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Abstract

In this Ph.D. thesis, we investigate two topics in Differential Geometry. The first topic
refers to the study of pseudo-parallel submanifolds in the ambient spaces Sn×R and Hn×
R. We complete the partial classification given by F.Lin and B. Yang. As a consequence,
we classify minimal and constant mean curvature pseudo-parallel hypersurfaces. We also
prove a characterization of pseudo-parallel surfaces in Sn×R and Hn×R, for n ≥ 4, and
the non-existence of pseudo-parallel surfaces with non-vanishing normal curvature, when
n = 3.

The second part of the thesis is devoted on the study of constant anisotropic mean cur-
vature surfaces in R3. We obtain a Bernstein-type Theorem for multigraphs with constant
anisotropic mean curvature, an anisotropic version of a theorem proved by D. Hoffman,
R. Osserman and R. Schoen, in 1982. As a consequence, we prove that complete surfaces
with non-zero constant anisotropic mean curvature and whose Gaussian curvature does
not change sign are either the Wulff shape or cylinders. We prove uniform heigh estimates
for vertical graphs with non-zero constant anisotropic mean curvature and planar bound-
ary, a generalization of the theorem proved by W. Meeks, in 1988, and we obtain uniform
height estimates for compact embedded surfaces with non-zero constant anisotropic mean
curvature and planar boundary, as a corollary. We also proved, under certain symmetry
hypothesis on the anisotropy function, the non-existence of properly embedded surfaces
in R3 with non-zero constant anisotropic mean curvature and with just one end.

Resumen

En esta tesis doctoral, investigamos dos tópicos en Geometŕıa Diferencial. El primer
tópico se refiere al estudio de subvariedades pseudo-paralelas en los espacios producto
Sn × R y Hn × R. Completamos la clasificación parcial dada por F. Lin y B. Yang.
Como consecuencia, clasificamos las hipersuperficies pseudo-paralelas minimales y con
curvatura media constante. También probamos una caracterización de las superficies
pseudo-paralelas en Sn × R y Hn × R, cuando n ≥ 4, y la no existencia de superficies
pseudo-paralelas con curvatura normal que no se anula, cuando n = 3.

La segunda parte de la tesis está dedicada al estudio de las superficies de curvatura
media anisotrópica constante en R3. Obtenemos un Teorema de tipo Bernstein para
multigrafos con curvatura media anisotrópica constante, una versión anisotrópica de un
teorema probado por D. Hoffman, R. Osserman y R. Schoen, en 1982. Como consecuencia,
demostramos que las superficies completas con curvatura media anisotrópica constante
no nula y cuya curvatura gaussiana no cambia de signo son o bien la forma de Wulff
o bien cilindros. Probamos acotaciones uniformes de altura para grafos verticales con
curvatura media anisotrópica constante no nula y borde plano, una generalización del



x

teorema probado por W. Meeks, en 1988, y obtenemos acotaciones uniformes de altura
para superficies compactas embebidas com curvatura media anisotrópica constante no
nula y borde plano, como un corolario. También demostramos, bajo ciertas hipótesis de
simetŕıa en la función de anisotroṕıa, que no hay superficies propiamente embebidas en
R3 con curvatura media anisotrópica constante no nula y con solo un final.

Resumo

Nesta tese de doutorado, investigamos dois tópicos em geometria diferencial. O
primeiro tópico se refere ao estudo das subvariedades pseudo-paralelas nos espaços am-
bientes Sn × R e Hn × R. Completamos a classificação parcial dada por F. Lin e B.
Yang. Como consequência, classificamos as hipersuperf́ıcies pseudo-paralelas mı́nimas e
com curvatura média constante. Também provamos uma caracterização das superf́ıcies
pseudo-paralelas em Sn × R e Hn × R, quando n ≥ 4, e a não existência de superf́ıcies
pseudo-paralelas com curvatura normal que não se anula, quando n = 3.

A segunda parte da tese se dedica ao estudo das superf́ıcies de curvatura média
anisotrópica constante em R3. Obtemos um Teorema de tipo Bernstein para multigráficos
com curvatura média anisotrópica constante, uma versão anisotrópica de um teorema
provado por D. Hoffman, R. Osserman y R. Schoen, in 1982. Como consequência, prova-
mos que superf́ıcies completas com curvatura média anisotrópica constante não-nula e cuja
curvatura gaussiana não muda de sinal são ou a forma de Wulff ou cilindros. Provamos
estimativas uniformes de altura para gráficos verticais com curvatura média anisotrópica
constante não-nula e bordo plano, uma generalização do teorema provado por W. Meeks,
em 1988, e obtemos estimativas uniformes de altura para superf́ıcies compactas mergul-
hadas com curvatura média anisotrópica constante não-nula e bordo plano, como um
corolário. Também provamos, sob certas hipóteses de simétria na função de anisotropia,
a não existência de superf́ıcies propriamente mergulhadas em R3 com curvatura média
anisotrópica constante não-nula e com apenas um final.
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Introduction

This work is divided in two main themes. The first part concerns on the study of
pseudo-parallel immersions in the product spaces Sn × R and Hn × R. It was developed
with my advisor, G.A. Lobos, with the colaboration of A.J.Y. Hancco. The second part
is devoted on the study of constant anisotropic mean curvature surfaces in R3. It is the
result of a joint work with my other advisor, J.A. Gálvez, and P. Mira, most of the results
obtained in a year of investigation in Spain, as a part of the PDSE program, by CAPES.

0.1 Introduction to Part I

Semi-symmetric manifolds are a well-known and natural generalization of locally sym-
metric manifolds, were introduced by E. Cartan in [22] and classified by Z.I. Szabó (see
[96] and [97]). Investigation of several properties of semi-symmetric manifolds gives rise
to their next generalization: the pseudo-symmetric manifolds. For example every totally
umbilic submanifold of a semi-symmetric manifold, with parallel mean curvature vector,
is pseudo-symmetric (see [2]). The class of pseudo-symmetric manifolds is very large, and
many examples of pseudo-symmetric manifolds which are not semi-symmetric have been
constructed (see e.g. [34], [37] and references therein). In the last three decades, a big
amount of results both intrinsic and extrinsic involving this class of manifolds have been
published by several authors. Consequently many particular results are known, see, for
example, [30], [34], [35], [36], [37], [38], [39], but a full classification is not yet available.

On the other hand, in the Submanifold Theory, extrinsic conditions analogous to
local symmetry, semi-symmetry and pseudo-symmetry have been introduced and studied
quite intensively. The notion of locally parallel immersions was introduced by Ferus in
[45] as an extrinsic analogous to local symmetry and the same author obtained a local
classification of such immersions in the Euclidean space and in the spheres (see [44])
while in the hyperbolic spaces two classifications were obtained independently by Backes-
Reckziegel (see [11]) and Takeuchi (see [99]). Curiously, we need to mention H.B. Lawson,
who classified parallel hypersurfaces in the spheres before the definition of this class of
submanifolds had been introduced, as we can see in [69].

Semi-parallel immersions were defined by J. Deprez in [32] as an extrinsic analogue to
semi-symmetry. Many results on semi-parallel submanifolds can be found, for example, in
[8], [32], [33], [41], [42], [76] and [77], but a classification is not yet available. However, we
can find a complete classification of semi-parallel hypersurfaces in [33] for the Euclidean
space and in [41] for real space forms.

An extrinsic analogue to pseudo-symmetry was first introduced by A.C. Asperti, G.A.
Lobos and F. Mercuri in [9] in space forms: the class of pseudo-parallel submanifolds.
Namely, an isometric immersion f : Mn → M̃m is said to be pseudo-parallel if its second
fundamental form α satisfies the following condition:

R̃(X, Y ) · α = φ(X ∧ Y ) · α, (0.1.1)
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for some smooth real-valued function φ on Mn, where R̃ is the curvature tensor corre-
sponding to the Van der Waerden-Bortolotti connection ∇̃ = ∇ ⊕ ∇⊥ of f and for any
X, Y ∈ TxMn, x ∈Mn, X ∧ Y denotes the endomorphism defined by

(X ∧ Y )Z = 〈Y, Z〉X − 〈X,Z〉Y, Z ∈ TxMn.

In Equation (0.1.1) the notation means

[R(X, Y ) · α](Z,W ) = R⊥(X, Y )α(Z,W )− α(R(X, Y )Z,W )− α(Z,R(X, Y )W );

[(X ∧ Y ) · α](Z,W ) = −α((X ∧ Y )Z,W )− α(Z, (X ∧ Y )W ),

for Z,W ∈ TxMn, where R⊥ is the normal curvature tensor of f .
Some notable conclusions on the study of pseudo-parallel immersions in space forms

are included in the references [10] and [72], where authors proved that pseudo-parallel
surfaces are either surfaces with flat normal bundle or isotropic surfaces in the sense
of O’Neill [83] (i.e. surfaces whose ellipse of curvature at any point is a circle). In
particular, they proved that pseudo-parallel surfaces of space forms with non-vanishing
normal curvature in codimension 2 are superminimal surfaces in the sense of Bryant [14]
(i.e. surfaces which are minimal and isotropic). They also obtained a classification of
pseudo-parallel hypersurfaces in space forms. Essentially, such hypersurfaces are either
quasi-umbilic hypersurfaces or cyclids of Dupin.

The next step is to study these kind of submanifolds in other ambient spaces. For
example, in almost complex manifolds works were carried out by G. Lobos and M. Or-
tega in [73], where a local classification for pseudo-parallel real hypersurfaces was given.
Essentially, pseudo-parallel real hypersurfaces M2n−1, n ≥ 2, of a complex space form
M̃n(4c) with constant holomorphic sectional curvature 4c are either tubes over a totally
geodesic CP n−1 or horospheres in CHn−1 or tubes over a totally geodesic CHn−1. This
classification was useful later in the problem of classifying Hopf hypersurfaces with con-
stant principal curvatures in the complex hyperbolic space CHn, as we can see in the
eighth chapter of [24].

Other natural choices for ambient spaces are the remaining conformally flat symmetric
spaces, Sn(c) × R, Hn(c) × R and Sp(c) × Hn+1−p(−c) (see [90]), since they are Rieman-
nian products of space forms and have the simplest curvature tensors apart from space
forms. Here Sn(c) and Hn(c) denote the n-dimensional sphere and the n-dimensional
hyperbolic space, respectively, and c denotes their sectional curvatures. Recently the
product spaces Sn×R and Hn×R have attracted the attention of many mathematicians.
Some important studies of submanifolds in these ambient spaces include: a generalization
of the Hopf’s differential for surfaces in S2 × R and H2 × R, due to U. Abresch and H.
Rosenberg in [1], permiting authors to prove that topological spheres with constant mean
curvature immersed in these spaces are surfaces of revolution; a Fundamental Theorem
for hypersurfaces in Sn ×R and Hn ×R, obtained by B. Daniel in [29]; a classification of
hypersurfaces with constant sectional curvature of Sn×R and Hn×R, given by F. Manfio
and R. Tojeiro in [81], for n ≥ 3, and by J.A. Aledo, J.M. Espinar and J.A. Gálvez in [3]
and [4], for n = 2.

With respect to the extrinsic notions we are interested in this work, we mention G. Cal-
varuso, D. Kowalczyk, J. Van der Veken and L. Vrancken, who in [16] and [102] obtained
a local classification of umbilical, parallel and semi-parallel hypersurfaces of Hn × R and
Sn × R, respectively. One interesting consequence of these classifications is that umbilic-
ity does not imply parallelism (in space forms, as a consequence of Codazzi’s Equation,
totally geodesic and umbilical hypersurfaces are all parallel). A complete classification of
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umbilical submanifolds with any codimension in Sn × R was obtained by B. Mendonça
and R. Tojeiro in [80] and the same authors gave a complete classification of parallel
submanifolds in a product of two space forms in [79].

The study of pseudo-parallel hypersurfaces in Sn×R and Hn×R was started by F. Lin
and B. Yang in [70] with a classification of pseudo-parallel hypersurfaces. They obtained
an algebraic description of the Weingarten operator, which is presented in Lemma 3.1 of
[70]. Also, they gave the geometric description of such hypersurfaces, except for a missing
case, the class in which the Weingarten operator has three distinct eigenvalues. One of
our objectives in this thesis is to complete this classification. A main step was to show
that, even in the case in which the shape operator has three distinct eigenvalues, the
tangent component T of ∂

∂t
(the unit vector that spans the second factor of the ambient

space) is in fact a principal direction. On the other hand, in [101] R. Tojeiro described
explicitly this class of hypersurfaces in Sn × R and Hn × R.

Putting together [10], [70] and [101], we show the following theorem:

Theorem 0.1.1. Let f : Mn → Qn
ε × R be a pseudo-parallel hypersurface with three

distinct principal curvatures. Then, Mn = Mn−1 × R and there exists a semi-parallel
hypersurface g : Mn−1 → Qn

ε such that either f(x, s) = (g(x), s) or f is given by

f(x, s) = cos(s)g(x) + sin(s)N(x) + a(s)
∂

∂t
, if ε = 1; (0.1.2)

f(x, s) = cosh(s)g(x) + sinh(s)N(x) + a(s)
∂

∂t
, if ε = 1; (0.1.3)

for a linear function a : R → R with nowhere vanishing derivative. Here N denotes the
unit normal vector field of g and the elements in equations (0.1.2)-(0.1.3) are seen by their
canonical inclusions in En+2.

