UNIVERSIDAD
DE GRANADA

BIG DATA ENSEMBLES FOR CLASSIFICATION
AND SMART DATA EXTRACTION

DOCTORAL DISSERTATION
presented to obtain the
DOCTOR OF PHILOSOPHY DEGREE

in the

INFORMATION AND COMMUNICATION TECHNOLOGY PROGRAM
by

Diego Jesus Garcia Gil

PhD Advisors

Francisco Herrera Triguero & Salvador Garcia Lépez

COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE DEPARTMENT

Granada, January 2020

Editor: Universidad de Granada. Tesis Doctorales
Autor: Diego Jesus Garcia Gil

ISBN: 978-84-1306-501-4

URI: http://hdl.handle.net/10481/62290

http://hdl.handle.net/10481/62290

This doctoral thesis has been supported by the Spanish National Research Projects TIN-2014-
57251-P and TIN-2017-89517-P, and the Project BigDaP-TOOLS - Ayudas Fundacién BBVA a
Equipos de Investigacion Cientifica 2016.

A mi familia.

Agradecimientos

Si bien esta tesis doctoral solo tiene un nombre en la portada, un proyecto de tal calibre no es
posible llevarlo a cabo en solitario. Se necesita del apoyo de todas aquellas personas que, de una
forma u otra, con intencién o sin saberlo, ayudan, apoyan, motivan y animan a que proyectos como
este lleguen a buen fin.

En primer lugar, me gustaria dedicar esta tesis a mi familia, la cual no ha dejado de animarme
y apoyarme en ningtin momento durante todo este tiempo. En especial a mi padre, Jacinto, por
ensefiarme a luchar y tirar para adelante pase lo que pase, a mi madre, M® Carmen, por su ternura
y carino, y a mi hermana, M? Paz, por su alocada alegria. También va dedicada a mis abuelos,
Diego, Gabriela y José, los cuales me han ensefiado de dénde provengo, y a mi abuela M? Paz, que
desde alla donde esté me guia y hace el camino més ficil. Por 1ltimo, una dedicacién especial a mi
pareja, Ana, que aunque se sumara a esta aventura estando ya empezada, se ha convertido en parte
fundamental de que haya llegado a buen puerto. Gracias por estar ahi y compartir mis alegrias y
penas ddndome animo y fuerza (y galletas) cuando més lo he necesitado, has hecho este proceso
mucho maés facil.

De esta etapa académica, me gustaria agradecer a mis directores de tesis, Francisco Herrera
y Salvador Garcia, por la confianza y el tiempo invertido en mi en forma de reuniones, correos,
revisiones, y un largo etcétera. También agradecer a todos los companeros doctorandos que me
han acompafniado en esta etapa: Jesus, Sergio, Jacinto, Anabel, Elena, José Angel, etc. A Carlos,
companero de despacho y amigo desde que entramos juntos al D1-6 por primera vez, y al que le
deseo lo mejor en su nueva etapa como papa. A Francisco Luque, por haber compartido conmigo
frustraciones y alegrias. Y en especial a Francisco J. Baldan, que desde que lo conoci se ha convertido
en alguien fundamental en mi vida. Gracias por tantos y tantos momentos de felicidad, agobio,
nervios y consejos mutuos (y todos los que estan por venir) tanto dentro como fuera de la universidad.

Todo esto no hubiera sido posible sin la ayuda y guia de todos los doctorandos “veteranos” en
su momento, que nos ensenaron que por largo que parezca el proceso, al final merece la pena. En
particular a Sergio R., paisano y guia cuando he necesitado ayuda. Y por supuesto agradecer a
todos los “senior” del grupo por haber creado una gran familia.

Special thanks to Dr. Xiong and his research group for the amazing treatment and the support
received. I would like to also thank Johan for the priceless hospitality during our stay at Visteras.
Agradecer también a Miguel y Laura, por hacer que tres meses en un pais desconocido pasaran
como unos pocos dias en casa de unos amigos.

Por 1ltimo, agradecer a Fran y Juanja, amigos que me conocen desde hace anos y que por muy
lejos que estemos, y sin importar el tiempo que pasemos sin vernos, sabemos que estamos ahi para
lo que haga falta.

GRACIAS A TODOS/AS

Table of Contents

I PhD Dissertation 1
1 Introduction oL 2
2 Preliminaries Lo 10

2.1 Big Data 10
2.2 Ensembleso 12
2.3 Data Preprocessing & Smart Data 15
2.4 Imbalanced Classification 17
3 Justification L 20
4 Objectives e e 21
5 Methodology 22
6 Summary e e e 23
6.1 Comparison on Scalability between Big Data Frameworks 23
6.2 Ensemble Classification for Big Data 24
6.3 The Problem of Noise in Big Data 25
6.4 Imbalanced Big Data Classification 26
7 Discussion of Results 27
7.1 Comparison on Scalability between Big Data Frameworks 27
7.2 Ensemble Classification for Big Data 27
7.3 The Problem of Noise in Big Data 28
7.4 Imbalanced Big Data Classification 29
8 Concluding Remarks 30
9 Future Work o L o 32

IT Publications 35

1 A comparison on scalability for batch big data processing on Apache Spark and
Apache Flink 0o 36

2 Principal Components Analysis Random Discretization Ensemble for Big Data . . . 48

3 Enabling Smart Data: Noise Filtering in Big Data Classification 70

X

T TABLE OF CONTENTS

4 From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data
classification 97

5 Smart Data based Ensemble for Imbalanced Big Data Classification 114

References 137

Acronyms

AUC
DM
ENN-BD
GM
HME-BD
HTE-BD
ICE_BD
IEF-BD
IR

KDD
KNN

ML

MR

PCA
PCARDE
RD

RDD
ROS

RP
RPRDE
RUS
SMOTE

Area Under the Curve

Data Mining

Edited Nearest Neighbor for Big Data
Geometric Mean

Homogeneous Ensemble for Big Data
Heterogeneous Ensemble for Big Data
Imbalanced Classification Ensemble for Big Data
Iterative Ensemble Filter for Big Data
Imbalance Ratio

Knowledge Discovery in Databases

K-Nearest Neighbors

Machine Learning

MapReduce

Principal Components Analysis

Principal Components Analysis Random Discretization Ensemble
Random Discretization

Resilient Distributed Dataset

Random OverSampling

Random Projection

Random Projection Random Discretization Ensemble
Random UnderSampling

Synthetic Minority Oversampling Technique

X1

Chapter 1

PhD Dissertation

2 Chapter I. PhD Dissertation

1 Introduction

Big Data analytics has a simple purpose, to get to know people and our environment in the best
possible way. We have come to a moment in time when everything in the world has grown to such
a limits, where companies, governments and researches have to go one step further and look for

new sources of information, new sources of knowledge which will enable us to develop and adapt
further [CCS12].

Companies, governments and researchers are constantly looking for information they have not
been interested in so far, but as of today, this information is the only way to take this next step. All
this information comes from a myriad of sources, both structured and unstructured. Nevertheless,
both companies and researchers are facing new challenges coping with the Volume, Velocity, Veracity,
and Value (among many other V’s) that characterize this new paradigm [RGFG*18].

Recently, Smart Data has been introduced, aiming to filter out, or amend, the imperfections
and to highlight the valuable data. Smart Data aims to transform raw data into quality data that
can lead to knowledge [LGGRG™'20]. It converts Big Data into useful information that is accurate.
A challenge that becomes even trickier is the management of the quality of the data in Big Data
environments. Advanced Big Data modeling and analytics are indispensable for discovering the
underlying structure from retrieved data in order to acquire Smart Data.

The main concept of Big Data is that these huge amounts of information will enable data mining
(DM) algorithms to achieve better and more accurate models than ever before, in a timely manner.
Classic DM algorithms are not prepared to handle these new requirements in terms of data size and
performance. This will impede the application of the Knowledge Discovery in Databases (KDD)
process [WZWD13]. KDD process can be defined as the non-trivial process of identifying valid,
potentially useful and understandable patterns in the data. The key aspect of the KDD process is
the steps into which it is divided:

1. Problem specification: sets the desired target of the discovery and the kind of knowledge
you want to extract.

2. Data extraction: analyze the most important sources of information, and integrate all that
sources into a single piece, known as dataset.

3. Data preprocessing: reduces, cleans and fixes the data in order to obtain a quality dataset
for further stages.

4. Data mining: extracts patterns and/or models from the preprocessed data.

5. Data interpretation and evaluation: analyzes the extracted knowledge and presents the
results in a user friendly shape.

All these different phases constitute the KDD process. However, they have received different
attention because of its importance and weight in the KDD process. The objective of DM is to
find repetitive patterns, tendencies o rules that explain the data in a particular context [WFHP16].
Depending on the type of the targeted results, DM techniques can be classified in predictive methods
- that make predictions about future or unknown events, and descriptive models - that identify
different relationships in the data.

Moreover, attending to the type of the target variable, whether it is defined or not, we can
distinguish two different groups:

1 Introduction 3

e Supervised learning: the objective is to predict the value of the target variable for new
instances by the definition of the relation between input variables and the target variable.
Two different families can be distinguished:

— Classification [DHS12]: the target variable is a discrete value, and the different set of
possible outcomes (namely classes or labels) are known. For example, red, green or blue
in simple color classification.

— Regression [CMO07]: the domain of the target variable is continuous. For example,
forecasting the amount of rain.

e Unsupervised learning: the target variable is undefined. The aim is to discover implicit
relations in the data. They can be separated in two different groups:

— Clustering [Har75]: creates groups of similar instances (intra-cluster distance), with the
largest separation among groups as possible (inter-cluster distance).

— Association [AIS93]: discover common relations between variables.

This thesis is focused on supervised classification tasks. Although DM is seen as the most
important task of the KDD process, it ultimately depends on the quality of the data. This data
can be affected by numerous negative factors such as noise, missing values, or inconsistencies in
data size, among many others. A well-known principle in data science is the garbage in - garbage
out principle: no matter how good your data or model are, as long as one is bad, the results will
be poor [GLH15, LGGRG"20]. Data preprocessing is a crucial step that enables DM algorithms
to find more useful patterns and with better quality [ZWM14]. In spite of being frequently in
the background, data preprocessing is the most time and effort consuming task of the KDD
process [Pyl99].

With the increasing size of the generated and stored data, traditional DM and data preprocessing
techniques are facing a serious challenge: being able to process Big Data effectively and efficiently.
Distributed computing has been widely used by data scientists even before the advent of Big Data
phenomenon for speeding up the KDD process [RMBG18]. However, it has become mandatory in
Big Data environments. This not only requires to adapt existing algorithms, but also to propose
new ones, born from and to handle Big Data problems.

MapReduce (MR) is one of the first distributed computing paradigm that enabled the generation
and processing of Big Data datasets in an automatic and distributed fashion [DG04]. MR has become
the reference in distributed computing paradigms because of its simplicity and fault tolerance.
By implementing two functions, Map and Reduce, users are able to process large amounts of
data without worrying about technical aspects, such as data partitioning, failure recovery or job
communication.

Apache Hadoop is the most popular and widely used implementation of the MR paradigm [Whil2,
LKRH15]. However, despite becoming the reference in performance, Apache Hadoop had some
limitations that have hinder its application in some contexts. The lack of in-memory processing,
or the low iterative performance are some examples [Lin13]. Recently, a novel framework focused
on speed and easy of use have taken Apache Hadoop spot in the Big Data science community.
This framework, named Apache Spark, solves Apache Hadoop limitations by providing in-memory
computing [HKZ"15]. This is achieved thanks to a novel data structure, called Resilient Distributed
Datasets (RDD) [ZCD'12]. They are able to reuse data partitions, and to recover them in case of
failure. Since Apache Hadoop was first released, more and more frameworks have emerged focusing

4 Chapter I. PhD Dissertation

on different Big Data aspects. Apache Flink is a recent Apache project designed for distributed
stream and batch data processing [HK19]. It tries to fill the “online” gap left by Apache Spark,
which employs a mini-batch streaming processing instead of a pure streaming approach.

Ensembles are methods that combine a set of base classifiers to make predictions [Die00Oa]. These
methods have been gaining more and more attention because of their excellent performance, and
their ability to correct errors across many base classifiers. The main idea of ensembles is that
learning a set of basic classifier models, with some differences between them, will create a better
global model. Diversity is the key concept of ensembles. With small changes in input data or base
classifiers, diverse base models are created and better ensembles are obtained. The application of
data preprocessing techniques in ensembles is a natural approach, since they can help to create the
required level of diversity.

Novel Big Data frameworks, like Apache Spark or Apache Flink, include distributed ML libraries.
However, only classic classification and data preprocessing methods are included, such as decision
trees or data scalers. As stated earlier, ensembles are the one of the best performing methods in DM.
If we attend to distributed ensembles for classification, only golden standards are included, such as
Random Forest [Bre01]. Given the excellent performance of ensembles in classification problems,
new distributed and scalable ensemble methods are required, designed specifically for tackling Big
Data classification tasks effectively. Since ensembles are strongly related with data preprocessing,
Big Data ensembles based on data preprocessing should be closely studied.

Most DM techniques and algorithms assume that the data is accurate. However, data extracted
from the real world is far from perfection. In any KDD process the value of extracted knowledge is
directly related to the quality of the data used. Big Data problems also follow the same dictate.
A common problem affecting data quality is the presence of noise, particularly in classification
problems, where label noise refers to the incorrect labeling of training instances, and is known to
be a very disruptive feature of data. It can be caused by faults in data acquisition, transmission
and/or storage. Noise disrupts the boundaries of the classes, harming the DM process and its
performance. It also alters the posterior interpretability of the model, as well as the conclusions
drawn from it [ZWO04]. Big Data problems pose a new challenge in terms of quality data due to
the massive accumulation of data. This Big Data scenario also brings new problems to classic data
preprocessing algorithms, as they are not prepared for working with such amounts of data, and
these algorithms are key to move from Big Data to high quality Smart Data.

The negative impact on learning associated to the imbalanced proportion of classes has exploded
lately with the exponential grow of “cheap” data. Many real world problems present scarce number
of instances in one class, whereas in others their cardinality is several factors greater. Moreover,
underrepresented classes are typically those that contain the concept of interest. Because of this, its
correct classification poses a challenge. This problem is known as imbalanced data classification, and
it’s gaining lots of attention in the last years [FGG'18]. The current techniques that treat imbalanced
Big Data problems are focused on obtaining fast, scalable and parallel sampling techniques following
the standard MR procedure. These generate local balanced solutions in each Map, which are
eventually combined into a final set. Nevertheless, this divide-and-conquer strategy entails several
problems, such as small disjuncts, data lack, etc. Algorithms able to efficiently balance and classify
imbalanced Big Data are required for tackling this problem.

The present thesis addresses different topics: standard classification, noise filtering, and imbal-
anced data classification. All topics spin around a common denominator, Big Data ensembles for
achieving Smart Data. First, a complete study of the most popular Big Data frameworks up to
date will be performed, in order to draw the current state-of-the-art in terms of scalability power,
and open and future problems. We will design an ensemble method based on data preprocessing for

1 Introduction 5

Big Data classification. Then, we will tackle noise filtering in Big Data classification, an unexplored
problem so far. We will design different noise filtering ensemble methods, proving that noise filter in
Big Data is a mandatory step that cannot be disregarded. Finally, we will focus on the imbalanced
Big Data classification problem, and will propose an ensemble for classifying such data.

Finally, this thesis consists of two different parts: the PhD dissertation and the publications.
In the first part, in Section 1 provides the general context of this project. Section 2 describes the
main concepts that are used in this thesis. The reasoning about the importance and justification
of this thesis will be given in Section 3. Here the main problems addressed by this thesis are
presented. The objectives and the methodology followed to develop the ideas proposed are described
in Section 4 and Section 5, respectively. In Section 6 is proposed an introduction to publications.
In Section 7 the main results of these publications are presented. Finally, Section 8 provides the
overall conclusions and open future lines derived from this thesis (Section 9).

The second part of the document consists of the five publications that compose this thesis,
organized according to the proposed objectives explained before:

e A comparison on scalability for batch big data processing on Apache Spark and Apache Flink.

Principal Components Analysis Random Discretization Ensemble for Big Data.

Enabling Smart Data: Noise Filtering in Big Data Classification.

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification.

Smart Data based Ensemble for Imbalanced Big Data Classification.

6 Chapter I. PhD Dissertation

Introduccién

La analitica de datos Big Data tiene un propdsito simple: conocer a la gente y a nuestro entorno de
la mejor forma posible. Hemos llegado a un momento en el que todo ha crecido hasta unos limites
que han obligado a las companias, gobiernos e investigadores a ir un paso mas alld y buscar nuevas
fuentes de informacién, nuevas fuentes de conocimiento que nos permita continuar desarrollandonos
y adaptdndonos [CCS12].

Las companias, gobiernos e investigadores estan constantemente buscando informacién en la que
no se habian interesado antes. A partir de ahora, esta informacion es la tinica manera de dar ese
siguiente paso. Toda esta informacién proviene de una gran variedad de fuentes, tanto estructuradas
como desestructuradas. Ademds, las compaiifas e investigadores estdn lidiando con los nuevos retos
de Volumen, Velocidad, Veracidad y Valor (entre otras muchas V’s) que caracterizan este nuevo
paradigma [RGFGT18].

Recientemente se ha introducido el término Smart Data, con el objetivo de filtrar o arreglar las
imperfecciones presentes en los datos, asi como resaltar aquellos que son valiosos. Smart Data pretende
transformar datos en crudo en datos de calidad que puedan crear nuevo conocimiento [LGGRG™20].
Convierte datos Big Data en informacion 1til y precisa. Un reto que se ha vuelto mas dificil atin es
la gestion de la calidad de los datos en entornos Big Data. La analitica y modelado avanzado de Big
Data son indispensables para el descubrimiento de las estructuras subyacentes de los datos, con el
objetivo de obtener Smart Data.

El principal concepto del Big Data es que esa gran cantidad de informacién permitiréd a los
algoritmos de mineria de datos alcanzar modelos mejores y mas precisos que nunca de forma
eficiente. Los algoritmos cldsicos de mineria de datos no estan preparados para trabajar con estos
nuevos requerimientos de volumen y velocidad. Esto impedira la aplicacién del llamado proceso
de descubrimiento de conocimiento a partir de bases de datos (en inglés, KDD) [WZWD13]. El
proceso KDD se puede definir como aquel proceso no trivial de identificacién de patrones validos,
potencialmente 1tiles y entendibles en los datos. El aspecto clave del proceso KDD son los pasos en
los que estd dividido:

1. Especificacion del problema: establece el objetivo de descubrimiento deseado y el tipo de
conocimiento que se pretende extraer.

2. Extraccién de datos: analiza las fuentes de informacién méas importantes e integra todas
esas fuentes en una tnica pieza, conocida como conjunto de datos.

3. Preprocesamiento de datos: reduce, limpia y arregla los datos con el objetivo de obtener
un conjunto de datos de calidad para las etapas posteriores.

4. Mineria de datos: extrae patrones y/o modelos de los datos preprocesados.

5. Interpretacion y evaluacién de los datos: analiza el conocimiento extraido y presenta
los resultados de una forma agradable para el usuario.

Todas estas diferentes fases constituyen el proceso KDD. Sin embargo, estas fases han recibido
diferente atencion por su importancia y peso en dicho proceso. El objetivo de la mineria de datos
es encontrar patrones repetidos, tendencias o reglas que expliquen los datos en un contexto en
particular [WFHP16]. Dependiendo del tipo de resultados objetivo, las técnicas de minerfa de datos

1 Introduction 7

se pueden clasificar en modelos predictivos - hacen predicciones sobre eventos futuros o desconocidos,
y modelos descriptivos - identifican diferentes relaciones en los datos.

Dependiendo de si la variable objetivo estd definida o no, podemos distinguir dos grupos
diferentes:

e Aprendizaje supervisado: el objetivo es predecir el valor de la variable objetivo para nuevas
instancias, por medio de la definicién de la relacion entre los datos de entrada y dicha variable
objetivo. Podemos distinguir dos familias diferentes:

— Clasificacion [DHS12]: la variable objetivo es un valor discreto, y el conjunto de posibles
salidas (también llamado clases o etiquetas) es conocido. Por ejemplo, rojo, verde o azul
en una clasificacién simple de colores.

— Regresion [CMO7]: el dominio de la variable objetivo es continuo. Por ejemplo, la prediccién
de la cantidad de lluvia.

e Aprendizaje no supervisado: la variable objetivo no estd definida. El objetivo es descubrir
relaciones implicitas en los datos. Se pueden dividir en dos grupos diferentes:

— Clustering [Har75]: crea grupos de instancias similares (distancia intra-clister), con la
maxima separacién entre grupos posible (distancia inter-clister).

— Asociacion [AIS93]: descubre relaciones comunes entre variables.

Esta tesis estd centrada en la tarea de clasificacion supervisada. A pesar de que la mineria de
datos se considera la tarea méas importante del proceso KDD, esta supeditada a la calidad de los
datos. Dichos datos pueden verse afectados por numerosos factores negativos como el ruido, la
presencia de valores perdidos, o inconsistencias en el tamano de los datos, entre otros muchos. Un
principio conocido en la ciencia de datos es el de basura a la entrada — basura a la salida: no importa
como de buenos sean los datos o el modelo, si uno de los dos es de mala calidad, el resultado también
lo serd [GLH15, LGGRG™20]. El preprocesamiento de datos es una tarea crucial que permite a los
algoritmos de minerfa de datos encontrar patrones més ttiles y con mejor calidad [ZWM14]. A
pesar de encontrarse con frecuencia en un segundo plano, el preprocesamiento de datos es la tarea
que més tiempo y esfuerzo consume del proceso de KDD [Pyl99].

Con el creciente tamano de los datos que se generan y almacenan, las técnicas tradicionales de
mineria y preprocesamiento de datos estan encontrando un serio desafio: ser capaces de procesar
Big Data de forma efectiva y eficiente. Los cientificos de datos han usado la computacién distribuida
con regularidad incluso antes de la llegada del fenémeno Big Data para acelerar el proceso de KDD
[RMBG18]. Sin embargo, se ha convertido en obligatoria para entornos Big Data. Esto no solo
conlleva la adaptacién de los algoritmos existentes, sino también el proponer nuevos, nacidos por y
para tratar problemas Big Data.

MapReduce (MR) es uno de los primeros paradigmas de computacién distribuida que permitié
la generacién y procesamiento de conjuntos de datos Big Data de forma automatica y distribuida
[DGO4]. MR se ha convertido en una referencia en computacién distribuida por su simplicidad y
tolerancia a fallos. Por medio de dos funciones, Map y Reduce, los usuarios pueden procesar grandes
cantidades de datos sin preocuparse por aspectos técnicos, como el particionamiento de datos, la
recuperacion en caso de fallo, o la comunicacién entre tareas.

Apache Hadoop es la implementacién del paradigma MR mas popular y extendida [Whil2,
LKRH15]. Sin embargo, a pesar de haberse convertido en el referente en rendimiento, Apache

8 Chapter I. PhD Dissertation

Hadoop presenta algunas limitaciones que lastran su aplicacion en algunos contextos. La falta de
procesamiento en memoria, o el bajo rendimiento en procesos iterativos son algunos ejemplos de
ello [Lin13]. Recientemente, una nueva herramienta, centrada en la velocidad y facilidad de uso,
ha ocupado el sitio de Apache Hadoop en la comunidad Big Data. Esta herramienta, llamada
Apache Spark, solventa las limitaciones de Apache Hadoop por medio de la computaciéon en
memoria [HKZ%15]. Esto lo consigue gracias a una novedosa estructura de datos, llamada Resilient
Distributed Datasets (RDD) [ZCD%12]. Los RDD tienen la capacidad de reusar particiones de los
datos y de recuperarlas en caso de fallo. Desde que Apache Hadoop salié a la luz, ha emergido un
nimero creciente de herramientas centradas en diferentes aspectos del Big Data. Apache Flink es
un proyecto Apache reciente, disenado para el procesamiento distribuido de datos en bloque y flujo
continuo [HK19]. Su objetivo es llenar el hueco dejado por Apache Spark en cuanto a procesamiento
“online”, el cual emplea un procesamiento de mini-bloques en lugar de una aproximacién puramente
continua.

Los ensembles son métodos que combinan una serie de clasificadores base para hacer predic-
ciones [Die00a]. Estos métodos han ido ganando atencién debido a su excelente rendimiento, asi
como por su habilidad para corregir errores por medio de los diferentes clasificadores base. La idea
principal de los métodos de ensemble es que al aprender un conjunto de clasificadores base, con
algunas diferencias entre ellos, se creard un mejor modelo global. La diversidad es el concepto clave
de los ensembles. Con pequenos cambios en los datos de entrada de los clasificadores base se obtienen
modelos base diversos, que resultaran en mejores ensembles. Las técnicas de preprocesamiento de
datos tienen una aplicacién directa en los ensembles, ya que permiten crear el nivel necesario de
diversidad.

Las nuevas herramientas para Big Data, como Apache Spark o Apache Flink, incluyen librerias
para aprendizaje automatico. Sin embargo, solo incluyen algoritmos clasicos de clasificacién y
preprocesamiento de datos, como los arboles de decision o métodos de escalado. Como se ha
comentado anteriormente, los ensembles son los métodos con mejor rendimiento en la mineria de
datos. Si nos centramos en los ensembles distribuidos para clasificacién, solo se incluyen algoritmos
estandar, como los Random Forest [Bre0l]. Dado el excelente rendimiento de los ensembles en
problemas de clasificacién, son necesarios nuevos métodos de ensemble distribuidos y escalables,
diseniados especificamente para abordar problemas de clasificacién Big Data de forma eficiente. Ya
que los ensembles estan altamente relacionados con el preprocesamiento de datos, los ensembles
para Big Data basados en preprocesamiento de datos deberan ser estudiados en detenimiento.

La mayoria de las técnicas y algoritmos de mineria de datos asumen que los datos son precisos.
Sin embargo, los datos extraidos del mundo real estan lejos de ser perfectos. En cualquier proceso de
KDD, el valor del conocimiento extraido esta directamente relacionado con la calidad de los datos
empleados. Los problemas Big Data siguen el mismo dictado. Un problema comiin que afecta a la
calidad de los datos es la presencia de ruido, en particular en problemas de clasificacién, en los que
el ruido de clase hace referencia al incorrecto etiquetado de las instancias de entrenamiento. Este
problema es conocido por ser una caracteristica disruptiva de los datos. El ruido en los datos puede
ser causado por fallos en la adquisicién, transmisiéon y/o almacenamiento de los datos. También
afecta a las fronteras entre clases, lastrando el proceso de mineria de datos asi como su rendimiento.
Ademés, altera la interpretabilidad del modelo, asi como las conclusiones obtenidas de el [ZW04]. Los
problemas Big Data suponen un nuevo reto en términos de calidad de los datos dada la acumulacién
masiva de los mismos. Este escenario Big Data también trae nuevos problemas a los algoritmos
clasicos de preprocesamiento de datos, ya que no estdn preparados para trabajar con tales cantidades
de datos, y estos algoritmos con la clave para pasar de Big Data a Smart Data.

El impacto negativo asociado al aprendizaje en presencia de una proporcién desbalanceada de

1 Introduction 9

clases se ha incrementado ultimamente con el crecimiento exponencial de datos “baratos”. Muchos
problemas reales presentan un nimero escaso de instancias para una clase, mientras que las otras
tienen una cardinalidad varias veces superior. Ademas, las clases con una baja representacién son
frecuentemente aquellas que contienen el concepto de interés. Por ello, su correcta clasificacién
supone un reto. Este problema es conocido como clasificacion de datos desbalanceada, y estd ganando
mucha atencién en los dltimos afios [FGGT18]. Las actuales técnicas para tratar problemas Big
Data desbalanceados estian centradas en obtener muestras de los datos balanceadas de forma rapida
y escalable siguiendo el procedimiento estandar MR. Esto genera soluciones locales en cada Map,
las cuales son combinadas eventualmente en un conjunto final. Esta estrategia divide y venceras
conlleva varios problemas como pequenas disyunciones, falta de datos, etc. Se necesitan algoritmos
capaces de balancear y clasificar de forma eficiente datos Big Data desbalanceados.

La presente tesis aborda diferentes temas: clasificacién estandar, filtrado de ruido y clasificacién
desbalanceada. Todos ellos giran en torno a un denominador comun: métodos de ensemble en Big
Data para obtener Smart Data. En primer lugar se realizara un completo estudio de las herramientas
Big Data mas populares actualmente, con el objetivo de dibujar el estado del arte en términos
de capacidad de escalabilidad, asi como problemas actuales y futuros. Disenaremos un método de
ensemble basado en preprocesamiento de datos para clasificacién Big Data. Después abordaremos
el filtrado de ruido en problemas de clasificacién para Big Data, un problema inexplorado hasta
ahora. Se disenaran diferentes métodos de ensemble para el filtrado de ruido, demostrando que
el filtrado de ruido en Big Data es un paso fundamental que no puede ser ignorado. Por dltimo
nos centraremos en el problema de la clasificacién desbalanceada en Big Data, y propondremos un
ensemble para la clasificacion de esos datos.

Finalmente, esta tesis estd formada por dos partes diferenciadas: la tesis doctoral y las publica-
ciones. En la primera parte, en la Seccién 1 se describe el contexto general de este proyecto. En
la Seccién 2 se definen los principales conceptos que soportan esta tesis. El razonamiento sobre la
importancia y la justificacién de esta tesis se dard en la Seccién 3. Aqui se presentan los principales
problemas abordados en este documento. Los objetivos y la metodologia empleada para el desarrollo
de las ideas propuestas se describen en la Seccién 4 y en la Seccidén 5, respectivamente. En la
Seccién 6 se propone una introduccién a las publicaciones relacionadas con esta tesis. Por otro
lado, en la Seccién 7 se explican los principales resultados de estas publicaciones. Finalmente, en la
Seccién 8 se describen las principales conclusiones extraidas, asi como las futuras lineas abiertas que
deja este extenso trabajo (Seccién 9).

La segunda parte del documento consta de las cinco publicaciones que componen esta tesis,
organizadas segiin los objetivos propuestos:

e A comparison on scalability for batch big data processing on Apache Spark and Apache Flink.

Principal Components Analysis Random Discretization Ensemble for Big Data.

Enabling Smart Data: Noise Filtering in Big Data Classification.

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification.

Smart Data based Ensemble for Imbalanced Big Data Classification.

10 Chapter I. PhD Dissertation

2 Preliminaries

This section presents the main concepts of the topics that have driven this thesis. First, Section 2.1
depicts the Big Data problem as well as describes the novel paradigms, frameworks and tools created
for this new concept. In Section 2.2, a couple of lines are devoted to ensemble methods, and their
adaptation to Big Data environments. Then, the different data preprocessing family branches and
their methods are presented in Section 2.3, with special emphasis in Smart Data extraction. Lastly,
Section 2.4 concludes with a description of the imbalanced classification problem.

2.1 Big Data

Vast amounts of information surround us today. Technologies such as the Internet generate data
at an exponential rate, thanks to the affordability and great development of storage and network
resources. It is predicted that by 2020, the digital universe will be 10 times as big as it was in 2013,
totaling an astonishing 44 zettabytes. The current volume of data has exceeded the processing
capabilities of classical data mining systems and have created a need for new hardware and software
for storing and processing this data [WZWD13]. Tt is widely accepted that we have entered the Big
Data era [LGGRG™'20]. Big Data can be defined as the set of technologies that make processing
such large amounts of data possible, while most of the classic KDD methods cannot work in a Big
Data environment because they were not conceived for it.

Big Data can be defined as a high Volume of data, generated at a high Velocity, with a high
Veracity, and a potentially high Value. This conforms what is known as the four Big Data V’s
(among many others) [LGGRG'20]. While the Volume and Velocity aspects refer to the data
generation process and how to capture and store the data, Veracity and Value aspects deal with
the quality and the usefulness of the data. These two last aspects become crucial in any Big Data
process, where the extraction of useful and valuable knowledge is strongly influenced by the quality
of the used data.

Distributed computing has established itself as the solution for tackling the Big Data problem.
It was widely used by data scientists before the advent of Big Data, but with the explosion of data,
it has become essential. Many standard and time consuming methods and algorithms have been
replaced by their distributed approaches, with the aim of not only accelerating the learning process,
but also enabling it. As a result of this rapidly evolving Big Data environment, countless tools,
paradigms and techniques have emerged, ready to tackle the Big Data situation [LGGRGT20]. All
these tools have one thing in common: bring closer cluster computing to the standard user (engineers
and data scientists) by hiding the technical nuances derived from distributed environments.

Among all technologies devoted to deal with the rapidly growing rates of generated data, MR is
the seminal paradigm designed by Google in 2004 [DGO04]. This paradigm is born from the necessity
of processing and/or generating large amounts of data in a distributed and efficient fashion, while
minimizing disk access and network use. It also provides fault tolerance, automatic data partition
and management, and automatic job-resource scheduling. MR follows a divide and conquer approach
for the processing and generation of large datasets with parallel and distributed algorithms on a
cluster. The MR model is composed of two phases: Map and Reduce. The Map phase performs a
transformation of the data, and the Reduce phase performs a summary operation.

The Map and Reduce functions are defined with respect to an essential data structure, known as
(key, value) pairs. To summarize this process, Figure 1 illustrates a typical MR workflow with its
Map and Reduce phases.

2 Preliminaries 11

ey B

Map

T D T R U

KiVa KaiVp| KiVe KgiVg | KaiVe KoiVi | KaiVg KgiVy | KiiVi KaiVj | KoV Ks:V

Intermediate

Grouped
by Key

K1V VoVi | KaVpVeViVk |KaVaVg | KaviVi | Ky

Figure 1: The MR paradigm, K elements represent the keys in the pairs, and V the values.

Output

The MR scheme can be described as follows:

e Before starting the Map phase, the master node partitions the data, transforms the instances
into a key-value format, and distributes them across the cluster.

e The Map function applies a transformation operation to the local (key, value) pairs of each
computing node.

e Once the Map phase is finished, all pairs belonging the same key are redistributed based on
the (key, value) pairs generated in the Map phase.

e When all pairs belonging to the same key are in the same computing node, the Reduce phase
starts. The Reduce phase is a summary operation that generates the final values.

Apache Hadoop is the most popular open-source implementation of MapReduce [Whil2]. Al-
though Hadoop is a very extended tool for Big Data processing, it has some important limitations,
like intensive disk usage, insufficiency for in-memory computation, poor performance on online and
iterative computing, or low inter-communication capacity [Lin13].

Recently, Apache Spark have emerged as an open-source framework for Big Data, focused on
speed, ease of use and sophisticated analytics [HKZ"15]. Apache Spark solves Apache Hadoop
limitations by in-memory computing, allowing to persist the data in memory for consecutive or
iterative processing. Users can load their data into memory and iterate over it repeatedly, making
it a suitable tool for ML algorithms. It is built on top of a novel distributed data structure, named
RDDs [ZCD'12]. They are a distributed collection of unsorted and immutable data, allowing
users to persist them in memory. RDDs can also be tracked and recomputed using a lineage

12 Chapter I. PhD Dissertation

for recovering lost or failed partitions. RDDs are composed of two different types of operations:
transformations and actions. The former is applied to each data partition of the RDD, and generates
a new RDD. Transformations are lazy operations, meaning that they are not evaluated until an
actions is computed on that RDD. Actions trigger all previous transformations of an RDD, and
return a value.

As part of the Apache Spark project, a distributed ML library was developed. MLIib
project [MBY16] was born in 2012 as an extra component of Apache Spark. This led to Apache
Spark becoming the reference among all other Big Data frameworks for Big Data ML. MLIlib in-
cludes several out-of-the-box algorithms for alike tasks, such as: classification, clustering, regression,
recommendation, and basic data preprocessing. Recently, a new version of MLIlib, based on Datasets,
has been presented, using the new additions to the Apache Spark framework. Apart from official
MLIib API, Spark provides a community package index, known as Spark Packages to collect all
open-source algorithms that integrates with MLIlib [Pac19].

Regarding Big Data stream processing, Apache Flink have emerged as the reference, solving
problems derived from micro-batch models (Apache Spark Streaming) [F1i19]. Apache Flink also
supports batch data processing, though it is treated as a special case of streaming. Similarly to
Apache Spark, Apache Flink also includes a fault tolerance mechanism to recover the state of data
streaming applications. This mechanism is generating consistent snapshots of the distributed data
stream and operator state. In case of failure, the system can fall back to these snapshots [HK19].

Apache Flink also includes a distributed and stream-oriented ML library, FlinkML. However,
it provides few alternatives for some fields in ML, like support vector machines, multiple linear
regression for supervised learning, KNN join for unsupervised learning, or scalers and polynomial
features for data preprocessing,

Despite the presence of several distributed ML libraries, only golden standard algorithms have
been redesigned for distributed Big Data environments. This lack of methods unables reaching
Smart Data from raw Big Data. Novel scalable and distributed designs for both classification and
data preprocessing, focused on Smart Data extraction, are required to extend and maintain these
libraries.

2.2 Ensembles

Ensembles are methods that combine a set of base classifiers to make predictions [Rok10]. In
contrary to other classic learners which build one learner from the data, ensembles learn multiple
learners and combine them. Ensembles are also referenced in the literature as committee-based
learning, or multiple classifier systems [Kunl4].

Ensemble methods are designed to increase the global accuracy by learning a set of base classifiers
and combining all the decisions to return a single decision or label [Die00b]. These base classifiers
are usually simple learners, such as decision trees, neural networks, or other kind of ML algorithm.
Depending on the type of the different base learners employed in the construction of the ensemble,
we can distinguish between homogeneous ensembles - all base learners are the same type, and
heterogeneous ensembles - base learners are of a different kind.

These methods have been attracting increasing attention over the last few years due to their
ability to correct errors across many diverse base classifiers. Thanks to the combination of base
learners, the generalization capability of ensembles is often much stronger than those base classifiers.
Because of this, ensembles are one of the best performing methods in ML nowadays.

2 Preliminaries 13

With the generated set of base learners comes the decision of which strategy is best for combining
them [Zhol2]. Rather than just trying to find the best single learner, ensemble methods follow
different mechanisms to produce the best combination of base learners:

e Averaging: is the most popular method for the combination of numerical outputs. Depending
on if all base learners are treated the same, or if they have different weights, different types of
averaging are employed:

— Simple averaging: combines the output by averaging the outputs of the different base
learners.

— Weighted average: achieves a combined output in cases when base learners have different
importance.

e Voting: employed for categorical outputs, it is the most popular and fundamental combination
method. Different types of voting strategies are available:

Magjority voting: each base classifier votes for one class, and the final decision is the one
that receives at least half of the votes.

Plurality voting: selects the class with the largest number of votes as the decision.

Weighted voting: assigns a weight to each learner, and gives more power to the stronger
classifiers decisions.

— Soft voting: when learners output class probabilities instead of one class label, soft voting
generates the combined output by averaging all outputs.

e Stacking [Wol92]: a learner is trained to combine the base learners (also known as meta-
learner).

The key concept of ensembles is diversity [Zhol2]. Diversity can be defined as the difference
among individual base learners. Ensembles correct errors in classification through learning classifiers
that have some differences among them [WGC14]. With diverse classifiers, ensembles will be more
robust to noise and outliers, and will achieve better performance. In Figure 2 we can see a graphic
representation of the learning process of an ensemble method. This diversity can be introduced
following different mechanisms:

e Data level: with small changes in input data, diverse classifiers are obtained. It can vary
from data sampling techniques, such as bagging [Bre96] or boosting [FST96], to modifications
of the data. This is usually introduced through the application of some data preprocessing
techniques.

e Classifier level: using different classifiers, or tweaking the parameters of a single classifier
can produce diverse classifiers and better ensembles.

e Hybrid approach: a combination of data level diversity and classifier level diversity can be
employed to obtain highly diverse ensemble methods.

Two different paradigms of ensemble methods can be differentiated depending on how base
learners are generated: sequential ensembles and parallel ensembles. The former learns the different
models sequentially, whereas in the latter, base learners are generated in a parallel fashion. The idea

14 Chapter I. PhD Dissertation

|
] l
P {fj 3 @fﬁ

Model
Learning

Model
Combination

Figure 2: The ensemble learning process introduces diversity on each base model in order to obtain

different models for improving the global performance of those base classifiers.

of each of these paradigms is to exploit either dependence or independence among base learners, as
two different strategies to create ensembles. The best representative examples of methods for such
strategies are boosting and bagging.

Boosting is a general procedure to convert weak learners into strong learners [FS*96]. It trains
a set of base learners in a sequential manner, and combines them for prediction. Each learner
focus on the misclassifications of the earlier learner by increasing or decreasing weights in order
to improve the detection of instances hard to discriminate. The AdaBoost algorithm [FS97] is the
most influential boosting algorithm.

Bagging is focused on data level diversity. It samples the data randomly with replacement each
iteration of the ensemble [Bre96]. Although base learners are generated from the same data, the
introduction of randomness in the learning process can generate some independence among them.
This improves the generalization ability of the ensemble [Zhol2]. Another benefit is their ability
to be adapted to distributed computing, since all base learners are trained from different subsets
of the data, they can be processed independently. The most popular ensemble method using this
technique is Random Forest [Bre01], which combines bagging with decision trees.

Several ensemble methods have been proposed in the literature since its inception. Classification
ensembles such as XGBoost [CG16], Light GBM [KMF*17] or CatBoost [PGV118] have become
some of the best performing methods in ML nowadays. However, their adaptation to Big Data
scenarios is still an ongoing process.

If we focus on Big Data ensemble proposals, we can only find classic methods like Random
Forest or boosting ensembles available in the most popular ML Big Data libraries. Novel distributed
ensemble proposals are needed, ready to tackle Big Data problems.

