the
Gompertz diffusion process when the deceleration factor β = 0 (see, for example [21]). Then, the power
of the SLDP can be obtained from that of the SGDP by tending β to zero.

Then, if the SLDP Y(t) is given by the following SDE:

dY(t) = αY(t)dt + σY(t)dwt

The resulting γ-PSLDP (yγ(t) = Yγ(t)) is governed by the following SDE:

dyγ(t) =
(

γα +
γ(γ− 1))σ2

2

)
yγdt + γσyγdw(t) (16)

The same approach can be used to derive all the probabilistic properties and statistics for the
γ-PSLDP process, taking β = 0 on the perspective equations established for the properties of γ-PSGDP
in the previous sections, except as regards the symptotic properties of the drift parameter estimators
(we already know that there is no asymptotic distribution in the case of the SLDP). For the latter case,
we can obtain the exact distributions of the estimators, together with the confidence intervals for the
process parameters (see [21]).

4.1. Estimated Trend Functions

In the same way as in Gutiérrez et al. [21], by Zehna’s theorem [38], the Estimated Conditional
Trend (ECT) and the Estimated Trend (ET) functions can be obtained from Equations (6) and (7) by
replacing the parameters by their estimators. Furthermore, we can obtain an approximated and
asymptotic confidence interval of the ETF and ECTF by means of the approximated and asymptotic
confidence interval of the parameters given by Equations (14) and (15).

5. Simulation and Application

The trajectory of the model can be obtained by simulating the exact solution of SDE Equation (4)
obtained in Equation (5). From this explicit solution, the simulated trajectories of the process
are obtained from the following discretising time interval [t0, T]: ti = t0 + ih, for i = 1, . . . , N
(N is an integer and h is the discretization step), taking into account that the random variable
in the latter expression σ(wt) − w(t1) is distributed as a one-dimensional normal distribution
N (0, σ2(t− t1)) ([39]).

Table 1 shows the simulated data and the ETF for different powers, considering h = 1, N = 30,
and the initial value x1 = 0.99. We estimate the parameters by maximum likelihood, reserving the
values observed for the time t = 30 for comparison with the corresponding prediction by the model.
The results are shown in Table 2.
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Table 1. Simulated data and estimated trend function.

Time x1(t) ETF-x1 x1.5(t) ETF-x1.5 x2(t) ETF-x2

1 0.99 0.99 0.99 0.99 0.99 0.99
2 2.1831 2.1832 3.2364 3.2369 4.7957 4.7960
3 3.5272 3.5271 6.6380 6.6385 12.4861 12.4876
4 4.7180 4.7181 10.2628 10.2613 22.3149 22.3122
5 5.6288 5.6286 13.3648 13.3620 31.7343 31.7261
6 6.2651 6.2645 15.6878 15.6818 39.2796 39.2767
7 6.6848 6.6846 17.2845 17.2802 44.7154 44.7063
8 6.9539 6.9531 18.3316 18.3276 48.3607 48.3586
9 7.1220 7.1211 18.9998 18.9933 50.7075 50.7176

10 7.2251 7.2250 19.4136 19.4087 52.1922 52.2041
11 7.2894 7.2887 19.6703 19.6649 53.1189 53.1268
12 7.3285 7.3277 19.8262 19.8219 53.7088 53.6943
13 7.3520 7.3514 19.9247 19.9177 54.0539 54.0414
14 7.3663 7.3658 19.9776 19.9761 54.2598 54.2531
15 7.3742 7.3746 20.0117 20.0115 54.3836 54.3818
16 7.3792 7.3799 20.0323 20.0330 54.4489 54.4601
17 7.3820 7.3831 20.0497 20.0461 54.4903 54.5076
18 7.3841 7.3851 20.0598 20.0540 54.5492 54.5364
19 7.3849 7.3863 20.0641 20.0588 54.5629 54.5539
20 7.3862 7.3870 20.0648 20.0617 54.5623 54.5645
21 7.3875 7.3874 20.0633 20.0635 54.5783 54.5710
22 7.3877 7.3877 20.0654 20.0645 54.5922 54.5749
23 7.3885 7.3879 20.0662 20.0652 54.5997 54.5773
24 7.3882 7.3880 20.0587 20.0656 54.6148 54.5787
25 7.3881 7.3880 20.0626 20.0658 54.6020 54.5796
26 7.3883 7.3881 20.0638 20.0660 54.5914 54.5801
27 7.3890 7.3881 20.0599 20.0661 54.6196 54.5804
28 7.3878 7.3881 20.0549 20.0661 54.6297 54.5806
29 7.3873 7.3881 20.0507 20.0661 54.6110 54.5807

Prediction

30 7.3872 7.3881 20.0473 20.0662 54.6221 54.5808

Table 2. Starting values used in the simulation and estimation of the parameters.