In this way, from Theorem 0.1.1 and the results obtained in [70], the classification of
pseudo-parallel hypersurfaces of Qn

ε × R becomes:

Theorem 0.1.2 (Classification Theorem). Let f : Mn → Qn
ε × R be a pseudo-parallel

hypersurface. Then one of the following occurs:

(i) n = 2 and φ is the Gaussian curvature;

(ii) f is umbilical;

(iii) f is a rotation hypersurface;

(iv) f : Mn−1 × R → Qn
ε × R is given by f(x, s) = (g(x), s), for a semi-parallel hyper-

surface g : Mn−1 → Qn
ε ;

(v) There exists a semi-parallel hypersurface g : Mn−1 → Qn
ε such that f : Mn−1×R→

Qn
ε × R is given by equations (0.1.2)-(0.1.3) in terms of g and a linear function

a : R→ R with nowhere vanishing derivative.

As a consequence of Theorem 0.1.2 we obtain a classification of minimal and constant
mean curvature pseudo-parallel hypersurfaces.

Corollary 0.1.3. Let f : Mn → Qn
ε × R (n ≥ 3) be a pseudo-parallel hypersurface with

constant mean curvature. Then f is either totally geodesic, a rotation hypersurface with
constant mean curvature, or it is given as in item (iv) of Theorem 0.1.2, where g(Mn−1)
is an open part of Sk(c1)×Sn−k−1(c2) (resp. Hk(c1)×Sn−k−1(c2)) if ε = 1 (resp. ε = −1),
for some real numbers c1, c2 satisfying 1

c1
+ 1

c2
= ε and some k ∈ {1, . . . , n− 2}.
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Corollary 0.1.4. Let f : Mn → Qn
ε ×R (n ≥ 3) be a pseudo-parallel hypersurface. If f is

minimal, then f is either a totally geodesic hypersurface, a minimal rotation hypersurface,
or ε = 1 and f is given as in item (iv) of Theorem 0.1.2, where g(Mn−1) is an open part
of Sk(n−1

k
)× Sn−k−1( n−1

n−k−1
) for some k ∈ {1, . . . , n− 2}.

We recall that minimal and constant mean curvature rotation hypersurfaces of Qn
ε ×R

were classified in [40].
In this work we also started the study of pseudo-parallel surfaces in Qn

ε × R (with
ε 6= 0). The second main result of the first part of this work is a characterization of pseudo-
parallel surfaces with non-vanishing normal curvature as isotropic surfaces, generalizing
a similar result in space forms given by Asperti-Lobos-Mercuri in [10]. In particular
it establishes the non-existence of pseudo-parallel surfaces with non-vanishing normal
curvature in codimension two.

Theorem 0.1.5. Let f : M2 → Qn
ε ×R be a pseudo-parallel surface which does not have

flat normal bundle on any open subset of M2. Then n ≥ 4, f is λ-isotropic and

K > φ,

λ2 = 4K − 3φ+ ε(‖T‖2 − 1) > 0,

‖H‖2 = 3K − 2φ+ ε(‖T‖2 − 1) ≥ 0,

where K is the Gaussian curvature, λ is a smooth real-valued function on M2, H is the
mean curvature vector field of f and T is the tangent part of ∂

∂t
, the canonical unit vector

field tangent to the second factor of Qn
ε × R. Conversely, if f is λ-isotropic then f is

pseudo-parallel.

We organized the first part of the thesis into two chapters. In the first chapter we
introduce the notations we use along the whole work and recall some concepts of the
Submanifold Theory. We also recall the space forms and the product spaces Sn × R
and Hn × R, including for these last ones their Fundamental Equations for surfaces and
hypersurfaces, essential tools that we make use in the next chapter. The next section is
devoted to present rotation hypersurfaces of Sn×R and Hn×R and the characterization
of this class of hypersurfaces in terms of the second fundamental form. In the following
section we recall the geometric description given by R. Tojeiro of hypersurfaces with T
as a principal direction.

The second chapter is devoted to our study of pseudo-parallel immersions in Sn×R and
Hn×R. We begin with precise definitions of the classes of submanifolds we are interested,
recalling a characterization of semi-parallel hypersurfaces in space forms in terms of its
Weingarten operator, and the classification of semi-parallel hypersurfaces in space forms
and in the product spaces Sn × R and Hn × R. In the following section we make an
improvment of Lemma 3.1, in [70], showing that the second case in item (iii) does not
occur and that T is the principal direction with related principal curvature equals to zero.
After it, we present in the third section the proof of Theorem 0.1.1 and the Classification
of pseudo-parallel hypersurfaces of Sn × R or Hn × R, after we put our result togheter
with the partial classification given in [70]. We also give the proofs of Corollaries 0.1.3
and 0.1.4. In next two sections we study the surface case, observing that any isometric
immersion f : M2 → Qn

ε × R with flat normal bundle is pseudo-parallel (see Proposition
2.4.2) and proving other auxiliary propositions. Then we prove Theorem 0.1.5. Although
there no exist pseudo-parallel surfaces with non-vanishing normal curvature, as stated in
Theorem 0.1.5, the class of pseudo-parallel surfaces in Q3

ε ×R is not empty. In section 2.6
we give examples of semi-parallel surfaces which are not parallel as well as examples of
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pseudo-parallel surfaces in S3×R and H3×R which are neither semi-parallel nor pseudo-
parallel surfaces in a slice. Finally, we remark that pseudo-parallel surfaces in Qn

ε × R
with n ≥ 4 and non vanishing normal curvature do exist, as shown in Examples 2.6.3,
2.6.5 and 2.6.6 in the section 2.6.

0.2 Introduction to Part II

Surfaces of constant mean curvature are one of the oldest and most interesting topics
in Differential Geometry. The reason for their importance relies on the fact that they
appear as local solutions for the problem of minimizing area among the surfaces that
enclose a prescribed volume: the famous isoperimetric problem.

Along the years, surfaces of constant mean curvature (CMC surfaces, for short) at-
tracted the attention of many mathematicians and many progress have been done. Among
the most important problems on CMC surfaces are those that involve global geometric
or topological conditions as completeness, compactness, embeddedness, properness and
stability. Some important achievements include: the Alexandrov’s Theorem (see [6]),
which states that the only compact CMC surface embedded in R3 is the round sphere;
the well known Hopf’s Theorem (see [60]), which states the only topological sphere with
constant mean curvature immersed in the Euclidean space R3 is the round sphere; the
results found in [78], where W. Meeks proved that any properly embedded annulus with
constant mean curvature is contained in a solid half-cylinder. He also concluded that
there is no proper embedded CMC surface Σ with just one end and if Σ has only two
ends, then it is contained in a solid cylinder.

However surfaces of constant mean curvature are also objects of interest for physicists.
For example, when two non mixing materials come into contact, the interface between
them may often be represented as a surface. According to the law of least action, the
equilibrium surface will form in such a way that it attempts to minimize its surface energy
subject to constraints and additional forces imposed by the environment. For homoge-
neous materials, like soapy water, the surface energy (surface tension) is isotropic and
proportional to the area of the surface interface. In this case, the process of minimization
leads to the formation of minimal surfaces (when no volume constraints are imposed) and
constant mean curvature surfaces (when a volume constraint is imposed), the mathemati-
cal models for soap films and soap bubbles, respectively. For other types of materials, like
some fluids or cooling liquid crystals, a process of crystallization can eventually occur. In
this case, their atomic or molecular structures assume a regular repeating pattern, and
to model the shape of the interface of the fluid with its environment, we need to take the
internal structure of the material into account: the usual isotropic surface energy must
be replaced by an anisotropic one, that is, an energy that depends on the direction of the
surface at each point.

Anisotropic surface energies were typically given by the functional

F(ψ) =

∫
Σ

F (N(x))dΣ, (0.2.1)

where F : Ω ⊂ S2 → R is a smooth function over an open subset Ω of S2 and ψ : Σ→ R3

is an immersion with unit normal field N . In particular, if F ≡ 1, then F becomes the
well known area functional.

In this thesis we discuss surfaces that are equilibrium points of the functional F ,
imposing or not volume constraints into the problem. The Euler–Lagrange equation for
these problems characterize the equilibrium surfaces in terms of a certain quantity assigned
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on each of its points, that we call the anisotropic mean curvature. Namely, if Σ is any
surface and N : U ⊂ Σ→ S2 is a unit normal vector field of Σ defined in an open subset
U , the anisotropic mean curvature Λ of Σ with respect to N is given by the relation:

Λ(x) := − divΣ((gradS2 F )N(x)) + 2F (N(x))H(x), (0.2.2)

where H(x) denotes the mean curvature of Σ at x with respect to N and (gradS2 F )N(x)

is seen as a vector of TxΣ, after we identify it with TN(x)S2.
For each choice of a function F : S2 → R, there is a notable surface that we need to

bear in mind: the Wulff shape of F (or the crystal of F ). It was discovered by a russian
chrystallographer called George Wulff, in the beginning of the twentieth century. Later,
with the machinery of the Geometric Measure Theory, it was proven by J. Taylor in [100]
that the Wulff shape is in fact the absolute minimizer of the functional F among all closed
surfaces prescribing the same volume, a result known as the Wulff’s Theorem.

Although the Wulff shape is well defined even when F is defined only in an open subset
of S2, in this work we will consider only the case where F is a smooth function defined over
the whole sphere S2. We also impose the “convexity condition”: (HessS2 F )y + F (y)〈, 〉 :
TyS2 × TyS2 → R is a positive-definite bilinear form, for any point y ∈ S2. The reason
for these conditions is purely technical. They imply that the Wulff shape is a strictly
convex, compact smooth surface, and from Wulff’s Theorem we may infer that the Wulff
shape has constant anisotropic mean curvature. From its minimizing and compactness
properties, the Wulff shape will play in the theory of CAMC surfaces a similar role as the
round sphere does in the theory of CMC surfaces.

Another reason to impose the convexity condition relies on the fact that it is possible
to show that the equation for constant anisotropic mean curvature surfaces is absolut
elliptic. This means that CAMC surfaces satisfy a Maximum Principle, in the sense of E.
Hopf. In other words, if two surfaces have the same constant anisotropic mean curvature,
and if the unit normal vectors (corresponding to the anisotropic mean curvature) of both
surfaces coincide at a contact point in such a way that one surface lies on one side of
the other in a neighborhood of such contact point, then the two surfaces agree in this
neighborhood. Since this principle is one of the most important tools used in the study of
CMC surfaces and it is also valid for CAMC surfaces, we expect that most of the results
on CMC surfaces has extensions to CAMC surfaces.

Many studies on CAMC surfaces were carried up to this date, specially in the last two
decades, when many advances were achieved. For example, B. Palmer proved in [84] that
up to homotheties, the Wulff shape is the only closed, oriented, stable CAMC surface, an
anisotropic extension of the famous theorem of J.L. Barbosa and M.P. do Carmo, in [12].
From the partnership of B. Palmer with M. Koiso arose many other important results.
Some of them include: the study of cappilary surfaces; the description of the so called
anisotropic Delaunay surfaces (i.e., rotation CAMC surfaces) as well a generalization
of the rolling construction to obtain their profile curves, obtained in [64] and [66], and
generalizing the construction of Delaunay in [31]; they also proved an anisotropic version
of the Hopf’s Theorem in [65]. We also mention the works of H. Li and his collaborators.
Among their results we cite an anisotropic version of the Alexandrov Theorem, obtained
in [56] and the characterization of the Wulff shape in terms of higher order anisotropic
mean curvatures, in [52]. Other interesting results we may cite are the classification
of anisotropic isoparametric hypersurfaces due to Ge, in [46], and the study of CAMC
helicoids by Kuhns, in [68]. We finally mention [71], where J.H.S. de Lira and M. Melo
extend the notion of anisotropic mean curvature for immersed hypersurfaces of arbitrary
Riemannian manifolds.
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Motivated by the similarities between the theory of CMC and CAMC surfaces, our
objective in this thesis will be present the anisotropic version of three important theorems.
The first main result is a Bernstein-type Theorem for complete CAMC multigraphs, an
anisotropic version of the theorem proved by D. Hoffman, R. Osserman and R. Schoen in
[58].

Theorem 0.2.1. Let Σ be a vertical multi-graph in R3, that is, for any p ∈ Σ, TpΣ
is not a vertical plane. Suppose that Σ is complete and has constant anisotropic mean
curvature. Then Σ is a plane.

An immediate consequence of Theorem 0.2.1 is the following corollary.

Corollary 0.2.2. Let Σ be a complete CAMC surface whose Gauss map image is con-
tained in a closed hemisphere of S2. Then Σ is either a plane or a CAMC cylinder.

The second main result we obtained in the second part the thesis is also a consequence
of Theorem 0.2.1, where we generalize a theorem about CMC surfaces whose Gauss cur-
vature does not change sign, a result found in [63], due to T. Klotz and R. Osserman.

Theorem 0.2.3. Let Σ ⊂ R3 be a complete immersed surface of constant anisotropic
mean curvature Λ 6= 0. If the Gaussian curvature of Σ does not change sign then Σ is one
of the following surfaces:

(i) a CAMC cylinder;

(ii) the Wulff shape (up to a homothety).

In the third main theorem of the second part of this thesis we develop an uniform
upper bound for the maximum height of CAMC graphs with planar boundary, depending
only on the anisotropic mean curvature. More presicely, we have

Theorem 0.2.4. Let Λ 6= 0 be a real number and let v ∈ S2 be any unit vector. Then
there is a constant C = C(Λ) such that for any closed (not necessary bounded) domain
Ω of the plane Π = {v}⊥ and smooth function u : Ω→ R that vanishes on ∂Ω and whose
graph Σ over Π is a Λ-CAMC surface, the height of any point p ∈ Σ relative to Π is at
most C.