2 Preliminaries 15

2.3 Data Preprocessing & Smart Data

In this Big Data era, the lack of human supervision, and the automation in the data acquisition and
storing process have led to the acceptance that data will have low quality due to the presence of
imperfections, redundancies or inconsistencies, among other pernicious traits. These imperfections
can be provoked by sensors failing, anomalous situations, or exogenous factors, among others. Low
quality in data can make impossible the later learning process. The set of techniques devoted to tackle
those imperfections, and to improve the quality of the data are known as data preprocessing [GLH15].
There are different families of data preprocessing algorithms, being the most widely used the data
reduction techniques, imperfect data methods, and imbalance data handling.

Recently, a new term related to the Big Data environment has emerged. Smart Data refers to
the challenge of transforming raw data into quality data that can be appropriately exploited to
obtain valuable insights [LGGRG™20]. This new concept aims to achieve quality data with Veracity
and Value properties. Therefore, Smart Data is focused on extracting valuable knowledge from
data, in the form of a subset (big or not), that contains enough quality for a successful DM process.
The impact of Smart Data extraction in industry and academia is two-fold: higher quality DM and
reduction of data storage costs.

Data preprocessing is strongly linked to the concept of Smart Data, as it is one of the most
important phases of the KDD process. Raw data is likely to contain imperfections, redundancies, or
inconsistencies, making it unsuitable for a successful DM process. The goal of data preprocessing is
to clean and amend errors in the data, and to improve the performance of the later ML process.
This transformation is the difference between “Big” and “Smart” Data, as can be seen in Figure 3.

Among all imperfections affecting data, noise is one of the most disruptive ones. Noise can be
defined as an exogenous or external factor that affects the data and corrupts it. As data grows,
noise accumulates and algorithmic instability appears, particularly when a massive sample pool has
been integrated from heterogeneous sources. Noise disrupts the models obtained and decrements
the performance of ML algorithms. Alleviating the effects of noise is a challenging task that requires
the correct identification of the corrupted examples in the data.

As stated earlier, noise contained in data entails a critical impact on the models learned from it.
Noise sensitive learners aggravate this negative impact. Moreover, data size is a factor that increases
the amount of noise in data, since noise accumulates when the number of dimensions and instances
increases [FHL14]. We can distinguish two different types of noise in the literature, depending on
which element of the data is affecting [ZW04]:

e Class noise: also referred as label noise, describes wrongly labeled examples. It is conformed
by misclassifications (examples with a wrong label), and contradictory examples (instances
with different label, but the same input attributes).

e Attribute noise: refers to corruptions in data attributes. In spite of being composed of
several data problems (missing values or “do not care” values among others), it is mainly
focused on erroneous values.

Among the two different types of noise presented, class noise if the most disruptive with the
learning process. For this reason, many efforts have been devoted to tackle it. Class noise have
different origins, such as errors in the data acquisition process, or subjectivity in the data labeling
phase.

Different approaches for dealing with class noise can be found in the literature. These techniques

16 Chapter I. PhD Dissertation

Big Data

Preprocessing

&

Figure 3: Big Data preprocessing is the key to transform raw Big Data into quality Smart Data.

vary from the creation of noise-robust learners and algorithms, to data preprocessing techniques ca-
pable of detect and remove or correct noisy examples. Two different approaches can be distinguished
for the noise handling problem [FV14]:

e Algorithm level: these methods aim to create robust learning algorithms that are little
or not influenced by the presence of noise, pruning strategies to avoid overfitting to noisy
instances, or decreasing the importance of noisy instances. Hybrid strategies that combine
both approaches have also been proposed, which model the noise and diminish the importance
of noise in the learning process.

e Data level: also known as filters. They aim to remove noisy examples from a dataset,
as a previous step to the learning process. We can find ensemble strategies [VVAO03], data
partitioning approaches, or iterative algorithms [BF99].

The negative effects of noise increase with the size of the data. Data preprocessing methods are
also affected by the increasing size and complexity of the data, making them unable to obtain a
preprocessed /smart dataset in a reasonable time limit. Although a Big Data scenario is very likely
to contain huge amounts of noise, little research has been devoted to tackling noise in Big Data.
That is why there is a special need for noise filters in Big Data. While some architectural designs
are already proposed in the literature [Zer16], there is no particular algorithm which deals with
noise in Big Data classification, nor a comparison of its effect on model generalization abilities or
computing times.

2 Preliminaries 17

2.4 Imbalanced Classification

Among the wide set of problems worsened or even directly provoked by Big Data, the treatment of
imbalanced data in binary classification can be highlighted as one of the most common affecting Big
datasets [LGGRG™20]. In a supervised classification problem, the existence of a notable difference
in the number of instances belonging to different classes is known as imbalanced classification. The
class with the lower number of examples is known as the minority class. Similarly, the class with
the largest number of instances is referred as the majority class. Moreover, the classes which are
underrepresented are typically those that arouses most interest; therefore, its correct identification
becomes primary [FdARCH17].

This problem entails a great challenge to standard ML algorithms, since they are often guided
by global search measures weighted in favor of accuracy that constantly overlook this imbalanced
situation [FGGT18]. This will led the ML algorithms to ignore the minority class, and treat it as
noise, because more general rules that model the majority class will be preferred.

Many efforts have been devoted to tackle imbalanced classification. The different techniques
proposed can be divided into three categories:

e Data level: these methods modify the data in order to obtain a balanced dataset. This
approach makes use of imbalanced data preprocessing techniques.

e Algorithm level: it entails the modification of already existing methods for improving the
detection of the minority class.

e Cost-sensitive methods: they combine above two approaches. They incorporate data level
modifications by adding costs to instances, and algorithm level adaptations.

Algorithm level modifications are considered an alternative to data preprocessing (or data level)
techniques. Data preprocessing methods modify the data in order to improve the detection of both
classes, whereas algorithm modifications alters the classifier learning procedure itself [FGG™18].
This approach involves a deep understanding of the learning process, in order to identify the
particular mechanism responsible of the class bias towards the majority class. Many popular ML
methods have undergo such modifications, like support vector machines [GANAV14] and their
variants [SCZ 114, ML14].

Cost-sensitive methods are a variant of algorithm level modifications. In these methods, a
misclassification cost is introduced in order to minimize conditional risk. With the penalization of
wrong predictions, the importance of such classes is improved, pushing decision boundaries away
from these instances [FGGT18]. Cost-sensitive methods can be differentiated depending on which
aspect of the data is affected by them: cost associated with features [ZZL16] or cost associated with
classes [KSW15].

Along from these three categories, ensemble methods can be classified into their own cate-
gory [GFBT11]. Because of their accuracy orientation, ensembles cannot be directly applied to
imbalanced datasets, since the base classifiers will ignore the minority class. However, their combina-
tion with other techniques that tackles the class imbalance problem, usually data level approaches,
can improve ensemble performance. The addition of data level approaches to an ensemble is done
by the application of one (or several) data preprocessing method to the data before the application
of the ML technique.

As stated earlier, data level modifications are carried out by the use of different data preprocessing
methods. In the literature, data preprocessing methods for imbalanced classification can be divided

18 Chapter I. PhD Dissertation

into three categories: oversampling, undersampling, and hybrid approaches. The former replicates
the minority class until a certain balance is reached. On the contrary undersampling methods
delete examples from the majority class until both classes are equal. Finally, hybrid approaches
combine the previous two techniques, usually starting with an oversampling the data, followed by
an undersampling step that removes samples from both classes, in order to remove noisy instances
and improve the performance of the ML technique used.

The most popular and widely used method for oversampling data is known as Random Over-
Sampling (ROS) [BPM04]. ROS randomly replicates examples from the minority class, until the
number of instances of both classes is the same. On the other hand, Random UnderSampling (RUS)
randomly removes instances from the majority class, until both classes have the same amount of
instances [BPMO04]. The downside of RUS method, is that it removes information, and may remove
key instances for the learning process to distinguish between both classes.

The Synthetic Minority Oversampling TEchnique (SMOTE) is a more advanced oversampling
method [FGHC18]. It adds synthetically created instances from the minority class until both classes
have the same number of instances. Those new synthetic instances are created by the interpolation
of several minority class instances that belong to the same neighborhood. SMOTE calculates the k
nearest neighbors of each minority class instance. Then, in the segment that connects every instance
with its k closest neighbors, a synthetic instance is randomly created.

Clustering solutions have also been proposed for tackling imbalanced data classification [LTHJ17].
It has been employed effectively for the data imbalance problem as a way to increase the density
of points belonging to certain neighborhoods [NPF18]. Clustering methods balance the data by
localizing groups of instances belonging to different neighborhoods, and then applying a data
sampling technique [Kral6]. These methods can improve the performance of simple data sampling
techniques like ROS and RUS, since they will either create or remove data points located in key
areas, improving the later ML process. Clustering can also be combined with ensembles to obtain
diverse and balanced classifiers, improving the performance of ensemble approaches that uses data
sampling [LTHJ17, ZWL"18].

Performance evaluation is a key factor for assessing the classification performance. In binary
classification problems, the confusion matrix (shown in Table 1.1) collects correctly and incorrectly
classified examples from both classes.

Table I.1: Confusion Matrix for Binary Classification Problems

Positive Prediction Negative Prediction

Positive class ~ True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Traditionally, accuracy (Equation I.1) has established as the most extended classification per-
formance metric. However, it is not a valid metric when dealing with imbalanced dataset, since it
will bias towards the majority class, and not show the real classification performance. Furthermore,
it can lead to wrong conclusions: a dataset with an imbalance ratio (IR) of 9 (9 majority class
instances per each minority class example) and a global accuracy of 90% will be classifying all
examples as belonging to the majority class.

TP+TN

Acc =
TP+ FN+FP+TN

(L1)

2 Preliminaries 19

The Geometric Mean (GM) is described in Equation 1.2. GM metric attempts to maximize
both minority and majority classes accuracy at once [BSGRO03|. The accuracy of both minority and

majority classes is represented by the True Positive Rate (TPR) = = PZEJ ~ and True Negative Rate
TN
(TNR) = 73575

GM = VTPR«TNR (1.2)

Another popular and extended evaluation metric for imbalanced data classification is the Area
Under the Curve (AUC) [HLO5]. This metric combines the classification performance of both
minority and majority classes It shows the trade-off between the TPR and False Positive Rate
(FPR). This metric provides a single measure of a classifier performance, compared against a random
classifier.

Due to the automation in data acquisition, Big Data scenarios pose a new challenge in terms of
imbalanced data distributions. This Big Data scenario also brings new problems to classic data
sampling and balancing methods, since they are not prepared to work with such amounts of data.
Moreover, the high data redundancy present in Big Data problems, will hinder the performance of
data sampling techniques and, therefore, prevent the transition from Big to Smart Data. Because of
their proved performance, proposals focused on creating ensembles using smart and diverse datasets
for the classification of imbalanced Big Data are needed for the correct identification of both classes.

20 Chapter I. PhD Dissertation

3 Justification

From previous sections, we may assert that there is an increasing gap between the storing and
processing capabilities of current systems. New tools for processing this data are emerging nowadays.
However, we need the proper algorithms, capable of dealing with Big Data problems, for improving
or even enabling the ML task. There is an increasing need for scalable and distributed ML proposals.

Ensembles have received little attention within the Big Data environment. Their ability to
correct errors through different base learners can be of great help in Big Data problems, where the
variety of data can hinder the DM task. Since traditional data preprocessing methods are not able
to handle Big Datasets, achieving the required level of diversity has become a challenge due to the
complexity and size of Big Data problems.

In order to extend the ML ecosystem, and the classification and data preprocessing based
ensembles in Big Data environments, the following major issues should be properly addressed:

e Firstly, it is important to study current technologies for Big Data processing, as well as to
learn about the different ML libraries available. This will allow us to decide which platforms
suits our necessities better according to our previous requisites.

e In Big Data, there are few ensemble methods devoted to classification tasks. Only classic
ensembles have been adapted to Big Data scenarios. The unsuitability of classic data pre-
processing methods for Big Data have unabled reaching the required level of diversity for
ensembles. There is a need for new ensemble classifiers, designed for Big Data, ready to tackle
large-scale problems.

e Data preprocessing techniques have shown their limitations with the ever-growing size of the
data. Therefore, the study and design of scalable and distributed methods for improving the
quality of such data in order to achieve Smart Data will be needed. We will focus on the most
common problem affecting data, the presence of noise. Ensembles based on data partitions
have proved to be able to effectively remove noise from normal-sized data. This study will
conform the first work in this field for Big Data problems.

e With the acquired knowledge in ensembles for Big Data, it is necessary to go deeper into
this topic, and to focus into one problem that hinders the performance of DM methods.
Imbalanced classification is a very pernicious problem affecting Big Data. The application
of data preprocessing has been extensively employed for this problem for normal-sized data.
However, a Smart Data based ensemble focused on imbalanced Big Data classification would
be of great interest.

All these issues can be encompassed within the subject of this thesis: The development of
scalable ensemble methods for Big Data classification and Smart Data extraction.

4 Objectives 21

4 Objectives

After introducing the main concepts related to this work, we present the main objectives that
have driven this thesis. They include the study and analysis of Big Data, classifiers and data
preprocessing based ensembles, as well as the development of parallel and distributed ensemble
algorithms for Big Data environments (e.g. Apache Spark).

Specifically, the main objective of this thesis is the analysis, design, implementation and evaluation
of scalable classifier and data preprocessing ensembles for Big Data and Smart Data extraction. In
the following list, we describe each objective individually:

e To study the current state on scalability of Big Data frameworks: an analytical and
experimental study of current popular Big Data frameworks which will allow us to extend our
knowledge about the suitability and performance of current platforms and strategies. The
end objective is to provide an introduction of the similarities and differences among Big Data
frameworks.

e To study the current state-of-the-art in Big Data preprocessing and Smart Data:
a theoretical and empirical study of the current state-of-the-art on Big Data preprocessing as
a way to achieve Smart Data. This study will uncover all strengths and weaknesses of current
developments in these areas. To the best of our knowledge, there is no study in the literature
that provides such knowledge.

e To provide a distributed data preprocessing-based ensemble method for classifica-
tion: data preprocessing is known to be capable of achieve the required level of diversity, and
to being directly applied to ensemble methods. The goal is to create a data preprocessing-based
ensemble method for standard Big Data classification problems. This method will be focused
on creating highly diverse data through the use of different data preprocessing techniques.

e To address the problem of noise in Big Data scenarios: concretely, the aim here is to
prove that noise in Big Data cannot be disregarded, and to provide the first noise filtering
algorithms for Big Data scenarios. The resulting noise filtering algorithms will be capable
of efficiently remove noisy instances in Big Data environments, and to enable Smart Data.
Furthermore, we aim to analyze two different types of noise filters: partition-based, and
iterative algorithms.

e To tackle the imbalanced Big Data classification problem using data preprocessing
for enabling Smart Data based ensembles: after the study of ensembles for standard
classification, our objective is to focus on the imbalanced Big Data classification problem.
Imbalanced classification is a very common problem when dealing with Big Data. Our aim is to
design a scalable Smart Data based ensemble classifier, able to effectively classify imbalanced
Big Data datasets.

Chapter I. PhD Dissertation

5 Methodology

This thesis requires the application of a methodology that is both theoretical and practical. Therefore,
we need a strategy that, while maintaining the guidelines of the traditional scientific method, is
able to provide the special needs of such methodology. In particular, the following guidelines for the
research work and experiments will be applied:

. Observation: thorough study of the large-scale ML problem and its specific characteristics,
along with the application of ensemble techniques to different stages of the KDD process, as
well as the possibilities offered by distributed computing technologies to give a proper solution
to this problem.

. Hypothesis formulation: design of new classifier and data preprocessing methods, based on
ensembles, for improving the quality of the data and the later DM task. Methods developed
must comply with the objectives previously mentioned in order to properly tackle Big Data
problems and to achieve Smart Data.

. Observation gathering: retrieving the results obtained by the application of the proposed
new methods on real-world Big Data datasets. Both efficiency and accuracy, among other
metrics, have to be measured and considered in the designs.

. Contrasting the hypothesis: comparison of the results obtained by the classification and
data preprocessing ensemble algorithms in order to analyze the quality of the new proposals.
For that purpose, we will rely on scalable ML libraries, such as MLIlib of FlinkML. Other
proposals in the literature will serve to validate effectiveness and efficiency of our models.

. Hypothesis proof or refusal: Acceptance or rejection and modification, in due case, of the
developed techniques as a consequence of the performed experiments and the gathered results.
If necessary, the previous steps should be repeated to formulate new hypothesis that can be
proven.

. Scientific thesis: Extraction, redaction and acceptance of the conclusions obtained through
out the research process. All the proposals and results gathered along the entire process
should be synthesized into a memory of the thesis.

6 Summary 23

6 Summary

This section presents a summary of the publications associated to this thesis. After that, in Section 7
we describe the main results obtained by these proposals. Both the research carried out for this
thesis and the associated results are collected into the published journal publications listed below:

e D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera. A comparison on scalability for
batch big data processing on Apache Spark and Apache Flink. Big Data Analytics 2 (1), 1
(2017). DOL: https://doi.org/10.1186/s41044-016-0020-2

e D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera. Principal Components Analysis
Random Discretization Ensemble for Big Data. Knowledge-Based Systems 150, 166-174 (2018).
DOI: https://doi.org/10.1016/j.knosys.2018.03.012

e D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera. Enabling Smart Data: Noise Filtering in Big
Data Classification. Information Sciences 479, 135-152 (2019). DOI: https://doi.org/10.
1016/j.ins.2018.12.002

e D. Garcia-Gil, F. Luque-Sanchez, J. Luengo, S. Garcia, F. Herrera. From Big to Smart Data:
Iterative Ensemble Filter for Noise Filtering in Big Data classification. International Journal of
Intelligent Systems 34 (12), 3260-3274 (2019). DOI: https://doi.org/10.1002/int.22193

e D. Garcia-Gil, J. Holmberg, S. Garcia, N. Xiong, F. Herrera. Smart Data based Ensemble for
Imbalanced Big Data Classification. Submitted.

The remainder of this section is organized following the objectives presented in Section 4 and
these publications. First, Section 6.1 provides some insights about the comparison on scalability
performed on two Big Data frameworks. Section 6.2 details a data preprocessing ensemble classifier
for Big Data. Section 6.3 present the first two proposals in the literature for efficiently and effectively
removing noise in Big Data problems. Finally, Section 6.4 describes a data preprocessing ensemble
classifier designed to face Big Data imbalanced problems.

6.1 Comparison on Scalability between Big Data Frameworks

With the rise of Big Data, many tools have emerged ready to provide users efficient tools to deal
with it. All of these tools have one thing in common, the use of the MR programming paradigm.
This paradigm allows to process huge amounts of data using a divide and conquer approach. By
means of two simple functions, namely Map and Reduce, any algorithm can be adapted to work
with Big Data datasets in a transparent way for the programmer. MR also provides the fundamental
fault-tolerance scheme. The most popular open-source framework was Apache Hadoop, however,
newer and more efficient implementations of the MR paradigm have emerged recently, tackling
Apache Hadoop limitations.

In this work, we performed a thorough comparison between two outstanding Big Data frameworks,
Apache Spark and Apache Flink. We divide this study in two parts: (1) a theoretical comparison
between both of their engines and ML algorithm implementations, and (2) a practical study on
scalability.

We focused on their batch data processing capabilities. Their main differences and analogies are
studied in order to outline which are the best scenarios for each platform. Moreover, we studied

24 Chapter I. PhD Dissertation

their corresponding ML libraries, MLlib & ML for Apache Spark (RDD and Dataset based), and
FlinkML for Apache Flink.

A practical study on scalability was performed, executing the same ML algorithm on both
platforms in order to assess the differences and similarities in performance among them.

The work associated to this part is:

D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera. Big Data Analytics 2 (1), 1
(2017). A comparison on scalability for batch big data processing on Apache Spark
and Apache Flink. DOI: https://doi.org/10.1186/s41044-016-0020-2

6.2 Ensemble Classification for Big Data

Classification ensembles are methods that combine a set of base classifiers to obtain better predictions.
These base classifiers are basic and simple classifiers, that can correct errors across many iterations.
Ensembles require diversity in the data in order to obtain diverse base classifiers. This diversity is
usually introduced through data preprocessing. With small changes in input data, diverse decision
trees are created and better ensembles are obtained. Despite the importance of classification
ensemble methods, few proposals have been made for Big Data problems. Specially scarce is the
impact of data preprocessing in Big Data classification ensembles.

In order to fill this gap, we proposed a new ensemble classifier for Big Data using Apache Spark.
This method is inspired by Random Projection Random Discretization Ensemble (RPRDE) by
Ahmad and Brown [AB13]. It is a highly diverse ensemble method focused on data level diversity
composed of two data preprocessing methods, Random Discretization (RD) and Random Projections
(RP). RD method discretizes the data in k intervals by randomly selecting k — 1 instances, and
using those values as thresholds for the discretization of each feature. On the other hand, RP
projects the data onto a lower d-dimensional subspace. However, Random Projections (RP) [JL84]
are known to suffer from a gradual degradation in performance as the projected dimensions drops
below log k [Das00]. Moreover, RP is highly unstable, different RP will lead to radically different
results [FMO3].

Our main objective was to provide a data preprocessing ensemble, capable of working with
huge amounts of data efficiently. Our proposal is denoted by Principal Components Analysis
Random Discretization Ensemble (PCARDE). PCARDE tackles RPRDE drawbacks by using a
more informative and less randomized method like Principal Components Analysis (PCA) [Jol11].
As stated previously, ensembles require diversity, however, PCA always produces the same results
for a fixed number of principal components. In order to achieve the desired level of diversity, we
introduced randomization in the number of principal components we select. For each iteration of
the ensemble, we select the number of principal components randomly in the interval [1,m — 1] (m
number of features).

In order to measure the performance of PCARDE, we evaluated it on a conscious experimental
framework, composed by five Big Data datasets, different ensemble classifiers with different sizes, a
set of non-parametric and Bayesian statistical tests. Additionally, a study concerning the impact of
the proposed addition was carried out.

The journal contribution associated to this part is:

6 Summary 25

D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera. Principal Components
Analysis Random Discretization Ensemble for Big Data. Knowledge-Based Systems
150, 166-174 (2018). DOI: https://doi.org/10.1016/j.knosys.2018.03.012

6.3 The Problem of Noise in Big Data

Advanced Big Data modeling and analytics are indispensable for discovering the underlying structure
from retrieved data. However, imperfections in the data will disrupt all posterior KDD phases.
Among all the problems that may appear in the data, the presence of noise in the dataset is one
of the most frequent. In Big Data, the high redundancy of the instances and high dimensional
problems pose new challenges to classic noise preprocessing algorithms. While some architectural
designs are already proposed in the literature [Zer16], there is no particular algorithm which deals
with noise in Big Data classification, nor a comparison of its effect on model generalization abilities
or computing times.

In view of this lack of algorithms for noise filtering in Big Data problems, we proposed a
framework for Big Data under Apache Spark. This framework is composed of two algorithms based
on ensembles of classifiers for removing noisy examples. Both of them are based on a partitioning
scheme of the dataset. The former partitions the data using a k-fold strategy and learns a Random
Forest, each time leaving out the test partitions. The result are k classifiers which are employed to
predict the data. Instances that do not match their prediction are considered as noise and removed.
The later ensemble noise filter differs from the first in the classifiers used. It learns three different
classifiers: a Random Forest, KNN and a Logistic Regression. Then, each of the k partitions are
predicted with the three classifiers. Using a voting strategy instances are either kept, or considered
as noise and removed.

The former method of the proposed framework is denoted by Homogeneous Ensemble for Big
Data (HME-BD), the later is called Heterogeneous Ensemble for Big Data (HTE-BD).

A simple filtering algorithm based on KNN is also proposed in the framework for comparison
purposes. This algorithm, namely ENN-BD, removes noisy instances by comparing the label of each
example with its closest neighbor. If the labels are different, the instance is considered as noise and
removed.

The extensive empirical study of the framework consists of four Big Data datasets, five different
levels of noise, two different classifiers, a study of the number of instances left after the noise
filtering process, a comparison of the percentage of correctly removed instances, a computing times
comparative, and an analysis based on non-parametric and Bayesian statistical tests.

With the proposed framework serving as a baseline, our next target was to improve the noise
filtering ecosystem in Big Data with more powerful algorithms.

Iterative algorithms for noise cleaning have been used extensively form normal-sized problems
showing promising results [SGLH16]. Taking into account Apache Spark’s capacity for iterative
algorithms, we proposed an iterative ensemble filter for noise filtering in Big Data classification.
The algorithm proposed, similarly to the previously proposed framework, is based on a partitioning
scheme of the data. It performs a k-fold to the data, and learns a Random Forest on each training
partition. The complete dataset is predicted k times using each of the models learned. All instances
will have k predictions. Using a voting strategy, instances are either kept or considered as noise
and removed. This process is repeated a number of times using the newly generated dataset in an
iterative fashion.

26 Chapter I. PhD Dissertation

This distributed approach, called Iterative Ensemble Filter for Big Data (IEF-BD), was tested on
six Big Data datasets, with five different levels of noise. Additionally, reduction rates and computing
times of IEF-BD were tested.

The journal papers associated to this part are:

D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera. Enabling Smart Data: Noise Filtering
in Big Data Classification. Information Sciences 479, 135-152 (2019). DOI: https:
//doi.org/10.1016/j.ins.2018.12.002

D. Garcia-Gil, F. Luque-Sanchez, J. Luengo, S. Garcia, F. Herrera. From Big to
Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification.
International Journal of Intelligent Systems 34 (12), 3260-3274 (2019). DOI: https:
//doi.org/10.1002/int.22193

6.4 Imbalanced Big Data Classification

Uneven class distribution is present in many of today’s problems. In Big Data, the automation
in data acquisition have worsened this problem. Many efforts have been devoted to tackle the
class imbalanced problem for normal-sized data. Data preprocessing is the most common set of
techniques employed for this task. Data sampling solutions balance the dataset through the addition
or removal of data points until the classes are balanced to a desired level. In Big Data, there is
little research devoted to handle irregular binary class distributions. Given the good performance of
data preprocessing when joined with ensemble techniques, a further study in imbalanced ensembles
can be of great interest.

Then we proposed a Smart Data based ensemble, capable of dealing with imbalanced binary class
problems. This ensemble is based on the same data preprocessing carried out by PCARDE, plus
a novel clustering-based data balancing methodology. Hierarchical clustering is employed with a
random number of clusters each iteration of the ensemble. Clusters found are individually balanced
using ROS technique. This results in a balanced and diverse dataset. Our proposal is denoted by
Imbalanced Classification Ensemble for Big Data (ICE_BD).

The empirical study consists of 21 imbalanced Big Data datasets, three data balancing methods,
three different classifiers for comparison, and two imbalanced data classification metrics.

The paper associated to this part is:

D. Garcia-Gil, J. Holmberg, S. Garcia, N. Xiong, F. Herrera. Smart Data based
Ensemble for Imbalanced Big Data Classification. Submitted.

7 Discussion of Results 27

7 Discussion of Results

The following subsections present the main results and further discussion motivated by the research
conducted in this thesis.

7.1 Comparison on Scalability between Big Data Frameworks

This comparison has been devoted to analyze the similarities and differences among two novel
Big Data frameworks, Apache Spark and Apache Flink. The aim of this work is to assess the
performance these two frameworks, using their corresponding ML libraries for batch Big Data
processing.

To obtain well-funded conclusions about these two Big Data frameworks, we divided the
comparison into two parts: an internal comparison of their engines, and a experimental comparative
of their ML performance.

Regarding the engine-level comparison, the main differences founded are that Apache Spark
keeps data in memory across iterations through an explicit caching. However, Apache Spark plans
its executions as acyclic graph plans, which implies that it needs to schedule and run the same
set of instructions in each iteration. In contrast, Apache Flink implements a thoroughly iterative
processing in its engine based on cyclic data flows (one iteration, one schedule). Additionally, it
offers delta iterations to leverage operations that only changes part of data.

As stated, we also performed a thoroughly experimental evaluation of the performance of both
frameworks. For this comparison, we use the same Big Data dataset for both frameworks, which
where running on the same hardware. According to experiments, MLIlib performs slightly better than
Spark ML. However, there is a big difference among Apache Spark and Apache Flink. Depending
on the ML algorithm, time difference between Apache Spark and Apache Flink can go from 2.5x up
to 10x times less time for Apache Spark.

7.2 Ensemble Classification for Big Data

In the corresponding section, we have proposed a new and distributed classification ensemble for
Big Data inspired by Ahmad and Brown RPRDE ensemble. The aim of this work is provide a
data preprocessing ensemble, adapted to Big Data frameworks and able to face Big Data problems
efficiently.

Our first approach to improve the dimensionality reduction step of RPRDE was to replace the
RP method with a more informed one like x? [LS95]. We use x? for performing feature selection.
Like PCA, x? also produces the same results for a fixed number of features. The solution was the
same applied to PCA, introduce randomization in the number of features we compute in order to
obtain diverse decision trees.

The experimental study carried out to measure the impact of PCA justified the addition of
PCA instead of RP, showing the differences in feature selection among x? and our proposal, called
PCARDE. This study was divided in two parts: a study of the most important features selected
by PCA and 2, and an accuracy comparison of a decision tree using PCA, x? and RP with the
same increasing number of features selected. The results showed that PCA and x? are selecting
very different features among them. This led to big differences in accuracy, where PCA showed to
be the best performing method among the three feature selectors tested.

28 Chapter I. PhD Dissertation

According to the experiments, our proposal is able to achieve better accuracy for every tested
dataset, achieving up to 10% more accuracy. PCARDE has shown to be a very stable ensemble
classifier, showing little or no improvement when using 10 trees onward. This means that PCARDE
achieves the required level of diversity in a short amount of iterations. Moreover, fewer iterations
require less computing time, making it a fast and efficient solution. The computational cost of PCA
only becomes noticeable in datasets with a large number of features. For datasets with small number
of features, PCA can perform faster than the other methods. Positive outcomes were confirmed by
a non-parametric statistical test with high confidence.

7.3 The Problem of Noise in Big Data

Here, we have introduced the first methods for dealing with noise in Big Data problems. The
first method, called HME-BD, is an homogeneous partition-based ensemble. The second method
is an heterogeneous partition-based method, named HTE-BD. The proposed methods follow a
partitioning approach, in particular, a k-fold approach is used. The k-fold is performed to the data,
and then, using the training partition, £ models are learned depending on the method. Using these
models, the partition left is predicted and instances are either kept or removed according to the
comparison among their prediction and the real label.

The large experimental study carried out have drawn different conclusions. Here we highlight
some:

e Avoiding the treatment of noise is never the best option and using the appropriate noise
filtering technique will provide a significant improvement in accuracy.

e The classifier used after the noise filtering process have to be taken into consideration for
choosing the best noise filtering strategy. Decision trees are affected by aggressive filters, since
they are able to withstand small amounts of noise while exploiting the clean instances. On
the other hand, KNN is very affected by the noisy instances left.

e Different number of partitions for the internal k-fold have shown to have little impact in the
global accuracy values and no impact in the number of removed instances. This proves that
proposed methods are robust.

e The voting strategy has a huge impact in the number of removed instances by HTE-BD. This
is an expected behavior, since conservative strategies will tend to keep more instances.

e The best performing method for both the decision tree and KNN has been HME-BD. A set
of non-parametric and Bayesian statistical tests have proved that it performed statistically
better than HTE-BD. It is also the most efficient solution in terms of computing times. The
use of KNN hinders the computation performance of HTE-BD.

In a further extension we introduced an iterative ensemble filter for Big Data noise filtering,
called IEF-BD. It is a noise filter born from the combination of the partitioning strategy of the
aforementioned HME-BD, and the iterative nature of popular noise filters for normal-sized problems.

The experimental study carried out on six Big Data datasets proved that IEF-BD not only
outperforms HME-BD in terms of accuracy, but also enables the use of noise filters in datasets where
HME-BD is not able to improve the baseline accuracy without any data preprocessing. The voting
strategy of IEF-BD has a great impact in both the accuracy, and number of instances removed.

7 Discussion of Results 29

Regarding computing times, IEF-BD have shown to be more computationally demanding than
HME-BD due the learning of larger models and the prediction of the entire dataset.

Both of these approaches have constituted the first suitable proposals for noise filtering in Big
Data domains, showing that data preprocessing in general, and noise filtering in particular, cannot
be disregarded, and that a good noise filtering strategy can greatly improve the performance of
models learned from such data. Moreover, both of the proposals enable to reach Smart Data from
raw and low-quality Big Data.

7.4 Imbalanced Big Data Classification

In this section, we have presented a new ensemble for Big Data imbalanced classification based on
clustering and Smart Data based technologies, called ICE_BD. The proposed algorithm follow the
same diversity mechanisms introduced with PCARDE. The data balancing phase is carried out by
hierarchical clustering for the localization of neighborhoods. Those regions of the data, are balanced
using ROS technique. The final result is an ensemble built on diverse, balanced and smart data.

The extensive experimental study justifies the combination of RD and PCA preprocessing
for creating diverse data, and the proposed hierarchical clustering balancing method. The study
was focused on the analysis of performance using specific imbalanced data classification metrics.
Concretely, we tested the three classifiers using GM and AUC metrics. We compared ICE_BD
against a decision tree, Random Forest and PCARDE, all of them with and without any data
balancing technique. For the data balancing techniques, we used the most popular and widely used
methods: RUS, ROS and SMOTE.

This experimental study allowed us to show that ICE_BD is a suitable method for imbalanced
Big Data classification. It is able to deal with datasets with any IR in a reasonable amount of time.
ICE_BD achieved the best results in both GM and AUC. On average, our proposal achieved a 5%
better performance on both GM and AUC metrics than its closest competitor. ICE_BD has also
proved to be able to handle Big Data datasets in a timely manner.

30 Chapter I. PhD Dissertation

8 Concluding Remarks

In this thesis, we have addressed several problems, focusing on a common objective: the analysis,
design, implementation and evaluation of scalable classifier and data preprocessing ensembles for
Big Data and Smart Data extraction.

Our first objective was focused on analyzing and gaining full understanding of the current
technologies developed for the Big Data scenario, as well as their similarities and differences in
terms of performance. Results showed that one of the frameworks analyzed had an outstanding
performance, and thus we were encouraged to shift towards it as the main framework for the
developing of the rest of the proposals. Additionally, the existence of an open and public library for
this framework, were researches can share their work, is an important feature for contributing to
the open-source community.

For the second objective of our research line, a novel ensemble method for Big Data classification
is proposed, namely PCARDE. PCARDE is a new scalable and distributed ensemble method
based on PCA for the dimensionality reduction step and RD, capable of working with Big Data
problems. Experimental results have demonstrated the exceptional stability and prediction accuracy
of PCARDE, with respect to other classic classification ensembles.

The third objective was geared towards Smart Data extraction. The problem of noise is a crucial
step in transforming raw data into quality Smart Data, especially in Big Data scenarios. Our first
approach to this problem constituted the first suitable noise filter in Big Data domains, where the
high redundancy of the instances and high dimensional problems pose new challenges to classic
noise preprocessing algorithms. We have proposed several noise filtering algorithms, based on the
creation of ensembles of classifiers. Different strategies of data partitioning and ensemble classifier
combination have led to three different approaches: HME-BD, HTE-BD and ENN-BD. Then, we
took a step forward and proposed an iterative ensemble noise filter for noise-cleaning in Big Data
classification, IEF-BD. Our proposed noise filter cleans the data in an iterative fashion, using a
data partitioning strategy. Experimental outcomes validated the performance of IEF-BD, showing
that the proposed technique is able to efficiently detect and remove the noisy instances in Big Data
datasets, producing Smart Datasets.

Our last objective, and bearing the previous knowledge in mind, was focused on a special case of
classification, which is becoming more common in Big Data scenarios, the imbalanced Big Data
classification. A Smart Data based ensemble for dealing with the imbalanced class classification
problem in Big Data is presented, called ICE_BD. It combines the use of RD and PCA, with a novel
solution for data balancing based on a combination of hierarchical clustering and ROS. Empirical
outcomes acknowledge the efficiency when dealing with Big Data imbalanced datasets of this method,
proving superior performance on both GM and AUC metrics.

8 Concluding Remarks 31

Conclusiones

En esta tesis se han abordado varios problemas, centrados en un objetivo comtn: el andlisis, diseno,
implementacion y evaluacién de métodos de ensemble escalables para clasificacién y preprocesamiento
de datos para Big Data y extraccion de Smart Data.

El primer objetivo estaba centrado en analizar y comprender en profundidad las actuales
tecnologias desarrolladas para entornos Big Data, asi como sus similaridades y diferencias en
términos de rendimiento. Los resultados mostraron que una de estas herramientas analizadas obtuvo
un rendimiento excepcional, y esto nos motivé a elegirla como la herramienta principal para el
desarrollo del resto de las propuestas. Adicionalmente, la existencia de una libreria abierta y publica
donde los investigadores pueden compartir su trabajo es una caracteristica importante a tener
cuenta a la hora de colaborar con la comunidad de software libre.

Para el segundo objetivo de nuestra linea de investigacion, se ha propuesto un novedoso método de
ensemble para clasificacién de problemas Big Data, llamado PCARDE. PCARDE es un nuevo método
de ensemble escalable y distribuido, basado en PCA para la fase de reducciéon de dimensionalidad,
y RD, capaz de abordar problemas Big Data. Los resultados experimentales han demostrado la
excepcional estabilidad y precisién de PCARDE a la hora de predecir datos, con respecto a otros
métodos de ensemble clasicos.

El tercer objetivo estaba centrado en la extraccion de Smart Data. El problema de ruido
en los datos es un paso crucial a la hora de transformar datos en crudo en datos de calidad o
Smart Data, especialmente en entornos Big Data. Nuestro primer acercamiento a este problema
ha supuesto el primer filtro de ruido adaptado a problemas Big Data, donde la alta redundancia
y dimensionalidad de los datos plantean un reto a los algoritmos clasicos de preprocesamiento de
datos para la limpieza de ruido. Hemos propuesto varios algoritmos de filtrado de ruido, basados en
la creacién de ensembles de clasificadores. El uso de diferentes estrategias de particionamiento de
datos, asi como de combinaciones de clasificadores del ensemble, nos ha conducido a tres soluciones
diferentes: HME-BD, HTE-BD y ENN-BD. Teniendo esto en cuenta, se ha ido un paso mas alla
vy hemos propuesto un ensemble iterativo para el filtrado de ruido en clasificacion de Big Data,
llamado IEF-BD. Este filtro de ruido limpia los datos de forma iterativa, usando una estrategia
de particionamiento de datos. Los resultados experimentales han validado el buen redimiento de
IEF-BD, mostrando que el método propuesto es capaz de detectar y eliminar instancias ruidosas en
Big Data de forma eficiente, generando Smart Data.

Nuestro tltimo objetivo, y teniendo en cuenta el conocimiento previo, ha estado centrado en un
caso especial de clasificacion que se estd volviendo méds comin en escenarios Big Data: la clasificacién
desbalanceada. Se ha presentado un ensemble basado en Smart Data para tratar el problema de la
clasificacién con clases desbalanceadas en Big Data. Esta propuesta combina el uso RD y PCA con
una novedosa solucién para el balanceo de datos, basada en la combinacién de clustering jerarquico
y ROS. El estudio empirico ha verificado la eficacia de este método cuando trata con problemas Big
Data desbalanceados, demostrando un rendimiento superior al resto con respecto a las métricas GM

y AUC.

32 Chapter I. PhD Dissertation

9 Future Work

From the conclusions drawn from this thesis, new and promising lines of research can be proposed.
They aim at improving existing models, and to address new problems that are emerging of surely
will do from the evolving Big Data scenario.

e Study of other methods for ensemble diversity: different methods for adding diversity
to ensemble methods are available for normal-sized problems. Concretely, data level diversity
through data preprocessing techniques have shown to achieve great performance. Among the
extensive list of data preprocessing methods with a random component, only a handful of
techniques are available in Big Data. New data preprocessing methods for Big Data problems,
focused on creating diverse ensembles can be an interesting topic [MCJ*19).

e Noise filtering for imbalanced classification: the presence of noise in imbalanced prob-
lems is a challenging task, since the removal of minority class instances is a risky process.
Noise filters for imbalanced data classification have been studied for normal-sized data, but
not so much for Big Data environments [FGHC18]. Noise filters which prioritize the removal
of instances from the majority classes can be an interesting topic for multiclass or imbalanced
Big Data problems [RTR18].

e Removing versus relabeling of noisy instances: it is stated that the removal of mislabeled
instances is more efficient than repairing and/or relabeling them [FV14, LJX19]. However,
as we have seen, an excessive removal of instances can cause a serious and irremediable loss
of information. Noise measures are devoted to give a score to selected instances in order to
decide if such instances have to be either removed, relabeled or maintained. This will lead
to a more fine-grained noise removal, and to achieve higher quality data. The study and
implementation of novel noise measures or scores in Big Data domains, able to verify with a
high degree of confidence if an instance is noisy, and which is the right class, will be of great
interest [LSAT18].

e Smart Data for non-standard supervised problems: DM is a field subdivided in dif-
ferent areas, such as supervised and unsupervised learning. However, there are many other
lesser known learning problems. These problems are known as non-standard supervised
problems [CCGH19]. Among all different types of non-standard supervised problems, online
learning is gaining lots of attention in the last years. Technologies such as the internet have
increased the necessity of data stream processing for analyzing and extracting all valuable
insights from their continuously generated data. As stated earlier, for achieving Smart Data,
the data needs to be perfected and cleaned. Smart Data extraction in online learning prob-
lems is still in its early days. New and more powerful methods, capable of achieving Smart
Data from data streaming problems, and to deal with unsolved challenges so far need to be
designed [RGKG*17].

e Noise filtering in Federated Learning: Federated Learning is a new and distributed ML
approach that enables training on a wide set of decentralized data residing on different devices,
such as mobile phones [MMR*17]. The main idea is that users download a global model to
their devices, and improve it by learning from their own private data. Then, changes are
summarized and sent to the cloud, where it is averaged with other users updates to improve
the global model [KMA119]. Federated Learning makes emphasis on mobile and edge device
computing, with a special concern in data privacy, and has been successfully combined with

9 Future Work 33

Deep Learning neural networks. The application of noise filtering techniques to Federated
Learning problems can have many advantages. Local and private device data can be cleansed
using the information provided by the global model. This will ultimately lead to higher quality
local data and to take better decisions.

e Unsupervised anomaly detection in Big Data: anomaly detection can be defined as
the process of identifying unexpected events, or events that differ form the normal behavior.
It is often applied on unlabeled data, taking only into consideration the relation among the
features [GU16]. There is a long list of real-world applications of unsupervised anomaly
detection techniques, such as network intrusion, video surveillance, fraud detection, and also
in life science and medical domains. Ensemble approaches for unsupervised anomaly detection
have been employed with great success [HZW119]. With the ever-growing size of data, classic
methods for unsupervised anomaly detection have troubles dealing with such amounts of data.
Distributed methods, prepared for detecting anomalies on unsupervised real-time Big Data
problems can be of great interest.