σ α β

Starting Values 0.0001 1 0.5

γ σ̂ α̂ β̂

1 0.0000852 0.999952 0.500008
1.5 0.0001498 1.00043 0.500377
2 0.0001606 1.00003 0.500052

Figure 1 shows the fit and the prediction obtained for xγ(t) using the ETF (γ = 1 γ = 1.5 and
γ = 2) (see Table 1).

Figure 2 shows 10 simulated trajectories for xγ(t) (γ = 1 γ = 1.5 and γ = 2), taking as the values
for α, β and σ those obtained by maximum likelihood estimation (see Table 2). For each trajectory,
2901 data are generated by considering h = 0.01, and initial value x1 = 0.99.
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Figure 3 shows a trajectory whose values are the average of those obtained in the simulation of
100 trajectories, with the ETF. The values used in the simulation and the results obtained by estimating
the parameters are shown in Table 3.

Table 3. Starting values used in the simulation and estimation of the parameters.

σ α β

Starting values 0.0001 1 0.5

γ σ̂ α̂ β̂

1.5 0.0000106801 1.00006 0.50003

15

20

25

1.5, N=100

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Average

ETF-Average

t

xγ (t)

Figure 3. Fit and prediction based on ETF.

The variation of the mean and standard error of the estimators is studied, taking into account
how N and h change. The results are shown in Table 4.

20 process paths are simulated with N observations each. The parameters are estimated using the
equations (ref Eq11), (ref Eq12) and (ref Eq13), obtaining a vector of 20 components corresponding to
the different estimators. For these, the sample mean is calculated and the Standard Error (SE).

The next step is to study the evolution of the mean and the standard error of the estimators with
respect to the variation in the number N and in h. The results of this study are shown in Table 4.

The true parameter values considered in this simulation are α = 1, β = 0.5, σ = 0.0001 and the
start point is x1 = 0.99, and t1 = 0 and γ = 1.5.

The calculations have been made using the Mathematica program, in which a program has
been implemented.

Table 4. Mean and standard error of the estimators.

h N Mean (σ̂) SE (σ̂) Mean (α̂) SE (α̂) Mean (β̂) SE (β̂)

0.05 100 0.025108 0.114736 1.000132 0.000503 0.500144 0.000439
0.05 500 0.000112 0.000005 0.999637 0.000839 0.499770 0.000809
0.05 1000 0.000116 0.000005 1.000181 0.000953 0.500090 0.000915
0.1 100 0.000106 0.000008 1.000027 0.000350 0.500007 0.000262
0.1 500 0.000123 0.000010 1.000020 0.000654 0.500044 0.000647
0.1 1000 0.000141 0.000016 0.999081 0.000736 0.499156 0.000672
0.5 100 0.000143 0.000030 1.000046 0.000253 0.500002 0.000274
0.5 500 0.000329 0.000069 0.999171 0.000616 0.499202 0.000570
0.5 1000 0.000491 0.000141 0.998581 0.000730 0.498779 0.000584
1 100 0.000230 0.000074 0.999610 0.000381 0.499638 0.000359
1 500 0.000584 0.000217 0.999034 0.000597 0.499092 0.000541
1 1000 0.000908 0.000318 0.997592 0.001211 0.498045 0.000923
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6. Conclusions

This article presents a study of the Gamma Power Stochastic Gompertz Diffusion Process
(γ-PSGDP), including all its probabilistic properties and the corresponding statistical inference. As a
particular case in the limit comparison test, we also study the Gamma Power Stochastic Lognormal
Diffusion Process (γ-PSLDP).

A simulation study was conducted, analysing different process trajectories.
In the future, it will be possible to apply these models to fit real data and to obtain goodness of

fit results between the processes and the data. We will also study the possibility of defining all these
processes in their non-homogeneous form, by introducing exogenous factors, and considering the use
of numerical methods to obtain the estimates.
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Abbreviations

The following abbreviations are used in this manuscript:

SDP Stochastic Diffusion Processes
SGDP Stochastic Gompertz Diffusion Process
PTDF Probability Transition Density Function
SDE Stochastic Differential Equation
γ-PSGDP γ-Power of the Stochastic Gompertz Diffusion Process
γ-PSLDP γ- Power of the Stochastic Lognormal Diffusion Process
CTF Conditional Trend Function
TF Trend Function (TF)
ML Maximum Likelihood
SLDP Stochastic Lognormal Diffusion Process
ECT Estimated Conditional Trend
ET Estimated Trend
SE Standard Error
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