The isotropic version of Theorem 0.2.4 was first obtained by W. Meeks in [78], and
lately generalized by J.A. Aledo, J.M. Espinar and J.A. Gálvez in [5], for more general
classes of surfaces that satisfy the Maximum Principle, such as special Weingarten sur-
faces, i.e., surfaces that satisfies a relation H = f(H2 − K), for a certain function f ,
where H and K denotes the constant mean curvature and the Gaussian curvature of the
surfaces, respectively. Although Theorem 0.2.4 does not provide optimum estimates, we
recall that its isotropic version was proved to be a fundamental tool for the study of prop-
erly embedded CMC surfaces in R3. Among the consequences of these height estimates
for graphs are the non-existence of properly embedded CMC surfaces with only one end,
as we mentioned previously in the second paragraph, and that any two-ended properly
embedded CMC surfaces are revolution surfaces.

Our main difficulty in the proof of Theorem 0.2.4 relies on the fact that the functional
F is not necessarily invariant under reflections. In other words, if Π is a plane and Σ
is a CAMC surface, then the image of Σ under the reflection over Π is not necessarily a
CAMC surface, since the values of F in a point an its reflected image could be distinct.
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This fact prohibits the use of the Alexandrov’s Method of Moving Planes, that was used
in the proof of the isotropic version of Theorem 0.2.4.

As a corollary of Theorem 0.2.4 we prove uniform estimates for compact surfaces with
non-zero constant anisotropic mean curvature and planar boundary.

Corollary 0.2.5. Suppose that the anisotropy function F is invariant under the reflection
in S2 that fixes the geodesic S2 ∩ {v}⊥, for some v ∈ S2. Let Σ be any compact Λ-CAMC
surface (Λ 6= 0), that is embedded in R3 and whose boundary is contained in the plane
{v}⊥. There exists a positive constant C depending only on Λ such that the height of
any point p ∈ Σ relative to {v}⊥ is at most C.

Under certain symmetry hypothesis on the anisotropy function and proving an anisotro-
pic version of the famous Meeks’ Separation Lemma (see [78] and [67]), we are able to prove
the non-existence of properly embedded surfaces in R3 with non-zero constant anisotropic
mean curvature and with just one end.

Theorem 0.2.6. Let Σ ⊂ R3 be a properly embedded Λ-CAMC (Λ 6= 0) surface
with finite topology and at most one end. Consider three linearly independent vectors
v1, v2, v3 ∈ R3 and suppose in addition that the anisotropy function F is invariant under
the reflections in S2 which fix the geodesics S2 ∩ {vi}⊥, for i ∈ {1, 2, 3}. Then, up to a
homothety, Σ is the Wulff shape.

We also organize the second part of this thesis into two chapters. In chapter three
we devote attention on the introduction of the basic concepts on the theory of constant
anisotropic mean curvature surfaces. In the first section we present the variational prob-
lem, whose critical points are our object of interest. To characterize such critical points
in terms of the anisotropy function and the mean curvature, we recall the first variation
formula, which leads us to the definition of the anisotropic mean curvature of a surface.
Next, we present the Wulff shape, relating its geometric construction with its analytic de-
scription. This allow us, in the following section, to define the anisotropic analogous of the
normal Gauss map and the second fundamental form. In particular, the anisotropic mean
curvature of a surface will be given by the trace of the anisotropic second fundamental
form. A brief section with examples of CAMC surfaces was included, where a comparison
between the isotropic and anisotropic cases can be made by the reader. Namely, we recall
the construction of rotation CAMC surfaces, CAMC helicoids and CAMC cylinders. This
last one, in special, will play a crucial role in the results obtained in the next chapter.

The proofs of the main results of this thesis, namely, Theorems 0.2.1, 0.2.3 and 0.2.4,
are the contents of Chapter four. To overcome the difficulties related to the Method of
Moving Planes, we follow the ideas found in [15]. First, we adapt a Compactness Theorem
for CAMC surfaces with bounded second fundamental form and whose anisotropic mean
curvatures converge to a pre-fixed real number. This result allows us to obtain complete
CAMC surfaces as limits of sequences of CAMC surfaces over compact sets, and it will
be applied along the whole chapter. Another useful result we adapt from [15] was a
priori second fundamental form estimates for CAMC surfaces whose anisotropic mean
curvature is bounded by a prefixed positive number and whose Gauss map omits a disk
of prefixed area. A key step for its proof was the use of a Bernstein-type Theorem for
anisotropic minimal surfaces, due to H.B. Jenkins (see [62]), that we also recall in the text.
We also prove horizonal diameter estimates in the sense of [78], i.e., diameter estimates
for the connected components of horizontal slices of CAMC graphs defined on closed
domains with zero boundary values. These estimates depend only on the anisotropic
mean curvature. Its proof is based on the ideas of [5]. Following these auxiliary results,
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we give a proof of Theorem 0.2.1. Although the isotropic version of Theorem 0.2.1 is
proven using arguments on the harmonicity of the Gauss map N of the surface and
properties of the equation ∆N + ‖dN‖2N = 0 (where ∆ denotes the Laplacian operator
of the surface), our proof is geometric and part of it is based on the ideas found in [51].
Putting together Theorem 0.2.1 and the auxiliary results, we are able to prove Theorem
0.2.4 and its consequences, including the study of properly embedded CAMC surfaces in
R3 with finite topology, where we conclude with the proof of Theorem 0.2.6.

Finally, for the reader convenience, we add an detailed appendix about the Maximum
Principle. We recall the Maximum Principle for linear and quasi-linear second-order ellip-
tic differential operators and we stablish a geometric version of the Maximum Principle,
known as the Tangency Principle, for the anisotropic mean curvature operator.
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Introducción

Este trabajo está dividido en dos temas principales. La primera parte se refiere al
estudio de las inmersiones pseudo-paralelas en los espacios producto Sn × R y Hn × R.
Esa parte fue desarollada con mi director de tesis, G.A. Lobos, y con la colaboración de
A.J.Y. Hancco. La segunda parte se dedica al estudio de las superficies de curvatura media
anisotrópica constante en R3. Ese estudio es el resultado de un trabajo conjunto con mi
otro director, J.A. Gálvez, y P. Mira, la mayoŕıa de los resultados obtenidos durante un
año de investigación en España, como parte del programa PDSE, por CAPES.

0.3 Introducción a la Parte I

Las variedades semi-simétricas son una generalización natural y bien conocida de las
variedades localmente simétricas, fueron introducidas por E. Cartan en [22] y clasificadas
por Z.I. Szabó (ver [96] y [97]). La investigación de varias propiedades de las variedades
semi-simétricas da lugar a su próxima generalización: las variedades pseudo-simétricas.
Por ejemplo, cualquier subvariedad totalmente umbilical de una variedad semi-simétrica,
con vector de curvatura media paralelo, es pseudo-simétrica (ver [2]). La clase de varieda-
des pseudo-simétricas es muy grande, y se han construido muchos ejemplos de variedades
pseudo-simétricas que no son semi-simétricas (véanse, por ejemplo, [34], [37] y sus refer-
encias). En las últimas tres décadas, varios autores han publicado una gran cantidad de
resultados tanto intŕınsecos como extŕınsecos acerca de esta clase de variedades. Como
consecuencia, se conocen muchos resultados particulares, véase, por ejemplo, [30], [34],
[35], [36], [37], [38], [39], pero una clasificación completa aún no existe.

Por otro lado, en la Teoŕıa de Subvariedades, condiciones extŕınsecas análogas a las de
simetŕıa-local, de semi-simetŕıa y de pseudo-simetŕıa han sido introducidas y estudiadas
con bastante intensidad. Ferus introdujo la noción de inmersiones localmente paralelas en
[45] como un análogo extŕınseco a la simetŕıa-local y el mismo autor obtuvo una clasifi-
cación local de tales inmersiones en el espacio eucĺıdeo y en las esferas (ver [44]) mientras
que en los espacios hiperbólicos se obtuvieron dos clasificaciones independientemente por
Backes-Reckziegel (ver [11]) y Takeuchi (ver [99]). Curiosamente, debemos mencionar a
H.B. Lawson, que clasificó las hipersuperficies paralelas en las esferas antes de que se
introdujera la definición de esta clase de subvariedades, como podemos ver en [69].

Las inmersiones semi-paralelas fueron definidas por J. Deprez en [32] como un análogo
extŕınseco a la semi-simetŕıa. Se pueden encontrar muchos resultados acerca de sub-
variedades semi-paralelas, por ejemplo, en [8], [32], [33], [41], [42], [76] y [77], pero una
clasificación aún no está disponible. Sin embargo, podemos encontrar una clasificación
completa de las hipersuperficies semi-paralelas en [33] para el espacio eucĺıdeo y en [41]
para formas espaciales.

Un análogo extŕınseco a la pseudo-simetŕıa fue introducido por primera vez por A.C.
Asperti, G.A. Lobos y F. Mercuri en [9] en formas espaciales: la clase de subvariedades
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pseudo-paralelas. A saber, una inmersión isométrica f : Mn → M̃m se dice que es
pseudo-paralela si su segunda forma fundamental α satisface la siguiente condición:

R̃(X, Y ) · α = φ(X ∧ Y ) · α, (0.3.1)

para alguna función a valores reales φ definida en Mn, donde R̃ es el tensor de curvatura
correspondiente a la conexión de Van der Waerden-Bortolotti ∇̃ = ∇⊕∇⊥ de f y para
cualquier X, Y ∈ TxMn, x ∈Mn, X ∧ Y denota el endomorfismo definido por

(X ∧ Y )Z = 〈Y, Z〉X − 〈X,Z〉Y, Z ∈ TxMn.

En la ecuación (0.3.1) la notación significa

[R(X, Y ) · α](Z,W ) = R⊥(X, Y )α(Z,W )− α(R(X, Y )Z,W )− α(Z,R(X, Y )W );

[(X ∧ Y ) · α](Z,W ) = −α((X ∧ Y )Z,W )− α(Z, (X ∧ Y )W ),

para Z,W ∈ TxMn, donde R⊥ es el tensor de curvatura normal de f .
Algunas conclusiones notables sobre el estudio de las inmersiones pseudo-paralelas en

formas espaciales se incluyen en las referencias [10] y [72], donde los autores probaron
que las superficies pseudo-paralelas son superficies con fibrado normal plano o superficies
isotrópicas en el sentido de O’Neill [83] (es decir, superficies cuya elipse de curvatura en
cualquier punto es un ćırculo). En particular, demostraron que las superficies pseudo-
paralelas en formas espaciales con curvatura normal que no se anula y codimensión 2
son superficies superminimales en el sentido de Bryant [14] (es decir, superficies que son
minimales y isotrópicas). También obtuvieron una clasificación de las hipersuperficies
pseudo-paralelas en formas espaciales. Esencialmente, tales hipersuperficies son o bien
hipersuperficies cuasi-umbilicales o bien ćıclides de Dupin.

El siguiente paso es estudiar este tipo de subvariedades en otros espacios ambientes.
Por ejemplo, en variedades cuasi-complejas trabajos fueron realizados por G. Lobos y M.
Ortega en [73], donde una clasificación local para las hipersuperficies pseudo-paralelas
reales fue dada. Esencialmente, las hipersuperficies pseudo-paralelas reales M2n−1, n ≥ 2,
de una forma espacial compleja M̃n(4c) con curvatura seccional holomorfa constante 4c o
son tubos sobre un CP n−1 totalmente geodésico o bien horosferas en CHn−1 o tubos sobre
un CHn−1 totalmente geodésico. Esta clasificación fue útil más tarde en el problema de
clasificar las hipersuperficies de Hopf con curvaturas principales constantes en el espacio
hiperbólico complejo CHn, como podemos ver en el octavo caṕıtulo de [24].

Otras opciones naturales para espacios ambientes son los espacios simétricos conforme-
mente planos restantes, Sn(c)×R, Hn(c)×R y Sp(c)×Hn+1−p(−c) (ver [90]), ya que son
productos riemannianos de formas espaciales y tienen los tensores de curvatura más sencil-
los, después de las formas espaciales. Aqúı Sn(c) y Hn(c) denotan la esfera n-dimensional
y el espacio hiperbólico n-dimensional, respectivamente, y c denota sus curvaturas sec-
cionales. Recientemente, los espacios producto Sn × R y Hn × R han atráıdo la atención
de muchos matemáticos. Algunos estudios importantes de subvariedades en estos espa-
cios ambientes incluyen: una generalización de la diferencial de Hopf para superficies en
S2×R y H2×R, debido a U. Abresch y H. Rosenberg in [1], lo que permite a los autores
demostrar que las esferas topológicas con curvatura media constante inmersas en estos
espacios son superficies de revolución; un Teorema Fundamental para hipersuperficies en
Sn×R y Hn×R, obtenido por B. Daniel en [29]; una clasificación de hipersuperficies con
curvatura seccional constante de Sn × R y Hn × R, dada por F. Manfio y R. Tojeiro en
[81], para n ≥ 3, y por J.A. Aledo, J.M. Espinar y J.A. Gálvez en [3] y [4], para n = 2..
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Con respecto a las nociones extŕınsecas que estamos interesados en ese trabajo, men-
cionamos a G. Calvaruso, D. Kowalczyk, J. Van der Veken y L. Vrancken, quienes en
[16] y [102] obtuvieron una clasificación local de las superficies umbilicales, paralelas y
semi-paralelas de Hn × R y Sn × R, respectivamente. Una consecuencia interesante de
estas clasificaciones es que la umbilicidad no implica paralelismo (en formas espaciales,
como consecuencia de la ecuación de Codazzi, las hipersuperficies totalmente geodésicas y
umbilicales son todas paralelas). Posteriormente, B. Mendonça y R. Tojeiro obtuvieron en
[80] una clasificación completa de las subvariedades umbilicales con cualquier codimensión
en Sn ×R y los mismos autores dieron una clasificación completa de subvariedades para-
lelas en un producto de dos formas espaciales en [79].