Chapter 11

Publications

35

36 Chapter II. Publications

1 A comparison on scalability for batch big data processing on
Apache Spark and Apache Flink

e D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera. Big Data Analytics 2 (1), 1 (2017).

— Status: Published.
— Impact Factor (JCR 2017): Not indexed.

A COMPARISON ON SCALABILITY FOR BATCH B1G DATA
PROCESSING ON APACHE SPARK AND APACHE FLINK

Diego Garcia-Gil* Sergio Ramirez-Gallego
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
djgarcia@decsai.ugr.es sramirez@decsai.ugr.es
Salvador Garcia Francisco Herrera
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
salvagl@decsai.ugr.es herrera@decsai.ugr.es
ABSTRACT

The large amounts of data have created a need for new frameworks for processing. The
MapReduce model is a framework for processing and generating large-scale datasets with
parallel and distributed algorithms. Apache Spark is a fast and general engine for large-
scale data processing based on the MapReduce model. The main feature of Spark is the
in-memory computation. Recently a novel framework called Apache Flink has emerged,
focused on distributed stream and batch data processing. In this paper we perform a com-
parative study on the scalability of these two frameworks using the corresponding Machine
Learning libraries for batch data processing. Additionally we analyze the performance of
the two Machine Learning libraries that Spark currently has, MLIib and ML. For the ex-
periments, the same algorithms and the same dataset are being used. Experimental results
show that Spark MLIib has better perfomance and overall lower runtimes than Flink.

Keywords Big Data - Spark - Flink - MapReduce - Machine Learning

Introduction

With the always growing amount of data, the need for frameworks to store and process this data is increasing.
In 2014 IDC predicted that by 2020, the digital universe will be 10 times as big as it was in 2013, totaling
an astonishing 44 zettabytes [1]. Big Data is not only a huge amount of data, but a new paradigm and set of
technologies that can store and process this data. In this context, a set of new frameworks focused on storing
and processing huge volumes of data have emerged.

*Corresponding author.

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

MapReduce [2] and its open-source version Apache Hadoop [3, 4] were the first distributed programming
techniques to face Big Data storing and processing. Since then, several distributed tools have emerged as
consequence of the spread of Big Data. Apache Spark [5, 6] is one of these new frameworks, designed as
a fast and general engine for large-scale data processing based on in-memory computation. Apache Flink
[7] is a novel and recent framework for distributed stream and batch data processing that is getting a lot of
attention because of its streaming orientation.

Most of these frameworks have their own Machine Learning (ML) library for Big Data processing. The first
one was Mahout [8] (as part of Apache Hadoop [3]), followed by MLIib [9] which is part of Spark project
[5]. Flink also has its own ML library that, while it is not as powerful or complete as Spark’s MLIib, it is
starting to include some classic ML algorithms.

In this paper, we present a comparative study between the ML libraries of these two powerful and promising
frameworks, Apache Spark and Apache Flink. Our main goal is to show the differences and similarities
in performance between these two frameworks for batch data processing. For the experiments, we use two
algorithms present in both ML libraries, Support Vector Machines (SVM) and Linear Regression (LR), on
the same dataset. Additionally, we have implemented a feature selection algorithm to compare the different
functioning of each framework.

Background

In this section, we describe the MapReduce framework and two extensions of it, Apache Spark and Apache
Flink.

MapReduce

MapReduce is a framework that has supposed a revolution since Google introduced it in 2003 [2]. This
framework processes and generates large datasets in a parallel and distributed way. It is based on the Divide
and Conquer algorithm. Briefly explained, the framework splits the input data and distributes it across the
cluster, then the same operation is performed on each split in parallel. Finally, the results are aggregated and
returned to the master node. The framework manages all the task scheduling, monitoring and re-executing
in case of failed tasks.

The MapReduce model is composed of two phases: Map and Reduce. Before the Map operation, the master
node splits the dataset and distributes it across the computing nodes. Then the Map operation is performed
to every key-value pair to the node local data. This produces a set of intermediate key-value pairs. Once all
Map tasks have finished, the results are grouped by key and redistributed so that all pairs belonging to one
key are in the same node. Finally, they are processed in parallel.

The Map function takes data structured in <key, value> pairs as input and outputs a set of intermediate
<key, value> pairs:

Map(< keyl,valuel >) — list(< key2,value2 >) ()

The result is grouped by key and distributed across the cluster. The Reduce phase applies a function to each
list value, producing a single output value:

Reduce(< key2,list(value2) >) =< key2, value3 > 2)

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

Apache Hadoop [3, 4] has become the most popular open-source framework for large-scale data storing and
processing based on the MapReduce model. Despite its popularity and performance, Hadoop presents some
important limitations [10]:

e Intensive disk-usage
e [ow inter-communication capability
e Inadequacy for in-memory computation

e Poor perfomance for online and iterative computing

Apache Spark

Apache Spark [5, 6] is a framework aimed at performing fast distributed computing on Big Data by using in-
memory primitives. This platform allows user programs to load data into memory and query it repeatedly,
making it a well suited tool for online and iterative processing (especially for ML algorithms). It was
developed motivated by the limitations in the MapReduce/Hadoop paradigm [4, 10], which forces to follow
a linear dataflow that make an intensive disk-usage.

Spark is based on distributed data structures called Resilient Distributed Datasets (RDDs) [11]. Operations
on RDDs automatically place tasks into partitions, maintaining the locality of persisted data. Beyond this,
RDDs are an immutable and versatile tool that let programmers persist intermediate results into memory or
disk for re-usability purposes, and customize the partitioning to optimize data placement. RDDs are also
fault-tolerant by nature. The lazy operations performed on each RDD are tracked using a “’lineage”, so that
each RDD can be reconstructed at any moment in case of data loss.

In addition to Spark Core, some additional projects have been developed to complement the functionality
provided by the core. All these sub-projects (built on top of the core) are described in the following:

e Spark SQL: introduces DataFrames, which is a new data structure for structured (and semi-
structured) data. DataFrames offers us the possibility of introducing SQL queries in the Spark
programs. It provides SQL language support, with command-line interfaces and ODBC/JDBC con-
trollers.

e Spark Streaming: allows us to use the Spark’s API in streaming environments by using mini-batches
of data which are quickly processed. This design enables the same set of batch code (formed by
RDD transformations) to be used in streaming analytics with almost no change. Spark Streaming
can work with several data sources like HDFS, Flume or Kafka.

e Machine Learning library (MLIib) [12]: is formed by common learning algorithms and statistic
utilities. Among its main functionalities includes: classification, regression, clustering, collabora-
tive filtering, optimization, and dimensionality reduction. This library has been especially designed
to simplify ML pipelines in large-scale environments. In the latest versions of Spark, the MLIib
library has been divided into two packages, MLIib, build on top of RDDs, and ML, build on top of
DataFrames for constructing pipelines.

e Spark GraphX: is the graph processing system in Spark. Thanks to this engine, users can view,
transform and join interchangeably both graphs and collections. It also allows expressing the graph
computation using the Pregel abstraction [13].

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

Apache Flink

Apache Flink [7] is a recent open-source framework for distributed stream and batch data processing. It
is focused on working with lots of data with very low data latency and high fault tolerance on distributed
systems. Flink’s core feature is its ability to process data streams in real time.

Apache Flink offers a high fault tolerance mechanism to consistently recover the state of data streaming
applications. This mechanism is generating consistent snapshots of the distributed data stream and operator
state. In case of failure, the system can fall back to these snapshots.

It also supports both stream and batch data processing with his two main APIs: DataStream and DataSet.
These APIs are built on top of the underlying stream processing engine.

Apache Flink has four big libraries built on those main APIs:

e Gelly: is the graph processing system in Flink. It contains methods and utilities for the development
of graph analysis applications.

e FlinkML.: this library aims to provide a set of scalable ML algorithms and an intuitive APIL. It
contains algorithms for supervised learning, unsupervised learning, data preprocessing, recommen-
dation and other utilities.

e Table API and SQL: is a SQL-like expression language for relational stream and batch processing
that can be embedded in Flink’s data APIs.

e FlinkCEP: is the complex event processing library. It allows to detect complex events patterns in
streams.

Although Flink is a new platform, it is constantly evolving with new additions and it has already been
adopted as a real-time process framework in many big companies, such as: ResearchData, Bouygues Tele-
com, Zalando and Otto Group.

Spark vs. Flink: main differences and similarities

In this section, we present the main differences and similarities in the engines of both platforms in order
to explain which are the best scenarios for one platform or the other. Afterwards, we highlight the main
differences between three ML algorithms implemented in both platforms: Distributed Information Theoretic
Feature Selection (DITFS), SVM and LR.

Comparison between engines

The first remarkable difference between both engines lies in the way each tool ingests streams of data.
Whereas Flink is a native streaming processing framework that can work on batch data, Spark was originally
designed to work with static data through its RDDs. Spark uses micro-batching to deal with streams. This
technique divides incoming data and processess small parts one at a time. The main advantage of this
scheme is that the structure chosen by Spark, called DStream, is a simple queue of RDDs. This approach
allows users to switch between streaming and batch as both have the same API. However, micro-batching
may not perform quick enough in systems that requires very low latency. Nevertheless, Flink fits perfectly
well in those systems as it natively uses streams for all type of workloads.

Unlike Hadoop MapReduce, Spark and Flink have support for data re-utilization and iterations. Spark keeps
data in memory across iterations through an explicit caching. However, Spark plans its executions as acyclic

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

graph plans, which implies that it needs to schedule and run the same set of instructions in each iteration.
In contrast, Flink implements a thoroughly iterative processing in its engine based on cyclic data flows (one
iteration, one schedule). Additionally, it offers delta iterations to leverage operations that only changes part
of data.

Till the advent of Tungsten optimization project, Spark mainly used the JVM’s heap memory to manage all
its memory [14]. Although it is straightforward solution, it may suffers from overflow memory problems
and garbage collect pauses. Thanks to this novel project, these problems started to disappear. Through
DataFrames, Spark is now able to to manage its own memory stack and to exploit the memory hierarchy
available in modern computers (L1 and L2 CPU caches). Flink’s designers, however, had these facts into
consideration from the initial point [15]. The Flink team thus proposed to maintain a self-controlled memory
stack, with its own type extraction and serialization strategy in binary format. The advantage derived from
these tunes are: less memory errors, less garbage collection pressure, and a better space data representation,
among others.

About optimization, both frameworks have mechanisms that analyze the code submitted by the user and
yields the best pipeline code for a given execution graph. Spark through the DataFrames API and Flink as
first citizen. For instance, in Flink a join operation can be planned as a complete shuffling of two sets, or as
a broadcast of the smallest one. Spark also offers a manual optimization, which allows the user to control
partitioning and memory caching.

The rest of matters about easiness of coding and tuning, variety of operators, etc. have been omitted from
this comparison as these factors do not affect the performance of executions.

A thorough comparison between algorithm implementations

Here, we present the implementation details of three ML algorithms implemented in Spark and Flink. Firstly,
a feature selection algorithm implemented by us in both platforms is reviewed. Secondly, the native imple-
mentation of SVM in both platforms is analyzed. And lastly, the same process is applied for the native
implementation of LR.

Distributed Information Theoretic Feature Selection

For comparison purposes, we have implemented in both platforms a feature selection framework based
on information theory. This framework was proposed by Brown et al. [16] in order to ensemble multiple
information theoretic criteria into a single greedy algorithm. Through some independence assumptions, it
allows to transform many criteria as linear combinations of Shannon entropy terms: mutual information (MI)
and conditional mutual information (CMI). Some relevant algorithms like minimum Redundancy Maximum
Relevance or Information Gain, among others, are included in the framework. The main objective of the
algorithm is to assess features based on a simple score, and to select those more relevant according to a
ranking. The generic framework proposed by Brown et al. [16] to score features can be formulated as:

J=I(X5Y) =B Y I(X; Xi)+v > I(X;; X,[Y), 3)
X]'ES XjES

where the first term represents the relevance (MI) between the candidate input features X; and the class Y,
the second one the redundancy (MI) between the features already selected (in the set S) and the candidate
ones, and the third one the conditional redundancy (CMI) between both sets and the class. v represents a
weight factor for CMI and 3 the same for MI.

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

Brown’s version was re-designed for a better performance in distributed environments. The main changes
accomplished by us are described below:

e Column-wise transformation: most of feature selection methods performs computations by
columns. It implies that a previous transformation of data to a columnar format may improve the
performance of further computations, for example, when computing relevance or redundancy. Ac-
cordingly, the first step in our program is aimed at transforming the original set into columns where
each new instance contains the values for each feature and partition in the original set.

e Persistence of important information: some pre-computed data like the transformed input or the
initial relevances are cached in memory in order to avoid re-computing them in next phases. As this
information is computed once at the start, its persistence can speed up significantly the performance
of the algorithm.

e Broadcast of variables: in order to avoid moving transformed data in each iteration, we persist this
set and only broadcast those columns (feature) involved in the current iteration. For example, in
the first iteration the class feature is broadcasted to compute the initial relevance values in each
partition.

In the Flink implementation a bulk iteration process has been used to cope with the greedy pro-
cess. In the Spark version, the typical iterative process with caching and repeated tasks has been
implemented. Flink code can be found in the following GitHub repository: https://github.com/
sramirez/flink-infotheoretic-feature-selection. The Spark code was gathered into a package
and uploaded to the Spark’s third-party package repository: https://spark-packages.org/package/
sramirez/spark-infotheoretic-feature-selection.

Linear Support Vector Machines

Both Spark and Flink implements SVMs classifiers using a linear optimizer. Briefly, the minimization
problem to be solved is the following:

NPT & S
VIVIgR{ldQHWH —l—n;lz(w Xl) 4)

where w is the weight vector, x; € R? the data instances, A the regularization constant, and /; the convex
loss functions. For both versions, the default regularizer is ls-norm and the loss function is the hinge-loss:

l; = max (0, 1-— yinxi)

The Communication-efficient distributed dual Coordinate Ascent algorithm (CoCoA) [17] and the stochastic
dual coordinate ascent (SDCA) algorithms are used in Flink to solve the previously defined minimization
problem. CoCoA consists of several iterations of SDCA on each partition, and a final phase of aggregation
of partial results. The result is a final gradient state, which is replicated across all nodes and used in further
steps.

In Spark a distributed Stochastic Gradient Descent> (SGD) solution is adopted [12]. In SGD a sample of
data (called mini batches) are used to compute subgradients in each phase. Only the partial results from
each worker are sent across the network in order to update the global gradient.

2https ://en.wikipedia.org/wiki/Stochastic_gradient_descent

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

Linear Regression

Linear least squares is another simple linear method implemented in Spark. Despite it was designed for
regression, its output can be adapted for binary classification problems. Linear least squares follows the
same minimization formula described for SVMs (see Equation 4) and the same optimization method (based
on SGD), however, it uses squared loss (described below) and no regularization method:

li = (Wi — yi)?

The Flink version for this algorithm is quite similar to the one created by Spark’s developers. It uses SGD

to approximate the gradient solutions. However, Flink only offers squared loss whereas Spark offers many
alternatives, like hinge or logistic loss.

Experimental Results

This section describes the experiments carried out to show the performance of Spark and Flink using three
ML algorithms over the same huge dataset. We carried out the comparative study using SVM, LR and
DITES algorithm.

The dataset used for the experiments is the ECBDL14 dataset. This dataset was used at the ML competition
of the Evolutionary Computation for Big Data and Big Learning held on July 14, 2014, under the interna-
tional conference GECCO-2014. It consists of 631 characteristics (including both numerical and categorical
attributes) and 32 million instances. Itis a binary classification problem where the class distribution is highly
imbalanced: 2% of positive instances. For this problem, two pre-processing algorithms were applied. First,
the Random OverSampling (ROS) algorithm used in [18] was applied in order to replicate the minority class
instances from the original dataset until the number of instances for both classes was equalized, summing
a total of 65 millions instances. Finally, for DITFS algorithm, the dataset has been discretized using the
Minimum Description Length Principle (MDLP) discretizer [19].

The original dataset has been sampled randomly using five differents rates in order to measure the scalability
performance of both frameworks: 10%, 30%, 50%, 75% and 100% of the pre-processed dataset is used. Due
to a current Flink limitation, we have employed a subset of 150 features of each ECBDL14 dataset sample
for the SVM learning algorithm.

Table 1 gives a brief summary of these datasets. For each one, the number of examples (Instances), the total
number of features (Feats.), the total number of values (Total), and the number of classes (CL) are shown.

Table 1: SUMMARY DESCRIPTION FOR ECBDL14 DATASET

Dataset Instances || Feats. Total CL
ECBDL14-10 || 6500 391 631 4101 746 721
ECBDL14-30 || 19501 174 | 631 12 305 240 794
ECBDL14-50 || 32501957 | 631 20 508 734 867
ECBDL14-75 | 48752935 || 631 30763 101 985
ECBDL14-100 || 65003 913 || 631 41017 469 103

[NCRN I ST \S RN \S BRI \S)

We have established 100 iterations, a step size of 0.01 and a regularization parameter of 0.01 for the SVM.
For the LR, 100 iterations and a step size of 0.00001 are used. Finally, for DITFS 10 features are selected
using minimum Redundancy Maximum Relevance algorithm [20].

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

As an evaluation criteria, we have employed the overall learning runtime (in seconds) for SVM and Linear
Regression, as well as the overall runtime for DITFS.

For all experiments we have used a cluster composed of 9 computing nodes and one master node. The
computing nodes hold the following characteristics: 2 processors x Intel Xeon CPU E5-2630 v3, 8 cores per
processor, 2.40 GHz, 20 MB cache, 2 x 2TB HDD, 128 GB RAM. Regarding the software, we have used the
following configuration: Hadoop 2.6.0-cdh5.5.1 from Cloudera’s open-source Apache Hadoop distribution,
Apache Spark and MLIib 1.6.0, 279 cores (31 cores/node), 900 GB RAM (100 GB/node) and Apache Flink
1.0.3, 270 TaskManagers (30 TaskManagers/core), 100 GB RAM/node.

Table 2 shows the learning runtime values obtained by SVM with 100 iterations, using the reduced version
of the datasets with 150 features. Currently SVM is not present in the Spark ML library, so we omit that
experiment. As we can see, Spark scales much better than Flink. The time difference between Spark and
Flink increases with the size of the dataset, being 2.5x slower at the beginning, and 4.5x with the complete
dataset.

Table 2: SVM Learning Time in Seconds

Dataset Spark MLIib || Flink | Difference
ECBDL14-10 42 111 69
ECBDL14-30 61 196 135
ECBDL14-50 103 302 199
ECBDL14-75 123 456 333

ECBDL14-100 174 783 609

Table 3 compares the learning runtime values obtained by LR with 100 iterations. The time difference be-
tween Spark MLIib and Spark ML can be explained by internally transforming the dataset from DataFrame
to RDD in order to use the same implementation of the algorithm present in MLIlib. Spark ML is around 8x
times faster than Flink. Spark MLIib version have shown to perform specially better compared to Flink.

Table 3: LR Learning Time in Seconds

Dataset Spark MLIib || Spark ML || Flink
ECBDL14-10 3 26 181
ECBDL14-30 5 63 815
ECBDL14-50 6 173 1314
ECBDL14-75 8 260 1878
ECBDL14-100 12 415 2566

Table 4 compares the runtime values obtained by DITFS algorithm selecting the top 10 features of the dis-
cretized datset. As stated previously, the differences between Spark MLIib and Spark ML can be explained
with the internal transformation between DataFrame and RDD. We observe that Flink is around 10x times
slower than Spark for 10%, 30% and 50% of the dataset, 8x times slower for 75%, and 4x times slower for
the complete dataset.

In Figure 1 we can see the scalability of the three algorithms compared side to side.

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

Table 4: DITFS Runtime in Seconds

Dataset Spark MLIib || Spark ML || Flink
ECBDL14-10 44 55 487
ECBDL14-30 111 143 1891
ECBDL14-50 317 441 3240
ECBDL14-75 590 783 4928
ECBDL14-100 1696 2159 6615
5000
4000
3000
2000
’ 1[;% V 30% 5(:% 7;7%7 710’0% 10% 30% 5;% 7:% 102% 10% 30% 50% 75% 100%
SVM - 150 feat Linear Regression DITFS
-— MLlib ML FlinkML

Figure 1: Scalability of SVM, LR and DITFS algorithm in seconds

Conclusions

In this paper, we have performed a comparative study for batch data processing of the scalability of two
popular frameworks for processing and storing Big Data, Apache Spark and Apache Flink. We have tested
these two frameworks using SVM and LR as learning algorithms, present in their respective ML libraries.
We have also implemented and tested a feature selection algorithm in both platforms. Apache Spark have
shown to be the framework with better scalability and overall faster runtimes. Although the differences
between Spark’s MLIib and Spark ML are minimal, MLIib performs slightly better than Spark ML. These
differences can be explained with the internal transformations from DataFrame to RDD in order to use the
same implementations of the algorithms present in MLIib.

Flink is a novel framework while Spark is becoming the reference tool in the Big Data environment. Spark
has had several improvements in performance over the different releases, while Flink has just hit its first
stable version. Although some of the Apache Spark improvements are already present by design in Apache
Flink, Spark is much refined than Flink as we can see in the results.

Apache Flink has a great potential and a long way still to go. With the necessary improvements, it can
become a reference tool for distributed data streaming analytics. It is pending a study on data streaming, the
theoretical strengh of Apache Flink.

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]
(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

IDC. The Digital Universe of Opportunities, 2014. http://www.emc.com/infographics/
digital-universe-2014.htm, [Online; accessed 14-July-2016].

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In

Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, OSDI’04, pages 10-10, Berkeley, CA, USA, 2004. USENIX Association.

Apache Hadoop Project. Apache Hadoop, 2016. http://hadoop.apache.org, [Online; accessed
14-July-2016].

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and P. Wendell. Learning Spark: Lightning-Fast
Big Data Analytics. O’Reilly Media, 2015.

Apache Spark. Apache Spark: Lightning-fast cluster computing, 2016. http://spark.apache.org,
[Online; accessed 14-July-2016].

Apache Flink. Apache Flink, 2016. http://flink.apache.org, [Online; accessed 14-July-2016].

Apache Mahout Project. Apache Mahout, 2016. http://mahout.apache.org, [Online; accessed
14-July-2016].

MLIib. Machine Learning Library (MLIib) for Spark, 2016. http://spark.apache.org/docs/
latest/mllib-guide.html, [Online; accessed 14-July-2016].

Jimmy J. Lin. Mapreduce is good enough? if all you have is a hammer, throw away everything that’s
not a nail! Big Data, 1(1):28-37, 2012.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI'12, pages 2-2, Berkeley, CA, USA, 2012.
USENIX Association.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin,
Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark. Journal
of Machine Learning Research, 17(34):1-7, 2016.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, [lan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pages 135-146,
New York, NY, USA, 2010. ACM.

Apache Spark Project. Project Tungsten (Apache Spark), 2016. https://databricks.com/blog/
2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html, [Online;
accessed 14-July-2016].

Apache Flink Project. Peeking into Apache Flink’s Engine Room, 2016. https://flink.apache.
org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html, [Online; ac-
cessed 14-July-2016].

10

A Comparison on Scalability for Batch Big Data Processing on Apache Spark and Apache Flink

[16] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Lujan. Conditional likelihood maximisation:
A unifying framework for information theoretic feature selection. J. Mach. Learn. Res., 13:27-66,
January 2012.

[17] Martin Jaggi, Virginia Smith, Martin Tak4c, Jonathan Terhorst, Sanjay Krishnan, Thomas Hof-
mann, and Michael 1. Jordan. Communication-efficient distributed dual coordinate ascent. CoRR,
abs/1409.1458, 2014.

[18] Sara del Rio, Victoria L6pez, José Manuel Benitez, and Francisco Herrera. On the use of mapreduce
for imbalanced big data using random forest. Information Sciences, 285:112 — 137, 2014.

[19] S. Ramirez-Gallego, S. Garcia, H. Mourifio-Talin, and D. Martinez-Rego. Distributed entropy min-
imization discretizer for big data analysis under apache spark. In Trustcom/BigDataSE/ISPA, 2015
IEEE, volume 2, pages 33-40, Aug 2015.

[20] Chris Ding and Hanchuan Peng. Minimum redundancy feature selection from microarray gene expres-
sion data. Journal of bioinformatics and computational biology, 3(02):185-205, 2005.

11

48 Chapter II. Publications

2 Principal Components Analysis Random Discretization Ensem-
ble for Big Data

e D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera. Knowledge-Based Systems 150,
166-174 (2018).
— Status: Published.
— Impact Factor (JCR 2018): 5.101
— Subject Category: Computer Science, Artificial Intelligence
Rank: 17/134
Quartile: Q1

PRINCIPAL COMPONENTS ANALYSIS RANDOM
DISCRETIZATION ENSEMBLE FOR BIG DATA

Diego Garcia-Gil* Sergio Ramirez-Gallego
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
djgarcia@decsai.ugr.es sramirez@decsai.ugr.es
Salvador Garcia Francisco Herrera
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
salvagl@decsai.ugr.es herrera@decsai.ugr.es
ABSTRACT

Humongous amounts of data have created a lot of challenges in terms of data computation
and analysis. Classic data mining techniques are not prepared for the new space and time re-
quirements. Discretization and dimensionality reduction are two of the data reduction tasks
in knowledge discovery. Random Projection Random Discretization is a novel and recently
proposed ensemble method by Ahmad and Brown in 2014 that performs discretization and
dimensionality reduction to create more informative data. Despite the good efficiency of
random projections in dimensionality reduction, more robust methods like Principal Com-
ponents Analysis (PCA) can improve the performance.

We propose a new ensemble method to overcome this drawback using the Apache Spark
platform and PCA for dimension reduction, named Principal Components Analysis Ran-
dom Discretization Ensemble. Experimental results on five large-scale datasets show that
our solution outperforms both the original algorithm and Random Forest in terms of predic-
tion performance. Results also show that high dimensionality data can affect the runtime of
the algorithm.

Keywords Big Data - Discretization - Spark - Decision Tree - PCA - Data Reduction
1 Introduction

Nowadays everything is constantly creating and storing data. This massive data accumulation can be found
in a broad spectrum of real-world areas [1]. In 2014 IDC predicted that by 2020, the digital universe will

*Corresponding author.

Principal Components Analysis Random Discretization Ensemble for Big Data

be 10 times as big as it was in 2013, totaling an astonishing 44 zettabytes [2]. Big Data is not only a huge
amount of data, but a new paradigm and set of technologies that can store and process this data. Many of
the classic knowledge extraction techniques are not capable of working with these amounts of data, mostly
because they were not conceived to work in a Big Data environment.

This scenario becomes particularly important using data reduction techniques. Data reduction techniques
are frequently applied to reduce the size of the original data and to clean some errors that it may contain [3]
[4]. Two important data reduction techniques are discretization and dimensionality reduction. Discretization
is the process of splitting a continuous variable into different categories depending on which interval it falls
into [5]. Dimensionality reduction is the mapping of data to a lower dimensional space [6]. One of the
most popular methods for dimensionality reduction is Principal Components Analysis (PCA) [7]. PCA is
a linear transformation from a high dimensional data space to a principal component feature space. It has
been widely used as a dimension reduction technique in many applications.

Ensembles are methods that combine a set of base classifiers to make predictions [8] [9]. These methods
have been attracting increasing attention over the last few years due to their ability to correct errors across
many diverse base classifiers. Classifier ensembles have shown to be very effective in a broad spectrum of
real-world applications. These classifiers have been proven to be accurate and diverse [10] [11]. Ensembles
of decision trees like Random Forest are well known for creating diverse decision trees [12]. This diversity
is usually introduced via randomization. Through small changes in input data, diverse decision trees are
created and better ensembles are obtained.

This principle is followed by Ahmad and Brown in [13]. Random Projection Random Discretization (RPRD)
is an ensemble method that applies two data reduction techniques to the input data and joins the results to
create a more informative dataset. First it performs their proposed Random Discretization (RD), which
selects s — 1 random instances to create s categories and discretize the data using the selected values as
limits. Their next step is to perform Random Projection (RP) [14] in the original data to select d features
that are the linear combinations of the original m features (d < m). Finally the algorithm joins the results
of RD and RP to create a new m + d dataset and trains a decision tree with it.

The RPRD Ensemble algorithm has shown to be competitive and to outperform other popular ensemble
methods. However, despite its good performance, it still has three main drawbacks: 1) As the projected
dimension is decreased, as it drops below log k, random projection suffers a gradual degradation in perfor-
mance [15]. 2) RP is highly unstable - different random projections may lead to radically different results
[16]. There are more informative dimensionality reduction methods like PCA. 3) RPRD is not prepared for
working with Big Data. This therefore limits the potential use of the ensemble. For example, in cases with
thousands of features or millions of instances, RPRD cannot be used.

In order to fill this gap and inspired by the RPRD ensemble algorithm, we propose a new ensemble method
under Apache Spark using PCA, called Principal Components Analysis Random Discretization Ensemble
(PCARDE) for Big Data. In our design we use PCA instead of RP for improving the dimensionality reduc-
tion step. The choice of PCA is motivated by the fact that it is not an iterative method and can be parallelized.
The usage of Big Data frameworks like Apache Spark enables the use of PCA over datasets with thousands
of features and millions of instances. It also allows to perform huge matrix multiplications for methods like
RP. In Big Data problems, the computational cost difference between PCA and RP becomes unclear, since
the multiplication of large matrices in RP is a computationally demanding operation.

We have also designed an algorithm named X'? Random Discretization Ensemble (X2 RD), which uses X'
for performing feature selection, in order to show the importance and impact of the addition of PCA to our
proposed ensemble method. The choice of X2 comes motivated by the fact that X2 is a more informed
method than RP and this can lead to a performance improvement.

Principal Components Analysis Random Discretization Ensemble for Big Data

Apache Spark is a fast and general engine designed for large-scale data processing based on in-memory
computation [17], [18]. Apache Spark has its own Machine Learning library named MLIib [19]. Among
our objectives is designing an ensemble algorithm for Big Data and to integrate the algorithm into the
MLIib Library as a third-party package. Spark’s implementation of the algorithm can be downloaded from
the Spark’s community repository?.

To show the effectiveness of our approach, we have carried out an experimental evaluation with five large
datasets, namely poker, SUSY, HIGGS, epsilon and ECBDLI4. These datasets have very different proper-
ties and allow us to test all aspects of our implementation. Finally, we show a comparative study of the
performance of PCARDE, X 2 RD, RPRD and Random Forest [20] [21].

The remainder of this paper is organized as follows: Section II outlines the main concepts of the RPRD En-
semble. Section III explains the new ensemble design based on PCA. Section IV describes the experiments
carried out to check the effectiveness of this proposal. Finally, Section V concludes the paper.

2 Background

In this section we first introduce the RPRD Ensemble algorithm used as reference in our ensemble interpre-
tation and its two components, RD and RP. Then we introduce PCA and MapReduce Model.

2.1 Random Discretization

Discretization is the process of partitioning a set of continuous attributes into discrete attributes by associat-
ing categorical values to the intervals [22].

To create s categories we need s - 1 different intervals. There are different methods to create these intervals
like entropy minimization [23], implemented in Apache Spark. The main problem with these methods is
that they create the same discretized dataset after different executions. In an ensemble some randomization
is necessary in order to introduce diversity to the decision trees.

In RD randomization is introduced to the discretization process. In algorithm 1 we describe the mechanism
of RD from lines 5 to 12. First s — 1 data points are randomly selected from the training data to create s
categories. Then for each feature, every s — 1 data points are sorted. Finally the dataset is discretized into s
categories using these s — 1 sorted data points. These thresholds are selected randomly each iteration of the
ensemble. It is possible that in some features, all selected data points will have the same value. In this case,
s — 1 are selected randomly between the minimum and the maximum values of the feature.

2.2 Random Projection

The objective of dimensionality reduction techniques is to produce a compact low-dimensional encoding of
a given high dimensional dataset. Random projection (RP) has emerged as a novel method for the dimen-
sionality reduction problem.

In RP, the original m-dimensional data is projected to a d-dimensional (d << m) subspace through the origin,
using a random d X m matrix R whose columns have unit lengths, and whose elements r; ; are often Gaussian
distributed. Using matrix notation where X,,,« v is the original set of N m-dimensional observations,

RP
deN = Rdmeme

http://spark-packages.org/package/d;jgg/PCARD

Principal Components Analysis Random Discretization Ensemble for Big Data

Algorithm 1 RPRD Ensemble

1: Input: Dataset T with m continuous features and k classes ¢y, ca, ..., cx. L the size of the ensemble.
2: Learning Phase

3: fori =1...L do

4: Random Discretization

5: For s categories in each dimension, select s — 1 data points randomly from the training data.
6: for j =1...mdo
7: Get the j*" feature values of s — 1 points and sort them.
8: If all points have the same value, select s — 1 points randomly until there are at least two different
values.
9: end for
10: for: =1...N do
11: Discretize the i*" data point using the values got in the previous step to create m discretized features
Si.
12: end for
13: Random Projection
14: Use Random Projection RF; to create d features R;.
15: Combine S; and R; to create m + d dimensional dataset 7T;.
16: Learning Model
17: Treat dataset T; as continuous and learn D; decision tree on it.
18: end for

19: Prediction Phase

20: fori =1...L do

21: Convert z into m + d dimensional data point x; using Random Discretization (RD;) and Random
Projection (RP;).

22: Let p; j(x) be the probability for x; by the decision tree D; to the hypothesis that = comes from
class ¢;. Calculate p; ;(z) for all classes j = 1..k.

23: end for

Calculate the confidence C'(j) for each class ¢;(j = 1..k) by the average contribution method,

L
Cly) =1 ;pz’,j(@

The class with the largest confidence will be the class of z.

is the projection of the data onto a lower d-dimensional subspace. The key idea of random mapping arises
from the Johnson-Lindenstrauss lemma [14]: if points in a vector space are projected onto a randomly
selected subspace of suitably high dimension, then the distances between the points are approximately pre-
served.

2.3 Random Projection Random Discretization Ensembles and classification

RD and RP perform data reduction, but have different mechanisms; RD performs random discretization
(lines 5 to 12) in input space whereas RP creates new features (line 14) that are the linear combinations of
the original features. The RPRD ensemble was based on the idea that both RP and RD can be combined to
create a better ensemble method (RPRDE). In each iteration RD and RP are performed on the input data,
and then the results are fused. Finally a decision tree is trained using this new data. This results in better
trees compared to the original data as they have more features to select at each node.

Principal Components Analysis Random Discretization Ensemble for Big Data

In the prediction phase a data point is converted into a m + d dimensional data point using the corresponding
values of RD and RP for the iteration. Then the probabilities of each class are calculated by the decision
tree. This process is repeated for each iteration. Finally the confidence value for each class is calculated.
The class with the highest confidence value will be the class of the data point.

2.4 Principal Components Analysis

The use of PCA allows the number of variables in a multivariate dataset to be reduced, whilst retaining as
much of the variation present in the dataset as possible. This reduction is achieved by taking p variables
T1,T>...T, and finding the combinations of these to produce principal components (PC) PCy, PC»...PC,,
which are uncorrelated. These PC are also termed eigenvectors. The lack of correlation is a useful property
as it means that the PC are measuring different “dimensions” in the data. Nevertheless, PC are ordered
so that PC; exhibits the greatest amount of the variation, PCy exhibits the second greatest amount of the
variation, and so on. That is var(PC1) > var(PCs) > var(PC3) > ... > var(PC,), where var(PC;)
expresses the variance of PC; in the dataset being considered. var(PC;) is also called the eigenvalue of
PC;.

PCA always produces the same results for a fixed number of principal components. We need some diversity
in order to obtain diverse decision trees. We achieve diversity by introducing randomization in the number
of principal components we select. For each decision tree, we select the number of principal components
randomly in the interval [/, m-1] (m number of features).

2.5 MapReduce Model

MapReduce is a framework designed by Google in 2003 [24]. It has become one of the most relevant
tools for processing and generating large datasets with parallel and distributed algorithms on a cluster. The
MapReduce framework manages all data transfers and communications between the systems. It also pro-
vides redundancy, fault-tolerance and job scheduling. The end users only have to launch their tasks and the
framework will do the rest [25].

MapReduce model is composed of a Map procedure that performs a transformation, and a Reduce method
that performs a summary operation. The workflow of a MapReduce program is as follows: first the master
node splits the dataset and distributes the results across the cluster. Then each node applies the Map function
to the local data. After that process is finished the data is redistributed based on the key-value pairs generated
in the Map phase. Once the data has been redistributed so that all pairs belonging to one key are in the same
node, it is processed in parallel.

The Map and Reduce functions are defined to work with data structured in <key, value> pairs. Map function
takes one pair of data as input and returns a list of intermediate pairs:

Map(< keyl,valuel >) — list(< key2,value2 >)

The Map function is then applied to each pair in the input data in parallel. The result is grouped by key and
then distributed across the cluster. The Reduce phase is applied to the previous list of intermediate pairs to
produce a single output value:

Reduce(< key2, list(value2) >) —< key2, value3 >

Principal Components Analysis Random Discretization Ensemble for Big Data

Apache Hadoop [26] [27] is the most popular open-source framework for large-scale data storing and pro-
cessing based on the MapReduce model. The framework is designed to handle hardware errors automati-
cally. In spite of its popularity and performance, Hadoop presents some important limitations [28]:

e Poor performance on online and iterative computing.
e [ow inter-communication capacity.

o Insufficiency for in-memory computation.

Apache Spark is an open-source framework built around speed, ease of use, and sophisticated analytics [17]
[18] [29]. It has an advanced Directed Acyclic Graph (DAG) execution engine that supports cyclic data
flow and has in-memory computing, the most important feature of Spark. This enables applications to run
up to 100 times faster compared to Hadoop (in certain cases). It is designed to store and process as much
in-memory data as possible. It allows users to persist the data both in-memory or to disk.

Spark’s core concepts are Resilient Distributed Datasets (RDDs) [30]. RDDs are a distributed memory ab-
straction, they can be described as a collection of data partitioned across the clusters. RDDs are immutable,
applying a transformation produces a new RDD while the original RDD remains the same. RDDs support
two types of operations: transformations, which are not evaluated when defined and will produce a new
RDD. And actions, which evaluate and return a new value. When an action is called on a RDD, all the
previous transformations are applied in parallel to each partition of the RDD. RDDs are also fault-tolerant,
if a partition is lost, it can be recalculated with the associated DAG. Spark provides a list of transformations
and actions that allow more complex programs than those implemented in Hadoop to be created.

3 Principal Components Analysis Random Discretization Ensemble

In this section, we present the design of the ensemble by using a more powerful method like PCA, proving
its performance over big real-world problems.

For the implementation of the algorithm, we have used some basic Spark primitives. Here, we outline those
more relevant for the algorithm:

e map: Applies a transformation to each element of a RDD and returns a new RDD representing the
results.

e zip: Joins one RDD with another one.
o zipWithIndex: Zips a RDD with its element indices.

e [ookup: Returns the list of values in the RDD for a given key.

PCARDE has two phases, learning and prediction. In the learning phase we train a model from the input
data and in the prediction phase, we apply this model to the test data in order to obtain a prediction. In the
learning phase we discretize the training data using RD. As RDDs are unsorted by nature, to select a specific
instance for the RD method it performs the zipWithIndex operation to the RDD in order to add an index
to each instance. With the added index we can get the values of the features using the lookup operation.
For iterating through every instance and to discretize them, Spark’s map function is used. Once RD has
been performed, PCA is also applied to the training data with a random value of principal components in
the interval [/, m-1] (m number of features). Finally we join the results with the zip function and train a
decision tree using this new dataset. We repeat this process L times, L the size of the ensemble.

Principal Components Analysis Random Discretization Ensemble for Big Data

RDD

134
769
6,45

bins=3
0.73,-068 | pea

035, 026 | PC
058 060 | k=2

RD

RD+PCA

Y
0,0,0,-0.73,-0.68
2,2,2,-0.35,0.26
1,1,1,-0.58,0.69

Y

Decision Tree

Figure 1: PCARDE learning phase flowchart

In Figure 1 we can see a flowchart of the PCARDE learning phase process.

In the prediction phase we discretize the data point with the cut points obtained in the learning phase and
perform PCA with the model obtained previously. Then we predict the probability of the data point belong-
ing to each class. We repeat this process L times. Finally we add all probabilities. The class with the largest
probability will be the class of the data point.

Our algorithm is divided into two procedures explained in two sections as follows: Section 3.1 describes the
learning phase. And Section 3.2 provides details of the prediction phase.

3.1 Learning models phase

Procedure 2 explains the learning phase in the ensemble. The algorithm discretizes using RD method and
performs PCA, both with the training data, and then joins the result of both methods to create a new dataset.
Then a decision tree is trained with this new data. It requires the following as input parameters: the dataset,
the size of the ensemble and the number of categories for the discretization.

The first step is to perform RD. First we calculate the thresholds for the discretization. With these thresholds
the data is discretized through a Map function. It iterates through every feature and assigns a discrete value
depending on the feature’s value and the thresholds selected. The second step is to perform PCA. First we
select a random number d in the interval [/, m-1] (m number of features). Then we project the data to a
lower dimensional space using PCA, keeping only the first d principal components. The final step is to fuse
the results from RD and PCA, and to train a decision tree with it. We repeat this process L times, saving the
cut points, the PCA models and the trees created at each iteration. Once all the trees have been trained, the
model is created and returned.

Procedure 3 describes the process of selecting the thresholds for the discretization. First we select s — 1
random numbers in the interval [0, n] (n the number of instances in the data). Then we add an index to
each instance in the dataset in order to get the values of the features we have selected in the previous step.

Principal Components Analysis Random Discretization Ensemble for Big Data

Algorithm 2 Main PCARDE algorithm

1: Input: data an RDD of type LabeledPoint (features, label).
2: Input: L the size of the ensemble.

3: Input: s the number of categories for the discretization.

4: Output: The model created, an object of class PCARDModel
5: fori =0...L do

6: Random Discretization

7: cut Points(i) < get_cut_points(data, s)

8: rdData

9: map ! € data
10: for ¢ = 0...size(l) — 1 do

11: l « discretize(l(c), cut Points(i)(c))

12: end for

13: end map

14: PCA

15: d < random(1, size(data) — 1)

16: pcaModels(i) < PCA(data, d)

17: peaData < transform(data, pcaModels(i))

18: peardData <+ zip(rdData, pcaData)

19: trees(i) < decisionTree(pcardData)
20: end for

21: return(PCARDM odel(L,
cut Points, pcaM odels, trees))

S
N

The next step is to get those values, sort them and check if they are all equal. This process is described as
follows: first we transpose the thresholds array in order to access to the cut points of each feature through
a Map function, and add an index to each threshold. Then we iterate through the thresholds using a Map
function. The cut points are sorted and checked if they are different. If they are all equal, we get all the
different values for that feature, then take s — 1 points randomly and finally sort them. The result is a list of
the thresholds for each feature, which is returned to the main algorithm as cut Points.

3.2 Prediction phase

Procedure 4 explains the prediction phase in the ensemble. The algorithm discretizes using RD and performs
PCA on the test data point using the cut points and the models for PCA provided the same way as was
described in the main procedure. Then the results of the two methods are joined and then predicted with the
corresponding tree. The tree gives the probabilities for each class. These probabilities are added to a list of
predictions at each iteration. The class with the greatest probability is selected. It selects the index of the
maximum probability for an instance as a decision.

Principal Components Analysis Random Discretization Ensemble for Big Data

Algorithm 3 Function to select the cut points for a given dataset (get_cut_points)

[I e e e e e e
S 9 XN AN O

e AN R e

Input: data an RDD of type LabeledPoint (features, label).
Input: s the number of categories for the discretization.
QOutput: An array with thresholds for each feature
instances < get_random_array(s — 1, size(data))
indexData < zipWithIndex(data)
fori =0..s—1do

values < lookup(index Data, instances(i))
end for
thresholds < zipWithIndex(transpose(values))
cutPoints +

: map (l,7) € thresholds

feature < sorted(distinct(l))

if size(feature) = 1 then
col + distinct(get_feature values(data,i))
sorted(take_random(s — 1, col))

else
feature

end if

: end map
. return(cut Points)

Algorithm 4 PCARDModel algorithm

_ = e
vy e

14:

19:

N A A T S e

Input: L the size of the ensemble.
Input: cutPoints the thresholds for the discretization.
Input: pcaModels the models for performing PCA.
Input: zrees the models of the trained trees.
Output: The class of the data point.
function TEST(test : Labeled Point)
rawPredictions < 0
fori =0...L do
rd < 0
for ¢ = 0...size(test) — 1 do
rd(c) < discretize(test(c), cut Points(i)(c))
end for
peaTest « transform(test, pcaModels(i))
peardData <+ zip(rd, pcaTest)
rawPredictions < rawPredictions + predict(trees(i), pcardData)
end for
label < max _index(rawPredictions)
return(label)
end function

Principal Components Analysis Random Discretization Ensemble for Big Data

4 Experimental Results

This section describes the experiments carried out to show the performance of PCARDE for Big Data algo-
rithm in five huge problems. We carried out the comparative study of PCARDE method facing the original
proposal, X2 RD, and MLIib’s implementation of Random Forest to test the effectiveness of PCARDE
approach. We also give a brief description of X2 RD ensemble. Additionally, we compare the results of
PCARDE, X2 RD and RPRD using Naive Bayes [31] as a classifier. Computing times are also analyzed,
including learning and prediction runtimes. Finally, we have performed an analysis of the impact of PCA
on our proposed ensemble method. RPRD and X2 RD ensemble algorithms have been also implemented in
Apache Spark.

4.1 Experimental Framework
Five huge classification datasets are used in our experiments:

e Poker hand dataset, which has 1,025,000 instances with 11 attributes. In this dataset each record is
an example of a hand consisting of five playing cards drawn from a standard deck of 52. Each card
is described using two attributes (suit and rank), for a total of 10 predictive attributes. There is one
Class attribute that describes the “Poker Hand”.

e SUSY dataset, which consists of 5,000,000 instances and 18 attributes. This dataset contains sim-
ulated collisions events at the Large Hadron Collider. The task is to distinguish between a signal

process which produces supersymmetric (SUSY) particles and a background process which does
not [32].

e HIGGS dataset, which has 11,000,000 instances and 28 attributes. This dataset is a classification
problem to distinguish between a signal process which produces Higgs bosons and a background
process which does not.

e Epsilon dataset, which consists of 500,000 instances with 2,000 numerical features. This dataset
was artificially created for the Pascal Large Scale Learning Challenge in 2008. It was further pre-
processed and included in the LibSVM dataset repository [33].

e ECBDL14 dataset. This dataset was used as a reference at the ML competition of the Evolutionary
Computation for Big Data and Big Learning held on July 14, 2014, under the international con-
ference GECCO-2014. It consists of 631 characteristics (including both numerical and categorical
attributes) and 32 million instances. It is a binary classification problem where the class distribu-
tion is highly imbalanced: 2% of positive instances. For this problem, the Random OverSampling
(ROS) algorithm used in [34] was applied in order to replicate the minority class instances from the
original dataset until the number of instances for both classes was equalized, summing a total of 65
million instances.

We carried out experiments on three different sizes of ensembles. The sizes were selected such that one may
represent small ensembles, other medium ensembles, and the last one represents large ensembles. There is
no clear definition of small, medium and large ensembles. Following [35], we established the size of small
ensembles as 10 iterations and large ensembles as 100 iterations.

The experiments were conducted following 5 fold cross-validation.

Table 1 gives a brief summary of these datasets. For each one, the number of examples (Instances), the total
number of attributes (Atts.), the total number of training data (Total), the number classes (CL), and the size
in memory (expressed in GB) are shown.

10

Principal Components Analysis Random Discretization Ensemble for Big Data

Table 1: Summary Description for Classification Datasets

Dataset Instances Atts. Total CL || Size (GB)
poker 1,025,010 11 11,275,110 10 0.023
SUSY 5,000,000 18 90,000,000 2 2.23

HIGGS 11,000,000 28 308,000,000 2 7.39

epsilon 400,000 2,000 800,000,000 2 14.16

ECBDL14 || 65,003,913 || 631 39,847,398,669 || 2 123.76

We have established 5 intervals for RD, the same for RPRD and X2 RD methods. For RPRD method,
recommended values are used (5 bins for RD, the number of new features created by using RP d as 2(log, ¢)
where c is the number of features, and the elements r;; of the Random Matrix R are Gaussian distributed.)

For Random Forest, default values are used (featureSubsetStrategy = ”auto”, impurity = ”gini”’, maxDepth
= 5 and maxBins = 32).

Datasets have been normalized to [0,1] interval to avoid negative values.

As evaluation criteria, we use two well-known evaluation metrics. First of all, prediction accuracy is used
to evaluate the accuracy produced by the predictors (number of examples correctly labeled as belonging to a
given class divided by the total number of elements). ECBDL14 dataset is highly unbalanced, we have used
the True Positive Rate (TPR) and True Negative Rate (TNR) TPR-TNR metric, as used in the competition
[36].

For all experiments we have used a cluster composed of 14 computing nodes and one master node. The
computing nodes hold the following characteristics: 2 processors x Intel Core 17-4930K, 6 cores per pro-
cessor, 3.40 GHz, 12 MB cache, 4 TB HDD, 64 GB RAM. Regarding software, we have used the following
configuration: Hadoop 2.6.0-cdh5.4.3 from Cloudera’s opensource Apache Hadoop distribution, Apache
Spark and MLIib 1.5.1, 252 cores (18 cores/node), 728 RAM GB (52 GB/node).

4.2 X2 Random Discretization Ensemble

Our first approach to improve the dimensionality reduction step has been to replace the RP method with
a more informed one like X2 [37]. We use X2 for performing feature selection. It performs a X2 test
of independence between each feature and the class label, then it selects the top features based on the
dependency between the feature and the class label.

Like PCA, X2 also produces the same results for a fixed number of features. As stated previously the
solution is to introduce randomization in the number of features we compute in order to obtain diverse
decision trees. For each decision tree, we select the number of features randomly in the interval [/, m-1] (m
number of features).

4.3 Analysis of Accuracy Performance

In this section, we present the analysis of the performance results obtained by PCARDE, facing RPRD and
Random Forest. To prove that the combination of RD and PCA produces a better ensemble method, we also
show the prediction accuracy for both RD and PCA independently.

Table 2 shows the prediction accuracy values for the five datasets and the three sizes of ensemble using
our new design and a Decision Tree as a classifier. According to these results, it is demonstrated that the

11

Principal Components Analysis Random Discretization Ensemble for Big Data

Table 2: RD vs PCA vs PCARDE Test Accuracy using a Decision Tree

Dataset Trees RD PCA PCARDE

Poker 10 54.73(£0.43) || 54.68(x0.24) || 55.07(%£0.19)
50 54.76(£0.49) || 54.81(£0.13) || 54.92(£0.20)
100 || 54.73(£0.28) || 54.76(£0.28) || 54.97(4+0.23)
SUSY 10 78.00(£0.09) || 75.30(x0.20) || 78.31(%0.07)
50 78.26(£0.04) || 74.97(£0.08) || 78.47(%0.09)
100 || 78.31(£0.07) || 75.31(£0.34) || 78.49(40.03)
HIGGS 10 68.64(£0.25) || 60.10(x£2.01) || 68.75(%0.56)
50 68.98(£0.15) || 60.44(£0.76) || 69.28(%0.18)
100 || 69.17(£0.12) || 60.81(£0.25) || 69.35(40.10)
epsilon 10 68.78(£0.39) || 78.14(x0.09) || 78.57(£0.37)
50 69.04(£0.19) || 78.14(x0.09) || 78.57(%0.25)
100 || 69.22(£0.25) || 78.14(£0.09) || 78.58(40.27)

ECBDL14 3 10 0.1884 0.2400 0.4742

50 0.1885 0.2410 0.4717

100 0.1880 0.2415 0.4742

(a) RD (b) PCA

Figure 2: Bayesian Sign Test heatmap for RD and PCA against PCARDE with 10 trees

combination of RD and PCA produces a better ensemble method. We can assert that ensembles of 10
trees are the best choice as the improvement in prediction with 5 and 10 times more trees is minimal. The
ensemble also proves to be very stable, as there is little or no improvement in bigger ensemble sizes.

For a deeper analysis of the results, we have performed a Bayesian Test in order to demonstrate the validity
of PCARDE. The key idea with Bayesian tests is to obtain a distribution of the difference between two
algorithms, and to make a decision when 95% of the distribution is in one of the three regions: left, rope
(region of practical equivalence), and right [38]. Bayesian Sign Test is a Bayesian version of non-parametric
sign test that uses the Dirichlet Process [39]. It is applied to the mean accuracy of each dataset. We obtain
a sample of the distribution on the probabilities, which means that each point in the sample is a triplet with
the probability of the difference between two algorithms belonging to the left, right or rope regions.

3For this dataset TPR-TNR metric is being used.

12

Principal Components Analysis Random Discretization Ensemble for Big Data

Figure 2 shows a heatmap of the Bayesian Sign Test for RD and PCA against PCARDE, using 10 trees. As
we can observe, the probability of the difference being to the left is minimal since most of the points are on
the right side of the triangle. This means that Bayesian Sign Test is assigning a probability of 0 to PCARDE
performing worse than RD or PCA. For the Bayesian tests and graphics, we have used an R package that
contains a set of non-parametric and Bayesian tests, named rNPBST [40].

Table 3 compares the accuracy values in prediction obtained by PCARDE, X2 RD and RPRD for all datasets
using a Decision Tree as a classifier. We show that X2 RD is an improvement for some datasets over the
original proposal, while our algorithm performs better than both of them. This improvement is especially
important in the Epsilon dataset, where there is a difference of 10% more accuracy. PCA is selecting the
most informative principal components, while RP is projecting informative features and less informative
features randomly to a lower dimensional space.

Table 3: PCARDE vs X2 RD vs RPRD Test Accuracy using a Decision Tree

Dataset Trees PCARDE X2RD RPRD
poker 10 || 55.07(£0.19) || 54.72(40.13) || 53.84(£0.26)
50 || 54.92(+0.20) || 54.64(40.26) || 53.82(£0.25)
100 || 54.97(£0.23) || 54.70(£0.21) || 53.82(%0.07)
SUSY 10 || 78.31(£0.07) || 77.43(40.15) || 78.19(£0.05)
50 || 78.47(+0.09) || 77.57(40.18) || 78.28(£0.09)
100 | 78.49(£0.03) || 77.65(£0.17) || 78.35(0.08)
HIGGS 10 || 68.75(£0.56) || 68.48(40.14) || 68.36(£0.09)
50 || 69.28(+0.18) || 69.06(40.06) || 69.01(£0.13)
100 | 69.35(£0.10) || 69.18(£0.06) || 69.22(+0.17)
epsilon 10 || 78.57(£0.37) || 64.60(%1.33) || 68.64(£0.33)
50 || 78.57(+0.25) || 66.35(40.34) || 69.10(£0.27)
100 | 78.58(£0.27) || 66.05(£0.80) || 69.31(0.29)
ECBDLI14% || 10 0.4742 0.4512 0.4735
50 0.4714 0.4524 0.4775
100 0.4742 0.4519 0.4757

Figure 3 represents the Bayesian Sign Test for X2 RD and RPRD against PCARDE using a Decision Tree,
all three with 10 trees. As we can see, PCARDE is performing much better than X2 RD and RPRD, since the
probability of most of the points are on the right side of the triangle. This is especially accentuated in RPRD.
This means that Bayesian Sign Test is choosing PCARDE as a better performing algorithm compared to X2
RD or RPRD.

In Table 4 we have performed the same experimentation of Table 3 but changing the classifier of the three
ensemble methods for MLIib’s implementation of Naive Bayes. Results show that, in spite of the overall
drop in test accuracy, PCARDE is still the best performing method. This proves that the combination of RD
and PCA produces a better ensemble method regardless of the classifier used.

Figure 4 illustrates the Bayesian Sign Test for X2 RD and RPRD against PCARDE using Naive Bayes, all
three with 10 trees. As observed previously, PCARDE is still performing better than X2 RD and RPRD.
The probability of most of the points are on the right side of the triangle, especially in X2 RD. As stated

13

Principal Components Analysis Random Discretization Ensemble for Big Data

O,
%
{) 2
T
> ®'A'e
OAVAVAS VAVAVAVAVAVA
LRSS SR
(a) X2 RD (b) RPRD

Figure 3: Bayesian Sign Test heatmap for X2 RD and RPRD against PCARDE with 10 trees

Table 4: PCARDE vs X2 RD vs RPRD Test Accuracy using Naive Bayes

Dataset || Trees PCARDE X2RD RPRD
Poker 10 | 50.17(£0.01) || 50.12(£0.01) || 50.12(+0.01)
50 || 50.12(0.01) || 50.12(40.01) | 50.12(£0.01)
100 | 50.17(£0.01) || 50.12(£0.01) || 50.12(£0.01)
SUSY 10 || 73.12(£0.48) || 67.44(£0.56) | 72.68(£0.38)
50 || 73.41(0.16) || 67.30(%0.53) | 73.40(£0.16)
100 || 73.38(£0.10) || 66.94(£2.06) || 73.39(£0.25)
HIGGS 10 || 58.17(£0.92) || 56.96(£0.91) | 57.07(£1.16)
50 || 58.74(0.31) || 57.49(4+0.67) | 58.71(£0.47)
100 || 58.82(40.39) || 57.09(£0.36) | 58.68(£0.35)
epsilon 10 || 69.77(£1.21) || 67.66(£3.04) | 69.15(£1.37)
50 || 69.81(0.74) || 68.06(42.68) | 69.22(£1.08)
100 || 69.84(40.51) || 68.14(£2.01) || 69.26(+0.89)
ECBDLI4 | 10 0.2122 0.0076 0.2179
50 0.2128 0.0079 0.2174
100 0.2130 0.0077 0.2168
“Hoo
?Q
(o))
o/ W
2 &%
OAVAY : A
U SSS
(a) X* RD (b) RPRD

Figure 4: Bayesian Sign Test heatmap for X2 RD and RPRD against PCARDE with 10 trees

previously, Bayesian Sign Test is choosing PCARDE as a better performing algorithm compared to X2 RD

or RPRD.

14

Principal Components Analysis Random Discretization Ensemble for Big Data

Table 5 compares the accuracy values in prediction obtained by PCARDE with 10 trees and Random Forest
with 200 and 500 trees. We show that our algorithm also outperforms Random Forest. Even with big
ensembles with up to 500 trees, Random Forest can not match or outperform PCARDE with 10 trees.

Table 5: PCARDE vs Random Forest Test Accuracy

Dataset PCARDE RF 200 RF 500
poker 55.07(£0.19) || 51.56(£0.98) || 51.61 (£0.97)
SUSY 78.31(£0.07) || 77.73(£0.04) || 77.76(£0.07)

HIGGS 68.75(£0.56) || 67.98(£0.12) || 67.94(£0.13)

epsilon 78.57(£0.37) || 73.24(£0.32) || 73.41(£0.22)

ECBDL143 0.4742 0.4642 0.4634

4.4 Computing Times

In the previous section we have shown the suitability of PCARDE in terms of accuracy. In order to be
adequate for Big Data environments, the proposed ensemble method has to be scalable as well. This section
is devoted to present the computing times for PCARDE, X2 RD, RPRD and Random Forest.

Table 6 shows learning runtime values obtained by PCARDE, X2 RD, RPRD (all three with 10 trees) and
Random Forest. As we can see, for datasets with a small number of features PCARDE performs as fast as
the X2 RD algorithm. The Epsilon dataset represents a challenge for PCA, as it has a very large number
of features to compute. RP performs a matrix multiplication whilst PCA has to compute the principal
components of 2,000 features. However the performance improvement obtained by PCARDE over RPRD
and Random Forest justifies this result. Something similar happens to ECBDL14 as there is a huge amount
of instances to be computed by PCA.

Table 6: Learning Time Values in Seconds

Dataset PCARDE 10 | X2RD 10 || RPRD 10 | RF 500
poker 159 175 169 294
SUSY 193 151 328 351
HIGGS 248 234 604 325
epsilon 2,048 441 338 124

ECBDL14 22,093 17,280 12,607 4,460

In classification problems, learning time is not as important as prediction time. As example, deep convolu-
tional networks can take days, weeks or even months to learn, but they achieve very good performance in
prediction [41] [42]. Prediction times are the most important measure in terms of runtimes for classification
algorithms.

Table 7 shows prediction runtime values for one test example obtained by PCARDE, A2 RD, RPRD (all
three with 10 trees) and Random Forest. As we can see, PCARDE is more competitive in prediction. X2
RD and RPRD only perform better than PCARDE in the Epsilon dataset.

4.5 Experimental Study to Measure the Impact of PCA

In this section we show two comparative studies of PCA and X2 in the Epsilon dataset in order to show
the importance and impact of the addition of PCA to our proposed ensemble method. We have selected the
Epsilon dataset because of its high dimensionality.

15

Principal Components Analysis Random Discretization Ensemble for Big Data

Table 7: Prediction Time Values in Microseconds

Dataset PCARDE 10 || X2RD 10 || RPRD 10 | RF 500
poker 63.41 99.51 78.05 82.93
SUSY 34.00 60.00 41.00 44.00
HIGGS 16.36 30.45 23.18 14.55
epsilon 2,350 412.50 325.00 50.00
ECBDL14 148.97 245.37 214.14 13.10

In the first study we show the most important features selected by PCA and X2 in an ensemble with 100
trees, while in the second one, we compare the accuracy of a decision tree trained using PCA, X2 and RP
with the same number of features.

For the first study, in order to select the most important features for PCA, we have used the correlation
between the principal components and the original features [43]. This correlation is defined as follows:
ekivAi

ok
Being p the principal components Y;, associated with the random vector X with the known co-variance
matrix o and being (\;, e;) its eigenvalues-eigenvectors.

PY;, Xy =

Once we have calculated the correlation between the principal components and the original features, we sort
them by importance for each principal component. Then we select the top & most important features and
add them to a frequency list, increasing the count if they were already present. We repeat this process for
each iteration of the ensemble.

For X2 we add the selected features for each iteration of the ensemble to a frequency list and then we select
the top k£ most frequent features.

In Figure 5 we can see that there are a few features that PCA selects many times, while the rest are less
frequently selected.

1.0

Frequency

00 02 04 06 08

OW Al IINII |J A

rrrrrrrrr T r T T rTrTTT
coCc oo QccocQocoocococooQcoCcoocoo
OO0 OO0 00000000 00 000 OO0 O
— AN MW OMN~NODODO~NMTWO©~0DOo

—_ - - o o o o

2

Figure 5: PCA most selected features

In Figure 6 we can see that X' is selecting some features many times, while the rest of the features are much
less frequently selected.

Both Figures 5 and 6 are a graphic representation of the most important features selected by PCA and X2
To make the graphics clearer, we have selected only the top 300 most selected features for both methods.

16

Principal Components Analysis Random Discretization Ensemble for Big Data

1.0

Frequency

00 02 04 06 08

Figure 6: X2 most selected features

The X-Axis of the figures represents the 2,000 attributes of the Epsilon dataset. The Y-Axis represents the
normalized frequency of each feature.

If we compare the two figures, we can see that the two methods are selecting very different features. For
example, there is a remarkable difference between the two methods around the feature 1,400 and 1,500,
while X2 almost does not select any feature, PCA is selecting many of them.

In the second study, we have performed PCA, X2 and RP to the Epsilon dataset with 50, 100 and 500
features. The resulting datasets are trained using Spark’s Decision Tree with the default parameters (impurity
= "gini”, maxDepth = 5 and maxBins = 32).

Table 8 compares the accuracy values in prediction obtained by Spark’s Decision Tree trained with 50, 100
and 500 features selected by PCA, X 2 and RP.

Table 8: PCA vs X2 vs RP Test Accuracy Using a Decision Tree

Features | PCA x? RP
50 78.18 || 49.96 || 55.03
100 78.15 || 49.96 | 56.18
500 78.13 || 49.96 || 56.75

The results show that PCA with just 50 features outperforms X2 and RP. X2 performs poorly and does
not improve as the number of features increases. RP performance increases with the number of features as
expected, because it has more features to consider. PCA achieves an improvement of more than a 20% more
accuracy than RP.

In view of the results we can conclude that:

The performance of PCA against RP and X2 has proven to be better for every tested dataset, achiev-
ing with certain datasets up to 10% more accuracy.

The PCARDE algorithm has shown to be able to work with huge datasets in a short amount of time.

It is a very stable method for 10 trees. It shows little or no improvement with bigger ensemble sizes.

It outperforms the original proposal as well as Random Forest for most of the tested datasets. This
difference is more noticeable in the Epsilon dataset.

17

Principal Components Analysis Random Discretization Ensemble for Big Data

e The computational cost of PCA only becomes noticeable in datasets with a large number of features.
For datasets with small number of features, PCA can perform faster than the other methods.

5 Conclusions

In this paper, a new ensemble method is proposed inspired by RPRD Ensemble. It replaces the inconsistency
of Random Projections by using a more informative dimensionality reduction method such as PCA. We have
proposed a new design for improving the performance and potential applications of this new algorithm.

Thereby we proposed the PCARDE algorithm, a new ensemble method based on PCA for the dimensionality
reduction step and Random Discretization, capable of working with Big Data and integrated in Spark’s
MLIib Library as a third-party package.

The experimental results have demonstrated the stability and improvement in prediction accuracy when
using our ensemble solution for the five datasets used. PCARDE learning times have shown to be faster than
RPRD and Random Forest for datasets with a small number of features. Additionally, results suggest that
PCARDE is very effective for ensembles with a small number of trees.

Acknowledgment

This work is supported by FEDER, the Spanish National Research Project TIN2014-57251-P and TIN2017-
89517-P, and the Project BigDaP-TOOLS - Ayudas Fundacién BBVA a Equipos de Investigacion Cientifica
2016.

References

[1] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data. [EEE
Transactions on Knowledge and Data Engineering, 26(1):97-107, Jan 2014.

[2] IDC. The Digital Universe of Opportunities. http://www.emc.com/infographics/
digital-universe-2014.htm, 2014.

[3] Salvador Garcia, Julin Luengo, and Francisco Herrera. Data Preprocessing in Data Mining. Springer,
2015.

[4] Salvador Garcia, Julidn Luengo, and Francisco Herrera. Tutorial on practical tips of the most influential
data preprocessing algorithms in data mining. Knowledge-Based Systems, 98:1-29, 2016.

[5] Sergio Ramirez-Gallego, Salvador Garcia, Héctor Mourifio-Talin, David Martinez-Rego, Verdnica
Bolén-Canedo, Amparo Alonso-Betanzos, Jos€¢ Manuel Benitez, and Francisco Herrera. Data dis-
cretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 6(1):5-21, 2016.

[6] Jialei Wang, Peilin Zhao, S.C.H. Hoi, and Rong Jin. Online feature selection and its applications. IEEE
Transactions on Knowledge and Data Engineering, 26(3):698—710, March 2014.

[7] L.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[8] Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Proceedings of the First Inter-
national Workshop on Multiple Classifier Systems, MCS 00, pages 1-15, London, UK, UK, 2000.
Springer-Verlag.

18

Principal Components Analysis Random Discretization Ensemble for Big Data

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
(21]

(22]

(23]

[24]

[25]

Xu-Ying Liu and Zhi-Hua Zhou. Ensemble methods for class imbalance learning. Imbalanced Learn-
ing: Foundations, Algorithms, and Applications, pages 61-82.

Yubin Park and J. Ghosh. Ensembles of (alpha)-trees for imbalanced classification problems. IEEE
Transactions on Knowledge and Data Engineering, 26(1):131-143, Jan 2014.

Michat Wozniak, Manuel Grafia, and Emilio Corchado. A survey of multiple classifier systems as
hybrid systems. Information Fusion, 16:3 — 17, 2014.

Lior Rokach. Decision forest: Twenty years of research. Information Fusion, 27:111 — 125, 2016.

A. Ahmad and G. Brown. Random Projection Random Discretization Ensembles - Ensembles of Linear
Multivariate Decision Trees. IEEE Transactions on Knowledge and Data Engineering, 26(5):1225-
1239, May 2014.

William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Sanjoy Dasgupta. Experiments with random projection. In Proceedings of the Sixteenth Conference
on Uncertainty in Artificial Intelligence, UAI’00, pages 143—-151, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

Dmitriy Fradkin and David Madigan. Experiments with random projections for machine learning. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03, pages 517-522, New York, NY, USA, 2003. ACM.

M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and P. Wendell. Learning Spark: Lightning-Fast
Big Data Analytics. O’Reilly Media, 2015.

Apache Spark. Apache Spark: Lightning-fast cluster computing. http://spark.apache.org/,
2018.

MLIib. Machine Learning Library (MLIlib) for Spark. http://spark.apache.org/docs/latest/
mllib-guide.html, 2018.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, October 2001.

Lior Rokach and Oded Maimon. Data mining with decision trees: theory and applications. World
scientific, 2014.

S Garcia, J Luengo, J Séez, V Lopez, and F Herrera. A survey of discretization techniques: taxonomy
and empirical analysis in supervised learning. /[EEE Transactions on Knowledge and Data Engineer-
ing, 25(4):734-750, 2013.

U. M. Fayyad and K. B. Irani. Multi-Interval Discretization of Continuous-Valued Attributes for
Classification Learning. In /3th International Joint Conference on Uncertainly in Artificial Intelli-
gence(1JCAI93), pages 1022-1029, 1993.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Com-
mun. ACM, 51(1):107-113, January 2008.

Alberto Fernandez, Sara del Rio, Victoria Lépez, Abdullah Bawakid, Maria J. del Jesus, José M.
Benitez, and Francisco Herrera. Big data with cloud computing: an insight on the computing environ-
ment, mapreduce, and programming frameworks. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 4(5):380-409, 2014.

19

Principal Components Analysis Random Discretization Ensemble for Big Data

[26]
[27]
(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.
Apache Hadoop Project. Apache Hadoop. http://hadoop.apache.org/, 2018.

Jimmy Lin. Mapreduce is good enough? if all you have is a hammer, throw away everything that’s not
anail! Big Data, 1(1):28-37, 2013.

Diego Garcia-Gil, Sergio Ramirez-Gallego, Salvador Garcia, and Francisco Herrera. A comparison
on scalability for batch big data processing on Apache Spark and Apache Flink. Big Data Analytics,
2(1):9, Mar 2017.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, pages 2-2, Berkeley, CA, USA, 2012.
USENIX Association.

P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss.
Machine Learning, 29:103-137, 1997.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for Exotic Particles in High-Energy
Physics with Deep Learning. Nature Commun., 5:4308, 2014.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1-27:27, May 2011.

Sara del Rio, Victoria Lépez, José Manuel Benitez, and Francisco Herrera. On the use of mapreduce
for imbalanced big data using random forest. Information Sciences, 285:112 — 137, 2014.

J.J. Rodriguez, L.I. Kuncheva, and C.J. Alonso. Rotation Forest: A New Classifier Ensemble Method.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619-1630, Oct 2006.

Isaac Triguero, Sara del Rio, Victoria L6pez, Jaume Bacardit, Jos¢ M Benitez, and Francisco Herrera.
ROSEFW-RF: the winner algorithm for the ECBDL’ 14 big data competition: an extremely imbalanced
big data bioinformatics problem. Knowledge-Based Systems, 87:69-79, 2015.

Huan Liu and Rudy Setiono. Chi2: Feature selection and discretization of numeric attributes. In /CTAI,
pages 388-391, 1995.

Alessio Benavoli, Giorgio Corani, Janez Demsar, and Marco Zaffalon. Time for a change: a tutorial
for comparing multiple classifiers through bayesian analysis. arXiv preprint arXiv:1606.04316, 2016.

Alessio Benavoli, Giorgio Corani, Francesca Mangili, Marco Zaffalon, and Fabrizio Ruggeri. A
bayesian wilcoxon signed-rank test based on the dirichlet process. In International Conference on
Machine Learning, pages 1026-1034, 2014.

Jacinto Carrasco, Salvador Garcia, Maria del Mar Rueda, and Francisco Herrera. rnpbst: An r package
covering non-parametric and bayesian statistical tests. In Francisco Javier Martinez de Pis6n, Rubén
Urraca, Héctor Quintidn, and Emilio Corchado, editors, Hybrid Artificial Intelligent Systems, pages
281-292, Cham, 2017. Springer International Publishing.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages 1097-1105,
2012.

20

Principal Components Analysis Random Discretization Ensemble for Big Data

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[43] Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433-459, 2010.

21

70

Chapter II. Publications

3 Enabling Smart Data: Noise Filtering in Big Data Classification

e D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera. Information Sciences 479, 135-152 (2019).

Status: Published.

Impact Factor (JCR 2018): 5.524

Subject Category: Computer Science, Information Systems
Rank: 9/155

Quartile: Q1

ENABLING SMART DATA: NOISE FILTERING IN BIG DATA

CLASSIFICATION
Diego Garcia-Gil* Julian Luengo
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
djgarcia@decsai.ugr.es julianlm@decsai.ugr.es
Salvador Garcia Francisco Herrera
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
salvagl@decsai.ugr.es herrera@decsai.ugr.es
ABSTRACT

In any knowledge discovery process the value of extracted knowledge is directly related
to the quality of the data used. Big Data problems, generated by massive growth in the
scale of data observed in recent years, also follow the same dictate. A common problem
affecting data quality is the presence of noise, particularly in classification problems, where
label noise refers to the incorrect labeling of training instances, and is known to be a very
disruptive feature of data. However, in this Big Data era, the massive growth in the scale
of the data poses a challenge to traditional proposals created to tackle noise, as they have
difficulties coping with such a large amount of data. New algorithms need to be proposed
to treat the noise in Big Data problems, providing high quality and clean data, also known
as Smart Data. In this paper, two Big Data preprocessing approaches to remove noisy
examples are proposed: an homogeneous ensemble and an heterogeneous ensemble filter,
with special emphasis in their scalability and performance traits. The obtained results show
that these proposals enable the practitioner to efficiently obtain a Smart Dataset from any
Big Data classification problem.

Keywords Big Data - Smart Data - Classification - Class Noise - Label Noise.
1 Introduction

Vast amounts of information surround us today. Technologies such as the Internet generate data at an
exponential rate thanks to the affordability and great development of storage and network resources. It is

*Corresponding author.

Enabling Smart Data: Noise filtering in Big Data classification

predicted that by 2020, the digital universe will be 10 times as big as it was in 2013, totaling an astonishing
44 zettabytes. The current volume of data has exceeded the processing capabilities of classical data mining
systems [1] and have created a need for new frameworks for storing and processing this data. It is widely
accepted that we have entered the Big Data era. Big Data is the set of technologies that make processing
such large amounts of data possible [2], while most of the classic knowledge extraction methods cannot
work in a Big Data environment because they were not conceived for it.

Big Data as concept is defined around five aspects: data volume, data velocity, data variety, data veracity
and data value. While the volume, variety and velocity aspects refer to the data generation process and how
to capture and store the data, veracity and value aspects deal with the quality and the usefulness of the data.
These two last aspects become crucial in any Big Data process, where the extraction of useful and valuable
knowledge is strongly influenced by the quality of the used data.

In Big Data, the usage of traditional preprocessing techniques [3, 4, 5] to enhance the data is even more time
consuming and resource demanding, being unfeasible in most cases. The lack of efficient and affordable
preprocessing techniques implies that the problems in the data will affect the models extracted. Among all
the problems that may appear in the data, the presence of noise in the dataset is one of the most frequent.
Noise can be defined as the partial or complete alteration of the information gathered for a data item, caused
by an exogenous factor not related to the distribution that generates the data. Learning from noisy data is an
important topic in machine learning, data mining and pattern recognition, as real world data sets may suffer
from imperfections in data acquisition, transmission, storage, integration and categorization. Noise will lead
to excessively complex models with deteriorated performance [6], resulting in even larger computing times
for less value.

The impact of noise in Big Data, among other pernicious traits, has not been disregarded. Recently, Smart
Data (focusing on veracity and value) has been introduced, aiming to filter out the noise and to highlight
the valuable data, which can be effectively used by companies and governments for planning, operation,
monitoring, control, and intelligent decision making. Three key attributes are needed for data to be smart, it
must be accurate, actionable and agile:

e Accurate: data must be what it says it is with enough precision to drive value. Data quality matters.

e Actionable: data must drive an immediate scalable action in a way that maximizes a business ob-
jective like media reach across platforms. Scalable action matters.

e Agile: data must be available in real-time and ready to adapt to the changing business environment.
Flexibility matters.

Advanced Big Data modeling and analytics are indispensable for discovering the underlying structure from
retrieved data in order to acquire Smart Data. In this paper we provide several preprocessing techniques for
Big Data, transforming raw, corrupted datasets into Smart Data. We focus our interest on classification tasks,
where two types of noise are distinguished: class noise, when it affects the class label of the instances, and
attribute noise, when it affects the rest of attributes. The former is known to be the most disruptive [7, 8].
Consequently, many recent works, including this contribution, have been devoted to resolving this problem
or at least to minimize its effects (see [9] for a comprehensive and updated survey).

While some architectural designs are already proposed in the literature[10], there is no particular algorithm
which deals with noise in Big Data classification, nor a comparison of its effect on model generalization
abilities or computing times.

Thereby we propose a framework for Big Data under Apache Spark for removing noisy examples composed
of two algorithms based on ensembles of classifiers. The first one is an homogeneous ensemble, named

Enabling Smart Data: Noise filtering in Big Data classification

Homogeneous Ensembe for Big Data (HME-BD), which uses a single base classifier (Random Forest) over
a partitioning of the training set. The second ensemble is an heterogeneous ensemble, namely Heterogeneous
Ensembe for Big Data (HTE-BD), that uses different classifiers to identify noisy instances: Random Forest,
Logistic Regression and K-Nearest Neighbors (KNN) as base classifiers. For the sake of a more complete
comparison, we have also considered a simple filtering approach based on similarities between instances,
named Edited Nearest Neighbor for Big Data (ENN-BD). ENN-BD examines the nearest neighbors of every
example in the training set and eliminates those whose majority of neighbors belong to a different class. All
these techniques have been implemented under the Apache Spark framework [11] and can be downloaded
from the Spark’s community repository 2.

To show the performance of the three proposed algorithms, we have carried out an experimental evaluation
with four large datasets, namely SUSY, HIGGS, Epsilon and ECBDLI4. We have induced several levels
of class noise to evaluate the effects of applying such framework and the improvements obtained in terms
of classification accuracy for two classifiers: a decision tree and the KNN technique. Decision trees with
pruning are known to be tolerant to noise, while KNN is a noise sensitive algorithm when the number
of selected neighbors is low. These differences allow us to better compare the effect of the framework in
classifiers which behave differently towards noise. We also show that, for the Big Data problems considered,
the classifiers also benefit from applying the noise treatment even when no additional noise is induced,
since Big Data problems contain implicit noise due to incidental homogeneity, spurious correlations and
the accumulation of noisy examples [12]. The results obtained indicate that the framework proposed can
successfully deal with noise. In particular, the homogeneous ensemble is the first suitable technique for
dealing with noise in Big Data problems, with low computing times and enabling the classifier to achieve
better accuracy.

The remainder of this paper is organized as follows: Section 2 presents the concepts of noise, MapReduce
and Smart Data. Section 3 explains the proposed framework. Section 4 describes the experiments carried
out to check the performance of the framework. Finally, Section 5 concludes the paper.

2 Related work

In this section we first present the problem of noise in classification tasks in Section 2.1. Then we introduce
the MapReduce framework commonly used in Big Data solutions in Section 2.2. Finally, we provide an
insight into Smart Data in 2.3.

2.1 Class noise vs. attribute noise

In a classification problem, several effects of this noise can be observed by analyzing its spatial character-
istics: noise may create small clusters of instances of a particular class in the instance space corresponding
to another class, displace or remove instances located in key areas within a concrete class, or disrupt the
boundaries of the classes resulting in an increased boundaries overlap. All these imperfections may harm
data interpretation, the design, size, building time, interpretability and accuracy of models, as well as deci-
sion making [8].

As described by Wang et al. [13], from the large number of components that comprise a dataset, class
labels and attribute values are two essential elements in classification datasets. Thus, two types of noise are
commonly differentiated in the literature [8, 13]:

*https://spark-packages.org/package/djgarcia/NoiseFramework

Enabling Smart Data: Noise filtering in Big Data classification

e Class noise, also known as label noise, takes place when an example is wrongly labeled. Class noise
includes contradictory examples [7] (examples with identical input attribute values having different
class labels) and misclassifications [8] (examples which are incorrectly labeled).

e Artribute noise refers to corruptions in the values of the input attributes. It includes erroneous
attribute values, missing values and incomplete attributes or “do not care” values. Missing values
are usually considered independently in the literature, so attribute noise is mainly used for erroneous
values [8].

Class noise is generally considered more harmful to the learning process, and methods for dealing with
class noise are more frequent in the literature [8]. Class noise may have many reasons, such as errors or
subjectivity in the data labeling process, as well as the use of inadequate information for labeling. Data
labeling by domain experts is generally costly, and automatic taggers are used (e.g., sentiment analysis
polarization [14]), increasing the probability of class noise.

Due to the increasing attention from researchers and practitioners, numerous techniques have been devel-
oped to tackle it [9, 8, 3]. These techniques include learning algorithms robust to noise as well as data
preprocessing techniques that remove or “repair”’ noisy instances. In [9] the mechanisms that generate label
noise are examined, relating them to the appropriate treatment procedures that can be safely applied:

e On the one hand, algorithm level approaches attempt to create robust classification algorithms that
are little influenced by the presence of noise. This includes approaches where existing algorithms
are modified to cope with label noise by either being modeled in the classifier construction [15], by
applying pruning strategies to avoid overfiting or by diminishing the importance of noisy instances
with respect to clean ones [16]. Recent proposals exist which that combine these two approaches,
which model the noise and give less relevance to potentially noisy instances in the classifier building
process [17].

e On the other hand, data level approaches (also called filters) try to develop strategies to cleanse the
dataset as a previous step to the fit of the classifier, by either creating ensembles of classifiers [18],
partitioning the data [19], iteratively filtering noisy instances [20], computing metrics on the data or
even hybrid approaches that combine several of these strategies.

In the Big Data environment there is a special need for noise filter methods. It is well known that the
high dimensionality and example size generate accumulated noise in Big Data problems [12]. Noise filters
reduce the size of the datasets and improve the quality of the data by removing noisy instances, but most
of the classic algorithms for noisy data, noise filters in particular, are not prepared for working with huge
volumes of data as they have an iterative approach.