El estudio de hipersuperficies pseudo-paralelas en Sn × R y Hn × R fue iniciado por
F. Lin y B. Yang, en [70], con una clasificación de hipersuperficies pseudo-paralelas.
Obtuvieron una descripción algebraica del operador de Weingarten, que es presentado en
el Lema 3.1 de [70]. Además, dieron la descripción geométrica de tales hipersuperficies,
a excepción de un caso que falta: la clase en la que el operador de Weingarten tiene
tres valores propios distintos. Uno de nuestros objetivos en esta tesis es completar esta
clasificación. Un paso clave fue mostrar que, incluso en el caso en que el operador forma
tiene tres valores propios distintos, la componente tangente T de ∂

∂t
(el vector unitario

tangente al segundo factor del espacio ambiente) es, de hecho, una dirección principal.
Por otro lado, en [101] R. Tojeiro describió expĺıcitamente esta clase de hipersuperficies
en Sn × R y Hn × R.

Al juntar los resultados de [10], [70] y [101], mostramos el siguiente teorema:

Teorema 0.3.1. Sea f : Mn → Qn
ε × R una hipersuperficie pseudo-paralela con tres

curvaturas principales distintas. Entonces, Mn = Mn−1 × R y existe una hipersuperficie
semi-paralela g : Mn−1 → Qn

ε tal que f(x, s) = (g(x), s) o f viene dada por

f(x, s) = cos(s)g(x) + sin(s)N(x) + a(s)
∂

∂t
, si ε = 1; (0.3.2)

f(x, s) = cosh(s)g(x) + sinh(s)N(x) + a(s)
∂

∂t
, si ε = 1; (0.3.3)

en términos de g y una función lineal a : R→ R con derivada que nunca se anula. Aqúı
N denota el campo normal unitario de g y los elementos de las ecuaciones (0.3.2)-(0.3.3)
son vistos como sus inclusiones canónicas en En+2

En ese sentido, del Teorema 0.3.1 y los resultados obtenidos en [70], la clasificación de
las hipersuperficies pseudo-paralelas de Qn

ε × R se torna:

Teorema 0.3.2 (Teorema de Clasificación). Sea f : Mn → Qn
ε × R una hipersuperficie

pseudo-paralela. Entonces ocurre una de las siguientes:

(i) n = 2 y φ es la curvatura gaussiana;

(ii) f es umbilical;

(iii) f es una hipersuperficie de rotación;

(iv) f : Mn−1 × R → Qn
ε × R es dada por f(x, s) = (g(x), s), para una hipersuperficie

semi-paralela g : Mn−1 → Qn
ε ;

(v) Existe una hipersuperficie semi-paralela g : Mn−1 → Qn
ε tal que f : Mn−1 × R →

Qn
ε ×R es dada por las ecuaciones (0.3.2)-(0.3.3) en términos de g y de una función

lineal a : R→ R con derivada que nunca se anula.
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Como consecuencia del Teorema 0.3.2 obtenemos una clasificación de hipersuperficies
pseudo-paralelas minimales y de curvatura media constante.

Corolario 0.3.3. Sea f : Mn → Qn
ε ×R (n ≥ 3) una hipersuperficie pseudo-paralela con

curvatura media constante. Entonces f es o totalmente geodésica, o una hipersuperficie
de rotación con curvatura media constante, o es dada como en el ı́tem (iv) del Teorema
0.3.2, donde g(Mn−1) es un abierto de Sk(c1)× Sn−k−1(c2) (resp. Hk(c1)× Sn−k−1(c2)) si
ε = 1 (resp. ε = −1), para algunos números reales c1, c2 satisfaciendo 1

c1
+ 1

c2
= ε y algún

k ∈ {1, . . . , n− 2}.

Corolario 0.3.4. Sea f : Mn → Qn
ε ×R (n ≥ 3) una hipersuperficie pseudo-paralela. Si f

es minimal, entonces f es una hipersuperficie totalmente geodésica, o una hipersuperficie
de revolución minimal, o ε = 1 y f es dada como en el ı́tem (iv) del Teorema 0.3.2, donde
g(Mn−1) es un abierto de Sk(n−1

k
)× Sn−k−1( n−1

n−k−1
) para algún k ∈ {1, . . . , n− 2}.

Recordamos que las hipersuperficies de rotación minimales y con curvatura media
constante en Qn

ε × R fueron clasificadas en [40].
En este trabajo también comenzamos el estudio de superficies pseudo-paralelas en

Qn
ε × R (con ε 6= 0). El segundo resultado principal de la primera parte de este trabajo

es una caracterización de superficies pseudo-paralelas con curvatura normal que no se
anula como superficies isotrópicas, generalizando un resultado similar en formas espaciales
dadas por Asperti-Lobos-Mercuri en [10]. En particular, se establece la inexistencia de
superficies pseudo-paralelas con curvatura normal que no se anula, en codimensión 2.

Teorema 0.3.5. Sea f : M2 → Qn
ε × R una superficie pseudo-paralela cuya curvatura

normal no es idénticamente nula en ningún subconjunto abierto de M2. Entonces n ≥ 4,
f es λ-isotrópica y

K > φ,

λ2 = 4K − 3φ+ ε(‖T‖2 − 1) > 0,

‖H‖2 = 3K − 2φ+ ε(‖T‖2 − 1) ≥ 0,

donde K es la curvatura gaussiana, λ es una función suave definida en M2, H es el
vector curvatura media de f y T es la parte tangente de ∂

∂t
, el campo vectorial unitario

tangente al segundo factor de Qn
ε × R. Rećıprocamente, si f es λ-isotrópica, entonces f

es pseudo-paralela.

Organizamos la primera parte de la tesis en dos caṕıtulos. En el primer caṕıtulo
presentamos las notaciones que usamos a lo largo de todo el trabajo y recordamos algunos
conceptos de la Teoŕıa de Subvariedades. También recordamos las formas espaciales y
los espacios producto Sn × R y Hn × R, incluyendo para estos últimos sus Ecuaciones
Fundamentales para superficies e hipersuperficies, herramientas esenciales que usaremos
en el próximo caṕıtulo. La siguiente sección está dedicada a presentar las hipersuperficies
de rotación de Sn × R y Hn × R y la caracterización de esa clase de hipersuperficies
en términos de la segunda forma fundamental. En la siguiente sección recordamos la
descripción geométrica dada por R. Tojeiro de las hipersuperficies que tienen a T como
una dirección principal.

El segundo caṕıtulo está dedicado a nuestro estudio de inmersiones pseudo-paralelas
en Sn×R y Hn×R. Comenzamos con definiciones precisas de las clases de subvariedades
que nos interesan, recordando una caracterización de las hipersuperficies semi-paralelas
en formas espaciales en términos del operador de Weingarten, y la clasificación de las
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hipersuperficies semi-paralelas en formas espaciales y en los espacios producto Sn × R y
Hn × R. En la siguiente sección realizamos una mejora del Lemma 3.1, en [70], donde
probamos que el segundo caso en el ı́tem (iii) no ocurre y que T es la dirección principal con
curvatura principal relacionada igual a cero. A continuación, presentamos en la tercera
sección la prueba del Teorema 0.3.1 y la Clasificación de las hipersuperficies pseudo-
paralelas de Sn×R y Hn×R, después de poner nuestro resultado junto con la clasificación
parcial dada en [70]. También proporcionamos las pruebas de los Corolarios 0.3.3 y 0.3.4.
En las siguientes dos secciones estudiamos el caso de superficies, observando que cualquier
inmersión isométrica f : M2 → Qn

ε × R con fibrado normal plano es pseudo-paralela
(ver Proposición 2.4.2) y probamos otras proposiciones auxiliares. Luego demostramos el
Teorema 0.3.5. Aunque no existen superficies pseudo-paralelas con curvatura normal no
idénticamente nula, como se indica en el Teorema 0.3.5, la clase de superficies pseudo-
paralelas en Q3

ε × R es no vaćıa. En la sección 2.6 damos ejemplos de superficies semi-
paralelas que no son paralelas, aśı como ejemplos de superficies pseudo-paralelas en S3×R
y H3 × R que no son superficies semi-paralelas ni pseudo-paralelas en un corte Q3

ε × {t}.
Finalmente, observamos que existen superficies pseudo-paralelas en Qn

ε × R con n ≥ 4 y
curvatura normal no idénticamente nula, como se muestra en los Ejemplos 2.6.3, 2.6.5 y
2.6.6 en la sección 2.6.

0.4 Introducción a la Parte II

Las superficies de curvatura media constante son uno de los temas más antiguos e
interesantes en Geometŕıa Diferencial. La razón de su importancia reside en el hecho
de que surgen como soluciones locales para el problema de minimizar el área entre las
superficies que encierran un volumen prescrito: el famoso problema isoperimétrico.

A lo largo de los años, las superficies de curvatura media constante (superficies CMC,
para abreviar) atrajeron la atención de muchos matemáticos y se han hecho muchos
progresos desde entonces. Entre los problemas más importantes en las superficies de
CMC están aquellos que envólven condiciones geométricas o topológicas globales como
completitud, compacidad, embebimiento, ser propiamente inmersa y estabilidad. Algunos
logros importantes incluyen: el Teorema de Alexandrov (ver [6]), que establece que la única
superficie CMC compacta y embebida en R3 es la esfera redonda; el conocido Teorema de
Hopf (ver [60]), que establece que la única esfera topológica con curvatura media constante
inmersa en el espacio eucĺıdeo R3 es la esfera redonda; los resultados que se encuentran en
[78], donde W. Meeks demostró que cualquier anillo propiamente embebido con curvatura
media constante está contenido en un semi-cilindro sólido. También concluyó que no hay
una superficie CMC Σ propiamente embebida con solo un final y si Σ tiene solo dos finales,
entonces está contenida en un cilindro sólido.

Sin embargo, las superficies de curvatura media constante también son objetos de
interés para los f́ısicos. Por ejemplo, cuando dos materiales que no se mezclan entran
en contacto, la interfaz entre ellos a menudo se puede representar como una superficie.
De acuerdo con la ley de mı́nima acción, la superficie de equilibrio se formará de tal
manera que intente minimizar su enerǵıa superficial sujeta a restricciones y fuerzas adi-
cionales impuestas por el medio ambiente. Para materiales homogéneos, como el agua
con jabón, la enerǵıa superficial (tensión superficial) es isotrópica y proporcional al área
de la interfaz de la superficie. En este caso, el proceso de minimización conduce a la
formación de superficies minimales (cuando no se imponen restricciones de volumen) y
superficies de curvatura media constante (cuando se impone restricción al volumen), los
modelos matemáticos para peĺıculas de jabón y pompas de jabón, respectivamente. Para
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otros tipos de materiales, como algunos fluidos o cristales ĺıquidos en enfriamiento, puede
ocurrir un proceso de cristalización. En este caso, sus estructuras atómicas o moleculares
asumen un patrón regular repetitivo, y para modelar la forma de la interfaz del fluido
con su entorno, debemos tener en cuenta la estructura interna del material: la enerǵıa
superficial isotrópica habitual debe ser reemplazada por una anisotrópica, es decir, una
enerǵıa que depende de la dirección de la superficie en cada punto.

Las enerǵıas superficiales anisotrópicas són t́ıpicamente dadas por el funcional

F(ψ) =

∫
Σ

F (N(x))dΣ, (0.4.1)

donde F : Ω ⊂ S2 → R es una función suave sobre un subconjunto abierto Ω de S2 y
ψ : Σ → R3 es una inmersión con campo normal unitario N . En particular, si F ≡ 1,
entonces F se convierte en el bien conocido funcional área.

En esta tesis discutimos las superficies que son puntos de equilibrio del funcional F ,
imponiendo o no restricciones de volumen en el problema. La ecuación de Euler-Lagrange
para estos problemas caracteriza las superficies de equilibrio en términos de una cierta
cantidad asignada en cada uno de sus puntos, que llamamos curvatura media anisotrópica.
Es decir, si Σ es cualquier superficie y N : U ⊂ Σ → S2 es un campo vectorial normal
unitario de Σ definido en un subconjunto abierto U , la curvatura media anisotrópica Λ
de Σ con respecto a N viene dada por la relación:

Λ(x) := − divΣ((gradS2 F )N(x)) + 2F (N(x))H(x), (0.4.2)

donde H(x) denota la curvatura media de Σ en x con respecto a N y (gradS2 F )N(x) se ve
como un vector de TxΣ, después de identificarlo con TN(x)S2.

Para cada elección de una función F : S2 → R, hay una superficie notable que debe-
mos tener en cuenta: la forma Wulff de F (o el cristal de F ). Fue descubierto por un
cristalógrafo ruso llamado George Wulff, a principios del siglo XX. Más tarde, con la
maquinaria de la Teoŕıa Geometrica la Medida, J. Taylor demostró en [100] que la forma
de Wulff es, de hecho, el minimizante absoluto del funcional F entre todas las superfi-
cies cerradas prescribiendo el mismo volumen, un resultado conocido como el Teorema de
Wulff.

Aunque la forma de Wulff esté bien definida mismo cuando F está definida solamente
en un subconjunto abierto de S2, en este trabajo consideraremos solo el caso donde F es
una función suave definida sobre toda la esfera S2. También imponemos la “condición
de convexidad”: (HessS2 F )y + F (y)〈, 〉 : TyS2 × TyS2 → R es una forma bilineal definida
positiva, para cualquier punto y ∈ S2. La razón de estas condiciones es puramente técnica.
Implican que la forma de Wulff es una superficie suave estrictamente convexa y compacta,
y del Teorema de Wulff podemos inferir que la forma de Wulff tiene una curvatura media
anisotrópica constante. Desde sus propiedades de minimización y compacidad, la forma
de Wulff jugará en la teoŕıa de superficies CMAC un papel similar al de la esfera redonda
en la teoŕıa de superficies CMC.