2.2 Big Data. MapReduce and Apache Spark

The globalization of the Big Data paradigm is generating a large response in terms of technologies that must
deal with the rapidly growing rates of generated data [21]. Among all of them, MapReduce is the seminal
framework designed by Google in 2003 [22, 23]. It follows a divide and conquer approach to process
and generate large datasets with parallel and distributed algorithms on a cluster. The MapReduce model is
composed of two phases: Map and Reduce. The Map phase performs a transformation of the data, and the
Reduce phase performs a summary operation. Briefly explained, first the master node splits the input data
and distributes it across the cluster. Then the Map transformation is applied to each key-value pair in the
local data. Once that process is finished the data is redistributed based on the key-value pairs generated in

Enabling Smart Data: Noise filtering in Big Data classification

the Map phase. Once all pairs belonging to one key are in the same node, it is processed in parallel. Apache
Hadoop [24] is the most popular open-source framework based on the MapReduce model.

Apache Spark [11] is an open-source framework for Big Data processing built around speed, ease of use and
sophisticated analytics. Its main feature is its ability to use in-memory primitives. Users can load their data
into memory and iterate over it repeatedly, making it a suitable tool for ML algorithms. The motivation for
developing Spark came from the limitations in the MapReduce/Hadoop model [23, 25, 26]:

o Intensive disk usage
¢ Insufficiency for in-memory computation
e Poor performance on online and iterative computing.

e [ow inter-communication capacity.

Spark is built on top of a distributed data structure called Resilient Distributed Datasets (RDDs) [27]. Oper-
ations on RDDs are applied to each partition of the node local data. RDDs support two types of operations:
transformations, which are not evaluated when defined and produce a new RDD, and actions, which evaluate
all the previous transformations and return a new value. The RDD structure allows programmers to persist
them into memory or disk for re-usability purposes. RDDs are immutable and fault-tolerant by nature. All
operations are tracked using a “’lineage”, so that each partition can be recalculated in case of failure.

Although new promising frameworks for Big Data are emerging, like Apache Flink [28], Apache Spark is
becoming the reference in performance [29, 23].

2.3 From Big Data to Smart Data

Big Data is an appealing discipline that presents an immense potential for global economic growth and
promises to enhance competitiveness of high technological countries. Such as occurs in any knowledge
extraction process, vast amounts of data are analyzed, processed, and interpreted in order to generate profits
in terms of either economic or advantages for society. Once the Big Data has been analyzed, processed,
interpreted and cleaned, it is possible to access it in a structured way. This transformation is the difference
between “Big” and “Smart” Data [30].

The first step in this transformation is to perform an integration process, where the semantics and domains
from several large sources are unified under a common structure. The usage of ontologies to support the
integration is a recent approach [31], but graph databases are also an option where the data is stored in a
relational form, as in healthcare domains [32]. Even when the integration phase ends, the data is still far
from being “smart”: the accumulated noise in Big Data problems creates problems in classical Data Mining
techniques, specially when the dimensionality is large [33]. Thus, in order to be “smart”, the data still needs
to be cleaned even after its integration, and data preprocessing is the set of techniques utilized to encompass
this task [3, 34].

Once the data is “smart”, it can hold the valuable data and allows interactions in “real time”, like transac-
tional activities and other Business Intelligence applications. The goal is to evolve from a data-centered or-
ganization to a learning organization, where the focus is set on the knowledge extracted instead of struggling
with the data management [35]. However, Big Data generates great challenges to achieve this since its high
dimensionality and large example size imply noise accumulation, algorithmic instability and the massive
sample pool is often aggregated from heterogeneous sources [12]. While feature selection, discretization or
imbalanced algorithms to cope with the high dimensionality have drawn the attention of current Big Data

Enabling Smart Data: Noise filtering in Big Data classification

frameworks (such as Spark’s MLIib [36]) and researchers [37, 38, 39], algorithms to clean noise are still a
challenge. In summary, challenges are still present to fully operate a transition between Big Data to Smart
Data. In this paper we provide an automated preprocessing framework to deal with class noise, enabling the
practitioner to reach Smart Data.

3 Towards Smart Data: Noise filtering for Big Data

In this section, we present the first suitable framework for Big Data under Apache Spark for removing noisy
examples based on the MapReduce paradigm, proving its performance over real-world large problems. It is
a MapReduce design where all the noise filter processes are performed in a distributed way.

In Section 3.1 we describe the Spark primitives used for the implementation of the framework. In Section 3.2
we explain in detail the classification algorithms used in the implementation of the framework. We have
designed two algorithms based on ensembles. Both perform a k-fold on the training data, learn a model
on the training partition and clean noisy instances in the test partition. The first one is an homogeneous
ensemble using Random Forest as a classifier, named HME-BD (Section 3.3). The second one, named
HTE-BD (Section 3.4) is a heterogeneous ensemble based on the use of three different classifiers: Random
Forest, Logistic Regression and KNN. We have also implemented a simple filter based on the similarity
between the instances, named ENN-BD (Section 3.5).

3.1 Spark Primitives

For the implementation of the framework, we have used some basic Spark primitives from Spark API. These
primitives offer much complex operations by extending the MapReduce paradigm. Here, we outline those
more relevant to the algorithms 3:

e map: Applies a transformation to each element of a RDD. Once the operation has been performed
to each element, the resulting RDD is returned.

o zipWithIndex: for each element of a RDD, a pair consisting in the element and its index is created,
starting at 0. The resulting RDD is then returned.

e join: Return a RDD containing all pairs of elements with matching keys between two RDDs.
e filter: Return a new RDD containing only the elements that satisfy a predicate.
e union: Return a RDD of pairs as result of the union of two RDDs.

e kFold: Returns a list of k£ pairs of RDDs with the first element of each pair containing the train
data, a complement of the test data, and the second element containing the test data, being a unique
1/kth of the data. Where £ is the number of folds.

e randomForest: Method to learn a Random Forest model for classification problems.

e predict: Returns a RDD containing the features and the predicted labels for a given dataset using
the learned model.

o learnClassifiers: Although its not a pure Spark primitive, we use it to simplify the description of
the algorithms. This primitive learns a Random Forest, Logistic Regression and INN models from
the input data.

3For a complete description of Spark’s operations, please refer to Spark’s API: http://spark.apache.org/docs/latest/
api/scala/index.html

Enabling Smart Data: Noise filtering in Big Data classification

These Spark primitives from Spark API are used in the following sections where HME-BD, HTE-BD and
ENN-BD algorithms are described.

3.2 Classification Algorithms

In this section we describe in detail the classification algorithms used in the implementation of the frame-
work.

3.2.1 Decision Tree

Decision trees are one of the most popular methods in machine learning for both classification and regression
tasks. They are easy to interpret, can handle categorical features and extend to the multiclass classification
problem among other features.

A decision tree uses a tree-like graph for decision making. It starts with a single node which divides into
possible outcomes. Each of those outcomes leads to additional nodes, which in turn are divided into other
nodes. The end nodes are the decision of a certain branch of the tree.

Spark’s implementation of the decision tree is optimized for scalability. The key optimizations are: level-
wise training, for selecting the splits for all nodes at the same level of the tree, approximate quantiles,
bin-wise computation, for saving computation on each iteration by precomputing the binned representations
of each instance, and the avoiding of the map operation.

3.2.2 Random Forest

Ensembles are algorithms that combines a set of models build upon other machine learning algorithms.
Random Forests are a combination of decision trees where each tree is trained independently using a random
sample of the data.

Spark’s Random Forest implementation builds upon the decision tree code, which distributes the learning
of single trees. Many of the optimizations are based upon Google’s PLANET project [40]. Random Forests
are easily paralleled since each tree can be trained independently. Spark’s Random Forest does exactly that,
a variable number of sub-trees are trained in parallel.

3.2.3 KNN

KNN is a supervised learning method typically used for classification. It is based on a learning through
close examples in the space of the elements.

Since Spark doesn’t have a KNN implementation, we have used an exact implementation of KNN present in
Spark’s community repository kKNN-IS* [41]. This implementation takes advantage of Spark’s in-memory
operations for improving the scalability of the KNN algorithm.

3.2.4 Logistic Regression

Logistic Regression is a linear method widely used to predict a binary response. The loss function is given
by the logistic loss.

Spark’s implementation of the logistic regression algorithm uses the limited-memory BFGS (L-BFGS) al-
gorithm [42] for optimization of the memory used.

“https://spark-packages.org/package/JIMailloH/kNN_IS

Enabling Smart Data: Noise filtering in Big Data classification

Algorithm 1 HME-BD Algorithm

1:
2:
3:
4:
5:
6:
7:
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:

Input: data a RDD of tuples (label, features)
Input: P the number of partitions
Input: nTrees the number of trees for Random Forest
Output: the filtered RDD without noise
partitions < kFold(data, P)
filteredData + ()
for all train, test in partitions do
rfModel < randomForest(train,nTrees)
rfPred <« predict(r f Model, test)
joinedData < join(zipWithIndex(test), zipWithIndex(r f Pred))
markedData <
map original, prediction € joinedData
if label(original) = label (prediction) then
original
else
(label = 0, features(original))
end if
end map
filteredData < union(filteredData, markedData)
end for
return(filter(filteredData,label # ()))

3.3 Homogeneous Ensemble: HME-BD

The homogeneous ensemble is inspired by Cross-Validated Committees Filter (CVCF) [19]. This filter
removes noisy examples by partitioning the data in P subsets of equal size. Then, a decision tree, such as
C4.5, is learned P times, each time leaving out one of the subsets of the training data. This results in P
classifiers which are used to predict all the training data P times. Then, using a voting strategy, misclassified
instances are removed.

HME-BD is also based on a partitioning scheme of the training data. There is an important difference with
respect to CVCF: the use of Spark’s implementation of Random Forest instead a of a decision tree as a
classifier. CVCEF creates an ensemble from partitioning of the training data. HME-BD also partitions the
training data, but the use of Random Forest allows us to improve the voting step:

e CVCEF predicts the whole dataset P times. We only predict the instances of the partition that Ran-
dom Forest has not seen while learning the model. This step is repeated P times. With this change
we not only improve the performance, but also the computing time of the algorithm since it only
has to predict a small part of the training data each iteration.

e We don’t need to implement a voting strategy, the decision of whether an instance is noisy is asso-
ciated with the Random Forest prediction.

Algorithm 1 describes the noise filtering process in HME-BD:

e The algorithm filters the noise in a dataset by performing a kF'old on the training data. As stated
previously, Spark’s kFold function returns a list of (¢rain,test) for a given P, where test is a
unique 1/kth of the data, and ¢rain is a complement of the test data.

Enabling Smart Data: Noise filtering in Big Data classification

Fold 1 Learn Random Predicted Labels True Labels
Forest model

I &\1

0 1
1 1 1
0 0 0
0 0 0
1 1 1
Test 0 1
3 g 3
Predict the Test Compare with X .
. - Filter out noise
Traini partition original labels al
raining - ean
Data Folds join Data
Learn Random
Fold k Forest model Predicted Labels True Labels
- Train : (1)
1
1
Test v
Predict the Test Compare with

partition original labels Filter out noise

Figure 1: HME-BD noise filtering process flowchart

e We iterate through each partition, learning a Random Forest model using the ¢rain as input data
and predicting the test using the learned model.

e In order to join the test data and the predicted data for comparing the classes, we use the
zipWithIndex operation in both RDDs. With this operation, we add an index to each element
of both RDDs. This index is used as key for the join operation.

e The next step is to apply a Map function to the previous RDD in order to check for each instance the
original class and the predicted one. If the predicted class and the original are different, the instance
is marked as noise.

e The result of the previous Map function is a RDD where noisy instances are marked. These instances
are finally removed using a filter function and the resulting dataset is returned.

The following are required as input parameters: the dataset (data), the number of partitions (P) and the
number of trees for the Random Forest (nT'rees).

In Figure 1 we can see a flowchart of the HME-BD noise filtering process.

The computational complexity of the algorithm is reduced to the Random Forest learning and predic-
tion time complexity. As theoretically proved in [43] Random Forest’s computational complexity is:
OMK N log N), being M the number of randomized trees, K the number of variables randomly drawn
at each node, N denotes the number of samples of the training partition, and N = 0.632N due to the fact
that bootstrap samples draw, on average, 63.2% of unique samples. The prediction of the Random Forest is
O(M log L), being L the number of samples in the test partition. We repeat this process P times, so the final
computational complexity is O(P(M KN log N)) + O(P(M log L)).

3.4 Heterogeneous Ensemble: HTE-BD

Heterogeneous Ensemble is inspired by Ensemble Filter (EF) [18]. This noise filter uses a set of three
learning algorithms for identifying mislabeled instances in a dataset: a univariate decision tree (C4.5), KNN
and a linear machine. It performs a k-fold cross validation over the training data. For each one of the k
parts, three algorithms are trained on the other £ — 1 parts. Each of the classifiers is used to tag each of the

Enabling Smart Data: Noise filtering in Big Data classification

Algorithm 2 HTE-BD Algorithm

1:
2:
3:
4:
5:
6:
7:
8:
9

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Input: data a RDD of tuples (label, features)
Input: P the number of partitions
Input: nTrees the number of trees for Random Forest
Input: vote the voting strategy (majority or consensus)
Output: the filtered RDD without noise
partitions < kFold(data, P)
filteredData + ()
for all train, test in partitions do
classifiersModel < learnClassifiers(train, nTrees)
predictions < predict(classifiersModel, test)
joinedData <+ join(zipWithIndex(predictions), zipWithIndex(test))
markedData <
map rf,lr, knn, orig € joinedData
count < 0
if rf # label(orig) then count < count + 1 end if
if Ir # label(orig) then count < count + 1 end if
if knn # label(orig) then count < count + 1 end if
if vote = majority then
if count > 2 then (label = 0, features(orig)) end if
if count < 2 then orig end if
else
if count = 3 then (label = 0, features(orig)) end if
if count # 3 then orig end if
end if
end map
filteredData < union(filteredData, markedData)
end for
return(filter(filteredData, label # 0))

test examples as noisy or clean. At the end of the k-fold, each example of the input data has been tagged.
Finally, using a voting strategy, a decision is made and noisy examples are removed.

HTE-BD follows the same working scheme as EF. The main difference is the choice of the three learning
algorithms:

e Instead of a decision tree, we use Spark’s implementation of Random Forest.

e We use an exact implementation of KNN with the euclidean distance present in Spark’s community
repository.

e The linear machine has been replaced by Spark’s implementation of Logistic Regression, which is
another linear classifier.

The noise filtering process in HTE-BD is shown in Algorithm 2:

e For each train and test partition of the k-fold performed to the input data, it learns three classifi-
cation algorithms: Random Forest, Logistic Regression and 1NN using the train as input data.

10

Enabling Smart Data: Noise filtering in Big Data classification

Predicted

Learn Random Forest, Logistic
LR 1INN Labels

Regression and 1NN models

1o B %QNI

True Labels

Fold 1

OrOoOORrRO
oOroooo

Test

- Predict the Test partition Voting strategy Compare Wih Fiter out
- with the three models (majority) original labels hoiso -
Training -
Data . N e
Foldk Lean Random Forest, Logistic e LR 1NN Predicted True Folds join Data

Regression and 1NN models Labels Labels

—>] o
1 0

U)
Train 0 0
0 0
1 1
Test N o 1

P\:ﬁg:cthtfhzztrﬁgg:gn Voting strategy Compare with Filter out
(majority) original labels noise

Figure 2: HTE-BD noise filtering process flowchart

e Then it predicts the test data using the three learned models. This creates a RDD of triplets
(rf,lr, knn) with the prediction of each algorithm for each instance.

e The predictions and the test data are joined by index in order to compare the predictions and the
original label.

e It compares the three predictions of each instance in the test data with the original label using a
Map function and, depending upon the voting strategy, the instance is marked as noise or clean.

e Once the Map function has been applied to each instance, noisy data is removed using a filter
function and the dataset is returned.

The following are required as input parameters: the dataset (data), the number of partitions (P), the number
of trees for the Random Forest (nT'rees) and the voting strategy (vote).

In Figure 2 we show a flowchart of the HTE-BD noise filtering process.

The computational complexity of HTE-BD is defined by the three classifiers used. As explained previously,
time complexity of learning and predicting a Random Forest is O(M K N log N) + O(M log L). kNN-IS
is internally executed in two steps [41], first a mapPartitions phase is performed with a computational com-
plexity of O(M N) for finding the nearest neighbor training example of a single test instance. Finally, a
reduce phase is performed whose complexity can be despised. Lastly, Logistic Regression time complex-
ity depends upon the internal optimizer used, in our case L-BFGS. L-BFGS computational complexity is
given by O(NT), being T the number of iterations. In summary, HTE-BD computational complexity can
be defined as O(P(M K Nlog N)) + O(P(Mlog L)) + O(P(MN)) + O(P(NT)).

3.5 Similarity: ENN-BD

ENN-BD is a simple filtering algorithm that works as a baseline for comparison purposes. It has been
designed based on the Edited Nearest Neighbor algorithm (ENN) [44] and follows a similarity between

11

Enabling Smart Data: Noise filtering in Big Data classification

Algorithm 3 ENN-BD Algorithm

Input: data a RDD of tuples (label, features)
Output: the filtered RDD without noise
knnModel + KNN(1,” euclidean”, data)
knnPred < zipWithIndex(predict(knnModel, data))
joinedData < join(zipWithIndex(data), knnPred)
filteredData +
map original, prediction € joinedData
if label(original) = label (prediction) then
original
else
(noise, features(original))
end if
: end map
. return(filter(filtered Data, label # noise))

e AN R e

e e e e
bl A

instances approach. ENN removes noisy instances in a dataset by comparing the label of each example with
its closest neighbor. If the labels are different, the instance is considered as noisy and removed.

ENN-BD performs a 1NN using Spark’s community repository KNN-IS with the euclidean distance. It
checks for each instance if its closest neighbor belongs to the same class. In case the classes are different,
the instance is marked as noise. Finally, marked instances are removed from the training data. This process
is described in Algorithm 3. The only input parameter required is the dataset (data).

Computational complexity of ENN-BD is reduced to the time complexity of KNN. As described in HTE-
BD, computational complexity of KNN-IS is O(M N).

4 Experimental Results

This section describes the experimental details and the analysis carried out to show the performance of the
three noise filter methods over four huge problems. In Section 4.1, we present the details of the datasets
and the parameters used in the methods. We analyze the accuracy improvements generated by the pro-
posed framework and the study of instances removed in Section 4.2. Finally, Section 4.3 is devoted to the
computing times of the proposals.

4.1 Experimental Framework

Four classification datasets are used in our experiments:

e SUSY dataset, which consists of 5,000,000 instances and 18 attributes [45]. The first eight features
are kinematic properties measured by the particle detectors at the Large Hadron Collider. The last
ten are functions of the first eight features. The task is to distinguish between a signal process which
produces supersymmetric (SUSY) particles and a background process which does not [46].

e HIGGS dataset, which has 11,000,000 instances and 28 attributes [45]. This dataset is a classifi-

cation problem to distinguish between a signal process which produces Higgs bosons and a back-
ground process which does not.

12

Enabling Smart Data: Noise filtering in Big Data classification

Table 1: Datasets used in the analysis

Dataset Instances Atts. Total CL

SUSY 5,000,000 18 90,000,000 2

HIGGS 11,000,000 28 308,000,000 2

Epsilon 500,000 2,000 1,000,000,000 2

ECBDL14 1,000,000 631 631,000,000 2
Table 2: Parameter setting for the noise filters
Algorithm Parameters Classifiers
HME-BD P=4,5 Random Forest: featureSubsetStrategy = auto”, impu-
rity = ”gini”’, maxDepth = 10 and maxBins = 32

HTE-BD P=4,5 INN, Random Forest: featureSubsetStrategy = “auto”,

Voting = major- impurity = ”gini”’, maxDepth = 10 and maxBins = 32
ity, consensus
ENN-BD K=1 distance = "euclidean”

e Epsilon dataset, which consists of 500,000 instances with 2,000 numerical features. This dataset
was artificially created for the Pascal Large Scale Learning Challenge in 2008. It was further pre-
processed and included in the LibSVM dataset repository [47].

o ECBDL14 dataset, which has 32 million instances and 631 attributes (including both numerical and
categorical) [39]. This dataset was used as a reference at the ML competition of the Evolutionary
Computation for Big Data and Big Learning held on July 14, 2014, under the international con-
ference GECCO-2014. It is a binary classification problem where the class distribution is highly
imbalanced: 98% of negative instances. For this problem, we use a reduced version with 1,000,000
instances and 30% of positive instances.

Table 1 provides a brief summary of these datasets, showing the number of examples (Instances), the total
number of attributes (Atts.), the total number of training data (Total), and the number classes (CL).

We carried out experiments on five levels of uniform class noise: for each level of noise, a percentage of the
training instances are altered by replacing their actual label by another label from the available classes. The
selected noise levels are 0%, 5%, 10%, 15% and 20%. In this case, a 0% noise level indicates that the dataset
was unaltered. We have conducted a hold-out validation due to the time limitations of the KNN algorithm.

In Table 2 we can see the complete list of parameters used for the noise treatment algorithms. In order
to evaluate the effect of the number of partitions on the behavior of the filters, we have selected 4 and
5 training partitions for HME-BD and HTE-BD. For the heterogeneous filter, HTE-BD, we also use two
voting strategies: consensus (same result for all classifiers) and majority (same result for at least half the
classifiers). For ENN-BD, with k = 5 we have higher network overload, and due to the huge data redundancy
in big datasets, it achieved similar performance in internal tests in comparison to k = /. This is why we have
chosen the most efficient option.

Two classifiers, one MLIib classifier, a decision tree, and one algorithm present in Spark’s community
repository, KNN, are used to evaluate the effectiveness of the filtering carried out by the two ensemble
proposals and the similarity filter. The decision tree can adapt its depth to avoid overfitting to noisy instances,
while KNN is known to be sensitive to noise when the number of selected neighbors is low. Prediction

13

Enabling Smart Data: Noise filtering in Big Data classification

Table 3: Parameter setting for the classifiers

Classifier Parameters

KNN K =1, distance = "euclidean”
Decision Tree impurity = ”gini”’, maxDepth = 20 and maxBins = 32

accuracy is used to evaluate the model’s performance produced by the classifiers (number of examples
correctly labeled as belonging to a given class divided by the total number of elements). The parameters
used for the classifiers can be seen in Table 3. Default parameters are used, except for the decision tree, in
which we have tuned the depth of the tree for a better detection of noisy instances. KNN is used with k = /
as it is more sensitive to noise, as opposed to the decision tree.

The experiments have been carried out according to the following scheme:

e No noise filtering: for each level of noise (from 0% to 20 %) we learn a KNN and a Decision Tree
using the training partition of the data and then predict the test partition.

e Noise filtering: for each level of noise (from 0% to 20 %) we filter the training partition of the data
using the corresponding filter. Then we learn a KNN and a Decision Tree using the filtered dataset
and predict the test partition.

For all experiments we have used a cluster composed of 20 computing nodes and one master node. The
computing nodes hold the following characteristics: 2 processors x Intel(R) Xeon(R) CPU E5-2620, 6
cores per processor, 2.00 GHz, 2 TB HDD, 64 GB RAM. Regarding software, we have used the following
configuration: Hadoop 2.6.0-cdh5.4.3 from Cloudera’s open source Apache Hadoop distribution, Apache
Spark and MLIib 1.6.0, 460 cores (23 cores/node), 960 RAM GB (48 GB/node).

4.2 Analysis of accuracy performance and removed instances

In this section, we present the analysis on the performance results obtained by the selected classifiers after
applying the proposed framework. We denote with Original the application of the classifier without using
any noise treatment techniques, in order to evaluate the impact of the increasing noise level in the quality of
the models extracted by the classification algorithms.

Table 4 shows the test accuracy values for the four datasets and the five levels of noise using the KNN
algorithm for classification. From these results we can point out that:

e [t is important to remark that the usage of any noise treatment technique always improves the Orig-
inal accuracy value at the same noise level. Please note that the usage of the noise treatment tech-
nique allows KNN to obtain better performance at any noise level, even at the highest ones, than
Original at 0% level for every dataset. Since Big Datasets tend to accumulate noise, the proposed
noise framework is able to improve the behavior and performance of the KNN classifier in every
case.

e If we attend the best noise treatment strategy for KNN, we must point out that the homogeneous
filter, HME-BD, enables KNN to obtain the highest accuracy values.

e The different number of partitions used for HME-BD has little impact in the accuracy values, which,
in this respect, makes it a robust method.

14

Enabling Smart Data: Noise filtering in Big Data classification

Table 4: KNN test accuracy. The highest accuracy value per dataset and noise level is stressed in bold

Dataset Noise (%) | Original | HME-BD HTE-BD ENN-BD

P 4 5 4 4 5 5

Vote Majority Consensus Majority Consensus

SUSY 0 71.79 78.73 78.72 | 77.86 74.64 77.88 74.65 72.02
5 69.62 78.68 78.69 | 77.68 73.38 77.68 73.39 69.84
10 67.44 78.63 78.62 | 77.44 72.01 77.46 72.00 67.66
15 65.27 78.62 78.61 | 77.19 70.52 77.20 70.53 65.28
20 63.10 78.56 78.58 | 76.93 69.10 76.93 69.04 63.25

HIGGS 0 61.21 64.26 64.25 | 63.94 62.30 63.93 62.23 60.65
5 60.10 64.06 64.07 | 63.63 61.45 63.62 61.44 59.60
10 58.97 63.83 63.84 | 63.29 60.65 63.24 60.66 58.56
15 57.84 63.65 63.64 | 62.86 59.81 62.89 59.81 57.52
20 56.69 63.53 63.40 | 62.55 58.89 62.55 58.85 56.45

Epsilon 0 56.55 58.11 58.06 | 57.43 55.19 57.39 55.40 56.21
5 55.71 58.64 58.60 | 57.47 55.47 57.39 55.41 55.43
10 55.20 58.51 58.61 | 57.26 55.25 57.26 55.25 54.79
15 54.54 58.39 58.41 | 57.00 55.00 57.02 55.03 54.30
20 54.05 58.02 58.09 | 56.75 54.72 56.71 54.72 53.68

ECBDL14 0 74.83 76.06 76.03 | 75.12 73.54 75.14 73.46 73.94
5 72.36 75.60 75.59 | 74.59 72.89 74.59 72.84 72.77
10 69.86 75.31 75.32 | 74.19 72.50 74.19 72.47 71.40
15 67.39 75.11 7512 | 73.99 72.11 74.01 72.06 69.68
20 64.90 74.82 74.83 | 73.70 71.89 73.70 71.90 67.64

e The heterogeneous ensemble filter, HTE-BD, is also robust to the number of partitions chosen, but
its performance is lower than HME-BD. However, the voting scheme is crucial for HTE-BD, as the
consensus strategy will result in worse accuracy for KNN, being close to 2% less accuracy for the
consensus voting strategy.

While the Original accuracy value drops around 2% for each 5% increment of noise, totaling about
10% less accuracy in 20% of noise level, HME-BD drops less than a 1% of accuracy in total.

The baseline noise filtering method, ENN-BD, is the worst option as KNN obtains the lowest ac-
curacy values among the three noise treatment strategies. For ENN-BD, the accuracy drops around
2% for each 5% increment in noise instances. However, as mentioned earlier, ENN-BD is still
preferable to not dealing with the noise at all. This is due to the noise sensitive nature of KNN.

Table 5 gathers the test accuracy values for the three noise filter methods using a deep decision tree. From
these results we can point out that:

e Again, avoiding the treatment of noise is never the best option and using the appropriate noise

filtering technique will provide a significant improvement in accuracy. However, since the decision
tree is more robust against noise than KNN, not all the filters are better than avoiding filtering noise
(Original). When the filters remove too many instances, both noisy and clean, the decision tree
is more affected since it is able to withstand small amounts of noise while exploiting the clean
instances. KNN was very affected by the noisy instances left, in a higher degree than the decision
tree. Thus, a wrong filtering strategy will penalize the performance of the decision tree. We will
elaborate more on this later.

15

Enabling Smart Data: Noise filtering in Big Data classification

Table 5: Decision tree test accuracy. The highest accuracy value per dataset and noise level is stressed in

bold

Dataset Noise (%) | Original | HME-BD HTE-BD ENN-BD

P 4 5 4 4 5 5

Vote Majority Consensus Majority Consensus

SUSY 0 80.24 79.78 79.79 | 79.69 80.27 79.17 80.29 78.56
5 79.94 79.99 79.97 | 80.07 80.36 80.10 80.34 77.49
10 79.15 79.85 79.84 | 79.81 80.04 79.81 80.22 77.00
15 78.21 79.81 79.80 | 79.32 79.47 79.61 79.48 75.81
20 77.09 79.71 79.73 | 79.35 78.95 79.31 79.41 74.21

HIGGS 0 70.17 71.16 71.17 | 69.61 70.41 69.68 70.33 68.85
5 69.61 71.14 71.11 | 69.34 69.98 69.36 69.92 68.29
10 69.22 71.06 71.04 | 68.95 69.56 68.97 69.58 67.52
15 68.65 71.03 70.99 | 68.52 69.04 68.65 69.06 66.93
20 67.82 71.05 71.02 | 68.18 68.38 68.35 68.39 66.05

Epsilon 0 62.39 66.86 66.19 | 65.13 66.07 65.11 66.02 61.54
5 61.10 66.64 66.83 | 65.32 66.09 65.33 66.09 60.41
10 60.09 66.87 67.00 | 65.46 66.11 65.47 66.10 59.20
15 59.02 66.62 66.85 | 65.33 65.99 65.29 66.00 58.09
20 57.73 66.46 66.79 | 65.08 65.69 64.98 65.65 56.71

ECBDL14 0 73.98 74.59 74.38 | 74.21 74.51 74.35 74.62 73.66
5 72.87 74.64 74.40 | 74.16 74.54 74.25 74.75 73.48
10 71.67 74.59 74.25 | 73.84 74.51 73.94 74.63 72.75
15 70.28 74.61 74.22 | 73.82 73.91 73.98 74.10 71.68
20 68.66 74.83 74.18 | 73.78 73.82 73.85 73.86 70.16

In terms of the best filtering technique for the decision tree, for low levels of noise, the heteroge-
neous ensemble HTE-BD can perform slightly better than the homogeneous HME-BD for some
datasets. Nevertheless, from a 10% noise level onwards, HME-BD outperforms HTE-BD, making
it a better approach to deal with noise for the decision tree.

As observed previously, the Original accuracy drops for each increment of noise level. In this case,
HME-BD is performing even better than observed with KNN since accuracy value is almost the
same at 0% and 20% level of noise.

Regarding the HTE-BD voting strategy, the consensus scheme achieves better results than the ma-
jority voting strategy. Please note that the opposite has been observed in KNN: since KNN is much
more sensitive and demands cleaner class borders achieved with the majority voting, the decision
tree benefits from a more accurate noise removal provided by the consensus voting.

The baseline method, ENN-BD, is achieving around 1% less accuracy than the rest for low levels
of noise, but this difference increases to 5% less accuracy in higher noise levels.

The results presented have shown the importance of applying a noise treatment strategy, no matter how much
noise is present in the dataset. For a deeper analysis of the results, we have performed a Bayesian Test in
order to analyze if one of the proposed algorithms is statistically better than the rest. Bayesian Tests obtain
a distribution of the difference between two algorithms, and make a decision when 95% of the distribution
is in one of the three regions: left, rope (region of practical equivalence), and right [48]. The Bayesian Sign
Test is a Bayesian version of non-parametric sign test that uses the Dirichlet Process. This test is applied to

16

Enabling Smart Data: Noise filtering in Big Data classification

the mean accuracy of each dataset. A sample of the distribution of the probabilities is obtained. Each point
is a triplet with the probabilities of the difference between two algorithms belonging to the left, rope or right
regions. For HME-BD and HTE-BD, the best performing configuration has been selected accordingly to the
Friedman Test. HME-BD is used with 4 partitions while HTE-BD uses 5 partitions for both KNN and the
decision tree. HTE-BD uses majority voting in KNN, and consensus voting with the decision tree.

8 o0, e
K 80 % 80 2 80
? 60 2 60 G ® 60
% 40 2 40 B \d0
%é" 20 ? 20 % 20
2 VAVAY , 2 VAVAY , 2,49 AVA
L & ¢ & & &R L & & & & &R L & ¢ & & &R
HME-BD (L) vs Original HTE-BD (L) vs Original ENN-BD (L) vs Original
(R) (R) (R)

Figure 3: Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD against the Original accuracy
for KNN

In Figure 3 we compare HME-BD, HTE-BD and ENN-BD against the Original accuracy using KNN as
classifier. As we can observe, the probability of the difference being to the right is minimal for HME-
BD and HTE-BD. This means that the Bayesian Sign Test is assigning a probability of O to these methods
performing worse than the Original accuracy. In ENN-BD we can see that the performance is very similar
to the Original accuracy. For the Bayesian Tests and graphics we have employed an R package that contains
a set of non-parametric and Bayesian Tests, namely INPBST [49].

In Figure 4 we compare the proposed algorithms against each other using KNN as classifier. As we can
see HME-BD is statistically better than HTE-BD according to the Bayesian Sign Test. Both HME-BD and
HTE-BD performs much better than ENN-BD.
rope rope
HOO F%O(} rop1%0
80

ot

?3
9 80 7 80

(10,) e/
2 40 9 40) 40
o) [e3) [e) i
9 .20 9 azo 9 ‘20
[]

oY
(o)
S
o
(o))
o
Qv
o
=

2.4 VAVAVAVA 2 2 . ,
L ¢ & & & SR L' ¢ & & & SR L § & & & SR
HTE-BD (L) vs HME-BD ENN-BD (L) vs HME-BD ENN-BD (L) vs HTE-BD
(R) (R) (R)

Figure 4: Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD for KNN

We have performed the same experimentation with the decision tree using the Bayesian Sign Test. These
experiments can be seen in Figure 5 and Figure 6. These results show that HME-BD is still the best perform-
ing method according to the Bayesian Sign Test also for the decision tree, performing better than HTE-BD,
ENN-BD and the Original accuracy. As expected, ENN-BD is not improving against the Original accuracy
with a decision tree.

17

Enabling Smart Data: Noise filtering in Big Data classification

rope rope rope
~p100 F%00 F%00
80 %, 80 %/ \go
60 %‘o 60 G - 60
40 % e 40 % 40
20 Y U 20 % :! 20
P -~
% : 2
& & &R L & » & & &R L & ¢ & & &R
HME-BD (L) vs Original HTE-BD (L) vs Original ENN-BD (L) vs Original
(R) (R) (R)

Figure 5: Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD against the Original accuracy
for a decision tree

rope
4100 2100 ;100
2 2/
Vi 9 \80

= =
9 , 9 60

2 0
L% § & & SR L% & & & SR § S & & SR
HTE-BD (L) vs HME-BD ENN-BD (L) vs HME-BD ENN-BD (L) vs HTE-BD

(R) R) (R)
Figure 6: Bayesian Sign Test heatmap for HME-BD, HTE-BD and ENN-BD for a decision tree

To better explain why HME-BD is the best filtering strategy in the framework, we must study the amount of
instances removed. In Table 6 we present the average number of instances left after the application of the
three noise filtering methods for the four datasets. In Figure 7 we can see a graphic representation of the
number of instances for the sake of a better depiction. As we can expect, the higher the percentage of noise,
the lower the number of instances that remain in the dataset after applying the filtering technique. However,

there are different patterns depending on the filtering technique used:

e For the homogeneous ensemble HME-BD, there is no effect in the number of partitions P chosen
with respect to the amount of removed instances. On average, HME-BD removes around 20% of
the instances at a 0% noise level. At each noise level increment an average of 3% of the instances

are removed.

For the Epsilon dataset, at 20% nosie, HME-BD does not remove as many instances as expected,
but it is still the best option out of the two classifiers. A high instance redundancy in this dataset
may cause homogeneous voting to not discard as many instances as the other filters.

e Like HME-BD, HTE-BD is not affected by the number of partitions, but the voting scheme does
have a great impact on its behavior. While the majority voting strategy achieves almost the same
number of removed instances as HME-BD, the consensus voting strategy is more conservative.
Consensus voting removes 10% of the instances for 0% level of noise, and it is increasing a 3% on
average as the level of noise increases, the same rate as HME-BD.

18

Enabling Smart Data: Noise filtering in Big Data classification

Table 6: Average number of instances for HME-BD, HTE-BD and ENN-BD

Dataset Noise | Original HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5

Vote Majority ~ Consensus Majority ~ Consensus

SUSY 0% 2,500,000 | 1,984,396 1,983,785 | 1,974,018 2,281,521 1,973,587 2,280,941 | 1,262,317

5% 2,500,000 | 1,910,750 1,911,317 | 1,872,868 2,241,766 1,874,053 2,242,598 | 1,260,781
10% | 2,500,000 | 1,837,604 1,837,408 | 1,801,616 2,207,999 1,800,276 2,203,012 | 1,258,441
15% | 2,500,000 | 1,763,890 1,764,176 | 1,728,789 2,174,051 1,727,949 2,175,876 | 1,256,611
20% | 2,500,000 | 1,691,290 1,691,506 | 1,657,323 2,144,595 1,657,035 2,141,811 | 1,254,441

HIGGS 0% 5,500,000 | 3,900,547 3,900,035 | 3,567,784 5,048,874 3,564,879 5,051,498 | 2,765,831
5% 5,500,000 | 3,787,000 3,786,366 | 3,484,271 5,014,344 3,484,274 5,013,132 | 2,763,942
10% | 5,500,000 | 3,672,429 3,672,553 | 3,404,181 4,972,401 3,401,624 4,973,794 | 2,760,547
15% | 5,500,000 | 3,554,120 3,557,252 | 3,324,547 4,930,575 3,323,465 4,932,060 | 2,754,636
20% | 5,500,000 | 3,446,352 3,443,459 | 3,242,174 4,888,991 3,240,623 4,886,961 | 2,756,382

Epsilon 0% 250,000 164,222 164,292 194,252 242,757 194,037 242,730 125,072
5% 250,000 186,707 186,839 186,890 239,200 186,957 239,200 124,983
10% | 250,000 180,489 180,517 180,296 235,425 180,332 235,456 125,064
15% | 250,000 173,027 173,114 173,226 231,962 173,274 231,997 124,980
20% | 250,000 166,191 166,247 166,394 228,153 166,285 228,394 124,583

ECBDL14 | 0% 500,000 387,815 387,873 393,242 470,731 393,273 470,924 367,101
5% 500,000 370,991 371,094 377,451 458,758 377,239 459,212 344,717
10% | 500,000 357,565 357,270 361,587 448,460 361,614 448,550 324,674
15% | 500,000 344,363 344,427 346,454 439,633 346,633 439,028 306,832
20% | 500,000 330,694 330,761 331,552 430,444 331,511 430,357 292,000

e ENN-BD is the filter that removes more instances. On average it removes half the instances of the
datasets for 0% level of noise and then increases around 1% at each increment of noise level. This
aggresive filtering hinders the performance of noise tolerant classifiers, such as the decision tree.

e In general, HME-BD is the most balanced technique in terms of instances removed and kept. Al-
though the amount of instances removed by HTE-BD with majority voting is very similar to HME-
BD, the instances selected to be eliminated are different, severely affecting the classifier used after-
wards.

We have performed a deeper analysis of the removed instances, analyzing the amount of correctly removed
instances for each method in the framework.

In Table 7 we present the average percentage of correctly removed instances after the application of the
three noise filtering methods for the four datasets. In Figure 8 we can see a graphic representation of these
percentages of correctly removed instances. As we can see, the consensus voting strategy is much more
conservative removing noisy instances than the rest of the methods. We can also outline some patterns
depending on the filtering method used:

e While ENN-BD is the filter that more instances removes, it is also the one that less noise removes
from the datasets, averaging a 50% of noisy instances removed.

e Similarly to the number of instances removed, HME-BD and HTE-BD are not affected by the num-
ber of partitions, while the voting strategy does influence the percentage of correctly removed in-
stances. As we could expect, the consensus voting strategy is the one that less noisy instances clean.

19

Enabling Smart Data:

Noise filtering in Big Data classification

ENN-BD ENN-BD
HTE-BD P=5 Consensus |, HTE-BD P=5 Consensus |
HTE-BD P=5 Majority | HTE-BD P=5 Majority
HTE-BD P=4 Consensus . HTE-BD P=4 Consensus |
HTE-BD P=4 Majority | HTE-BD P=4 Majority |
HME-BD P=5 | . HME-BD P=5 |
HME-BD P=4 | HME-BD P=4
Original - Original
0 1.000.000 2.000.000 3.000.000 0 2.000.000 4.000.000 6.000.000
m20% W15% W10% W5% mO% m20% W15% W10% m5% mO0%
(a) SUSY (b) HIGGS
ENN-BD — ENN-BD .
HTE-BD P=5 Consensus s HTE-BD P=5 Consensus
HTE-BD P=5 Majority | HTE-BD P=5 Majority i
HTE-BD P=4 Consensus [, HTE-BD P=4 Consensus
HTE-BD P=4 Majority | HTE-BD P=4 Majority |
HME-BD P=5 [- HME-BD P=5 [
HME-BD P=4 - HME-BD P=4
Original R — Original
0 100.000 200.000 300.000 0 200.000 400.000 600.000
m20% W15% mW10% m5% m0% m20% W15% mW10% m5% m0%

(c) Epsilon

(d) ECBDL14

Figure 7: Number of instances after the filtering process

Consensus voting removes only 25% of noisy instances in HIGGS dataset, and only increases to
45% in ECBDL14 dataset.

e HME-BD and HTE-BD with majority voting, are removing aroung 65% and 80% of noisy instances.
Both methods outperform the other in two out of four datasets.

e In Epsilon dataset, HTE-BD is cleaning 10% more noisy instances than HME-BD, but HME-BD
performs better in test accuracy. This can be explained by the accumulated noise of this particular
dataset.

e As we can expect, the higher the accuracy of the classifier used by the filters, the better the detection
of noisy instances. That explains the different behaviors of the three noise filters, and why ENN-BD
is not the method that most noisy instances removes.

In view of the results, we can conclude that HME-BD is the most suitable ensemble option in the proposed
framework to deal with noise in Big Data problems. Even when we did not introduce any additional noise,
the usage of noise treatment methods has proven to be very beneficial. As previously mentioned, Big Data
problems tend to accumulate noise and the proposed noise framework is a suitable tool to clean and proceed
from Big to Smart Datasets.

20

Enabling Smart Data: Noise filtering in Big Data classification

Table 7: Average percentage of correctly removed instances for HME-BD, HTE-BD and ENN-BD

Dataset Noise | HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority Consensus Majority Consensus
SUSY 5% 79.45 79.44 | 78.98 38.16 79.02 38.18 50.36
10% | 76.79 76.74 | 77.50 38.03 77.52 39.24 50.32
15% | 76.77 76.77 | 76.48 37.71 76.49 37.71 50.38
20% | 79.34 79.37 | 78.83 37.26 78.83 37.25 50.29
HIGGS 5% 69.19 69.04 | 66.04 26.18 66.03 26.17 49.12
10% | 69.26 69.24 | 66.10 25.82 66.09 25.82 49.56
15% | 69.39 69.37 | 66.14 25.81 66.14 25.80 49.62
20% | 69.45 69.49 | 66.23 25.78 66.23 25.78 49.55
Epsilon 5% 65.18 65.05 | 77.18 30.67 77.08 30.64 50.13
10% | 66.02 65.98 | 77.65 30.31 77.60 30.27 49.80
15% | 67.19 67.15 | 77.60 30.74 71.57 30.70 49.98
20% | 66.74 66.51 | 77.71 30.89 77.68 30.86 49.77
ECBDL14 | 5% 74.45 74.35 | 78.30 44.79 78.28 45.15 70.83
10% | 74.36 74.32 | 77.26 46.83 77.22 46.84 68.55
15% | 74.41 74.35 | 77.07 44.79 77.04 4484 66.45
20% | 74.38 74.36 | 77.29 43.79 77.26 43.80 64.25
Table 8: Average run times for HME-BD, HTE-BD and ENN-BD in seconds
Dataset HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority ~ Consensus Majority ~ Consensus
SUSY 513.46 632.54 5,511.15 5,855.66 6,701.62 6,399.32 8,956.71
HIGGS 587.72 675.07 15,300.62 15,232.99 16,417.26 17,067.97 | 25,441.09
Epsilon 1,868.75 2,021.14 | 4,120.79 7,201.05 5,179.09 5,664.06 2,718.97
ECBDLI14 | 1,228.24 1,348.10 | 9,710.70 11,217.02 10,798.18 11,366.01 | 14,080.03

4.3 Computing times

In the previous section we have shown the suitability of the proposed framework in terms of accuracy. In
order to constitute a valid proposal in Big Data, this framework has to be scalable as well. This section is
devoted to present the computing times for the two prosposed ensemble techniques, HME-BD and HTE-BD,
and the simple similarity method, ENN-BD, used as a baseline.

In Table 8 we can see the average run times of the three methods for the four datasets in seconds. As the
level of noise is not a factor that affects the run time, we show the average of the five executions performed
for each dataset. In Figure 9 we can see a graphic representation of these times.

The measured times show that the homogeneous ensemble, HME-BD, is not only the best performing option
in terms of accuracy, but also the most efficient one in terms of computing time. Although the accuracy value
is not affected by the number of partitions, the run times of the algorithms suffer an increase in time with
the number of partitions. HME-BD is about ten times faster than the heterogeneous filter HTE-BD and the

21

Enabling Smart Data: Noise filtering in Big Data classification

ENN-BD

HTE-BD P=5 Consensus
HTE-BD P=5 Majority
HTE-BD P=4 Consensus
HTE-BD P=4 Majority
HME-BD P=5

HME-BD P=4

0% 10% 20% 30% 40% 50% 60% 70% 80%
m20% m15% mW10% W5%

(a) SUSY

ENN-BD

HTE-BD P=5 Consensus
HTE-BD P=5 Majority
HTE-BD P=4 Consensus
HTE-BD P=4 Majority

HME-BD P=5

HME-BD P=4

0% 10% 20% 30% 40% 50% 60% 70% 80%

m20% m15% m10% m5%

(c) Epsilon

ENN-BD

HTE-BD P=5 Consensus
HTE-BD P=5 Majority
HTE-BD P=4 Consensus
HTE-BD P=4 Majority
HME-BD P=5

HME-BD P=4

0% 10% 20% 30% 40% 50% 60% 70% 80%
m20% ®W15% ®W10% W5%

(b) HIGGS

ENN-BD
HTE-BD P=5 Consensus

HTE-BD P=5 Majority

HTE-BD P=4 Consensus

HTE-BD P=4 Majority

HME-BD P=5

HME-BD P=4

0% 10% 20% 30% 40% 50% 60% 70% 80%

m20% ®m15% ®m10% m5%

(d) ECBDL14

Figure 8: Percentage of correctly removed noisy instances after the filtering process

similarity filter ENN-BD. This is caused by the usage of the KNN classifier by HTE-BD and ENN-BD,
which is very demanding in computing terms. As a result, HME-BD does not need to compute any distance
measures, saving computing time and being the most recommended option to deal with noise in Big Data
problems.

In view of the results we can conclude that:

e The usage of any of the noise treatment techniques in the framework always improves the Original
accuracy value at the same noise level.

e HME-BD has shown to be the best performing method overall for both classifiers, KNN and the
decision tree. It is also the most efficient method in terms of computing time.

e The number of partitions has little impact in the accuracy and almost no impact in the number of
removed instances.

e The voting strategy has a huge impact in the number of removed instances.

e As we could expect, KNN is a very demanding method in computing terms. This is reflected in the
longer computing time of HTE-BD and ENN-BD.

22

Enabling Smart Data: Noise filtering in Big Data classification

30.000

25.000
- 20.000
o
[=
2
@ 15.000
i
£
— 10.000

5.000 III II
SUSY HIGGS Epsilon ECBDL14
Dataset
m HME-BD P=4 m HME-BD P=5 HTE-BD P=4 Majority HTE-BD P=4 Consensus

B HTE-BD P=5 Majority B HTE-BD P=5 Consensus B ENN-BD

Figure 9: Run times chart

5 Conclusions

This work presents the first suitable noise filter in Big Data domains, where the high redundancy of the
instances and high dimensional problems pose new challenges to classic noise preprocessing algorithms.
We have proposed several noise filtering algorithms, implemented in a Big Data framework: Spark. These
filtering techniques are based on the creation of ensembles of classifiers that are executed in the different
maps, enabling the practitioner to deal with huge datasets. Different strategies of data partitioning and
ensemble classifier combination have led to three different approaches: an homogeneous ensemble, an
heterogeneous ensemble and a simple filtering approach based on similarities between instances.

The suitability of these proposed techniques has been analyzed using several data sets, in order to study the
accuracy improvement, running times and data reduction rates. The homogeneous ensemble has shown to
be the most suitable approach in most cases, both in accuracy improvement and better running times. It also
shows the best balance between removing and keeping sufficient instances, being among the most balanced
filter in terms of preprocessed training sets.

The problem of noise in Big Data classification is a crucial step in transforming such raw data into Smart
Data [30]. We have tackled this problem and enabled the practitioner to reach Smart Data. Our proposal
can deal with problems with millions of instances and thousands of features in a short time, obtaining clean
datasets of noise.

This proposal opens promising research lines in this topic, where the presence of iterative algorithms and
the usage of noise measures are also known as viable alternatives for dealing with noise. Another research
line is the study of whether removing or relabelling of noisy instances may be a better strategy. Finally, for
multiclass or imbalanced problems, cost sensitive filters which prioritize the removal of instances from the
majority classes can be an interesting topic [50].

23

Enabling Smart Data: Noise filtering in Big Data classification

Acknowledgment

This work is supported by the Spanish National Research Project TIN2017-89517-P, and the Project
BigDaP-TOOLS - Ayudas Fundacién BBVA a Equipos de Investigacion Cientifica 2016.

References

(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data. [EEE
Transactions on Knowledge and Data Engineering, 26(1):97-107, 2014.

C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, techniques and tech-
nologies: A survey on Big Data. Information Sciences, 275:314 — 347, 2014.

Salvador Garcfa, Julidn Luengo, and Francisco Herrera. Data Preprocessing in Data Mining. Springer,
2015.

Salvador Garcia, Sergio Ramirez-Gallego, Julian Luengo, José Manuel Benitez, and Francisco Herrera.
Big data preprocessing: methods and prospects. Big Data Analytics, 1(9):(2016).

Diego Garcia-Gil, Sergio Ramirez-Gallego, Salvador Garcia, and Francisco Herrera. Principal Com-
ponents Analysis Random Discretization Ensemble for Big Data. Knowledge-Based Systems, 150:166
— 174, 2018.

Xindong Wu and Xingquan Zhu. Mining with noise knowledge: Error-aware data mining. [EEE
Transactions on Systems, Man, and Cybernetics, 38:917-932, 2008.

José A. Saez, Mikel Galar, Julidn Luengo, and Francisco Herrera. INFFC: An iterative class noise
filter based on the fusion of classifiers with noise sensitivity control. Information Fusion, 27:19 — 32,
2016.

Xingquan Zhu and Xindong Wu. Class Noise vs. Attribute Noise: A Quantitative Study. Artificial
Intelligence Review, 22:177-210, 2004.

Benoit Frénay and Michel Verleysen. Classification in the presence of label noise: A survey. /[EEE
Transactions on Neural Networks and Learning Systems, 25(5):845-869, 2014.

Btissam Zerhari. Class noise elimination approach for large datasets based on a combination of classi-
fiers. In Cloud Computing Technologies and Applications (CloudTech), 2016 2nd International Con-
ference on, pages 125-130. IEEE, 2016.

M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and P. Wendell. Learning Spark: Lightning-Fast
Big Data Analytics. O’Reilly Media, 2015.

J. Fan, F. Han, and H. Liu. Challenges of big data analysis. National Science Review, 1(2):293-314,
2014.

Xindong Wu. Knowledge acquisition from databases. Ablex Publishing Corp., Norwood, NJ, USA,
1996.

Bing Liu. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University
Press, 2015.

Yunlei Li, Lodewyk F.A. Wessels, Dick de Ridder, and Marcel J.T. Reinders. Classification in the
presence of class noise using a probabilistic Kernel Fisher method. Pattern Recognition, 40(12):3349—
3357, 2007.

Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song. Rboost: Label noise-robust boosting algorithm

based on a nonconvex loss function and the numerically stable base learners. IEEE Transactions on
Neural Networks and Learning Systems, 27(11):2216-2228, 2016.

24

Enabling Smart Data: Noise filtering in Big Data classification

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

(31]

(32]

[33]

[34]

Charles Bouveyron and Stéphane Girard. Robust supervised classification with mixture models: Learn-
ing from data with uncertain labels. Pattern Recognition, 42(11):2649-2658, 2009.

Carla E. Brodley and Mark A. Friedl. Identifying Mislabeled Training Data. Journal of Artificial
Intelligence Research, 11:131-167, 1999.

S. Verbaeten and A.V. Assche. Ensemble methods for noise elimination in classification problems. In
4th International Workshop on Multiple Classifier Systems, volume 2709 of Lecture Notes on Com-
puter Science, pages 317-325. Springer, 2003.

Taghi M. Khoshgoftaar and Pierre Rebours. Improving software quality prediction by noise filtering
techniques. Journal of Computer Science and Technology, 22:387-396, 2007.

Hai Wang, Zeshui Xu, Hamido Fujita, and Shousheng Liu. Towards felicitous decision making: An
overview on challenges and trends of Big Data. Information Sciences, 367:747 — 765, 2016.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Com-
munications of the ACM, 51(1):107-113, January 2008.

Sergio Ramirez-Gallego, Alberto Ferndndez, Salvador Garcia, Min Chen, and Francisco Herrera. Big
Data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapRe-
duce. Information Fusion, 42:51-61, 2018.

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

Jimmy Lin. Mapreduce is good enough? if all you have is a hammer, throw away everything that’s not
anail! Big Data, 1(1):28-37, 2013.

Alberto Fernandez, Sara del Rio, Victoria Lopez, Abdullah Bawakid, Maria J. del Jests, José¢ M.
Benitez, and Francisco Herrera. Big data with cloud computing: an insight on the computing environ-
ment, mapreduce, and programming frameworks. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 4(5):380—409, 2014.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedins of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12), pages 15-28, San Jose, CA, 2012. USENIX.

Apache Flink Project. Apache Flink. http://flink.apache.org/, 2017.

Diego Garcia-Gil, Sergio Ramirez-Gallego, Salvador Garcia, and Francisco Herrera. A comparison
on scalability for batch big data processing on Apache Spark and Apache Flink. Big Data Analytics,
2(1):(2017).

A. Lenk, L. Bonorden, A. Hellmanns, N. Roedder, and S. Jaehnichen. Towards a taxonomy of stan-
dards in smart data. In Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big
Data 2015, pages 1749-1754, 2015.

J. Chen, D. Dosyn, V. Lytvyn, and A. Sachenko. Smart data integration by goal driven ontology
learning. In Advances in Intelligent Systems and Computing, volume 529, pages 283-292, 2017.

P.V. Raja, E. Sivasankar, and R. Pitchiah. Framework for smart health: Toward connected data from
big data. Advances in Intelligent Systems and Computing, 343:423-433, 2015.

Jianqing Fan and Yingying Fan. High dimensional classification using features annealed independence
rules. Annals of statistics, 36(6):2605-2637, 2008.

Salvador Garcia, Julian Luengo, and Francisco Herrera. Tutorial on practical tips of the most influential
data preprocessing algorithms in data mining. Knowledge-Based Systems, 98:1-29, 2016.

25

Enabling Smart Data: Noise filtering in Big Data classification

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

[50]

F. Iafrate. A journey from big data to smart data. Advances in Intelligent Systems and Computing,
261:25-33,2014.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin,
Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark. Journal
of Machine Learning Research, 17(34):1-7, 2016.

Mingkui Tan, Ivor W. Tsang, and Li Wang. Towards ultrahigh dimensional feature selection for big
data. Journal of Machine Learning Research, 15:1371-1429, 2014.

Sergio Ramirez-Gallego, Salvador Garcia, Héctor Mourifio-Talin, David Martinez-Rego, Veroénica
Bolon-Canedo, Amparo Alonso-Betanzos, José Manuel Benitez, and Francisco Herrera. Data dis-
cretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 6(1):5-21, 2016.

Isaac Triguero, Sara del Rio, Victoria Lopez, Jaume Bacardit, José M Benitez, and Francisco Herrera.
Rosefw-rf: the winner algorithm for the ecbdl’ 14 big data competition: an extremely imbalanced big
data bioinformatics problem. Knowledge-Based Systems, 87:69-79, 2015.

Biswanath Panda, Joshua S Herbach, Sugato Basu, and Roberto J Bayardo. Planet: massively parallel
learning of tree ensembles with mapreduce. Proceedings of the VLDB Endowment, 2(2):1426-1437,
2009.

Jesus Maillo, Sergio Ramirez, Isaac Triguero, and Francisco Herrera. kNN-IS: An Iterative Spark-
based design of the k-Nearest Neighbors classifier for big data. Knowledge-Based Systems, 117:3 —
15, 2017.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503-528, Aug 1989.

Gilles Louppe. Understanding random forests: From theory to practice. arXiv preprint
arXiv:1407.7502, 2014.

Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transac-
tions on Systems, Man, and Cybernetics, 2(3):408—421, 1972.

M. Lichman. UCI machine learning repository, 2013.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5:4308, 2014.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology (TIST), 2(3):27:1-27:27, May 2011.

Alessio Benavoli, Giorgio Corani, Janez DemsSar, and Marco Zaffalon. Time for a change: a tutorial for
comparing multiple classifiers through bayesian analysis. The Journal of Machine Learning Research,
18(1):2653-2688, 2017.

Jacinto Carrasco, Salvador Garcia, Maria del Mar Rueda, and Francisco Herrera. rfNPBST: An R
Package Covering Non-parametric and Bayesian Statistical Tests. In Francisco Javier Martinez de
Pis6n, Rubén Urraca, Héctor Quintidn, and Emilio Corchado, editors, Hybrid Artificial Intelligent
Systems, pages 281-292, Cham, 2017. Springer International Publishing.

Swagatam Das, Shounak Datta, and Bidyut B. Chaudhuri. Handling data irregularities in classification:
Foundations, trends, and future challenges. Pattern Recognition, 81:674 — 693, 2018.

26

4 From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification 97

4 From Big to Smart Data: Iterative Ensemble Filter for Noise

Filtering in Big Data classification

e D. Garcia-Gil, F. Luque-Sanchez, J. Luengo, S. Garcia, F. Herrera. International Journal of
Intelligent Systems 34 (12), 3260-3274 (2019).
— Status: Published.
— Impact Factor (JCR 2018): 7.229
— Subject Category: Computer Science, Artificial Intelligence
Rank: 8/134
Quartile: Q1

FROM BIG TO SMART DATA: ITERATIVE ENSEMBLE FILTER
FOR NOISE FILTERING IN BIG DATA CLASSIFICATION

Diego Garcia-Gil* Francisco Luque-Sanchez
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071

djgarcia@decsai.ugr.es fluquel1995@correo.ugr.es
Julian Luengo Salvador Garcia
Department of Computer Science Department of Computer Science
and Artificial Intelligence and Artificial Intelligence
University of Granada University of Granada
Granada, Spain, 18071 Granada, Spain, 18071
julianlm@decsai.ugr.es salvagl@decsai.ugr.es

Francisco Herrera
Department of Computer Science
and Artificial Intelligence
University of Granada
Granada, Spain, 18071
herrera@decsai.ugr.es

ABSTRACT

The quality of the data is directly related to the quality of the models drawn from that data.
For that reason, many research is devoted to improve the quality of the data and to amend
errors that it may contain. One of the most common problems is the presence of noise in
classification tasks, where noise refers to the incorrect labeling of training instances. This
problem is very disruptive, as it changes the decision boundaries of the problem. Big Data
problems pose a new challenge in terms of quality data due to the massive and unsupervised
accumulation of data. This Big Data scenario also brings new problems to classic data pre-
processing algorithms, as they are not prepared for working with such amounts of data, and
these algorithms are key to move from Big to Smart Data. In this paper, an iterative en-
semble filter for removing noisy instances in Big Data scenarios is proposed. Experiments
carried out in six Big Data datasets have shown that our noise filter outperform the cur-
rent state-of-the-art noise filter in Big Data domains. It has also proved to be an effective
solution for transforming raw Big Data into Smart Data.

*Corresponding author.

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

Keywords Big Data - Smart Data - Classification - Class Noise - Ensemble.

1 Introduction

Big Data collection has a simple purpose, to get to know people and our environment in the best possible
way. We are in a moment in time where everything in the world has grown to certain limits, where companies
and researchers have to go a step further and find new sources of information, new sources of knowledge
which will enable us to develop and adapt further [1]. Nowadays, companies and researchers look for the
information they have not been interested in so far, but as of today, this information is the only way to take
this next step. All this information comes from a myriad of sources, both structured and unstructured [2].
Nevertheless, both companies and researchers are facing new challenges coping with the Volume, Velocity,
Veracity and Value (among many other V’s) that characterize this new paradigm [3].

The main concept of Big Data is that these huge amounts of information will enable machine learning
algorithms to achieve better and more accurate models than ever before. Classical methods cannot handle
this humongous new data space requirements. Recently, some software solutions have appeared for dealing
with this Big Data scenario, like Apache Spark [4], based on the MapReduce paradigm [5]. Thanks to
frameworks like Apache Spark, some classical data mining and machine learning methods are being adapted
to deal with these amounts of data. However, due to the automation in data generation and acquisition, Big
Data mining techniques must not only deal with the scalability problem (volume/velocity), but also must
handle inaccurate data (noise or incomplete).

Recently, a new term related to the Big Data environment have emerged. Smart Data refers to the chal-
lenge of acquiring knowledge from raw data [6, 7]. In other words, Smart Data refers to the challenge of
transforming information into knowledge. Smart Data aims to separate the raw (or Big) part of the data (vol-
ume/velocity), from the Smart part of it (veracity/value) [8]. Therefore, Smart Data is focused on extracting
valuable knowledge from data, in the form of a subset, that contains enough quality for a successful data
mining process [9].

Data preprocessing is strongly linked to the concept of Smart Data [10], as it is one of the most important
phases of every data mining process. Raw data is likely to contain imperfections, redundancies or incon-
sistencies, making it unsuitable for a data mining process [11]. The goal of data preprocessing is to clean
and amend errors in the data, in order to achieve better performance in the later machine learning process.
However, data preprocessing methods are also affected by the increasing size and complexity of the data,
making them unable to obtain a preprocessed/smart dataset in a reasonable time limit, and therefore, they
need to be redesigned with Big Data technologies.

Among all imperfections that data can contain, noise is one of the most disruptive ones [12]. Noise can be
defined as an external factor that affects the data by corrupting it. Noise disrupts the models obtained and
decrements the performance of machine learning algorithms. Alleviating the effects of noise is a challenging
task that require the correct identification of the corrupted examples in the data. The negative effects of
noise will increase with the size of the data [13]. Although a Big Data scenario is very likely to contain
huge amounts of noise, little research has been devoted to tackling noise in Big Data. That’s why there is a
special need for noise filters in Big Data. Although we can find many proposals for dealing with noise for
normal-sized data in the literature, in Big Data scenarios we can find only a handful of proposals devoted to
this problem [14, 8, 9].

In this paper, we propose a novel iterative ensemble noise filter for Big Data classification problems under
Apache Spark, namely Iterative Ensemble Filter for Big Data (IEF-BD). This filter performs a k-fold to the
input data and learns a Random Forest on each partition. Then it predicts the whole dataset and, according
to a vote strategy, removes instances considered as noise. This process is repeated in a iterative fashion a

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

number of times. IEF-BD has been implemented in Apache Spark [15], and it is available publicly as a
Spark package in Spark’s third party repository Spark Packages?.

In order to show the performance of the proposed ensemble filter, we have carried out an in depth experimen-
tal evaluation on six Big Data datasets. These datasets have very different properties among them, ranging
from binary to multiclass problems. They also vary from datasets with 250,000 instances to datasets with
more than 11,000,000 instances. With these datasets, we can assess the performance of the proposed noise
filter in very different scenarios. We have included five levels of random class noise to evaluate the effect of
increasing levels of noise in the datasets. As classifier, we use Spark’s MLIlib implementation of a decision
tree [16]. We compare our method with the most recent and best performing proposal in the literature for
noise cleaning in Big Data, HME-BD [8]. We show that, for some problems, the classifier benefits from
the noise filtering even when no noise is added. This shows that Big Data problems can contain implicit
noise [13]. Results obtained indicate that the proposed ensemble filter is able to successfully remove noisy
instances from a dataset. IEF-BD outperforms HME-BD in terms of accuracy for all tested datasets, achiev-
ing good performance even when HME-BD is not able to improve the base accuracy without a noise filtering
strategy.

The remainder of this paper is organized as follows: Section 2 presents the concepts of noise and MapRe-
duce. Section 3 explains the proposed noise ensemble filter. Section 4 describes the experiments carried out
to check the performance of the noise filter. Finally, Section 5 concludes the paper.

2 Background

In this section, we introduce the problem of noise in classification tasks in Section 2.1. We conclude with
a description of the MapReduce framework, the most popular solution for Big Data environments, in Sec-
tion 2.2.

2.1 Noisy Data

As we have mentioned before, the presence of noise in the data involves a very negative impact in the
models learned. This negative effect is aggravated if the learner is noise sensitive. Data size is a factor that
increases the amount of noise in data, since noise accumulates when the number of dimensions and instances
increases [13].

We can find two types of noise in the literature [17, 18], depending on which element of the dataset is
affecting:

e Class Noise: also known as label noise, refers to wrongly labeled examples. Class noise is con-
formed by contradictory examples [19] (instances with the same input attributes, but with different
classes), and misclassifications [17] (wrongly labeled examples).

e Attribute Noise: is referred to corruptions in the values of the features. Although it is composed of
several data aberrations (missing values or “do not care” values among others), it is mainly focused
on erroneous values [17].

Class noise is known to be more disruptive with the learning process. Thus, methods for dealing with this
type of noise are more common in the literature [17]. Class noise can have many natures, such as errors in
the data acquisition process, or subjectivity in the data labeling phase.

https://spark-packages.org/package/djgarcia/IEF_BD

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

We can find different approaches to the noise problem in the literature [20, 17, 10]. These different tech-
niques range from creating noise robust learners and algorithms, to data preprocessing methods that detect
and either remove or relabel the noisy instances. Noise filtering has also been employed for automatic cluster
discovering [21]. In [20], two main different approaches for the noise handling problem are distinguished:

e Algorithm Level: these methods aim to create robust learning algorithms that are little or no influ-
enced by the presence of noise in the data. They include algorithms that model noise in the learning
process [22], pruning strategies to avoid overfitting to noisy instances, or decreasing the importance
of noisy instances with respect to clean ones [23]. Strategies that combine both approaches have
also been proposed, which model the noise and diminish the importance of noise in the learning
process [24].

e Data Level: also called filters, aim to remove noisy instances from the data, as a previous step to
the learning process. We can find ensemble strategies [25], data partitioning approaches [26] or
iterative algorithms [27].

As described previously, data size is a factor that affects greatly to the amount of noise in data. This, along
with the many natures of class noise (errors in the data, subjectivity or lack of supervision), are the reasons
why the presence of noise in Big Data environments is much greater than in normal-sized problems. Thus,
models learned from this data will be weaker and more complex. Noise filters not only improve the quality
of the data, but also obtain a reduced version of it, improving the speed and efficiency of the later data
mining and machine learning processes. The solution goes by transforming from Big to Smart Data before
the application of the learner.

2.2 Big Data: MapReduce and Apache Spark

MapReduce is the most popular and widely used paradigm for Big Data processing nowadays. It was
originally proposed by Google in 2003 [5]. This paradigm is born from the necessity of processing and/or
generating large amounts of data in a distributed and efficient fashion, while minimizing disk access and
network use.

It has two main phases: the map phase, and the reduce phase. Before starting the map phase, the master
node partitions the data and distributes it across the cluster. Then, the map function applies a transformation
operation to the local key-value pairs of each computing node. Once the map phase is finished, all pairs
belonging the the same key are redistributed. When all pairs belonging to the same key are in the same
computing node, the reduce phase starts. The reduce phase is a summary operation that generates the final
values.

Apache Hadoop is the most popular open-source implementation of MapReduce [28]. Although Hadoop is
a very extended tool for Big Data processing, it as some important limitations [29]:

e It is not suitable for iterative algorithms.
e Intensive disk usage.

e Lack of in-memory computation.

Apache Spark is an open-source framework for Big Data, focused on speed, ease of use and sophisticated
analytics [15]. Spark solves the Hadoop problems by in-memory computing, allowing to persist the data
in memory for consecutive or iterative processing. It is built on top of a novel distributed data structure,

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

named Resilient Distributed Datasets (RDDs) [4]. RDDs are unsorted and immutable by nature. They allow
programmers to persist them in memory, and they are tracked using a lineage, so that each partition can be
recomputed in case of failure. RDDs support two types of operations: transformations and actions. Trans-
formations are applied to each partition of an RDD and produce a new RDD. They are also not evaluated
until an action is computed. Actions triggers all previous transformations of an RDD, and return a value.

3 Iterative Ensemble Filter: a Big Data approach

In this section, we describe in depth our proposal for noise filtering in Big Data. IEF-BD is an iterative
ensemble noise filtering algorithm based on partitions of the input data. It is based on the MapReduce
paradigm, where all operations are performed in a distributed fashion. Section 3.1 describes the Spark
primitives used for the implementation of IEF-BD. In Section 3.2, we explain in detail our proposed iterative
noise filter, IEF-BD.

3.1 Spark Primitives

For the implementation of the algorithm we have employed some of the Spark primitives available in the
Spark API. These primitives extend the MapReduce paradigm, allowing much more complex operations
over the data. Here, we outline those more relevant to our proposed noise filter :

e map: applies an user-defined operation to each element of an RDD. A new RDD is created after
this transformation, and the resulting RDD is returned.

o zipWithIndex: appends an index to each element of an RDD. This index is zero-based and creates
anew RDD of (value, index) tuples.

e filter: returns a new RDD with those instances that satisfy a predicate.

e kFold: returns a list of k£ pairs of RDDs with the first element of each pair containing the train
data, a complement of the test data, and the second element containing the test data, being a unique
1/kth of the data. Where £ is the number of folds.

e randomForest: learns a Random Forest model on the input data. The learned model is returned
for prediction.

e predict: returns an RDD with the predicted classes for each instance, using a previously learned
model.

e count: returns the number of elements of an RDD.

These Spark primitives from Spark API are used in the following section, where IEF-BD algorithm is de-
scribed.

3.2 Iterative Ensemble Filter: IEF-BD

The iterative ensemble filter is inspired by an ensemble-based noise filter called Iterative-Partitioning Filter
(IPF) [30]. This filter removes the noisy instances in a dataset by partitioning the data into k equal parts.
Then, a C4.5 decision tree is learned on each of the partitions. This k£ models are used to predict the &k

3For a complete description of Spark’s operations, please refer to Spark’s API: http://spark.apache.org/docs/latest/
api/scala/index.html

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

Algorithm 1 IEF-BD Algorithm

1: Input: data a RDD of tuples (label, features)
2: Input: k the number of partitions
3: Input: threshold the threshold for the vote strategy
4: Input: maxiter the maximum number of iterations
5: Input: nTrees the number of trees for Random Forest
6: Output: the filtered RDD without noise
7: iter <=0
8: finalData < ()
9: do
10: predictions +
11: map instance € data
12: (instance, Array[k))
13: end map
14: partitions < kFold(predictions, k)
15: for all index, train in partitions do
16: rfModel < randomForest(train,nTrees)
17: rfPred < predict(r f Model, data)
18: predictions < add(index, r f Pred)
19: end for
20: notsyData <
21: map instance, arrayPreds € predictions
22: errors < count(filter(arrayPreds, predLabel # label (instance)))
23: if errors > k * threshold then
24: (label = 0, features(instance))
25: else
26: instance
27: end if
28: end map
29: finalData < filter(noisyData,label # ()
30: iter < iter + 1

31: while iter < mazxlIter
32: return(finalData)

partitions. Finally, according to a voting strategy, missclassified instances are removed. The iterative nature
of IPF offers a great advantage over other noise filters. By removing the noise progressively, the following
iterations are more precise.

IEF-BD is also based on a partitioning scheme of the data. But there are some important differences.
Each iteration, IEF-BD partitions the data performing a k-fold to the input data. Then it learns Spark’s
implementation of Random Forest on the train partition and predicts the full dataset. This learning process
is repeated k times. When this process is finished, each instance has k predictions. Using a voting strategy,
the instance is either kept or removed. The filter is applied until a number of iterations are performed.

Algorithm 1 describes the filtering process of IEF-BD:

e First, the noise filter appends an array of size k to each instance using a map function. This array
will contain the predicted classes for each of the k learners.

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

e The input data is partitioned using Spark’s kFold function. As stated previously, this function
partitions the data into & partitions, returning a list of (train, test) splits. The train is formed by
the union of & — 1 partitions, and the test contains the partition left.

e The next step is to learn the ¥ Random Forest models using the train as input data, with the specified
number of trees (nT'rees). Then, the whole dataset is predicted using the previously learned model.
Finally, using the add function, we append to the corresponding array index, the predictions for
each instance. Although add is not a pure Spark primitive, we use it to simplify the description of
the algorithm.

e Once we have learned the train partitions and predicted the whole dataset k times, we apply the
voting strategy to decide whether to keep or remove every instance. This process is applied using a
map function. For each instance, we start by keeping only the predictions that does not match the
real label using the filter function. Then we count the number of wrong labels using the count
method. If this number is greater or equal than a condition (k * threshold), the instance is marked
as noise. Otherwise, the instance is kept. At the end of this step, all instances are marked either as
noisy or correct.

e Then, instances marked as noisy are removed using the filter function, and the number of iterations
is updated.

e Finally, the algorithm checks if the number of iterations has not reached its maximum specified
value. If the condition is satisfied, the algorithm finishes and returns the most recent cleaned dataset.
In other case, the algorithm starts again, using the previously cleaned data as input data.

The following are required as input parameters: the dataset (data), the number of partitions (k), the threshold
for the voting strategy (threshold), the maximum number of iterations (maxIter) and the number of trees
for the Random Forest (nT'rees).

In Figure 1 we show a flowchart of the IEF-BD noise filtering process.

4 Experimental Results

In this section, we show all the details related to the experimental framework, starting with the datasets
selected for the experimentation, the performance metrics, and the parameters of the methods used. Addi-
tionally, we detail the hardware and software resources used to carry out the experiments.

We have selected six Big Data classification problems. These datasets are extracted from the UCI Machine
Learning Repository [31], and are publicly available. In Table 1 we show the datasets selected, the number
of examples (Instances), the total number of attributes (Atts.), the total number of training data (Total), and
the number classes (CL).

We have conducted the experiments with five levels of uniform class noise. For each of the five noise levels,
a percentage of the training instances has been altered by replacing the real class, with another randomly
selected from the available classes. Selected noise levels have been: 0%, 5%, 10%, 15% and 20%. In this
case, a 0% noise levels refers to the original dataset without added noise. We have conducted a 5 fold cross-
validation scheme. This means that every dataset has been partitioned in five folds, with 80% of instances
for training, and 20% for test.

The parameters used for both IEF-BD and HME-BD are shown in Table 2. The same seed and number of
partitions is used for both IEF-BD and HME-BD. For HME-BD values recommended by the authors are

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

Data

Test, Train, Train, Test,

I e b
Strategy

— _g 2 -
Q=N —= =0
- O0O==0
O=~m—-QO0

~Q -+ =0
O a2 a0
aa

maxlter?

Figure 1: IEF-BD noise filtering process flowchart (instance labels are represented by 0’s and 1°s). It starts
with a k-fold of the data. Then, each ¢rain is used for learning a Random Forest, and then predicts the whole

dataset. Finally, using a voting strategy, noisy instances are removed. This process is repeated a number of
iterations.

used. For IEF-BD, we have increased the depth of the Random Forest, as well as the number of trees. This
will lead to a more aggressive detection of noise, but combined with the voting strategy, we can keep the
clean instances, while removing the noisy ones. We have selected one iteration for IEF-BD, as internal
testing showed that one iteration was enough for removing the noisy instances. Several iterations removed
both noisy and clean instances.

After the noise filtering process, we need to apply a classifier in order to assess the performance of the
algorithms. We have selected Spark’s MLIib distributed decision tree as a classifier. This algorithms is
capable to learn a decision tree globally, using all data at once on the learning phase. Additionally, its depth
can be adjusted for a better detection of noisy instances. Table 3 shows the parameters for the decision

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

Table 1: Datasets used in the analysis

Dataset Instances Atts. Total CL
skin_noskin 245,057 3 735,171 2
ht_sensor 928,991 11 10,218,901 3
watch_acc 3,540,962 20 70,819,240 7
watch_gyr 3,205,431 20 64,108,620 7
Susy 5,000,000 18 90,000,000 2
Higgs 11,000,000 28 308,000,000 2

Table 2: Parameter settings for the noise filters

Algorithm Parameters Classifier

IEF-BD k=4, Random Forest: featureSubsetStrategy = “auto”, impu-
maxlter =1, rity = “gini”, maxDepth = 12 and maxBins = 32
nTrees = 200
HME-BD k=4, Random Forest: featureSubsetStrategy = “auto”, impu-

nTrees =100 rity = “gini”, maxDepth = 10 and maxBins = 32

tree. As an evaluation metric for the noise filters, we have used the prediction accuracy produced by the
classifier (number of examples correctly labeled as belonging to a given class, divided by the total number
of examples).

Table 3: Parameter setting for the classifier

Classifier Parameters

Decision Tree impurity = “gini”’, maxDepth = 20 and maxBins = 32

The cluster used for all the experiments is composed of 14 nodes managed by a master node. All nodes have
the same hardware and software configuration. Regarding the hardware, each node has 2 x Intel Xeon CPU
E5-645 processors, 6 cores (12 threads) per processor, 2.40 GHz and 64 GB of RAM. The network used is
Infiniband 40Gb/s. The operating system is CentOS 6.9, with Apache Spark 2.2.0.

In Table 4 we show the test accuracy for the two noise filter methods. The Original accuracy represents the
dataset without any noise filtering applied. In view of the results, we can point out that:

e Avoiding noise treatment is not a good option. When a noise filtering algorithm is applied, we can
see an important increase in accuracy. However not all noise filters are achieving the same results.
This shows the importance of the right choice of the noise filtering technique.

e Asitis expected, the Original accuracy drops with each level of noise. We can see up to a 2% drop
in accuracy from the lower to the higher levels of noise.

e Regarding IEF-BD and HME-BD, both obtain very similar results in skin_noskin and Susy datasets.
Although both results are similar, IEF-BD achieves slightly better results. In Higgs dataset, the
difference increases to a 0.6% of accuracy in favor of IEF-BD.

e Although a filtering strategy is always recommended, not every noise filter is going to perform
good for all datasets. HME-BD is not improving the accuracy in ht_sensor and both watch_acc and

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

Table 4: Decision tree test accuracy. The highest accuracy value per dataset and noise level is stressed in
bold

Dataset Noise (%) | Original | IEF-BD HME-BD
Vote 0.25 0.50 0.75 1.00
skin noskin 0 99.88 99.77 99.83 99.84 99.84 | 99.78
5 99.71 99.80 99.82 99.78 99.84 | 99.80
10 99.51 99.79 99.80 99.78 99.80 | 99.75
15 99.35 99.78 99.78 99.78 99.74 | 99.75
20 99.02 99.77 99.72 99.74 99.64 | 99.72
ht_sensor 0 99.99 99.82 9991 9993 99.95 | 99.52
5 99.84 99.82 99.83 99.85 99.86 | 98.84
10 99.74 99.84 99.78 99.82 99.90 | 98.81
15 99.57 99.81 99.82 99.86 99.90 | 99.08
20 99.35 99.74 99.78 99.80 99.85 | 98.92
watch_acc 0 90.96 87.17 88.07 88.84 90.03 | 86.12
5 90.56 86.73 88.05 88.69 89.62 | 85.77
10 90.13 86.96 87.89 88.40 89.63 | 85.36
15 89.51 86.87 87.65 88.50 89.63 | 85.39
20 89.35 87.35 87.62 88.56 89.63 | 85.04
watch_gyr 0 89.80 84.67 85.89 87.33 88.83 | 85.51
5 89.30 84.67 86.50 87.02 88.48 | 86.12
10 88.79 84.63 85.63 87.23 88.94 | 85.27
15 88.41 85.04 8598 86.64 88.56 | 85.68
20 87.83 84.66 85.51 86.38 88.11 | 86.21
Susy 0 77.64 79.55 79.55 79.54 79.52 | 79.33
5 77.19 79.53 79.53 79.50 79.50 | 79.32
10 76.71 79.55 79.52 79.50 79.48 | 79.29
15 76.20 79.52 79.50 79.50 79.45 | 79.30
20 75.60 79.51 79.50 79.50 79.43 | 79.32
Higgs 0 70.90 71.58 71.68 71.74 71.81 | 71.21
5 70.44 71.57 71.61 71.68 71.74 | 71.14
10 69.90 71.50 71.57 71.62 71.65 | 71.05
15 69.35 71.47 71.51 71.59 71.60 | 71.09
20 68.76 71.48 71.50 7148 71.52 | 71.05

watch_gyr datasets. On the other hand, IEF-BD, thanks to the voting strategy, is able to improve the
Original accuracy in the presence of noise for these datasets.

e Regarding the voting strategy in IEF-BD, we can see that it affects greatly to the results achieved.
For multiclass problems, the voting strategy in IEF-BD enables it to be more conservative, and
to be able to improve the Original accuracy. There are two datasets which benefit from the more
aggressive voting (skin_noskin and Susy), and four that improve with the most conservative strategy.

10

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

Table 5: Heatmap with the average number of instances left for IEF-BD and HME-BD. Higher reduction
rates are represented in blue.

Dataset Noise (%) | Original IEF-BD HME-BD
Vote 0.25 0.50 0.75 1.00
skin_noskin 0 196,044 195,397 195,667 195,778 195,842 195,217
5 196,044 185,625 185,872 186,021 186,142 185,547
10 196,044 175,825 176,160 176,295 176,452 175,759
15 196,044 166,050 166,398 166,555 166,780 166,083
20 196,044 156,206 156,648 156,857 157,177 156,368
ht_sensor 0 743,080 740,620 741,606 741,928 742,355 691,183
5 743,080 703,072 704,396 704,696 705,130 663,353
10 743,080 666,718 667,363 667,804 668,306 628,374
15 743,080 629,649 630,389 630,791 631,265 592,795
20 743,080 592,365 593,165 593,660 594,003 568,899
watch_acc 0 2,833,506 | 2,346,432 2,462,645 2,549,083 2,647,584 | 2,245,381
5 2,833,506 | 2,209,657 2,337,209 2,424937 2,515,130 | 2,135,871
10 2,833,506 | 2,095,469 2,223,382 2,307,140 2,394,380 | 2,020,678
15 2,833,506 | 1,975,212 2,096,939 2,186,882 2,282,026 | 1,928,061
20 2,833,506 | 1,871,135 1,969,115 2,064,194 2,138,561 | 1,812,435
watch_gyr 0 2,564,234 | 2,043,638 2,168,677 2,260,954 2,359,461 | 2,059,045
5 2,564,234 | 1,922,235 2,072,485 2,165,877 2,258,690 | 1,962,049
10 2,564,234 | 1,844,276 1,966,590 2,057,306 2,138,387 | 1,877,071
15 2,564,234 | 1,744,699 1,863,388 1,932,234 2,020,472 | 1,760,277
20 2,564,234 | 1,646,141 1,747,086 1,816,750 1,899,865 | 1,660,317
Susy 0 3,999,282 | 3,149,713 3,184,854 3,214,815 3,247,301 | 3,173,871
5 3,999,282 | 3,032,874 3,067,724 3,095,382 3,127,733 | 3,055,178
10 3,999,282 | 2,907,968 2,947,894 2,979,413 3,016,833 | 2,937,199
15 3,999,282 | 2,788,096 2,828,909 2,861,443 2,900,244 | 2,823,115
20 3,999,282 | 2,674,538 2,713,045 2,742,538 2,778,414 | 2,706,100
Higgs 0 8,799,713 | 6,163,632 6,310,333 6,423,391 6,563,742 | 6,232,771
5 8,799,713 | 5,973,177 6,114,038 6,234,391 6,368,410 | 6,053,240
10 8,799,713 | 5,763,332 5,919,740 6,044,891 6,193,495 | 5,865,209
15 8,799,713 | 5,577,546 5,731,428 5,850,257 5,996,852 | 5,690,875
20 8,799,713 | 5,321,615 5,494,102 5,692,952 5,854,863 | 5,509,134

In Table 5 we gather the total number of instances left after the noise filtering process for the five levels of
noise. In Figure 2 we can see a graphic representation of the reduction rate after the noise filtering process
for the sake of a better depiction. In view of these results, we can draw the following conclusions:

e Asitis expected, the number of instances removed increases with the increasing level of noise. This
shows that the noise filters are detecting the noisy instances properly.

e The voting strategy in IEF-BD has a great impact in the number of instances removed. Thanks to
this mechanism, IEF-BD is able to maintain the clean instances and to remove the noise effectively.