Otra razón para imponer la condición de convexidad reside en el hecho de que es posi-
ble demostrar que la ecuación para superficies de curvatura media anisotrópica constante
es absolutamente eĺıptica. Esto significa que las superficies CMAC satisfacen un Princi-
pio del Máximo, en el sentido de E. Hopf. En otras palabras, si dos superficies tienen la
misma curvatura media anisotrópica constante, y si los vectores unitarios normales (co-
rrespondientes a la curvatura media anisotrópica) de ambas superficies coinciden en un
punto de contacto de tal manera que una superficie se encuentra en un lado de la otra en
un entorno del punto de contacto, entonces las dos superficies coinciden en ese entorno.
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Dado que este principio es una de las herramientas más importantes utilizadas en el estu-
dio de las superficies CMC y también es válido para las superficies CMAC, esperamos que
la mayoŕıa de los resultados en las superficies CMC tengan extensiones a las superficies
CMAC.

Muchos estudios sobre superficies CMAC se llevaron a cabo hasta esta fecha, especial-
mente en las últimas dos décadas, cuando se lograron muchos avances. Por ejemplo, B.
Palmer demostró en [84] que salvo homotecias, la forma de Wulff es la única superficie
CMAC cerrada, orientada y estable, una extensión anisotrópica del famoso teorema de J.L.
Barbosa y M.P. do Carmo, en [12]. De la asociación de B. Palmer con M. Koiso surgieron
muchos otros resultados importantes. Algunos de ellos incluyen: el estudio de las super-
ficies capilares; la descripción de las llamadas superficies anisotrópicas de Delaunay (es
decir, superficies CMAC de revolución), aśı como una generalización de la construcción
rodante para obtener sus curvas perfiles, obtenida en [64] y [66], y generalizando la cons-
trucción de Delaunay en [31]; también probaron una versión anisotrópica del Teorema de
Hopf en [65]. También mencionamos los trabajos de H. Li y sus colaboradores. Entre sus
resultados, citamos una versión anisotrópica del Teorema de Alexandrov, obtenida en [56]
y la caracterización de la forma de Wulff en términos de curvaturas medias anisotrópicas
de alto orden, en [52]. Otros resultados interesantes que podemos citar son la clasificación
de las hipersuperficies isoparamétricas anisotrópicas debido a Ge, en [46], y el estudio de
los helicoides CMAC por Kuhns, en [68]. Finalmente mencionamos [71], donde J.H.S. de
Lira y M. Melo extienden la noción de curvatura media anisotrópica para hipersuperficies
inmersas en variedades riemannianas arbitrarias.

Motivado por las similitudes entre la teoŕıa de las superficies CMC y CMAC, nuestro
objetivo en esta tesis será presentar la versión anisotrópica de tres teoremas importantes.
El primer resultado principal es un Teorema de tipo Bernstein para multigrafos completos
de CMAC, una versión anisotrópica del teorema probado por D. Hoffman, R. Osserman
y R. Schoen en [58].

Teorema 0.4.1. Sea Σ un multigrafo vertical en R3, es decir, para cualquier p ∈ Σ, TpΣ
no es un plano vertical. Suponga que Σ es completa y tiene curvatura media anisotrópica
constante. Entonces Σ es un plano.

Una consecuencia inmediata del Teorema 0.4.1 es el siguiente corolario.

Corolario 0.4.2. Sea Σ una superficie CMAC completa cuya imagen por su aplicación
de Gauss esté contenida en un hemisferio cerrado de S2. Entonces Σ es o bien un plano
o bien un cilindro CMAC.

El segundo resultado principal de la segunda parte de la tesis es también una conse-
cuencia del Teorema 0.4.1, donde generalizamos un teorema sobre superficies CMC cuya
curvatura de Gauss no cambia de signo, un resultado encontrado en [63], debido a T.
Klotz y R. Osserman.

Teorema 0.4.3. Sea Σ ⊂ R3 una superficie inmersa completa de curvatura media
anisotrópica constante Λ 6= 0. Si la curvatura gaussiana de Σ no cambia de signo, entonces
Σ es una de las siguientes superficies:

(i) un cilindro CMAC;

(ii) la forma de Wulff (salvo homotecias).

En el tercer teorema principal de la segunda parte de esta tesis, obtenemos una
acotación uniforme para la altura máxima de los gráficos CMAC con borde plano, que
depende solo de la curvatura media anisotrópica. Más precisamente, tenemos
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Teorema 0.4.4. Sea Λ 6= 0 una constante real y sea v ∈ S2 un vector unitario cualquier.
Entonces hay una constante C = C(Λ) tal que para cualquier dominio cerrado (no nece-
sariamente acotado) Ω del plano Π = {v}⊥ y una función suave u : Ω → R que se anula
en ∂Ω y cuyo grafo Σ sobre Π es una superficie Λ-CMAC, la altura de cualquier punto
p ∈ Σ en relación a Π es a lo más C.

La versión isotrópica del Teorema 0.4.4 fue obtenida por primera vez por W. Meeks en
[78], y después generalizada por J.A. Aledo, J.M. Espinar y J.A. Gálvez en [5], para clases
más generales de superficies que satisfacen el Principio del Máximo, como las superficies
especiales de Weingarten, es decir, superficies que satisfacen una relación H = f(H2−K),
para cierta función f , donde H y K denotan la curvatura media constante y la curvatura
gaussiana de las superficies, respectivamente. Aunque el Teorema 0.4.4 no proporciona
acotaciones óptimas, recordamos que su versión isotrópica ha sido una herramienta fun-
damental para el estudio de superficies CMC propiamente embebidas. Entre las conse-
cuencias de estas acotaciones de altura para grafos están la inexistencia de superficies
CMC propiamente embebidas con un solo final, como mencionamos anteriormente en el
segundo párrafo, y que cualquier superficie CMC propiamente embebida de dos finales es
una superficie de revolución.

Nuestra principal dificultad en la prueba del Teorema 0.4.4 reside en el hecho de que
el funcional F no es necesariamente invariante bajo reflexiones. En otras palabras, si Π
es un plano y Σ es una superficie CMAC, entonces la imagen de Σ bajo la reflexión sobre
Π no es necesariamente una superficie CMAC, ya que los valores de F en un punto y
su imagen refletida pueden ser distintos. Este hecho proh́ıbe el uso del Método de los
Planos Moviles de Alexandrov, que fue empleado en la prueba de la versión isotrópica del
Teorema 0.4.4.

Como corolario del Teorema 0.4.4, demostramos acotaciones uniformes para superficies
compactas con CMAC no nula y borde plano.

Corolario 0.4.5. Suponga que la función de anisotroṕıa F es invariante bajo la reflexión
en S2 que fija la geodésica S2 ∩ {v}⊥, para algún v ∈ S2. Sea Σ cualquier superficie
Λ-CMAC (Λ 6= 0) compacta, embebida en R3 y con borde contenido en el plano {v}⊥.
Entonces existe una constante positiva C que depende solo de Λ, de modo que la altura
de cualquier punto p ∈ Σ en relación a {v}⊥ es a lo más C.

Bajo cierta hipótesis de simetŕıa sobre la función de anisotroṕıa y probando una versión
anisotrópica del famoso Lema de Separación de Meeks (véanse [78] y [67]), podemos
demostrar la inexistencia de superficies propiamente embebidas en R3 con curvatura media
anisotrópica constante y con solo un final.

Teorema 0.4.6. Sea Σ ⊂ R3 una superficie Λ-CMAC (Λ 6= 0) propiamente embebida con
topoloǵıa finita y a lo más un final. Considere tres vectores linealmente independientes
v1, v2, v3 ∈ R3 y suponga además que la función de anisotroṕıa F es invariante bajo las
reflexiones en S2 que fijan las geodésicas S2 ∩ {vi}⊥, para i ∈ {1, 2, 3}. Entonces, salvo
homotecias, Σ es la forma de Wulff.

Organizamos la segunda parte de esta tesis en dos caṕıtulos. En el caṕıtulo tres damos
atención a la introducción de los conceptos básicos sobre la teoŕıa de las superficies de
curvatura media anisotrópica constante. En la primera sección presentamos el problema
variacional, cuyos puntos cŕıticos son nuestro objeto de interés. Para caracterizar estos
puntos cŕıticos en términos de la función de anisotroṕıa y la curvatura media, recor-
damos la primera fórmula de variación, que nos lleva a la definición de la curvatura media
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anisotrópica de una superficie. A continuación, presentamos la forma de Wulff, relacio-
nando su construcción geométrica con su descripción anaĺıtica. Esto nos permite, en la
siguiente sección, definir los análogos anisotrópicos de la aplicación normal de Gauss y
la segunda forma fundamental. En particular, la curvatura media anisotrópica de una
superficie estará dada por la traza de la segunda forma fundamental anisotrópica. Se
incluyó una breve sección con ejemplos de superficies CMAC, donde el lector puede hacer
una comparación entre los casos isotrópico y anisotrópico. A saber, recordamos la con-
strucción de superficies de rotación CMAC, helicoides CMAC y cilindros CMAC. Este
último, en especial, jugará un papel crucial en los resultados obtenidos en el próximo
caṕıtulo.

Las pruebas de los principales resultados de esta tesis, a saber, los Teoremas 0.4.1,
0.4.3 y 0.4.4, son los contenidos del Caṕıtulo cuatro. Para superar las dificultades rela-
cionadas con el Método de los Planos Móviles, seguimos las ideas que se encuentran en
[15]. Primero, adaptamos un Teorema de Compacidad para superficies CMAC con se-
gunda forma fundamental acotada y cuyas curvaturas medias anisotrópicas convergen a
un número real prefijado. Este resultado nos permite obtener superficies CMAC com-
pletas como ĺımites de secuencias de superficies CMAC sobre conjuntos compactos, y se
aplicará a lo largo de todo el caṕıtulo. Otro resultado útil que adaptamos de [15] fue
acotaciones a priori de la segunda forma fundamental para superficies CMAC cuya cur-
vatura media anisotrópica está acotada por una constante prefijada y cuya aplicación de
Gauss omite un disco de área prefijada. Un paso clave para su prueba fue el uso de un
Teorema de tipo Bernstein para superficies minimales anisotrópicas, debido a H.B. Jenk-
ins (ver [62]), que también recordamos en el texto. También demostramos acotaciones
de diámetro horizontal en el sentido de [78], es decir, acotaciones de diámetro para las
componentes conexas de cortes horizontales de gráficos CMAC definidos en dominios cer-
rados y que se anulan en el borde. Estas acotaciones solo dependen de la curvatura media
anisotrópica. Su prueba se basa en las ideas de [5]. Siguiendo estos resultados auxiliares,
damos una prueba del Teorema 0.4.1. Aunque la versión isotrópica del Teorema 0.4.1 se
prueba utilizando argumentos sobre la armonicidad de la aplicación de Gauss N de la su-
perficie y las propiedades de la ecuación ∆N +‖dN‖2N = 0 (donde ∆ denota el operador
Laplaciano de la superficie), nuestra prueba es geométrica y parte de ella se basa en las
ideas encontradas en [51]. Al juntar el Teorema 0.4.1 y los resultados auxiliares, podemos
probar el Teorema 0.4.4 y sus consecuencias, incluyendo el estudio de superficies CMAC
propiamente embebidas en R3 con topoloǵıa finita, donde concluimos con la demostración
del Teorema 0.4.6.

Finalmente, para la conveniencia del lector, agregamos un apéndice detallado sobre
el Principio del Máximo. Recordamos el Principio Máximo para operadores diferenciales
eĺıpticos de segundo orden lineales y cuasi-lineales y establecemos una versión geométrica
del Principio del Máximo, conocido como Principio de Tangencia, para el operador de
curvatura media anisotrópica.
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Part I

PSEUDO-PARALLEL IMMERSIONS IN
Sn × R AND Hn × R





Chapter 1

Preliminaries and basic notations

The idea of this chapter is to recall basic notions of Submanifold Theory and fix the
notation we use along this work. For the reader interested in a detailed introduction to
Submanifold Theory we recomend [28].

1.1 Basics of Submanifold Theory

Let Mn and M̃m be two smooth manifolds of dimensions n and m, respectively, with
m > n. We say that a smooth application f : Mn → M̃m is an immersion if its
differential df(x) = f∗ : TxM → Tf(x)M̃ is injective, for all x ∈Mn. Two particular cases
have special names: when n = 2 we say that f is an immersed surface; when n+1 = m
we say that f is an immersed hypersurface.

An immersion f : Mn → M̃m between two Riemannian manifolds (Mn, g) and (M̃m, g̃)
is said to be an isometric immersion if

g̃(f∗X, f∗Y ) = g(X, Y ),

for all x ∈Mn and for all X, Y ∈ TxM .
If (M̃m, g̃) is a Riemannian manifold and f : Mn → M̃m is an immersion, then f

induces a Riemannian metric f ∗g̃ on Mn by

(f ∗g̃)x(X, Y ) = g̃f(x)(f∗X, f∗Y ), x ∈Mn, X, Y ∈ TxM.

In this case f : (Mn, f ∗g̃)→ (M̃m, g̃) becomes an isometric immersion.
From now until the end of this section we consider f : (Mn, g)→ (M̃m, g̃) an isometric

immersion, {X1, . . . , Xn} a local orthonormal frame of Mn and define gij = g(Xi, Xj). In
terms of this frame, any vector W can be written as

∑n
i,j=1 g

ijg(W,Xi)Xj, where [gij] is
the inverse matrix of [gij].

We denote the tangent bundles of M and M̃ respectively by TM and TM̃ , and f ∗TM̃
refers to the vector bundle over Mn whose fiber at x is Tf(x)M̃ . The orthogonal comple-

ment of f∗TxM in Tf(x)M̃ is called the normal space of f at x and is denoted by NfM(x).