11

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

For datasets with good base accuracy, IEF-BD is keeping almost all instances in the data for low
levels of noise. Also the voting strategy has a crucial role in multiclass datasets, maintaining the
necessary number of instances for each level of noise.

o HME-BD is more aggressive removing instances than IEF-BD. Altough both remove a similar num-
ber of instances if we attend to the most aggressive voting strategy in IEF-BD.

e In Susy and Higgs datasets, both filters are removing an important number of instances at 0% of
noise. This means that these datasets have intrinsic noise.

e As we can see in Figure 2, for datasets with good base accuracy (skin_noskin and ht_sensor), IEF-BD
is removing almost the exact percentage of added noise.

o If we compare the number of instances removed, with the accuracy achieved by IEF-BD, we can
conclude that there is not a better voting strategy in IEF-BD overal. There are datasets that benefit
from the most conservative strategies, while others achieve better results with the higher percentage
of instances removed. This shows the importance of the right choose of the voting strategy.

In order to constitute a proper Big Data proposal, we shall analyze the computing times for both IEF-BD
and HME-BD. In Table 6 we show the runtimes for the noise filtering methods. As the level of noise is
not a factor that affects the runtimes, we show the average runtimes for the five folds and the five levels of
noise. As it is expected, IEF-BD is more computationally expensive than HME-BD. IEF-BD learns deeper
Random Forests and with two times the number of trees compared to HME-BD. It also predicts the whole
dataset, instead of just the test partition. Even so, IEF-BD achieves very competitive computing times,
being able to effectively remove the noise in Big Data datasets in a reasonable amount of time.

Table 6: Average runtimes for [IEF-BD and HME-BD in seconds
Dataset IEF-BD | HME-BD

skin_noskin | 562 175
ht_sensor 1,787 433
watch_acc 2,315 782
watch_gyr | 2,083 625
Susy 4,157 2,333
Higgs 8,962 4,004

In view of these results, we can conclude that:

e The usage of a noise filtering technique can improve the Original accuracy even when no noise is
added.

e [EF-BD has shown to perform better than the current state-of-the-art noise filter for Big Data HME-
BD.

e The vote strategy in IEF-BD has a crucial role in the noise filtering performance.

e The computing times of IEF-BD are higher than HME-BD as expected, but they have shown to be
reasonable for the size of the datasets employed.

12

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

o |
0.00 5.00 10.00 15.00 20.00 25.00

B HME_BD WIEF_BD1 WIEF_BDO0.75 WIEF_BD 0.5 WIEF_BD0.25

(a) skin_noskin

0.00 10.00 20.00 30.00 40.00

mHME BD mIEF BD1 mlEF_BDO0.75 mIEF_BD 0.5 mIEF_BD0.25

(c) watch_acc

0.00 10.00 20.00 30.00 40.00

M HME_BD mIEF_BD1 mIEF_BDO0.75 mIEF_BDO.5 mIEF_BD0.25

(e) Susy

o —
0.00 5.00 10.00 15.00 20.00 25.00

B HME_BD WIEF_BD1 WIEF_BDO0.75 WIEF_BD 0.5 WMIEF_BD0.25

(b) ht_sensor

0.00 10.00 20.00 30.00 40.00

B HME_BD wIEF_BD1 mIEF_BDO0.75 mIEF_BD 0.5 mIEF_BDO0.25

(d) watch_gyr

0.00 10.00 20.00 30.00 40.00

B HME BD mIEF_ BD1 mIEF BDO0.75 mIEF_BD 0.5 mIEF_BD0.25

() Higgs

Figure 2: Reduction Rate (%) after the noise filtering process

13

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

5 Conclusions

In this work, we have proposed an iterative ensemble noise filter for noise cleaning in Big Data classifica-
tion, IEF-BD. Big Data scenarios have a high density of data points and pose a challenge to classic noise
preprocessing algorithms. Our proposed noise filter cleans the data in an iterative fashion, using a data
partitioning strategy. It is implemented in a distributed manner for the Big Data framework Apache Spark.

Experimental results have shown that the proposed technique is able to detect and remove the noisy instances
from the six tested Big Data datasets. Our method is able to perform better than the current state-of-the-art
noise filter for Big Data for every tested dataset, HME-BD. It has also shown to be effective even when
HME-BD is not able to improve the original accuracy without any noise filtering strategy applied. Different
vote strategies have led to very different results, showing that the right choice of the vote strategy is crucial.
Regarding computing times, IEF-BD has handled Big Data datasets in a reasonable amount of time for the
size of the tested datasets.

The problem of noise is a crucial step in transforming Big Data into Smart Data, especially in Big Data
scenarios. With this proposal, we have enabled the practitioner to reach Smart Data from raw and low
quality Big Data [32]. Our noise filter is able to deal with Big Data problems in a short time, achieving a
noise clean version of the dataset.

Acknowledgment

This work is supported by the Spanish National Research Project TIN2017-89517-P.

References

[1] Hsinchun Chen, Roger H. L. Chiang, and Veda C. Storey. Business intelligence and analytics: From
big data to big impact. MIS Q., 36(4):1165-1188, December 2012.

[2] Sergio Ramirez-Gallego, Alberto Fernandez, Salvador Garcia, Min Chen, and Francisco Herrera. Big
Data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapRe-
duce. Information Fusion, 42:51-61, 2018.

[3] Alberto Fernandez, Sara del Rio, Victoria Lépez, Abdullah Bawakid, Maria J del Jesus, Jos¢ M
Benitez, and Francisco Herrera. Big data with cloud computing: an insight on the computing en-
vironment, mapreduce, and programming frameworks. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 4(5):380-409, 2014.

[4] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedins of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12), pages 15-28, San Jose, CA, 2012. USENIX.

[S] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Com-
munications of the ACM, 51(1):107-113, January 2008.

[6] F. Iafrate. A journey from big data to smart data. Advances in Intelligent Systems and Computing,
261:25-33,2014.

[7] J. Chen, D. Dosyn, V. Lytvyn, and A. Sachenko. Smart data integration by goal driven ontology
learning. In Advances in Intelligent Systems and Computing, volume 529, pages 283-292, 2017.

14

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

(8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

Diego Garcia-Gil, Julian Luengo, Salvador Garcia, and Francisco Herrera. Enabling Smart Data: Noise
filtering in Big Data classification. Information Sciences, 479:135-152, 2019.

Isaac Triguero, Diego Garcia-Gil, Jesis Maillo, Julidn Luengo, Salvador Garcia, and Francisco Her-
rera. Transforming big data into smart data: An insight on the use of the k-nearest neighbors algo-
rithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
9(2):e1289, 2019.

Salvador Garcia, Julidn Luengo, and Francisco Herrera. Data Preprocessing in Data Mining. Springer,
2015.

Salvador Garcia, Sergio Ramirez-Gallego, Julidn Luengo, José Manuel Benitez, and Francisco Herrera.
Big data preprocessing: methods and prospects. Big Data Analytics, 1(1):9, 2016.

Luis Paulo F. Garcia, André C. P. L. F. de Carvalho, and Ana Carolina Lorena. Effect of label noise in
the complexity of classification problems. Neurocomputing, 160:108-119, 2015.

J. Fan, F. Han, and H. Liu. Challenges of big data analysis. National Science Review, 1(2):293-314,
2014.

Btissam Zerhari. Class noise elimination approach for large datasets based on a combination of classi-
fiers. In Cloud Computing Technologies and Applications (CloudTech), 2016 2nd International Con-
ference on, pages 125-130. IEEE, 2016.

M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, and P. Wendell. Learning Spark: Lightning-Fast
Big Data Analytics. O’Reilly Media, 2015.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin,
Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark. Journal
of Machine Learning Research, 17(34):1-7, 2016.

Xingquan Zhu and Xindong Wu. Class Noise vs. Attribute Noise: A Quantitative Study. Artificial
Intelligence Review, 22:177-210, 2004.

Xindong Wu. Knowledge acquisition from databases. Ablex Publishing Corp., Norwood, NJ, USA,
1996.

José A. Saez, Mikel Galar, Julidn Luengo, and Francisco Herrera. INFFC: An iterative class noise
filter based on the fusion of classifiers with noise sensitivity control. Information Fusion, 27:19 — 32,
2016.

Benoit Frénay and Michel Verleysen. Classification in the presence of label noise: A survey. [EEE
Transactions on Neural Networks and Learning Systems, 25(5):845-869, 2014.

Shounak Roychowdhury and Witold Pedrycz. Automatic discovery of clusters by removing noisy data.
International Journal of Intelligent Systems, 33(9):1777-1797, 2018.

Yunlei Li, Lodewyk F.A. Wessels, Dick de Ridder, and Marcel J.T. Reinders. Classification in the
presence of class noise using a probabilistic Kernel Fisher method. Pattern Recognition, 40(12):3349—
3357, 2007.

15

From Big to Smart Data: Iterative Ensemble Filter for Noise Filtering in Big Data classification

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

[31]
[32]

Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song. Rboost: Label noise-robust boosting algorithm
based on a nonconvex loss function and the numerically stable base learners. IEEE Transactions on
Neural Networks and Learning Systems, 27(11):2216-2228, 2016.

Charles Bouveyron and Stéphane Girard. Robust supervised classification with mixture models: Learn-
ing from data with uncertain labels. Pattern Recognition, 42(11):2649-2658, 2009.

Carla E. Brodley and Mark A. Friedl. Identifying Mislabeled Training Data. Journal of Artificial
Intelligence Research, 11:131-167, 1999.

S. Verbaeten and A.V. Assche. Ensemble methods for noise elimination in classification problems. In
4th International Workshop on Multiple Classifier Systems, volume 2709 of Lecture Notes on Com-
puter Science, pages 317-325. Springer, 2003.

Taghi M. Khoshgoftaar and Pierre Rebours. Improving software quality prediction by noise filtering
techniques. Journal of Computer Science and Technology, 22:387-396, 2007.

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

Jimmy Lin. Mapreduce is good enough? if all you have is a hammer, throw away everything that’s not
anail! Big Data, 1(1):28-37, 2013.

T.M. Khoshgoftaar and P. Rebours. Improving software quality prediction by noise filtering techniques.
Journal of Computer Science and Technology, 22:387-396, 2007.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

A. Lenk, L. Bonorden, A. Hellmanns, N. Roedder, and S. Jaechnichen. Towards a taxonomy of stan-
dards in smart data. In Proceedings - 2015 IEEE International Conference on Big Data, IEEE Big
Data 2015, pages 1749-1754, 2015.

16

114 Chapter II. Publications

5 Smart Data based Ensemble for Imbalanced Big Data Classifi-

cation

e D. Garcia-Gil, J. Holmberg, S. Garcia, N. Xiong, F. Herrera.

— Status: Submitted.

SMART DATA BASED ENSEMBLE FOR IMBALANCED BIG DATA

CLASSIFICATION
Diego Garcia-Gil* Johan Holmberg
Department of Computer Science Intelligent Future Technologies
and Artificial Intelligence School of Innovation Design & Engineering
University of Granada Milardalens hogskola
Granada, Spain, 18071 Visteras, Sweden, 722 20
djgarcia@decsai.ugr.es johan.holmberg@mdh. se
Salvador Garcia Ning Xiong
Department of Computer Science Intelligent Future Technologies
and Artificial Intelligence School of Innovation Design & Engineering
University of Granada Milardalens hogskola
Granada, Spain, 18071 Visteras, Sweden, 722 20
salvagl@decsai.ugr.es ning.xiong@mdh.se

Francisco Herrera
Department of Computer Science
and Artificial Intelligence
University of Granada
Granada, Spain, 18071
herrera@decsai.ugr.es

ABSTRACT

Big Data scenarios pose a new challenge to traditional data mining algorithms, since they
are not prepared to work with such amount of data. Smart Data refers to data of enough
quality to improve the outcome from a data mining algorithm. Existing data mining al-
gorithms unability to handle Big Datasets prevents the transition from Big to Smart Data.
Automation in data acquisition that characterizes Big Data also brings some problems, such
as differences in data size per class. This will lead classifiers to lean towards the most rep-
resented classes. This problem is known as imbalanced data distribution, where one class
is underrepresented in the dataset. Ensembles of classifiers are machine learning meth-
ods that improve the performance of a single base classifier by the combination of several
of them. Ensembles are not exempt from the imbalanced classification problem. To deal
with this issue, the ensemble method have to be designed specifically. In this paper, a data
preprocessing ensemble for imbalanced Big Data classification is presented, with focus on
two-class problems. Experiments carried out in 21 Big Datasets have proved that our en-

*Corresponding author.

Smart Data based Ensemble for Imbalanced Big Data Classification

semble classifier outperforms classic machine learning models with an added data balancing
method, such as Random Forests.

Keywords Big Data - Smart Data - Classification - Ensemble - Imbalanced Data.

1 Introduction

We are experiencing a constant revolution in terms of data generation and transmission speeds. Technologies
such as LTE/4G networks have been surpassed by faster standards like the upcoming 5G network [1]. Higher
bandwidth and bigger storage is available every few years. The amount of connected devices in the Internet
of Things is increasing rapidly [2]. All this only means one thing: more and more data is being generated,
transmitted, consumed and stored every year [3].

This increasing amount of data contains very valuable insights for businesses. However, traditional data
mining and machine learning techniques are not able to handle these new requirements in terms of size. But
even if those methods could handle that data, the time requirements would be astronomical. This is the era
of Big Data. Big Data has exceeded the processing capacity of traditional systems, and continues to do so
every second. New paradigms, frameworks and computing systems are needed for analyzing and extracting
all valuable insights from this data [4]. Big Data can be defined as a high volume of data, generated at a high
velocity, with a potential high value, and high veracity. This conforms what is known as the four Big Data
V’s (among many other) [5].

Big Data can be seen as a huge collection of potentially useful data. Recently, the term Smart Data has
emerged in the Big Data ecosystem. Smart Data refers to the challenge of extracting quality data from raw
Big Data [6]. This new concept aims to achieve quality data (either big or not) with value and veracity
properties [7]. Therefore, the objective of Smart Data based technologies, is to obtain a subset of the data
that contains enough quality for the later data mining process to be successful [4].

Data mining can be defined as the set of techniques devoted to construct knowledge patterns through the
analysis of structured data [8]. Attending to the type of the pattern targeted, data mining techniques can be
classified into two different categories: descriptive methods and predictive techniques. The former aims to
discover relationships in the data, whereas the second is focused on discovering how models will behave
towards future inputs. Depending on whether the target variable is specified or not, we can distinguish be-
tween supervised and unsupervised learning [9]. Supervised learning defines the relation between input and
target variables, and predicts its values for new incomes. Classification and regression are two sub-families
of supervised learning, depending on the type of the target variable (discrete or continuous) On the other
hand, in unsupervised problems the target variable is undefined. Similarly to supervised learning, unsu-
pervised problems can be separated in two different sub-families: the grouping of instances by similarity
(clustering), and the identification of associations between the variables (association rules).

Real-world applications are not equal in terms of data size per class. For observing and recording one
small or temporary event, many idle observations may be needed. This leads to a class imbalance situation,
known as imbalanced class distribution [10, 11]. Imbalanced classification occurs when one class (usually
the one that contains the concept of interest) is underrepresented in the dataset [12]. This class usually
receives the name of minority or negative class. Some real-world domains are known to suffer from this
problem: finances [13], card fraud [14], cancer diagnosis [15], or anomaly detection [16], among others.
Data imbalance is one of the biggest challenges in data mining [12].

Among the different approaches proposed to tackle the imbalanced classification problem, we can highlight
data sampling as the most popular and widely used technique. This process is typically carried out using data
preprocessing methods [17]. Data sampling solutions alter the original dataset by either increasing the num-

Smart Data based Ensemble for Imbalanced Big Data Classification

ber of minority class instances until a certain balance is reached, like Random OverSampling (ROS) [18], or
decreasing the number of majority class instances, such as Random UnderSampling (RUS) [18]. We can also
find distance based approaches for data balancing, like the “Synthetic Minority Oversampling TEchnique”
(SMOTE) [19].

Many other data preprocessing proposals can be found in the literature, such as the majority weighted
minority oversampling technique (MWMOTE) or an extension of SMOTE to multiclass problems
(MLSMOTE) [20]. Clustering has also been employed effectively for the data imbalanced problem as a
way to increase the density of points belonging to certain neighborhoods [21]. These methods balance
the data by localizing groups of instances belonging to different neighborhoods, and then applying a data
sampling technique, improving the later learning process [22, 23].

Ensembles of classifiers are methods designed to increase the global accuracy of a single classifier by learn-
ing different base classifiers and combining all the decisions to return a single label [24]. They correct errors
in classification through learning classifiers that have some differences among them [25, 26]. Classification
ensembles like XGBoost [27], LightGBM [28] or CatBoost [29] have become some of the best performing
methods in machine learning nowadays. Because of their accuracy orientation, ensembles cannot be directly
applied to imbalanced datasets, since the base classifiers will ignore the minority class. Their combination
with other techniques that tackle the class imbalance problem can improve ensemble performance in these
scenarios. These hybrid approaches involve the addition of a data sampling step that allows the classifier to
better detect the different classes [30].

Diversity is key when working with ensembles. Diversity can be introduced through small changes in input
data, or small changes in the parameters of the classifier. With diverse classifiers, ensembles will be more
robust to noise and outliers, and will achieve better performance [31]. Diversity based on changes in input
data can be introduced through data preprocessing methods which have a random component. This random
component allows ensembles to learn with slightly different data, improving the global performance.

The advent of Big Data have brought new problems in terms of data size and time constraints to classic
data preprocessing and data mining algorithms. Despite the extensive list of data preprocessing methods
proposed in the literature, only classic algorithms have been adapted to Big Data scenarios [4]. If we attend
to imbalanced Big Data classification, only a few classic sampling methods have been proposed to tackle
imbalanced Big Data problems [32, 33]. The same applies to ensemble algorithms for classification. The
adaptation of novel ensembles to Big Data scenarios is still an ongoing process. Only a handful of ensembles
for classification can be found in Big Data environments, such as Random Forest [34, 35].

In this paper, we propose a novel ensemble method for imbalanced Big Data classification, namely Imbal-
anced Classification Ensemble for Big Data (ICE_BD), focused on binary classification problems. ICE_BD
is aimed towards the creation of smart and diverse datasets through the use of different data preprocessing
methods. This data preprocessing improves the quality of the data, and balances it for the posterior learning
process. In particular, ICE_BD proposes the following:

1. ICE_BD performs several data preprocessing methods with a random component to the input data
in order to achieve a Smart Data version of the dataset with the desired level of diversity. This
produces a diverse and balanced Smart Dataset, that will produce better base classifiers.

2. We take advantage of different data preprocessing methods specifically designed for Big Data prob-
lems. For introducing diversity in a dataset, the combination of Random Discretization (RD) and
randomized Principal Component Analysis (PCA) proposed in PCARDE [31] is used. For the data
balancing step, a clustering-based ROS is proposed.

Smart Data based Ensemble for Imbalanced Big Data Classification

3. A novel combination of clustering and ROS is presented. ICE_BD performs clustering to the ex-
panded data resulting from the combination of RD and PCA datasets. Then, it balances the clusters
found using ROS technique.

4. ICE_BD has been implemented for the Big Data framework Apache Spark [36], and it is available
publicly as a Spark package in Spark’s third party repository Spark Packages”.

To assess the performance of our proposal, we have conducted an extensive experimentation. We have
tested ICE_BD using 21 Big Data imbalanced datasets from the UCI Machine Learning Repository [37].
These datasets have very different properties among them that will allow us to check the performance and
balancing capabilities of our proposal. We have compared ICE_BD against Spark’s MLIlib implementation
of a decision tree, Random Forest [38], and PCARDE, a data preprocessing ensemble present in Spark’s
community repository Spark Packages [31]. These three classifiers have been tested in four different vari-
ants: without any data balancing technique applied, using RUS, ROS and SMOTE. Results obtained have
been validated by different Bayesian Sign Tests, in order to assess if ICE_BD achieves statistically better
performance than the rest of the methods tested [39].

The rest of this paper is organized as follows: Section 2 gives a description of the imbalanced data classifica-
tion and Big Data problem. Section 3 describes the proposal in detail. Section 4 shows all the experiments
carried out to prove the performance of ICE_BD against several Big Data problems. Finally, Section 5
concludes the paper.

2 Related work

In this section, we provide an introduction to the class imbalance problem in classification, among with the
different proposals to tackle it (Section 2.1). Then, the state of Big Data and MapReduce framework are
analyzed in Section 2.2.

2.1 Imbalanced Data Classification

In a binary classification problem, a dataset is said to be imbalanced when there is a notable difference in
the number of instances belonging to different classes [12]. The class with the greater number of instances
is known as the majority class. Similarly, the class with the lower number of instances is known as the
minority class, and usually contains the concept of interest.

This problem poses a major challenge to standard classifier learning algorithms, since they will bias towards
the class with the greater representation, as their internal search process is guided by a global search measure
weighted in favor of accuracy [4]. The imbalanced ratio (IR) measures the difference between the majority
and minority classes (an IR of 100 means there is one instance of the minority class per 100 instances of
the majority class). In datasets with high IR, classifiers that maximize the accuracy will treat the minority
class as noise and ignore it, achieving a high accuracy by just classifying the majority class, because more
general rules that models it will be preferred.

Many techniques have been proposed to tackle imbalanced data classification. These techniques can be
divided into three groups: data level, algorithm level, and cost-sensitive methods [12]. The former modifies
the data to obtain an equally distributed dataset using imbalanced data preprocessing techniques. Algorithm
level techniques modifies existing classifiers to improve the detection of the minority class. Cost-sensitive
learning solutions combine both data level and algorithm level approaches. They incorporate data modifica-
tions by adding cost to instances, and algorithm level adaptations.

2https://spark-packages.org/package/djgarcia/Imbalanced-Classification-Ensemble

Smart Data based Ensemble for Imbalanced Big Data Classification

Aside from these categories, ensemble methods can be classified into their own category [24]. Ensembles
combine different mechanisms to produce better results, usually data level approaches [31]. Data level ap-
proaches can be easily incorporated into ensemble learning algorithms through the use of data preprocessing
methods.

In the literature, data preprocessing methods for imbalanced data classification can be divided into different
categories: oversampling methods, undersampling methods, and hybrid approaches[4, 12]. The former
replicates the minority class instances until a certain balance is reached. On the other hand, undersampling
techniques remove examples from the majority class until the proportion of classes is adjusted. Hybrid
approaches combine the previous two techniques, usually starting with an oversampling of the data, followed
by an undersampling step that removes samples from both classes, in order to remove noisy instances and
improve the classifier performance.

The classic oversampling method, ROS [18], replicates instances from the minority class randomly, until the
number of examples of the minority and majority classes is the same. On the other hand, for undersampling,
RUS [18] removes instances randomly from the majority class, until both classes have the same amount of
instances. The SMOTE algorithm [19] is an improved oversampling method. It adds synthetic instances
from the minority class until the class distribution is balanced. Those new instances are created by the
interpolation of several minority class instances that belong to the same neighborhood. SMOTE calculates
the k nearest neighbors of each minority class example. Then, in the segment that connects every instance
with its k closest neighbors, a synthetic instance is randomly created [20].

Performance evaluation is a key factor for assessing the classification performance. In binary classification
problems, the confusion matrix (shown in Table 1) collects correctly and incorrectly classified examples
from both classes.

Table 1: Confusion Matrix for Binary Classification Problems

Positive Prediction Negative Prediction

Positive class ~ True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Traditionally, accuracy (Equation 1) has been the most extended and widely used metric for assessing clas-
sification performance. However, accuracy is not a valid metric when dealing with imbalanced datasets,
since it will not show the classification of both classes, only the majority class, and it will led to wrong
conclusions.

TP+TN

Acc =
“CTTPYFN+FPLTN

)

The Geometric Mean (GM), described in Equation 2, attempts to maximize the accuracy of both minority
and majority classes at the same time [40]. The accuracy of both minority and majority classes is represented

by the True Positive Rate (TPR) = TPQ_L% and True Negative Rate (TNR) = %.

GM =VvVTPR+TNR 2)

Another popular evaluation metric for imbalanced data is the Are Under the Curve (AUC) [41]. AUC
combines the classification performance of both classes, showing the trade-off between the TPR and False
Positive Rate. This metric provides a single measure of a classifier performance, compared against a random
classifier.

Smart Data based Ensemble for Imbalanced Big Data Classification

2.2 Big Data and MapReduce

Big Data paradigm has brought new requirements in terms of hardware and software to process this amount
of data. Regarding hardware, massive distributed clusters are used everyday for processing this Big Data.
However, in the software section lies the biggest challenge. In order to tackle Big Data problems, not only
new algorithms are needed, but also new frameworks that operate in distributed clusters are required. Google
introduced MapReduce paradigm in 2004 [42]. This paradigm is nowadays the most popular and widely
used paradigm for Big Data processing. It was born for allowing users to generate and/or process Big Data
problems, while minimizing disk and network use.

MapReduce follows the simple but powerful divide and conquer approach. It can be divided in two phases,
the map and reduce phase. Before entering the map stage, all data is partitioned and distributed across the
cluster by the master node. The map function applies a transformation to each key-value pair located in each
computing node. This way, all data is processed independently in a distributed fashion. When the map phase
is finished, all pairs of data belonging to the same key are redistributed across the cluster. Once all pairs
belonging to the same key are located in the same computing node, the reduce stage begins. The reduce
phase can be seen as a summary operation that generates the final values.

MapReduce is a programming paradigm for dealing with Big Data. Apache Hadoop is the most popular
open-source implementation of the MapReduce paradigm [43]. Despite its popularity and performance,
Hadoop present some important limitations [44]:

e Not suitable for iterative algorithms.
e Very intensive disk usage. All map and reduce processes are read/write from/to disk.

e No in-memory computation.

Apache Spark can be seen as the natural evolution of Hadoop. It is an open-source framework, focused on
speed, easy of use, and advanced analytics [36]. Spark is the solution of Hadoop problems, it has in-memory
computation, and allows in-memory data persistence for iterative processes. Spark is built on top of a novel
distributed data structure, namely Resilient Distributed Datasets (RDDs) [45]. These data structures are
immutable and unsorted by nature. They can be persisted in memory for repetitive uses, and tracked using
a lineage, so that each partition can be computed again in case of data lost. RDDs support two types of
operations: transformations and actions. The former transforms the dataset by applying a function to each
partition, and produces a new RDD. They are lazy operations, meaning that they are not computed until
needed. On the other hand, actions triggers all previous transformations of an RDD, and return a value.

In 2012, a distributed machine learning library was created as an extra component of Apache Spark, named
MLIib [34]. It was released and open-sourced to the community in 2013. The number of contributions have
been growing steadily since its conception, making it the most popular machine learning library for Big Data
processing nowadays. MLIib includes several algorithms for alike tasks, such as: classification, clustering,
regression, or data preprocessing.

3 Imbalanced Classification Ensemble: a Big Data approach

In this section, we describe in detail the proposed method for imbalanced Big Data classification based on
data preprocessing, ICE_BD. It is a distributed and parallel ensemble focused on imbalanced Big Data prob-
lems, implemented in Apache Spark. In Section 3.1, we explain in detail our proposed iterative imbalanced
classification ensemble, ICE_BD. Section 3.2 describes the Spark primitives used for the implementation of
the proposal. Finally, Section 3.3 depicts the implementation details of the proposal.

Smart Data based Ensemble for Imbalanced Big Data Classification

3.1 Imbalanced Classification Ensemble: ICE_BD

This ensemble classifier for imbalanced Big Data is based on the creation of smart and diverse datasets
for improving the quality of the base classifiers. As stated in the introduction section, diversity is key for
ensemble methods. ICE_BD achieves the required diversity by the use of several randomized methods, such
as RD and PCA. RD method discretizes the data in cuts intervals by randomly selecting cuts — 1 instances.
Then, those selected values are sorted and used as thresholds for the discretization of each feature. On the
other hand, PCA selects a number of variables in a dataset, whilst retaining as much of the variation present
in the dataset as possible. This selection is achieved by finding the combinations of the original features to
produce principal components, which are uncorrelated. PCA always produces the same result for a fixed
number of principal components. In order to achieve the required diversity, a random number of selected
components is used. The number of components must be in the interval [1, 7' — 1], T being the total number
of features of the input data.

Both RD and PCA are applied to the input data. Then, the resulting datasets of RD and PCA are joined
together feature-wise. This data is a diverse and more informative version of the dataset, as demonstrated
in [31]. Such diverse dataset needs to be balanced in order to correctly classify the minority and majority
classes.

A novel combination of hierarchical clustering and oversampling is proposed. Bisecting k-Means is a hier-
archical clustering method that uses a divisive (or “top-down’) approach [46]. The algorithm starts from a
single cluster that contains all points. Iteratively it finds divisible clusters on the bottom level and bisects
each of them into two clusters using k-Means, until there are k leaf clusters in total or no leaf clusters are
divisible. It has been chosen taking into account that it can often be much faster than regular k-Means.
Bisecting k-Means has a linear time complexity. In case of a large number of clusters, Bisecting k-Means is
even more efficient than k-Means since there is no need to compare every point to each clusters centroid. It
just needs to consider the points in the cluster and their distances to two centroids.

Bisecting k-Means is applied to the resulting data from the join of RD and PCA for finding a random number
of neighborhoods with a specified maximum of desired clusters. Found clusters are individually balanced
using ROS technique until an IR of 1 is reached. The result of this process is a diverse, balanced and smart
dataset, which will improve the later learning process.

Finally, using the previously balanced dataset, a decision tree is learned. This decision tree performs a
recursive binary partitioning of the input features space. The tree predicts the same label for each leaf
partition. These partitions are chosen in a greedy manner, selecting the best split from the set of possible
splits, maximizing the information gain at the tree node [47].

ICE_BD preprocessing and learning process is repeated ¢fer times. In Figure 1 we can see a graphic repre-
sentation of the learning workflow of ICE_BD algorithm.

All previous steps constitute the learning phase of the ensemble. This phase is composed of iter sub-models,
each of them containing the thresholds for RD and the weight matrices for PCA. For the prediction phase
of the ensemble, for each data point, the same data preprocessing must be applied. First, data is discretized
using the same cut points from RD calculated previously. Then, for selecting the same components as the
learning phase, the same weight matrix obtained earlier for PCA at a given iteration is applied to the data.
Next, the score of each class is predicted according to the decision tree. This score is calculated by the
division of the instances at a leaf node, by the total number of instances. This process is repeated iter times,
adding those scores for each instance and iteration. Once this process is finished, for each instance, the class
with the largest score is selected as the decision of the ensemble.

Smart Data based Ensemble for Imbalanced Big Data Classification

Imbalanced
Data

RD + PCA

Clustering
A
ROS, [I;;] ROSy

L J
Y

@7

Figure 1: ICE_BD learning flowchart

3.2 Spark Primitives

For the implementation of the ensemble, some basic Spark primitives have been used. Here we outline those
more relevant for the ensemble °:

e map: applies a transformation to each element of an RDD. Once that transformation has been
applied, it returns a new RDD.

e union: merges two RDDs instance-wise and returns a new RDD.
e zip: zips two RDDs together.

e filter: selects all the instances in an RDD that satisfy a condition as a new RDD.

These Spark primitives from Spark API are used in the following section, where the implementation of
ICE_BD algorithm is described.

3.3 ICE_BD Implementation Details

This section describes all the implementation details of ICE_BD. Both learning and prediction phases are
implemented under Apache Spark, following the MapReduce paradigm.

Ensemble Learning Phase

Algorithm 1 explains the ensemble learning phase of ICE_BD. This process is divided into five steps: RD
and PCA calculation in order to obtain a diverse dataset, cluster search for the discovery of neighborhoods,
cluster balancing, and classifier learning. As stated earlier, ICE_BD starts by discretizing the training data

3For a complete description of Spark’s operations, please refer to Spark’s API: http://spark.apache.org/docs/latest/
api/scala/index.html

Smart Data based Ensemble for Imbalanced Big Data Classification

using RD method (lines 8-14). This is performed through the random selection of cuts — 1 instances (line
8). Those thresholds are used to discretize the training data using a map function (lines 10-14). For every
instance, we assign the corresponding discretized value to each instance’s attribute (lines 11-13).

Once RD has been applied to the training data, PCA is performed to select randomly the best principal
components (lines 16-19). First, a random number of components is selected in the interval [1,7 — 1] (T’
being the total number of features of the training data) (line 16). Then, PCA is calculated on the training
data, and the best components are selected (lines 17-18). Finally, the resulting data from RD and PCA are
joined together feature-wise using a distributed zip function (line 19).

The next step is the hierarchical clustering search (lines 21-23). We have used Spark’s MLIib distributed
implementation of Bisecting k-Means. First, we select a random number of clusters, with a maximum of
maxClust (line 21). Then, clusters are calculated using the previously RD and PCA zipped data (line 22).
Once that process is finished, the same zipped data is predicted in order to assign a cluster to each data point
(line 23). The prediction is done level-by-level from the root node to a leaf node, and at each node among
its children the closest to the input point is selected.

Data balancing is applied to each individual cluster found. We apply ROS technique to the minority class of
each cluster until both minority and majority classes are equal (lines 25-29). First, and empty set is created
for the allocation of the future new dataset (line 25). For each cluster, ROS is applied with an IR of 1 (line
27). That balanced data is added to the empty set (line 28).

Finally, a decision tree is learned using this smart, diverse and balanced dataset (line 31). This data prepro-
cessing and learning process is repeated iZer times, keeping each iteration, the computed thresholds for RD,
the PCA weight matrices, and the learned tree model. Once all trees have been learned, the model is created
and returned.

The following input parameters are required: the dataset (data), the number of iterations of the ensemble
(iter), the number of intervals for the discretization (cuts), and the maximum number of clusters (maxClust).

Ensemble Prediction Phase

The ensemble prediction phase is depicted in Algorithm 2. This process is faster than learning, since clus-
tering and data balancing are not required for prediction. Only the application of RD and PCA is required,
both using the same models obtained in the ensemble learning phase. First, the data point is discretized us-
ing the same cut points from the learning phase (lines 9-12). Next, the principal components are calculated
using the learning phase weight matrix for that iteration (line 13). The next step is to join both RD and PCA
results using a zip function (line 14). Finally, the data point is predicted using the decision tree learned in
that particular iteration of the ensemble (line 15). The scores of each of the iter predictors are added. Once
the instance have all ¢ter scores, the class with the largest weight is selected as the decision of the ensemble
and returned (lines 17-18).

4 Experimental Results

In this section, we describe the experimental study carried out to compare the performance of different
approaches to deal with imbalanced Big Data against our ensemble proposal. We begin with a description
of all datasets employed in the comparison, followed by the performance metrics and parameters of the
algorithms used. Finally, we detail all hardware and software resources used to carry out the experimental
study.

We have selected a wide spectrum of datasets for assessing the performance of ICE_BD. These datasets
have been extracted from the UCI Machine Learning Repository [37]. Specifically, we have selected the

Smart Data based Ensemble for Imbalanced Big Data Classification

Algorithm 1 ICE_BD learning algorithm

1: Input: data an RDD of type LabeledPoint (features, label).
2: Input: iter the number of iterations of the ensemble.

3: Imput: cuts the number of intervals for the discretization.

4: Input: maxClust the maximum number of clusters.

5: Output: The model created, an object of class ICEModel.
6: for i = 0...iter do

7: Random Discretization

8: thresholds(i) <— compute_RD thresholds(data, cuts)
9: rdData +

10: map inst € data

11: for j = 0...length(inst) — 1 do

12: inst < discretize(inst(j), thresholds(i)(j))
13: end for

14: end map

15: PCA

16: components <— random(1, length(data) — 1)

17: pcaModels(i) < PCA(data, components)

18: peaData < transform(data, pcaModels(i))

19: joinedData < zip(rdData, pcaData)
20: Clustering
21: k < random(1, maxClust)
22: clust Model <+ hierarchicalClustering(joinedData, k)
23: clust Data <+ predict(joinedData, clust M odel)
24: Data Balancing
25: balancedData =)
26: for! =0...k do
27: rosData <— ROS(filter(clustData,” cluster” =1),1.0)
28: balancedData = union(rosData, balancedData)
29: end for

30: Classifier Learning

31: trees(i) < decisionTree(balancedData,)

32: end for

33: return(IC EModel(iter, thresholds, pcaM odels, trees))

Poker Hand dataset, the Record Linkage Comparison Patterns (RLCP), SUSY and HIGGS datasets [48],
the KDD Cup 1999 dataset, and ECBDL14 dataset [49]. ECBDL14 dataset was used as a reference at the
ML competition of the Evolutionary Computation for Big Data and Big Learning, under the international
conference GECCO-2014. It is a highly imbalanced binary classification dataset, composed of 98% of
negative instances. For this problem, we have used two subsets with the same IR and the best 90 features
found in the competition [49].

Since some of the selected datasets have more than two classes, we have sampled new binary datasets from
them to address each case separately. In particular, we have selected new datasets using the majority classes
against the minority classes. Table 2 shows all the details of the datasets, including the number of instances
(#Inst.), number of attributes (#Atts.), class distribution and IR.

10

Smart Data based Ensemble for Imbalanced Big Data Classification

Algorithm 2 ICEModel prediction algorithm

1: Input: iter the number of iterations of the ensemble.

2: Input: cuts the cut points for the discretization.

3: Input: pcaModels the models for performing PCA.

4: Input: trees the models of the learned trees.

5: Output: The label of the test data point.

6: function PREDICT(test : Labeled Point)

7: scorePredictions <)

8: for i = 0...iter do

9: rdData + ()
10: for j = 0...length(test) — 1 do
11: rdData(c) <+ discretize(test(j), cuts(i)(j))
12: end for
13: pcaData < transform(test, pcaModels(i))
14: joinedData <+ zip(rdData, pcaData)
15: scorePredictions < scorePredictions + predict(joinedData, trees(i))
16: end for
17: label < indexO f M ax(scorePredictions)
18: return(label)

19: end function

Table 2: Datasets used in the analysis

Dataset #Inst. #Atts. %Class(maj; min) IR
pokerO_vs_2 450,022 10 (91.32; 8.68) 10.52
poker0_vs_3 428,464 10 (95.99; 4.01) 23.94
pokerQ_vs 4 414,032 10 (99.23; 0.77) 128.06
poker0_vs_5 412,600 10 (99.60; 0.40) 250.59
poker0_vs_6 411,990 10 (99.70; 0.30) 337.81
pokerl _vs 2 385,842 10 (89.89; 10.11) 8.89
pokerl _vs_3 363,932 10 (95.24; 4.76) 20.03
pokerl _vs 4 349,891 10 (99.11; 0.89) 110.82
pokerl _vs_5 347,695 10 (99.55; 0.45) 221.17
pokerl_vs_6 347,867 10 (99.68; 0.32) 308.77
rlep 4,599,153 2 (99.63; 0.37) 271.12
susy_ir4 2,712,173 18 (80.00; 20.00) 4.00
susy_ir8 2,440,956 18 (88.89; 11.11) 7.99
susy_irl6 2,305,347 18 (94.12; 5.88) 15.99
higgs_ird4 5,829,123 28 (80.00; 20.00) 3.99
higgs_ir8 5,246,211 28 (88.89;11.11) 8.00
higgs_irl6 4,954,752 28 (94.12; 5.88) 15.99
ecbdl14-1.2mill-90 960,000 90 (98.01; 1.99) 49.29
ecbdl14-10mill-90 9,600,000 90 (98.00; 2.00) 48.94
kddcup_normal vs DOS 1,942,816 41 (79.96; 20.04) 3.99

kddcup_DOS _vs_R2L 3,107,709 41 (99.97; 0.03) 3,475.18

11

Smart Data based Ensemble for Imbalanced Big Data Classification

All the datasets have been partitioned using a 5 fold cross-validation scheme. This means that all datasets
have been partitioned in 5 folds, with 80% (four folds) of instances devoted to training, and the rest 20% for
testing. The results provided are the average of running the algorithms with the five folds per dataset.