The normal bundle of f is the vector subbundle of f ∗TM̃ whose fiber at a point x ∈Mn

is NfM(x). Smooth sections of TM , also called tangent vector fields of Mn, are denoted
by X(M) while sections of NfM , also called normal vector fields to f , are denoted by
Γ(NfM).

The Levi-Civita connection ∇̃ of M̃m induces a connection ∇̂ on f ∗TM̃ by the relation

∇̂XZ = ∇̃f∗X(Z ◦ f),

3
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for every x ∈Mn, X ∈ TxM and Z ∈ X(M̃).
We always identify ∇̂ and ∇̃, and use ∇̃f∗Xf∗Y instead of ∇̂Xf∗Y . Given vector fields

X, Y ∈ X(M), we can decompose ∇̃f∗Xf∗Y as

∇̃f∗Xf∗Y = (∇̃f∗Xf∗Y )T + (∇̃f∗Xf∗Y )⊥

with respect to the orthogonal direct sum

f ∗TM̃ = f∗TM ⊕NfM.

It is easy to check that ∇XY = (f∗)
−1(∇̃f∗Xf∗Y )T defines a compatible torsion-free con-

nection on TM , which must therefore coincide with the Levi-Civita connection of Mn.
The application α : TxM × TxM → NfM(x) defined by

α(X, Y ) = (∇̃f∗Xf∗Y )⊥,

is called the second fundamental form of f at x. Notice that α is symmetric, since
[f∗X, f∗Y ] = f∗[X, Y ] is tangent, for every X, Y ∈ TxM . Thus, we have the Gauss
formula:

∇̃f∗Xf∗Y = f∗∇XY + α(X, Y ) (1.1.1)

The Weingarten operator of f at x ∈Mn with respect to ξ ∈ NfM(x) is defined by

g(AξX, Y ) = g̃(α(X, Y ), ξ), X, Y ∈ TxM.

If X, Y ∈ X(M) and ξ ∈ Γ(NfM), then

g̃(∇̃f∗Xξ, f∗Y ) = −g̃(ξ, ∇̃f∗Xf∗Y ) = −g̃(ξ, α(X, Y )) = g(AξX, Y ),

whence we conclude that −f∗AξX is the tangent part of ∇̃f∗Xξ. On the other hand, the
normal component

∇⊥Xξ = (∇̃f∗Xξ)
⊥, X ∈ TM, ξ ∈ NfM,

defines a torsion-free connection ∇⊥ in NfM compatible with g̃, called the normal con-
nection of f . Thus, we have the Weingarten formula:

∇̃f∗Xξ = −f∗AξX +∇⊥Xξ(X, Y ). (1.1.2)

The mean curvature vector of f at x ∈Mn is the normal vector defined by

H =
1

n
traceα =

1

n

n∑
i,j=1

gijα(Xi, Xj).

In terms of the Weingarten operator, we have

ng̃(H, ξ) = traceAξ =
n∑

i,j=1

gijg(AξXi, Xj).

When f is a hypersurface, a smooth unit normal vector field N ∈ NfM is locally unique,
up to sign. In this case we write the Gauss and Weingarten formulas as

∇̃f∗Xf∗Y = f∗∇XY + g(ANX, Y )N,

and
∇̃f∗XN = −f∗ANX,
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respectively, and the mean curvature vector of f can be written as

H(x) = H(x)N(x), x ∈Mn,

where the quantity H(x) is called the mean curvature of f at x, with respect to N .

For a given Riemannian manifold (Mn, g), we denote curvature tensor at x ∈ Mn by
R and adopt the convention:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ TxM.

The sectional curvature of Mn with respect to span{X, Y } ⊂ TxM is expressed by

K(X, Y ) =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
.

We denote the curvature tensor of the normal bundle NfM by R⊥, and it is given by

R⊥(X, Y )ξ = ∇⊥X∇⊥Y ξ −∇⊥Y∇⊥Xξ −∇⊥[X,Y ]ξ, X, Y ∈ X(M), ξ ∈ Γ(NfM).

If R, R̃ and R⊥ are the curvature tensors of TM , TM̃ and NfM , respectively, from
Gauss and Weingarten formulas we can deduce three important equations, called com-
patibility equations of the isometric immersion f .

Gauss Equation:

(R̃(f∗X, f∗Y )f∗Z)T = f∗R(X, Y )Z + Aα(X,Z)Y − Aα(Y,Z)X;

Codazzi Equation:

(R̃(f∗X, f∗Y )f∗Z)⊥ = (∇⊥Xα)(Y, Z)− (∇⊥Y α)(X,Z),

where

(∇⊥Xα)(Y, Z) = ∇⊥Xα(Y, Z)− α(∇⊥XY, Z)− α(Y,∇⊥XZ),

or, equivalently, Codazzi Equation is:

(R̃(f∗X, f∗Y )ξ)⊥ = ∇YAξX −∇XAξY − Aξ[X, Y ];

Ricci Equation:

(R̃(f∗X, f∗Y )ξ)⊥ = R⊥(X, Y )ξ + α(AξX, Y )− α(X,AξY ),

for X, Y, Z ∈ TxM and ξ ∈ NfM(x).

The sectional curvature of Mn with respect to span{X, Y } ⊂ TxM can be computed
extrinsically through the Gauss equation. It becomes

K(X, Y ) = K̃(f∗X, f∗Y ) +
g̃(α(X,X), α(Y, Y ))− g̃(α(X, Y ), α(X, Y ))

g(X,X)g(Y, Y )− g(X, Y )2
. (1.1.3)
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1.2 Space forms and the product spaces Sn × R and

Hn × R
A space form is a simply connected, complete, Riemannian manifold with constant

sectional curvature. It is well known that, up to homotheties there are only three examples
of space forms: the n-dimensional Euclidean space Rn, with vanishing sectional curvature
everywhere; the n-dimensional sphere Sn given by

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1;
n+1∑
i=1

x2
i = 1},

whose sectional curvature is 1 everywhere; and the n-dimensional hyperbolic space Hn,
given by

Hn = {(x1, x2, . . . , xn+1) ∈ Ln+1;−x2
1 +

n+1∑
i=2

x2
i = −1, x1 > 0},

whose sectional curvature is−1 everywhere. Here Ln+1 is the (n+1)-dimensional Minkows-
ki space, that is, the (n + 1)-dimensional euclidean space Rn+1 endowed with the inner
product

〈(x1, x2, . . . , xn+1), (y1, y2, . . . , yn+1)〉 = −x1y1 +
n+1∑
i=2

xiyi.

We adopt the following notation to represent a space form: Qn
ε refers to either Sn or

Hn according to whether ε = 1 or ε = −1, respectively. Some works also consider the
case ε = 0 when they are referring Qn

0 as the Euclidean space Rn. In this work we always
assume that ε ∈ {−1, 1}.

In order to make computations in these manifolds, it is convenient to consider the
inclusion i : Qn

ε → En+1, where En+1 stands for either Euclidean space Rn+1 or Lorentzian
space Ln+1, according as ε = 1 or ε = −1, respectively. Identifying TxEn+1 with En+1

itself, the outward pointing normal vector of Qn
ε at x = (x1, . . . , xn, xn+1) is the position

vector i(x) = (x1, . . . , xn, xn+1). With respect to the position vector, i is umbilical and
its second fundamental form at x is given by

αi(X, Y ) = −ε〈X, Y 〉i(x), X, Y ∈ TxQn
ε .

Denoting by D the Levi-Civita connection of En+1, we can recover the Levi-Civita con-
nection ∇ of Qn

ε through Gauss formula for the immersion i. Explicitly,

i∗∇XY = Di∗Xi∗Y − αi(X, Y ) = Di∗Xi∗Y + ε〈X, Y 〉i,

for X, Y ∈ X(Qn
ε ).

The first part of this thesis is devoted to the study of submanifolds with Qn
ε ×R as the

ambient space. Let ∂
∂t

be the canonical unit vector field tangent to the second factor of
Qn
ε ×R, that is, ∂

∂t
(x, t) = c′(0), where c : R→ Qn

ε ×R is the vertical line c(s) = (x, t+s).
Considering the canonical inclusion k := i× IdR : Qn

ε × R→ En+2, the outward pointing
unit normal vector of Qn

ε × R in En+2 is given by ζ(x, t) = (i(x), 0). With respect to ζ,
the second fundamental form of k at (x, t) is given by the relations:

αk(X, Y ) = −ε〈X, Y 〉ζ, αk
(
X,

∂

∂t

)
= 0, and αk

(
∂

∂t
,
∂

∂t

)
= 0,
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for X, Y ∈ { ∂
∂t
}⊥. We can recover the Levi-Civita connection ∇̃ of Qn

ε × R through the
Gauss formula as:

k∗∇̃XY = Dk∗Xk∗Y − αk(X, Y ) = Dk∗Xk∗Y + ε(〈X, Y 〉 − 〈X, ∂
∂t
〉〈Y, ∂

∂t
〉)ζ,

for X, Y ∈ X(Qn
ε × R).

For a given isometric immersion f : Mm → Qn
ε × R, it is convenient to consider the

following decomposition of ∂
∂t

in its tangent and normal parts:

∂

∂t
= f∗T + cos θη, (1.2.1)

for some smooth function θ defined on M , some vector field T ∈ X(M) and some unit
normal vector field η ∈ NfM . We remark this expression is well defined only locally, since
f could not be orientable. This is not a problem since we are interested in a local study
of the submanifolds of Qn

ε × R.
In our study of pseudo-parallel submanifolds of Qn

ε × R we make use of the Compat-
ibility Equations in two special cases: when f is a hypersurface (i.e. m = n) and when
f is a surface (i.e. m = 2). For the first case, denoting by Afη its Weingarten operator in
the η direction, the Compatibility Equations was derived in [40]. They are:
Gauss Equation:

〈R(X, Y )Z,W 〉 = ε(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉
− 〈X,T 〉〈W,T 〉〈Y, Z〉+ 〈X,Z〉〈Y, T 〉〈W,T 〉
+ 〈X,T 〉〈Z, T 〉〈Y,W 〉 − 〈Y, T 〉〈Z, T 〉〈X,W 〉)
+ 〈AfηX,W 〉〈AfηY, Z〉 − 〈AfηX,Z〉〈AfηY,W 〉, (1.2.2)

Codazzi Equation:

∇XA
f
ηY −∇YA

f
ηX − Afη [X, Y ] = ε cos θ(〈Y, T 〉X − 〈X,T 〉Y ), (1.2.3)

and more two equations can be derived:
3th Compatibility Equation:

∇XT = cos θAfηX, (1.2.4)

4th Compatibility Equation:

X(cos θ) = −〈AfηX,T 〉. (1.2.5)

Consider now a surface f : M2 → Qn
ε×R and let {e1, e2} be an orthonormal local frame

for M2. Set αij = α(ei, ej). By δij we mean the Kronecker’s Delta. The Compatibility
Equations for a submanifold of f : Mm → Qn

ε × R of any codimension was first derived
in [79]. Adapting those equations to the surface case, they become:
Gauss Equation:

R(e1, e2)ek = ε(δ2ke1 − δ1ke2 − 〈e2, T 〉〈ek, T 〉e1 + δ1k〈e2, T 〉T
− δ2k〈e1, T 〉T + 〈e1, T 〉〈ek, T 〉e2) + Afα2k

e1 − Afα1k
e2. (1.2.6)

Codazzi Equation:

(∇̃e1α)(e2, ξ)− (∇̃e2α)(e1, ξ) = ε(δ1k〈e2, T 〉 − δ2k〈e1, T 〉) cos θη. (1.2.7)

Ricci Equation:
R⊥(e1, e2)ξ = α(e1, A

f
ξ e2)− α(Afξ e1, e2), (1.2.8)

for ξ ∈ Γ(NfM).
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1.3 Rotation hypersurfaces of Sn × R and Hn × R
Now, let’s recall the definition of a rotational hypersurface of Qn

ε × R. Consider a
three-dimensional vector subspace P 3 of En+2 which contains the xn+2-axis and P 2 ⊂ P 3

a vector subspace which also contains the xn+2-axis. Denote by I the group of isometries
of En+2 which leave Qn

ε × R invariant and leave P 2 pointwise fixed. Finally, let γ be a
curve in Q1

ε × R ≈ Qn
ε × R ∩ P 3 which does not intersect P 2. We define the rotation

hypersurface of Qn
ε × R with profile curve γ and axis P 2 as the I-orbit of γ.

Up to an isometry of Qn
ε × R, we can assume that P 3 is spanned by the canonical

vectors {e1, en+1, en+2} ⊂ En+2.
An interesting characterization of rotation hypersurfaces in Qn

ε × R was obtained by
F. Dillen, J. Fastenakels and J. Van der Veken in [40] and later generalized for arbitrary
codimension by B. Mendonça and R. Tojeiro in [80].

Theorem 1.3.1. (see [40] and [80]) If f : Mn → Qn
ε × R is a hypersurface whose Wein-

garten operator is given by:

Afη =


λ

µ
. . .

µ

 , with AfηT = λT,

then, f is a rotation hypersurface.

1.4 Hypersurfaces with a canonical principal direc-

tion

In [101], the hypersurfaces of Qn
ε × R for which T is everywhere a principal direction

and cos θ is nowhere vanishing were classified as follows:

Theorem 1.4.1. (See [101]) Let g : Mn−1 → Qn
ε be a hypersurface and let gs : Mn−1 →

Qn
ε be the family of its parallel hypersurfaces, that is, gs is given in terms of the relation

g̃s(x) = Cε(s)g̃(x) + Sε(s)Ñ(x), (1.4.1)

where N is an unit normal vector field to g,

Cε(s) =

{
cos(s), if ε = 1

cosh(s), if ε = −1
and Sε(s) =

{
sin(s), if ε = 1

sinh(s), if ε = −1,

and for the canonical inclusion i : Qn
ε → En+1 we define g̃(x) = (i ◦ g(x), 0), Ñ(x) =

(N(x), 0) and g̃s(x) = (i ◦ gs(x), 0). Define

f : Mn := Mn−1 × R→ Qn
ε × R

by the relation

f̃(x, s) = g̃s(x) + a(s)k∗
∂

∂t
, (1.4.2)

for some smooth function a : R → R with nowhere vanishing derivative, where k =
(i × IdR) : Qn

ε × R → En+2 is the canonical inclusion and f̃ = k ◦ f . Then, the map f
defines, at regular points, a hypersurface that has T as a principal direction. Conversely,
any hypersurface f : Mn → Qn

ε ×R that has T as a principal direction and such that cos θ
is nowhere vanishing is locally given by this way.
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Geometrically, f̃(Mn) is obtained by parallel transporting the curve

s 7→ Cε(s)g̃(x) + Sε(s)Ñ(x) + a(s)k∗
∂

∂t

of a fixed fiber span{g̃(x), Ñ(x), k∗
∂
∂t
} of Ng̃M

n−1 with respect to the normal connection
of g̃.

In the conditions of Theorem 1.4.1, the Weingarten operators of f and gs are related
by (see [101], pg.207):

AfηX = − a′(s)√
1 + a′(s)2

AgsNsX, ∀X ∈ TMn−1, (1.4.3)

and the principal curvature in the ∂
∂s

-direction is
a′′(s)

(1 + a′(s)2)3/2
, where

Ns = −εSε(s)i ◦ g(x) + Cε(s)N(x)

is an unit normal vector field to gs at x. Moreover, in [101] it was proven that

f∗T =
a′(s)

1 + a′(s)2
f∗
∂

∂s
.

So, we conclude that
a′′(s)

(1 + a′(s)2)3/2
is the principal curvature of f with respect to T .

We recall that the number
a′(s)√

1 + a′(s)2
coincides with sin θ, which in turn is equals

to ‖T‖. Putting together these informations we conclude that the matrix of Afη has the
following form:

Afη =

 a′′(s)

(1 + a′(s)2)3/2
0

0 − sin θAgsNs

 . (1.4.4)

1.5 Classical operators

Let V be a n-dimensional vector space endowed with an inner product g : V ×V → R
and let {X1, . . . , Xn} be a generic basis of V . Define gij = g(Xi, Xj). In terms of this
basis, any vector X ∈ V can be written as

∑n
i,j=1 g

ijg(X,Xi)Xj, where [gij] is the inverse
matrix of [gij]. Consider B : V × V → R a bilinear form and β : V → V an linear
operator. The trace of B is the number defined by

traceB =
n∑

i,j=1

gijg(BXi, Xj),

and the trace of β as the number defined by

trace β =
n∑

i,j=1

gijβ(Xi, Xj).

Let (Mn, g) be a Riemannian manifold. Consider u : Mn → R a smooth function.
The gradient of u is the unique vector field on Mn that satisfies:

g(gradM u,X) = X(u).
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At some point x ∈ Mn, we can write the gradient of u in terms of a generic basis
{X1, . . . , Xn} of TxM as:

gradM u =
n∑

i,j=1

gijg(gradM u,Xi)Xj =
n∑

i,j=1

gijXi(u)Xj,

We also define the symmetric bilinear form HessM u : TxM × TxM → R, that we call the
Hessian of u by the following relation:

HessM u(X, Y ) = X(Y (u))−∇XY (u).

Given a vector field X ∈ X(M), we define the divergence of X at x ∈Mn as

divM(X) = trace(Z 7→ ∇ZX) =
n∑

i,j=1

gijg(∇XiX,Xj).

An useful property of the divergence is the product rule: for a smooth function u
defined on Mn and a vector field X ∈ X(M) we have

divM(uX) = u divM(X) + g(X, gradM u).

We also recall the classical Divergence Theorem.

Proposition 1.5.1. Let (Mn, g) be an oriented Riemannian manifold (with or without
boundary). Denote by η the co-normal vector field along ∂M pointing outward and g̃ the
induced Riemannian metric on ∂M . Then∫

M

divM XdVg =

∫
∂M

g(X, η)dVg̃,

where dVg and dVg̃ are the volume forms of (M, g) and (∂M, g̃), respectively.

Finally, for a smooth function u : Mn → R, its Laplacian is defined by:

∆Mu = divM(gradM u) = trace(HessM(u)) =
n∑

i,j=1

gijg(∇Xi gradM u,Xj)

=
n∑

i,j=1

gij{Xi(Xj(u))−∇XiXj(u)}.

For the Laplacian operator we have a similar product rule: given smooth functions u, v
defined on Mn, it is valid that

∆M(uv) = u∆Mv + v∆Mu+ 2g(gradM u, gradM v).



Chapter 2

Pseudo-parallel immersions in Sn × R
and Hn × R

In this chapter we present our study of pseudo-parallel immersions in the product
spaces Sn × R and Hn × R. First section beggins with precise definitions of the in-
trinsic and extrinsic notions that motivates the introduction of the concept of pseudo-
parallelism. We also recall some characterization and classification theorems concerning
semi-parallel hypersurfaces in space forms and in Qn

ε ×R, which will be useful in our study
of pseudo-parallel hypersurfaces. In the second section we present the characterization of
pseudo-parallel hypersurfaces in Qn

ε ×R with at least three distinct principal curvatures,
and discuss the relation between pseudo-symmetric and pseudo-parallelel hypersurfaces in
Qn
ε × R. Third section is devoted to present the geometric description of pseudo-parallel

hypersurfaces in Qn
ε ×R with three distinct principal curvatures, and putting our results

together with the partial results obtained in [70], we are able to give the Classification
Theorem of pseudo-parallel hypersurfaces in Qn

ε × R. We also present a classification of
pseudo-parallel hypersurfaces in Qn

ε ×R that are minimal and of constant mean curvature.
The next two sections concern on the study of the surface case, where we prove an charac-
terization theorem, and in the particular the non-existence of pseudo-parallel surfaces in
Q3
ε × R with non-vanishing normal curvature. Finally, we give examples of semi-parallel

surfaces which are not parallel as well as examples of pseudo-parallel surfaces in S3 × R
and H3 × R which are neither semi-parallel nor pseudo-parallel surfaces in a slice, and
we exhibit examples of pseudo-parallel surfaces with non-vanishing normal curvature in
Qn
ε × R, for n ≥ 4.

2.1 Semi-parallel and pseudo-parallel submanifolds

In this section we recall the notions that appear along this chapter, and in particular
the concept of pseudo-parallel immersions, the topic of our interest. We also include
some classification results obtained by other authors. We begin defining some classes of
Riemannian manifolds that generalizes space forms. These intrinsic notions motivated
the classes of submanifolds we are interested.

Definition 2.1.1. A Riemannian manifold Mn is said to be:

1. Locally-symmetric if
(∇XR)(Y, Z) = 0; (2.1.1)

2. Semi-symmetric if
(R(X, Y ) ·R)(U, V,W ) = 0; (2.1.2)



12 CHAPTER 2

3. Pseudo-symmetric if

(R(X, Y ) ·R)(U, V,W ) = φ[(X ∧ Y ) ·R](U, V,W ), (2.1.3)

for some smooth real-valued function φ on Mn and for any vectors X,Y ,Z,U ,V and
W tangent to Mn.

Here the notation means

(∇XR)(Y, Z,W ) = ∇XR(Y, Z)W −R(∇XY, Z)W −R(Y,∇XZ)W

−R(Y, Z)∇XW ;

(R(X, Y ) ·R)(U, V,W ) = R(X, Y )R(U, V )W −R(R(X, Y )U, V )W

−R(U,R(X, Y )V )W −R(U, V )R(X, Y )W ;

[(X ∧ Y ) ·R](U, V,W ) = (X ∧ Y )R(U, V )W −R((X ∧ Y )U, V )W

−R(U, (X ∧ Y )V )W −R(U, V )(X ∧ Y )W.

Geometrical meanings of local, semi- and pseudo-symmetry can be found in [48] and
[19] (see exercise 8.14). Locally-symmetric manifolds were first studied in the 1920’s by
E. Cartan, whose investigation leads to the development of the theory of semi-symmetric
manifolds (see [23]). It is clear that locally-symmetric manifolds are semi-symmetric, but
the converse is not true. E. Cartan and H. Takagi present examples of semi-symmetric
manifolds that are not locally-symmetric (see [98]).

After years of investigation by various mathematicians, semi-symmetric submanifolds
were finally classified in the 1980’s by Z.I. Szabó (see [96] and [97]). Meanwhile, other
mathematicians started to investigate umbilical submanifolds in semi-symmetric ambient-
spaces. From these studies originated the concept of pseudo-symmetry, intruduced ini-
tially by R. Deszcz in [37]. Obvious examples of pseudo-symmetric manifolds are the semi-
symmetric ones. However, these classes are not equal, and examples of pseudo-symmetric
manifolds that are not semi-symmetric can be found in [37] and in the references therein.

The attempt to obtain an extrinsic theory analogous to the one we just mentioned
motivates the definition of extrinsic notions as local-, semi- and pseudo-parallelism, that
we present in Definition 2.1.2. In particular, these classes of immersions generalizes the
concept of total geodesy. From the view point of isometric immersions, the study of these
classes of submanifolds permit us to compare different ambient spaces and improve our
understanding of their geometry.

Definition 2.1.2. An isometric immersion f : Mn → M̃m is said to be:

1. Totally geodesic if
α(X, Y ) = 0; (2.1.4)

2. Umbilical if the mean curvature vector field H of f satisfies

α(X, Y ) = 〈X, Y 〉H; (2.1.5)

3. Locally-parallel if
(∇̃Xα)(Y, Z) = 0; (2.1.6)

4. Semi-parallel if
(R̃(X, Y ) · α)(Z,W ) = 0; (2.1.7)
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5. Pseudo-parallel if

(R̃(X, Y ) · α)(Z,W ) = φ[(X ∧ Y ) · α](Z,W ), (2.1.8)

for some smooth real-valued function φ on Mn and for any vectors X,Y ,Z and W
tangent to Mn.

Here the notation means

(∇̃Xα)(Y, Z) = ∇⊥Xα(Y, Z)− α(∇XY, Z)− α(Y,∇XZ);

(R̃(X, Y ) · α)(Z,W ) = R⊥(X, Y )[α(Z,W )]− α(R(X, Y )Z,W )− α(Z,R(X, Y )W );

[(X ∧ Y ) · α](Z,W ) = −α((X ∧ Y )Z,W )− α(Z, (X ∧ Y )W ).

The concepts of total geodesy and umbilicity are well known in the literature: an
isometric immersion f : Mn → M̃m is totally geodesic if and only if the image of any
geodesics of Mn by f is also a geodesic of M̃m. Umbilical submanifolds are the simplest
submanifolds apart totally geodesic ones. The image of an umbilical immersion is equally
curved in all tangent directions. We can find geometrical meanings of local-, semi- and
pseudo-parallelism in [103].

Locally-parallel immersions were introduced by Ferus in [44], in the Euclidean space,
which also obtained a classification of such immersions in the Euclidean space and in the
spheres while in the hyperbolic spaces two classifications were obtained independently by
Backes-Reckziegel (see [11]) and Takeuchi (see [99]). We also mention H.B. Lawson, who
classified locally-parallel hypersurfaces in the spheres before the definition of this class of
submanifolds had been introduced, as we can see in [69]. In [33] J. Deprez introduced
the notion of semi-parallelism. It is clear that locally-parallel immersions are also semi-
parallel, but these classes are not equal, since examples of semi-parallel submanifolds
that are not locally-parallel can be found in [33], where a classification of semi-parallel
hypersurfaces in the Euclidean space was also given. For space forms with non-zero
sectional curvature, a classification of semi-parallel hypersurfaces was obtained by F.
Dillen in [41]. The notion of pseudo-parallelism was first intruduced by A. Asperti, G.A.
Lobos and F. Mercuri in [9]. The obvious examples of pseudo-parallel submanifolds are
the semi-parallel ones, but there are pseudo-parallel immersions that are not semi-parallel.
Examples can be found in [9] and [10]. Also in [10] we can find a classification of pseudo-
parallel hypersurfaces in space-forms: they are either quasi-umbilical hypersurfaces or
cyclids of Dupin.

When the ambient space is a space form, locally-parallel immersions are locally-
symmetric as well semi-parallel and pseudo-parallel immersions are semi-symmetric and
pseudo-symmetric, respectively. In other words, local, semi- and pseudo-parallelism are
extrinsic analogous of local, semi- and pseudo-symmetry, respectively. Unfortunatelly, it
not occur when we consider Qn

ε ×R as the ambient space. For example, as we will see in
Remark 2.2.5, in these ambient spaces umbilical hypersurfaces are semi-parallel but not
necessarily semi-symmetric. We prove that pseudo-parallel hypersurfaces of Qn

ε × R are
pseudo-symmetric (see Corollary 2.2.4).

Since we are interested in the spaces Sn×R and Hn×R, where the sectional curvature
of the first factor is non-zero, we present here the results of F. Dillen, that we will use
later. The first useful result is a characterization of semi-parallel hypersurfaces of space
forms in terms of the Weingarten operator.

Proposition 2.1.3. (see [41]) Let f : Mn → Qn+1
ε (ε 6= 0) be a hypersurface. The

following assertions are equivalent:



14 CHAPTER 2

(1) f is semi-parallel;

(2) the Weingarten operator of f at each point x ∈Mn has the following form:

AN =



λ
. . .

λ
µ

. . .