We have carried out a comparison of ICE_BD against three classification methods: Spark’s MLIib distributed
implementation of decision trees, Random Forest, and PCARDE, a data preprocessing ensemble present in
Spark’s community repository Spark Packages [31]. For balancing the data when those classifiers are used,
we have employed the most widely used data balancing methods: RUS, ROS and SMOTE. For SMOTE
algorithm, an implementation available in the Spark Packages repository has been used: SMOTE_BD [33].
The parameters used for the data preprocessing algorithms and the different classifiers are described in
Table 3. Since ensembles correct errors across many base classifiers, we have chosen to increase the depth
of the decision tree in ICE_BD for a better discrimination between both minority and majority classes. ROS
and SMOTE _BD have been configured to balance the dataset to an IR = 1.

Table 3: Parameter settings for the data preprocessing and classification algorithms

Algorithm Parameters

ROS_BD ir=1

SMOTE_BD k =35, distance = “euclidean”, ir = 1

Decision Tree ~ impurity = “gini”’, maxDepth = 5, maxBins = 32

Random Forest nTrees = 200, impurity = “gini”’, maxDepth = 4 maxBins = 32
PCARDE nTrees = 10, bins =5

ICE_BD bins =5, trees = 10, maxClust = 10, treeDepth = 10

As stated earlier, when dealing with imbalanced data it is important to choose the right performance metric.
Accuracy is not useful in highly imbalanced datasets, because we can achieve great accuracy by just classi-
fying correctly the majority class, while the minority class is ignored. For this reason, we have selected the
two most widely used metrics for imbalanced classification: GM and AUC.

All the experimentation have been carried out in a cluster composed of 11 computing nodes and one master
node. The computing nodes have the following hardware characteristics: 2 x Intel Core i7-4930K, 6 cores
per processor, 3.40 GHz, 12 MB cache, 4 TB HDD, 64 GB RAM. Regarding software, we have used the
following configuration: Apache Hadoop 2.9.1, Apache Spark 2.2.0, 198 cores (18 cores/node), 638 GB
RAM (58 GB/node).

12

Smart Data based Ensemble for Imbalanced Big Data Classification

v618°0 7 SELL'O S¥99°0 S9T9°0 7 €66L°0 C9eL'0 S8CLO 7 966L°0 ISYL'0 9TCLO 7 ¥69C°0 €8I0 <0STO 7 ogeroAy
8L66°0 9L66'0 0000°T 0000°0 8L66'0 0000'T ¥€66°0 8666'0 L6660 9L66°0 ¢l66'0 €660 9SL6°0 Ty A" SO dnoppy
0000°T 86660 96660 L6660 86660 96660 96660 86660 96660 96660 86660 86660 86660 | SOQ sA [ewou-dnoppy
Lo G889°0 0S890 9¢L9°0 C80L'0 6€0L°0 9L69°0 €L0L°0 LYOL'O0 6L69°0 00000 00000 0000°0 06-1WQ -1 11Pgo9
S§TCL0 02690 02690 <9990 IvIL0 TE0L'0 T00LO L90L°0 9S0L0 900L0 00000 00000 €¥10°0 061" 1-¥11Pgo9
ITIL°0 CI89°0 90§90 CIS90 98890 16990 00990 YL89'0 6L99°0 SLS90 00000 00000 89¢1°0 91Irs331y
PLILO L8900 T1S90 6L¥9°0 I¥89°0 88990 0£99°0 €689°0 86990 CTI99°0 YLLT'O 00000 86€CT0 81 s381y
ILo LS890 CTT990 9v¥9°0 [689°0 C0L90 €199°0 L2690 S6990 ¥859°0 CILTO 1vS00 86¥¢0 #IrsS3Iy
SI8L0 9VLL'O ¥S9L'0 LTILO 8CLL'O LY9L'0 T99L°0 SCLL'O 1S9L°0 L99L0 I1eSy’'0 S0Cs0 ¢91S0 9arAsns
208L°0 OYLL'O 199L°0 €T9L0 8CLL'O SS9L°0 8LILO LELL'O 099L°0 T1L9L0 06960 T8PSO €ILSO I Asns
Pe8Lo LSLL'O ¥S9L'0 TTILO 8VLL'O LVYOL'O 6L9L°0 LELL'O 1S9L°0 6L9L0 S199°0 L8190 0L89°0 I Asns
€1€6°0 c0€6'0 L6C6'0 90¢6'0 01€6'0 S0€6'0 66260 10€6'0 2060 0160 L2600 L2600 ¥L80°0 dopx
9LE9°0 09090 11950 LTE90 6CIS0 69790 65¢9°0 SOI9°0 €L9S°0 06190 00000 00000 0000°0 97sA”[10x0d
0000°T ¥966'0 vLSY'0 6¥9¥°0 6666'0 €L09°0 €€8S°0 ¢Cs6'0 SY8L'0 €TvS0 ¢00L0 0000°0 000070 ¢ sa™[1oyod
19€6°0 GLEGO 0S0L0 LSS0 68L8°0 ¥CYL'0 8LILO 02980 90SL0 SL9LO 00000 00000 000070 sa”[10y0d
96£9°0 0CLS0 evSY'0 €L0S0 LyeS0 ¥0C9°0 6C19°0 €615°0 18650 87650 00’0 00000 9LLOO ¢7sA”[1od
€€99°0 08€S°0 TSPE0 9€Iv0 8CES0 6£SS0 00950 €687'0 LeVSO £665°0 00000 00000 L9€0°0 T s [aavjod
866L°0 SI¥L'0 6CLSO 60290 09860 SO0L0 S€65°0 0sCL’0 S199°0 L6190 00000 00000 0000°0 97sap1exod
¥L66°0 0000°T TBSY'O O¥8¥°0 6GS6'0 €VL80 SYL80 SEL6'0 0€S80 SPL80 ¢00L0 0000°0 000070 ¢ sa~(reyod
0886°0 0160 LSLLO €LLLO 62060 18780 89¥8°0 8E¥80 LOV8'O0 LTY8O 00000 00000 €£€8¢T0 sa"01exod
pTes o €869°0 8CLSO0 8TLSO €90 €00L°0 06890 YLSO0 ¥S69°0 8YCSO 00000 00000 I9CI°0 ¢7sa"groxod
pLT80 Y0990 9v8¥'0 6¥CS0 €860 SS¥S'0 TLCSO 65850 980L°0 L¥8SO 00000 00000 98610 T sampravjod
JAdvOd 44 1d | 4ddvOd 44 1d | Had4vOd d44 1d | 4ddvOd 44 1d
ad 4ol dd dLONS SOd snNd aulfeseq jesere(

"PIOq Ul passaxs s joseiep Jod anjeA JAD 1sey31Y Y[, "oinseawl AID) 9y} Suisn Apmis Jo sased vie(] S1g paoue[equil 9y} 10} s}[Nsal 93eIOAY 4 9[qRL

13

Smart Data based Ensemble for Imbalanced Big Data Classification

L7880 7 YOLL'O SS69°0 TIL90 7 6L9L°0 L9SL'O 8EELO 7 6L9L°0 SevL'0 LEELO 7 LS6S0 86950 ¥8LSO 7 ogeroAy
8L66°0 9L66'0 0000°T 000S°0 8666'0 L6660 9L66°0 8L66°0 0000’ ¥€66°0 ¢l66'0 €660 6SL60 Ty A" SO dnoppy
0000°T 86660 96660 L6660 86660 96660 96660 86660 96660 96660 86660 86660 86660 | SOQ sA [ewou-dnoppy
€LTLO 10690 $889°0 66,90 €L0L°0 LYOL'O0 6L69°0 €80L°0 6€0L0 LL69O 000S°0 000S°0 000S°0 06-1WQ -1 11Pgo9
9€TL0 £v69'0 6€69°0 00L9°0 890L°0 9S0L°0 6C0L0 IvIL0 $€0L°0 900L°0 0000 00050 100SO 061" 1-¥11Pgo9
IL0 Y1890 1¥S9°0 6190 YL89°0 08990 8£99°0 L8890 6990 0¥99°0 0000 000S°0 16050 91Irs331y
PLILO 62890 TrS90 ¥8¥9°0 96890 66990 €££99°0 1890 68990 0¥99°0 €SIS0 00050 0LCSO 81 s381y
wiL0 86890 0v99°0 T¥s90 0€69°0 S699°0 9¢99°0 [689°0 €0L9°0 8¢£99°0 vres’0 vI0S0 €SS0 #IrsS3Iy
8¢€8L°0 LSLL'O 9S9L°0 LLOLO IPLL'O ¥99L°0 TL9LO 8SLL'O T99L°0 L99L0O 02090 €£€90 SI€9°0 9arAsns
T78L°0 I9LL°0 ¥99L°0 S¥9L°0 6SLL'0 8L9L'0 6L9L°0 YSLL'O 0L9L°0 889L0 ¢6S9°0 LLY9O €099°0 I Asns
Ps8L0 69LL0 9S9L°0 TYIL0 €9LL°0 899L°0 689L0 89LLO0 S99L°0 L8ILO SITL0 98890 09¢L0 I Asns
LTE6°0 02e6'0 SIL6’0 SCE6'0 02e60 61€6'0 CC6'0 8CE6'0 CCe6'0 8IL6'0 ev0S'0 €v0S0 8E0S°0 dopx
LT69°0 08¢9°0 CTI6S0 OV¥P90 00290 LY090 £€8¢9°0 09650 69790 SS¥9°0 0000 000S°0 00050 97sA”[10x0d
0000°T $966'0 9TCS0 6L6V°0 ¢eC6'0 8908'0 9ISSO 6666'0 €L09°0 ££8S°0 ¢SyL’0 - 0000 000S°0 ¢ sa™[1oyod
°LEG'0 ¥8€8°0 €LILO L¥99°0 9¥98'0 LO9L'0 8LILO 06L8°0 1SSL'O ISLLO 0000 00050 00050 sa”[10y0d
0€+9°0 YELSO 98ES0 96550 10LS°0 L€€90 +€09°0 €9L6°0 L0€90 6CI90 800S0 000S°0 0£0S0 ¢7sA”[1od
LY99°0 €SyS0 Leey'0 91050 €IsS0 CTL8S0 vLI9O 1260 L88S0 68090 0000 00050 LOOSO T s [aavjod
L9180 LeyLl’0 €vS9°0 87690 ¥8¢L0 09IL0 02690 80¥9°0 SI0L0 S€65°0 0000 000S°0 00050 97sap1exod
¥L66°0 0000°T LLISO 8COSO 8C€L6'0 8¢98'0 ¥I88°0 9660 880 ¥C88°0 ISYL’0 00050 00050 ¢ sa~(reyod
0886°0 0160 S8LLO L8LLO orv80 OvP80 IE¥80 62060 00580 LL¥8O 0000 00050 ¥#8CS0 sa"01exod
97€8°0 0€0L'0 ¥LI90 ¥LISO 87990 ISIL'0 €€LSO [699°0 161L0 9¥69°0 000S°0 00050 080S°0 ¢7sa"groxod
pLT80 £€599°0 61650 L6650 SYI90 €60L0 87190 ¢S19°0 Sv09°0 9s¥S0 0000 00050 L6IS0 T sampravjod
JAdvOd 44 1d | 4ddvOd 44 1d | Had4vOd d44 1d | 4ddvOd 44 1d
ad 4ol dd dLONS SOd snNd aulfeseq jesere(

"PIOq UI passans st jaseiep Jod anfea DNV 1SAYSIY oy L, -aInseawt DV Y3 Sursn Apnis Jo sased eie(q S1g paoue[equul oY) JoJ SINsal 95eIoAy G 9[qeL,

14

Smart Data based Ensemble for Imbalanced Big Data Classification

In Table 4 we can see the average results for the GM measure using the three classifiers combined with
the three data preprocessing strategies, compared with I[CE_BD. As can be observed, the Baseline with no
data imbalanced handling often results in a GM value of 0. That value represents that one of the classes
(the minority in particular) is being missclassified completely. All classifiers are benefiting from the data
balancing done by RUS and ROS. All three classifiers achieve very similar results when using either RUS or
ROS. This can be explained by the high data redundancy present in Big Data datasets. SMOTE_BD is able
to achieve an improvement in the GM measure when using PCARDE as a classifier. ICE_BD is be the best
performing method for almost every tested dataset. On average, ICE_BD achieves an improvement of nearly
0.5 points in the GM measure. This shows the good performance of the clustering-based data oversampling
of ICE_BD.

The AUC average results are depicted in Table 5. Again, the Baseline with no preprocessing achieves low
values of AUC. The first difference when comparing AUC with the GM measure, is that AUC shows a value
of 0.5 when a class is completely missclassified. RUS and ROS methods are producing very similar results
in terms of AUC measure. Regarding SMOTE_BD, as observed with the GM measure, only PCARDE is
able to achieve an AUC improvement with respect to RUS and ROS. The same improvement seen with the
GM measure can be seen with the AUC measure for ICE_BD. It is the best performing data preprocessing
and ensemble method among the different strategies tested.

For a deeper analysis of the results, we have performed a Bayesian Sign Test in order to analyze if ICE_BD
is statistically better than the rest of the methods [39]. Bayesian Sign Tests obtain a distribution of the
differences between two algorithms, and make a decision when 95% of the distribution is in one of the three
regions: left, rope (region of practical equivalence), or right [50].

The Bayesian Sign Test is applied to the mean GM and AUC measures of each dataset. We have se-
lected the best performing scenario for each classification method depending on the measure employed.
In Figure 2 we can see a comparison of ICE_BD against the decision tree with ROS, Random Forest with
RUS, and PCARDE with SMOTE_BD, all using the GM measure. On the other hand, for AUC measure
(showed in Figure 3), the decision tree is combined with RUS, Random Forest with ROS, and PCARDE with
SMOTE_BD. As we can observe, both GM and AUC Bayesian Sign Tests are showing very similar results.
The probability of the difference being to the left is minimal for ICE_BD. This means that the Bayesian Sign
Test is assigning a probability of 0 to these classification methods performing better than our proposal.

roRS, RS, foRS,
8/ \ g0 2/ \ g0 8/ \ o
. 2 160 . B/ 60 . 2 .seo
S 40 S ¥ 40 AR 2 W)
6% 20)o% 20 ,.0% \20
[(&) [
L' ¢ ¢ & ¢ &R L ¢ ¢ & & R L'$ ¢« &R

DT (L) vs ICE_BD (R)

RF (L) vs ICE BD (R) PCARDE (L) vs ICE BD (R)

Figure 2: Bayesian Sign Test heatmap of DT, RF and PCARDE best results, against ICE_.BD for GM
measure

In order to assess the performance in Big Data scenarios, we shall analyze the computing times for ICE_BD
and the rest of the methods. In classification tasks, prediction times are more important than learning times,
since models are only learned once. Such times can be seen in Table 6. As expected, the decision tree is
the fastest in prediction, since it only requires to predict a simple tree. CRandom Forest also achieve good

15

Smart Data based Ensemble for Imbalanced Big Data Classification

oS,
%" <80
?Q 60
&% .' {40
5) iz =
 AVAN §
L ¢ ¢ & & &R

DT (L) vs ICE_BD (R)

rope
5 RS
%/ \s80
oA
9 60
e))
o7 40
L% 20
L ¢ ¢ & s &R

RF (L) vs ICE_BD (R)

rope
° p100
o

/ "80

- ,
g $so
)]

. G 40
.9 20
%}«

L

¢ & s SR

PCARDE (L) vs ICE_BD (R)

Figure 3: Bayesian Sign Test heatmap of DT, RF and PCARDE best results, against ICE_BD for AUC

measure

predictions times, since neither the decision tree nor Random Forest use data preprocessing when predicting.
In spite of this, ICE_BD is very competitive in prediction. It is less than one second slower than PCARDE

in predicting imbalanced Big Datasets.

In view of these results, we can conclude that:

e The combination of RD and PCA for creating highly diverse ensembles proposed in PCARDE

achieves excellent performance in imbalanced Big Datasets.

e The proposed addition of hierarchical clustering and ROS for balancing the data has proven to be
able to effectively produce balanced datasets, while adding another level of diversity to the ensem-

ble.

e ICE_BD has shown to be the best performing method for the majority of tested datasets.

e ICE_BD has proven to be able to create Smart Data base classifiers and to address Big Data imbal-

anced problems effectively.

16

Smart Data based Ensemble for Imbalanced Big Data Classification

L9 | 8L'S 70T €00 | 68°S 961 €00 | €96 0T €00 | 9 T 010 | aferoay
€8°6 668 61T $00 v0'6 20T Y00 v6'8 60T €00 196 8¥'T TI'0 | Tedsasod dnoppy
106 SI'9 ¥60 $00 665 S60 00 66'S 980 +00 PF9 660 170 | SO SA [ewou-dnoppy
9t L80E 99S 900 LITE LSS 900 WIE 9SS SO0 1806 ¥TS 120 06- WO -4 11PGOd
999 0t L8O +00 PP S90 100 wr L9000 SI'S 790 610 06-I1WZ - 1PGOd
96'81 LSET ¥ST 900 6I'vI €T 900 08°€l €T 920 ILYl ST +T0 91ars88y
€L1T 00ST 62T 900 10ST 17T LOO TS S€T 600 6591 8TT <TI0 8Irs33y
98'7C 6£91 L8T 900 891 68T 900 9,91 S9T 900 €Ll L6T €70 parsssiy
v6'6 19L €T 00 WL 0TI 00 WL STT 00 L YI'T 010 91arAsns
LLOT 96L II'l +00 6LL 60T SO0 0€8 LI'T +00 8I'S LOT 010 gar-Asns
pETI 8I'S ¥ST +00 P18 SKI 100 €8 0Kl 100 S06 LET 800 par Asns
SEST v9TI 97T 00 LETI 0T #00 6CTI 8TT +00 8TEl 0€T ¥I0 dops
A S6T ¥ET €00 9TT 9T 00 60T I¥T €00 68T ST 800 9sa” [1oy0d
0SC S61 8¥'T €00 1€ 1 €00 $81 SPT €00 L6T LYT 190 SO ST
veT v8T 6T €00 61T ¥ST €00 81T 65T €00 SLT 19T 800 psa” [1oyod
91°€ 0T LLT 200 61'C OLT €00 17T L9T €00 €re 781 800 ¢-sa[xoyod
€ 00T 65T €00 6T LST €00 86T 99T 200 $6T ILT 800 T saxood
SLT 91'C 991 €00 $§T TLT €00 SVT 88T €00 60€ 8T 800 9-sa-py0d
86T T 65T €00 €T 0ST €00 e 19T €00 01 65T 650 gsag avod
L0°€ 8I'T €91 €00 197 081 00 T Wl €00 6I'€ TLT 800 tsa-poj0d
61°¢ IS ¥81 €00 197 $9T €00 €TT 89T €00 8TC T LOO ¢saguayod
09°€ 8ST S8T €00 VLT 16T €00 €T 861 €00 8€C 96T LOO T sa-prvod
4a¥vOod 49 1A | 4a¥vod d4¥ 1d | 3a¥vod 49 14 | 9aavod 48 1d
ag-gol ag aI0NS oL sny ourjaseg 1serRQ

"Apmys JO sased ele(q 31g pedue[equul 9y} J0J (SPUOIIS UI) o} uondrpald o5eIoAy :9 9[qe],

17

Smart Data based Ensemble for Imbalanced Big Data Classification

5 Conclusions

Imbalanced data binary classification is a challenging task to which many researchers have devoted their
efforts. In Big Data scenarios, this problem is aggravated due to the amount of data available. Although
popular data balancing approaches like RUS, ROS and SMOTE have proven to be effective for normal-
sized problems, in Big Data environments they are less so. These techniques can be combined to create
ensembles of classifiers for improving the discrimination of both classes. The huge data redundancy that
characterizes Big Data problems, hinders the performance of these algorithms, since they are replicating
already redundant data points.

In this paper, we have proposed a Smart Data based ensemble for dealing with the imbalanced class classi-
fication problem in Big Data, namely ICE_BD. ICE_BD makes use of the combination of RD and PCA for
achieving a highly diverse dataset. We have proposed a novel combination of clustering and oversampling
with ROS for achieving a balanced dataset while adding another level of diversity. Our proposal has been
tested using several Big Datasets with different characteristics, and two metrics focused on imbalanced clas-
sification, GM and AUC. ICE_BD has achieved statistically the best performance in both GM and AUC for
almost every tested dataset, proving its efficiency when dealing with Big Data imbalanced datasets.

Acknowledgments

This work is supported by the Spanish National Research Project TIN2017-89517-P.

References

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, J. C. Zhang, What will 5g
be?, IEEE Journal on selected areas in communications 32 (6) (2014) 1065-1082.

[2] A.Botta, W. De Donato, V. Persico, A. Pescapé, Integration of cloud computing and internet of things:
a survey, Future generation computer systems 56 (2016) 684—700.

[3] S. Ramirez-Gallego, A. Fernandez, S. Garcia, M. Chen, F. Herrera, Big Data: Tutorial and guidelines
on information and process fusion for analytics algorithms with MapReduce, Information Fusion 42
(2018) 51-61.

[4] J. Luengo, D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera, Big Data Preprocessing. Enabling
Smart Data, Springer, 2020, 978-3-030-39104-1.

[5] N.Khan, A. Naim, M. R. Hussain, Q. N. Naveed, N. Ahmad, S. Qamar, The 51 v’s of big data: Survey,
technologies, characteristics, opportunities, issues and challenges, in: Proceedings of the International
Conference on Omni-Layer Intelligent Systems, COINS 19, Association for Computing Machinery,
New York, NY, USA, 2019, p. 19-24.

[6] I. Cordén, J. Luengo, S. Garcia, F. Herrera, F. Charte, Smartdata: Data preprocessing to achieve smart
data in R, Neurocomputing 360 (2019) 1 — 13.

[7] Y. Sun, H. Song, A. J. Jara, R. Bie, Internet of things and big data analytics for smart and connected
communities, IEEE Access 4 (2016) 766-773.

[8] X. Wu, X. Zhu, G.-Q. Wu, W. Ding, Data mining with big data, IEEE transactions on knowledge and
data engineering 26 (1) (2013) 97-107.

18

Smart Data based Ensemble for Imbalanced Big Data Classification

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical machine learning tools and
techniques, Morgan Kaufmann, 2016.

B. Krawczyk, Learning from imbalanced data: open challenges and future directions, Progress in
Artificial Intelligence 5 (4) (2016) 221-232.

F. Thabtah, S. Hammoud, F. Kamalov, A. Gonsalves, Data imbalance in classification: Experimental
evaluation, Information Sciences 513 (2020) 429 — 441.

A. Fernandez, S. Garcia, M. , R. C. Prati, B. Krawczyk, F. Herrera, Learning from imbalanced data
sets, Springer, 2018.

J. Sun, H. Li, H. Fujita, B. Fu, W. Ai, Class-imbalanced dynamic financial distress prediction based on
adaboost-svm ensemble combined with smote and time weighting, Information Fusion 54 (2020) 128
—144.

F. Carcillo, A. D. Pozzolo, Y.-A. L. Borgne, O. Caelen, Y. Mazzer, G. Bontempi, SCARFF: A scalable
framework for streaming credit card fraud detection with spark, Information Fusion 41 (2018) 182 —
194.

S. Fotouhi, S. Asadi, M. W. Kattan, A comprehensive data level analysis for cancer diagnosis on
imbalanced data, Journal of Biomedical Informatics 90 (2019) 103089.

Q. Chen, A. Zhang, T. Huang, Q. He, Y. Song, Imbalanced dataset-based echo state networks for
anomaly detection, Neural Computing and Applications (2018) 1-10.

S. Garcia, J. Luengo, F. Herrera, Data Preprocessing in Data Mining, Springer, 2015.

G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, A study of the behavior of several methods for
balancing machine learning training data, SIGKDD Explor. Newsl. 6 (1) (2004) 20-29.

N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique,
Journal of Artificial Intelligence Research 16 (2002) 321-357.

A. Fernandez, S. Garcia, F. Herrera, N. V. Chawla, SMOTE for learning from imbalanced data:
progress and challenges, marking the 15-year anniversary, Journal of artificial intelligence research
61 (2018) 863-905.

S. Nejatian, H. Parvin, E. Faraji, Using sub-sampling and ensemble clustering techniques to improve
performance of imbalanced classification, Neurocomputing 276 (2018) 55-66.

W.-C. Lin, C.-F. Tsai, Y.-H. Hu, J.-S. Jhang, Clustering-based undersampling in class-imbalanced data,
Information Sciences 409 (2017) 17-26.

Y.-P. Zhang, L.-N. Zhang, Y.-C. Wang, Cluster-based majority under-sampling approaches for class
imbalance learning, in: 2010 2nd IEEE International Conference on Information and Financial Engi-
neering, IEEE, 2010, pp. 400—404.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles for the
class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (4) (2012) 463-484.

D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera, Enabling Smart Data: Noise filtering in Big Data
classification, Information Sciences 479 (2019) 135 — 152.

19

Smart Data based Ensemble for Imbalanced Big Data Classification

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

D. Garcia-Gil, F. Luque-Sanchez, J. Luengo, S. Garcia, F. Herrera, From Big to Smart Data: Iterative
ensemble filter for noise filtering in Big Data classification, International Journal of Intelligent Systems
34 (12) (2019) 3260-3274.

T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, ACM, 2016, pp. 785-794.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Lightgbm: A highly efficient
gradient boosting decision tree, in: Advances in Neural Information Processing Systems, 2017, pp.
3146-3154.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, A. Gulin, Catboost: unbiased boosting with
categorical features, in: Advances in Neural Information Processing Systems, 2018, pp. 6638—-6648.

J. Bi, C. Zhang, An empirical comparison on state-of-the-art multi-class imbalance learning algorithms
and a new diversified ensemble learning scheme, Knowledge-Based Systems 158 (2018) 81 — 93.

D. Garcia-Gil, S. Ramirez-Gallego, S. Garcia, F. Herrera, Principal Components Analysis Random
Discretization Ensemble for Big Data, Knowledge-Based Systems 150 (2018) 166 — 174.

A. Fernandez, S. del Rio, N. V. Chawla, F. Herrera, An insight into imbalanced big data classification:
outcomes and challenges, Complex & Intelligent Systems 3 (2) (2017) 105-120.

M. Basgall, W. Hasperué, M. Naiouf, A. Fernandez, F. Herrera, SMOTE-BD: An Exact and Scalable
Oversampling Method for Imbalanced Classification in Big Data, Journal of Computer Science and
Technology 18 (2018) e23.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen, et al., Mllib: Machine learning in apache spark, The Journal of Machine Learning Research
17 (1) (2016) 1235-1241.

L. Breiman, Random forests, Machine learning 45 (1) (2001) 5-32.

M. Hamstra, H. Karau, M. Zaharia, A. Konwinski, P. Wendell, Learning Spark: Lightning-Fast Big
Data Analytics, O’Reilly Media, 2015.

D. Dua, C. Graff, UCI machine learning repository (2017).
URL http://archive.ics.uci.edu/ml

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, A. Talwalkar, Mllib: Machine learning
in apache spark, Journal of Machine Learning Research 17 (34) (2016) 1-7.

J. Carrasco, S. Garcia, M. del Mar Rueda, F. Herrera, INPBST: An R Package Covering Non-
parametric and Bayesian Statistical Tests, in: F. J. Martinez de Pis6n, R. Urraca, H. Quintidn, E. Cor-
chado (Eds.), Hybrid Artificial Intelligent Systems, Springer International Publishing, Cham, 2017,
pp. 281-292.

R. Barandela, J. Sdnchez, V. Garcia, E. Rangel, Strategies for learning in class imbalance problems,
Pattern Recognition 36 (3) (2003) 849 — 851.

J. Huang, C. X. Ling, Using auc and accuracy in evaluating learning algorithms, IEEE Transactions on
knowledge and Data Engineering 17 (3) (2005) 299-310.

20

Smart Data based Ensemble for Imbalanced Big Data Classification

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, in: Proceedings of the
6th Conference on Symposium on Operating Systems Design & Implementation - Volume 6, OSDI’04,
USENIX Association, USA, 2004, p. 10.

T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2012.

J. Lin, Mapreduce is good enough? if all you have is a hammer, throw away everything that’s not a
nail!, Big Data 1 (1) (2013) 28-37.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, I. Stoica,
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing, in: Pro-
ceedins of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI
12), USENIX, San Jose, CA, 2012, pp. 15-28.

M. Steinbach, G. Karypis, V. Kumar, et al., A comparison of document clustering techniques, in: KDD
workshop on text mining, Vol. 400, Boston, 2000, pp. 525-526.

L. Rokach, O. Maimon, Data Mining With Decision Trees: Theory and Applications, 2nd Edition,
World Scientific Publishing Co., Inc., USA, 2014.

P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep
learning, Nature communications 5 (2014) 4308.

I. Triguero, S. del Rio, V. Lépez, J. Bacardit, J. M. Benitez, F. Herrera, ROSEFW-RF: the winner
algorithm for the ECBDL’ 14 big data competition: an extremely imbalanced big data bioinformatics
problem, Knowledge-Based Systems 87 (2015) 69-79.

A. Benavoli, G. Corani, J. Demsar, M. Zaffalon, Time for a change: a tutorial for comparing multiple
classifiers through bayesian analysis, The Journal of Machine Learning Research 18 (1) (2017) 2653—
2688.

21

Bibliography

[AB13]

[AIS93]

[BF99)

[BPM04]

[Bre96]

[Bre01]
[BSGRO3]

[CCGH19)

[CCS12]

[CG16]

[CMO7]

[Das00]

[DGOA]

Ahmad A. and Brown G. (2013) Random projection random discretization en-
sembles—ensembles of linear multivariate decision trees. IEEE Transactions on
Knowledge and data Engineering 26(5): 1225-1239.

Agrawal R., Imielinski T., and Swami A. (Junio 1993) Mining association rules
between sets of items in large databases. SIGMOD Rec. 22(2): 207-216.

Brodley C. E. and Friedl M. A. (1999) Identifying mislabeled training data. Journal
of artificial intelligence research 11: 131-167.

Batista G. E. A. P. A, Prati R. C., and Monard M. C. (Junio 2004) A study of the
behavior of several methods for balancing machine learning training data. SIGKDD
Ezxplor. Newsl. 6(1): 20-29.

Breiman L. (1996) Bagging predictors. Machine learning 24(2): 123-140.
Breiman L. (2001) Random forests. Machine learning 45(1): 5-32.

Barandela R., Sdnchez J., Garcia V., and Rangel E. (2003) Strategies for learning in
class imbalance problems. Pattern Recognition 36(3): 849 — 851.

Charte D., Charte F., Garcia S., and Herrera F. (Apr 2019) A snapshot on nonstandard
supervised learning problems: taxonomy, relationships, problem transformations and
algorithm adaptations. Progress in Artificial Intelligence 8(1): 1-14.

Chen H., Chiang R. H., and Storey V. C. (2012) Business intelligence and analytics:
From big data to big impact. MIS quarterly 36(4).

Chen T. and Guestrin C. (2016) Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pp. 785-794. ACM.

Cherkassky V. and Mulier F. M. (2007) Learning from data: concepts, theory, and
methods. John Wiley & Sons.

Dasgupta S. (2000) Experiments with random projection. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, UAI ’00, pp. 143-151. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Dean J. and Ghemawat S. (2004) Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Operating Systems
Design & Implementation - Volume 6, OSDI’04, page 10. USENIX Association, USA.

137

138

BIBLIOGRAPHY

[DHS12]

[Die00a]

[Die00b]

[FARCH17]

[FGGT18]

[FGHC18]

[FHL14]

[F1i19)]

[FM03]

[FS+96]

[FS97]

[FV14]

[GANAV14]

[GFB*11]

[GLH15]

[GU16]

Duda R. O., Hart P. E., and Stork D. G. (2012) Pattern classification. John Wiley
& Sons.

Dietterich T. G. (2000) Ensemble methods in machine learning. In Multiple Classifier
Systems, pp. 1-15. Springer Berlin Heidelberg, Berlin, Heidelberg.

Dietterich T. G. (2000) Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pp. 1-15. Springer.

Fernandez A., del Rio S., Chawla N. V., and Herrera F. (Jun 2017) An insight into
imbalanced big data classification: outcomes and challenges. Complex € Intelligent
Systems 3(2): 105-120.

Fernandez A., Garcfa S., Galar M., Prati R. C., Krawczyk B., and Herrera F. (2018)
Learning from imbalanced data sets. Springer.

Fernédndez A., Garcia S., Herrera F., and Chawla N. V. (2018) Smote for learning
from imbalanced data: progress and challenges, marking the 15-year anniversary.
Journal of artificial intelligence research 61: 863-905.

Fan J., Han F., and Liu H. (2014) Challenges of big data analysis. National science
review 1(2): 293-314.

Flink A. (2019) Apache Flink. http://flink.apache.org/.

Fradkin D. and Madigan D. (2003) Experiments with random projections for machine
learning. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 517-522. ACM.

Freund Y., Schapire R. E., et al. (1996) Experiments with a new boosting algorithm.
In icml, volumen 96, pp. 148-156. Citeseer.

Freund Y. and Schapire R. E. (1997) A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences

55(1): 119-139.

Frénay B. and Verleysen M. (2014) Classification in the presence of label noise: a
survey. IEEFE transactions on neural networks and learning systems 25(5): 845-869.

Gonzalez-Abril L., Nuniez H., Angulo C., and Velasco F. (2014) GSVM: An SVM for
handling imbalanced accuracy between classes inbi-classification problems. Applied
Soft Computing 17: 23-31.

Galar M., Fernandez A., Barrenechea E., Bustince H., and Herrera F. (2011) A
review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42(4): 463-484.

Garcia S., Luengo J., and Herrera F. (2015) Data preprocessing in data mining.
Springer.

Goldstein M. and Uchida S. (2016) A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PloS one 11(4): e0152173.

BIBLIOGRAPHY 139

[Har75]

[HK19]

[HKZ*15]

[HLO5]

[HZW19]

[JL.84]

[Jol11]

[KMA*19]

[KMF*17]

[Kral6]

[KSW15]

[Kun14]

[LGGRG"20]

[Lin13]

[LIX19]

[LKRH15]

Hartigan J. A. (1975) Clustering algorithms. Wiley series in probability and mathe-
matical statistics. Wiley, New York, NY.

Hueske F. and Kalavri V. (2019) Stream Processing with Apache Flink: Fundamentals,
Implementation, and Operation of Streaming Applications. O’Reilly Media.

Hamstra M., Karau H., Zaharia M., Konwinski A., and Wendell P. (2015) Learning
Spark: Lightning-Fast Big Data Analytics. O’Reilly Media.

Huang J. and Ling C. X. (2005) Using auc and accuracy in evaluating learning
algorithms. IEEE Transactions on knowledge and Data Engineering 17(3): 299-310.

Hu J., Zhu E., Wang S., Liu X., Guo X., and Yin J. (2019) An efficient and
robust unsupervised anomaly detection method using ensemble random projection in
surveillance videos. Sensors 19(19).

Johnson W. B. and Lindenstrauss J. (1984) Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics 26(189-206): 1.

Jolliffe I. (2011) Principal component analysis. Springer.

Kairouz P., McMahan H. B., Avent B., Bellet A., Bennis M., Bhagoji A. N., Bonawitz
K., Charles Z., Cormode G., Cummings R., et al. (2019) Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977 .

Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., and Liu T.-Y. (2017)
Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pp. 3146-3154.

Krawczyk B. (2016) Learning from imbalanced data: open challenges and future
directions. Progress in Artificial Intelligence 5(4): 221-232.

Krawczyk B., Schaefer G., and Wozniak M. (2015) A hybrid cost-sensitive ensemble
for imbalanced breast thermogram classification. Artificial intelligence in medicine
65(3): 219-227.

Kuncheva L. 1. (2014) Combining pattern classifiers: methods and algorithms. John
Wiley & Sons.

Luengo J., Garcia-Gil D., Ramirez-Gallego S., Garcia S., and Herrera F. (2020)
Big Data Preprocessing. Enabling Smart Data. Springer International Publishing.
978-3-030-39104-1.

Lin J. (2013) Mapreduce is good enough? if all you have is a hammer, throw away
everything that’s not a naill Big Data 1(1): 28-37.

Li C., Jiang L., and Xu W. (2019) Noise correction to improve data and model quality
for crowdsourcing. Engineering Applications of Artificial Intelligence 82: 184 — 191.

Landset S., Khoshgoftaar T. M., Richter A. N., and Hasanin T. (2015) A survey
of open source tools for machine learning with big data in the hadoop ecosystem.
Journal of Big Data 2(1): 24.

140

BIBLIOGRAPHY

[LS95)

[LSAT18]

[LTHJ17]

[MBY™*16]

[MCJ*+19]

[ML14]

[MMR*17]

[NPF18]

[Pacl9]

[PGVT18]

[Py199]

[RGFG*18]

[RGKG*17]

[RMBG18]

[Rok10]

Liu H. and Setiono R. (1995) Chi2: Feature selection and discretization of numeric
attributes. In Proceedings of 7th IEEE International Conference on Tools with
Artificial Intelligence, pp. 388-391. IEEE.

Luengo J., Shim S.-O., Alshomrani S., Altalhi A., and Herrera F. (2018) Cnc-nos:
Class noise cleaning by ensemble filtering and noise scoring. Knowledge-Based Systems
140: 27-49.

Lin W.-C., Tsai C.-F., Hu Y.-H., and Jhang J.-S. (2017) Clustering-based undersam-
pling in class-imbalanced data. Information Sciences 409: 17-26.

Meng X., Bradley J., Yavuz B., Sparks E., Venkataraman S., Liu D., Freeman J.,
Tsai D., Amde M., Owen S., et al. (2016) Mllib: Machine learning in apache spark.
The Journal of Machine Learning Research 17(1): 1235-1241.

Mao S., Chen J.-W., Jiao L., Gou S., and Wang R. (2019) Maximizing diversity by
transformed ensemble learning. Applied Soft Computing 82: 105580.

Maldonado S. and Lépez J. (2014) Imbalanced data classification using second-order
cone programming support vector machines. Pattern Recognition 47(5): 2070-2079.

McMahan B., Moore E., Ramage D., Hampson S., and y Arcas B. A. (2017)
Communication-efficient learning of deep networks from decentralized data. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statis-
tics, pp. 1273-1282.

Nejatian S., Parvin H., and Faraji E. (2018) Using sub-sampling and ensemble cluster-
ing techniques to improve performance of imbalanced classification. Neurocomputing
276: 55-66.

Packages S. (2019) 3rd Party Spark Packages. https://spark-packages.org/.

Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., and Gulin A. (2018)
Catboost: unbiased boosting with categorical features. In Adwvances in Neural
Information Processing Systems, pp. 6638—-6648.

Pyle D. (1999) Data Preparation for Data Mining. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition.

Ramirez-Gallego S., Ferndndez A., Garcia S., Chen M., and Herrera F. (2018)
Big data: Tutorial and guidelines on information and process fusion for analytics
algorithms with mapreduce. Information Fusion 42: 51-61.

Ramirez-Gallego S., Krawczyk B., Garcia S., Wozniak M., and Herrera F. (2017)
A survey on data preprocessing for data stream mining: Current status and future
directions. Neurocomputing 239: 39-57.

Rao T. R., Mitra P., Bhatt R., and Goswami A. (2018) The big data system,
components, tools, and technologies: a survey. Knowledge and Information Systems
pp. 1-81.

Rokach L. (2010) Pattern classification using ensemble methods, volumen 75. World
Scientific.

BIBLIOGRAPHY 141

[RTR18)]

[SCZ*14]

[SGLH16]

[VVAO03]

[WFHP16]

[WGC14]

[Whi12]
[Wol92]
[WZWD13]

[ZCD+12]

[Zer16]

[Zho12]

[ZW04]

[ZWL 18]

[ZWM14]

[Z71.16]

Rekha G., Tyagi A. K., and Reddy V. K. (2018) A novel approach to solve class im-
balance problem using noise filter method. In International Conference on Intelligent
Systems Design and Applications, pp. 486-496. Springer.

Shao Y.-H., Chen W.-J., Zhang J.-J., Wang Z., and Deng N.-Y. (2014) An efficient
weighted lagrangian twin support vector machine for imbalanced data classification.
Pattern Recognition 47(9): 3158-3167.

Saez J. A., Galar M., Luengo J., and Herrera F. (2016) INFFC: an iterative class
noise filter based on the fusion of classifiers with noise sensitivity control. Information
Fusion 27: 19-32.

Verbaeten S. and Van Assche A. (2003) Ensemble methods for noise elimination in
classification problems. In International workshop on multiple classifier systems, pp.
317-325. Springer.

Witten I. H., Frank E., Hall M. A.] and Pal C. J. (2016) Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

Wozniak M., Grana M., and Corchado E. (2014) A survey of multiple classifier
systems as hybrid systems. Information Fusion 16: 3-17.

White T. (2012) Hadoop: The definitive guide. O’Reilly Media, Inc.
Wolpert D. H. (1992) Stacked generalization. Neural networks 5(2): 241-259.

Wu X., Zhu X., Wu G.-Q., and Ding W. (2013) Data mining with big data. IEEE
transactions on knowledge and data engineering 26(1): 97-107.

Zaharia M., Chowdhury M., Das T., Dave A., Ma J., McCauly M., Franklin M. J.,
Shenker S., and Stoica I. (2012) Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedins of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 12), pp. 15-28.
USENIX, San Jose, CA.

Zerhari B. (2016) Class noise elimination approach for large datasets based on a
combination of classifiers. In 2016 2nd International Conference on Cloud Computing
Technologies and Applications (CloudTech), pp. 125-130. IEEE.

Zhou Z.-H. (2012) Ensemble Methods: Foundations and Algorithms. Chapman &
Hall/CRC.

Zhu X. and Wu X. (2004) Class noise vs. attribute noise: A quantitative study.
Artificial intelligence review 22(3): 177-210.

Zhu Z., Wang Z., 1i D., Zhu Y., and Du W. (2018) Geometric structural ensemble
learning for imbalanced problems. IEEE Transactions on Cybernetics pp. 1-13.

Zaki M. J. and Wagner Meira J. (May 2014) Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press.

Zhou Q., Zhou H., and Li T. (2016) Cost-sensitive feature selection using random
forest: Selecting low-cost subsets of informative features. Knowledge-based systems
95: 1-11.