µ


, with λµ = −ε or λ = µ. (2.1.9)

The following result is the Classification Theorem of semi-parallel hypersurfaces of
space forms.

Theorem 2.1.4. (see [41]) Let f : Mn → Qn+1
ε be a semi-parallel hypersurface. Then

there exists three possibilities:

(1) n = 2 and M2 is flat;

(2) f is a parallel immersion. Thus, f(Mn) is an open part of Sk(c1)× Sn−k(c2) (resp.
Hk(c1) × Sn−k(c2)) if ε = 1 (resp. ε = −1), for some 0 ≤ k ≤ n and some c1, c2

satisfying 1
c1

+ 1
c2

= ε.

(3) f is a rotation surface (in the sense of [20]) whose profile curve is a helix.

Considering Qn
ε ×R as the ambient space, the first studies of parallel and semi-parallel

immersions started with J. Van der Veken, L. Vrancken in [102] and G. Calvaruso, D.
Kowalczyk and J. Van der Veken in [16], where a classification of the hypersurface case
was obtained. One interesting conclusion of their work was that total umbilicity does not
imply parallelism, a fact that do occur in space forms. Indeed, if f : Mn → Qn

ε ×R is an
umbilical hypersurface, the parallelism condition gives

0 = (∇XAN) = ∇XANY − AN∇XY = X(λ)Y,

for all X, Y ∈ X(M), whence we conclude that λ is constant on Mn. On the other hand,
using Codazzi Equation we have

0 = ε cos θ(〈T, T 〉X − 〈X,T 〉T ) = ε cos θ‖T‖2X

for X 6= 0 orthogonal to T . When cos θ = 0, we conclude that f(Mn) is an open part
a vertical cylinder g(Mn−1) × R, for some hypersurface g : Mn−1 → Qn

ε . In particular,
f is totally geodesic, since one of its principal curvatures is zero. When ‖T‖2 = 0, we
conclude that f(Mn) is an open part of Qn

ε × {t0}, for some t0 ∈ R. Again, f is totally
geodesic.

Semi-parallel hypersurfaces were classified based on the characterization of their Wein-
garten operators, an idea that we also use in this work. The most interesting case that
appeared is when the Weingarten operator has two distinct eigenvalues, being one of them
of multiplicity one and T as related principal direction, and with an additional condition
on the product of them. In such case, Theorem 1.3.1 was of fundamental importance.
The Classification Theorem of semi-parallel hypersufaces of Qn

ε × R is:

Theorem 2.1.5. (see [102] and [16]) Let f : Mn → Qn
ε×R be a semi-parallel hypersurface.

Then:
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(i) n = 2 and M2 is flat;

(ii) f is umbilical,

(iii) f(Mn) is an open part of a rotation surface in Qn
ε ×R whose profile curve is either

a vertical line or it is parametrized by

γ(s) =

cos s, 0, . . . , 0, sin s,

s∫
s0

√
C cos2 σ − 1dσ

 , if ε = 1 and P 2 = span{e1, en+2};

or, for ε = −1,

γ(s) =

cosh s, 0, . . . , 0, sinh s,

s∫
s0

√
C cosh2 σ − 1dσ

 , if P 2 = span{e1, en+2};

γ(s) =

cosh s, 0, . . . , 0, sinh s,

s∫
s0

√
C sinh2 σ − 1dσ

 , if P 2 = span{en+1, en+2};

γ(s) =

s, 0, . . . , 0, −1

2s
,

s∫
s0

√
C − 1

2σ2
dσ

 , if P 2 = span{ 1√
2

(e1 + en+1), en+2},

where P 2 is the axis of f .

(iv) there exists a semi-parallel hypersurface g : Mn−1 → Qn
ε such that Mn = Mn−1×R

and f(x, t) = (g(x), t), for x ∈ Mn−1 and t ∈ R. In other words, f(Mn) is an open
part of a vertical cylinder over a semi-parallel hypersurface of Qn

ε .

2.2 Pseudo-parallel hypersurfaces of Sn×R and Hn×R
In this section we present an improvement of the third case of Lemma 3.1 in [70],

concerning about the Weingarten operator of a pseudo-parallel hypersurface of Qn
ε × R

with at least three distinct eigenvalues. We also discuss the relation between pseudo-
parallel and pseudo-symmetric hypersurfaces of Qn

ε × R.
We begin with a general assumption we will adopt along the section. Let f : Mn →

Qn
ε ×R be a hypersurface and consider U = V ∪ int(Mn−V ), where V = {x ∈Mn; θ(x) 6=

0}. It is easy to see that U is open and dense on Mn and for each connected component
Uγ of U we have either Uγ ⊂ V or Uγ ⊂ int(Mn − V ). If x ∈ int(Mn − V ) then ∂

∂t

is orthogonal to f on a small neighborhood of x and we conclude that f(M), in such a
neighborhood, is an open part of Qn

ε × {t0}, for some t0 ∈ R, that is, a totally geodesic
hypersurface of Qn

ε × R. So, from now on we will assume that θ is nowhere vanishing.
Next, we have the following remark:

Remark 2.2.1. From the definition of pseudo-parallelism we can deduce that any surface
f : M2 → Q2

ε × R is pseudo-parallel by taking φ as the Gaussian curvature of M2.
Also, it is well known that the curvature tensor of a Riemannian manifold Mn with
constant sectional curvature c is given by R(X, Y )Z = c(X ∧ Y )Z, and consequently any
hypersurface f : Mn → Qn

ε × R is pseudo-parallel with φ = c.

The following lemma is an improvment of Lemma 3.1 in [70].
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Lemma 2.2.2. Let f : Mn → Qn
ε × R be a pseudo-parallel hypersurface with at least

three eigenvalues. Then the Weingarten operator Afη of f has exactly three eigenvalues
and it has the following form:

Afη =



0
λ

. . .

λ
µ

. . .

µ


, (2.2.1)

with φ = ε cos2 θ, λµ = −ε sin2 θ and T = ‖T‖e1.

Proof. Let f : Mn → Qn
ε × R be a pseudo-parallel hypersurface and fix a point x ∈ Mn.

Let {e1, . . . , en} be an orthonormal basis of TxM
n that satisfies

Afηei = λiei, ∀i ∈ {1, . . . , n}.

In this basis we write

T =
n∑
i=1

Tiei.

The pseudo-parallelism condition is equivalent to the following equations

(λi − λj)(λiλj + ε(1− (Ti)
2 − (Tj)

2))− φ) = 0, (2.2.2)

ε(λi − λk)TjTk = 0, ∀i 6= j 6= k 6= i. (2.2.3)

Recall we are assuming that T 6= 0, otherwise we know that f(Mn) is just a totally
geodesic slice Qn

ε × {t0}, for some t0 ∈ R. As a consequence, cos2 θ 6= 1.
If λi 6= λj are distinct eigenvalues of Afη , one of the following situations necessarily

occurs:
Situation 1: T /∈ span{ei, ej}. In this case, there exists k ∈ {1, . . . , n}−{i, j} such that
Tk 6= 0. By equation (2.2.3), we conclude that Ti = Tj = 0. So, T ⊥ span{ei, ej}. In
particular, by equation (2.2.2), we have that λiλj = −ε+ φ.
Situation 2: T ∈ span{ei, ej}. Using equation (2.2.2) we get λiλj = −ε cos2 θ + φ.

With these conditions, we analyse the number of eigenvalues, their multiplicity and prove
that T is a principal direction. Let’s suppose that Afη has at least three distinct eigenval-
ues, λ, µ and ν. We define A, B and C the sets of indexes corresponding to ν, λ and µ,
respectively. We know from Situations 1 and 2 that λµ, λν, µν ∈ {−ε cos2 θ + φ,−ε+ φ}.
So, at least two of these products are equal. If none of them is zero, and for example
λν = µν, we conclude that λ = µ, a contradiction. Therefore, one of them must be zero.
Moreover, we have proven that Afη admits at most two eigenvalues which are not zero.
So, we can suppose that Afη has exactly three distinct eigenvalues, λ, µ and ν = 0.

Because of λν = µν = 0, 0 6= λµ and 0, λµ ∈ {−ε cos2 θ + φ,−ε + φ}, we have two
cases to consider:
Case 1: 0 = −ε cos2 θ+φ. In particular λµ = −ε+φ. Since λν = µν = 0 = −ε cos2 θ+φ,
by Situation 2 we have that T ∈ span{ei, ej}, ∀i ∈ A, ∀j ∈ B ∪ C. But this occurs only
if card(A) = 1. So we conclude that 0 has multiplicity one and T = ‖T‖e1.
Case 2: 0 = −ε + φ. In particular, λν = µν = 0 = −ε + φ. By Situation 1 we
have that T ⊥ span{ei, ej}, ∀i ∈ A, ∀j ∈ B ∪ C. But this implies T = 0, which is a
contradiction.
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Remark 2.2.3. A hypersurface f : Mn → Qn
ε ×R is ψ-pseudo-symmetric if, and only if,

for every distinct indexes i, j, k, l ∈ {1, . . . , n} we have:

TjTk(λi − λk)(λj − λl) = 0, (2.2.4)

TjTk(ε(1− ‖T‖2) + λjλk − ψ) = 0, (2.2.5)

[ε(1− T 2
i − T 2

j ) + λiλj − ψ](λi − λj)λk
− ε(T 2

i − T 2
j )[ε(1− ‖T‖2) + λiλj − ψ] = 0. (2.2.6)

Corollary 2.2.4. Any pseudo-parallel hypersurface in Qn
ε × R is pseudo-symmetric.

Proof. Let f : Mn → Qn
ε × R be a φ-pseudo-parallel immersion. By Lemma 2.2.2, T

is a principal direction and we can suppose T = ‖T‖e1. With this simplification, the
pseudo-parallelism condition becomes

(ε+ λiλj − φ)(λi − λj) = 0, (2.2.7)

(ε(1− ‖T‖2) + λ1λj − φ)(λ1 − λj) = 0, (2.2.8)

for i, j > 1 mutually distinct. Analogously, the pseudo-symmetry condition with ψ = φ
becomes:

(ε+ λiλj − φ)(λi − λj)λ1 = 0, (2.2.9)

(ε+ λiλj − φ)(λi − λj)λk = 0, (2.2.10)

(ε(1− ‖T‖2) + λ1λj − φ)(ε‖T‖2 − (λ1 − λj)λk) = 0, (2.2.11)

for i, j, k > 1 mutually distinct. Putting (2.2.7) and (2.2.8) together with (2.2.9),(2.2.10)
and (2.2.11) and assuming that T 6= 0 we obtain the following condition,

ε‖T‖2(ε(1− ‖T‖2) + λ1λj − φ) = 0, ∀j > 1. (2.2.12)

If f is not umbilical, item (ii) in Lemma 3.1 of [70] and Lemma 2.2.2 imply that λ1 6= λj,
for all j ∈ {2, . . . , n}. Using (2.2.8) we get (2.2.12). If f is umbilical, we know f is
φ-pseudo-parallel for any function φ. In this case we choose φ = ε(1 − ‖T‖2) + λ2 and
conclude again that f is φ-pseudo-symmetric.

Remark 2.2.5. Although in space forms semi-parallelism is an extrinsic analogous to
semi-symmetry (a fact proved by J. Deprez and F. Dillen, see [33] and [41]), from the proof
of Corollary 2.2.4 we see that it does not occur in Qn

ε × R, since umbilical hypersurfaces
are semi-parallel but not semi-symmetric in general.

2.3 Classification of pseudo-parallel hypersurfaces of

Sn × R and Hn × R
In this section we prove the main result of the chapter and exhibit the classification

of pseudo-parallel hypersurfaces of Qn
ε × R.

Theorem 2.3.1. Let f : Mn → Qn
ε × R be a pseudo-parallel hypersurface with three

distinct principal curvatures. Then, Mn = Mn−1 × R and there exists a semi-parallel
hypersurface g : Mn−1 → Qn

ε such that either f(x, s) = (g(x), s) or f is given by the
equation (1.4.2) in terms of g and a linear function a : R → R with nowhere vanishing
derivative.
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Proof. By Lemma 2.2.2 we know that T is a principal direction of f .
If cos θ vanishes identically, then f is semiparallel and T = ∂

∂t
is tangent everywhere to

f . In this case Mn = Mn−1×R and there exists a semi-parallel hypersurface g : Mn−1 →
Qn
ε such that f(x, s) = (g(x), s) (see item (iv) in Theorem 2.1.5).

Assume now that cos θ is nowhere vanishing. Theorem 1.4.1 yields that there exists a
hypersurface g : Mn−1 → Qn

ε such that f is given by equation (1.4.2) in terms of g and a
function a : R→ R with non-vanishing derivative.

Since X(cos θ) = −〈AfηX,T 〉 = 0, for all X ∈ TMn, we have that cos θ is constant
over Mn. By Corollary 2 in [101] we conclude that a(s) is a linear funcion. By Lemma
2.2.2 the product of the non zero principal curvatures of f is constant and equals to
−ε sin2 θ. Using this information in equation (1.4.3), we conclude that AgsNs has two
distinct principal curvatures whose product is constant in x and also in s and it is equals
to −ε, since a′(s)/

√
1 + a′(s)2 = sin θ (see equation 8 in [101]). By Proposition 2.1.3 we

conclude that g is a semi-parallel hypersurface of Qn
ε .

With respect to pseudo-parallel hypersurfaces in f : Mn → Qn
ε × R with exactly two

principal curvatures, Lemma 3.1 in [70] provides that one of the principal curvatures has
multiplicity one and T is its corresponding principal direction. By Theorem 1.3.1, we
conclude that f is a rotation hypersurface. In the next proposition we prove indeed that
any rotation hypersurface of Qn

ε × R is pseudo-parallel.

Proposition 2.3.2. Let f : Mn → Qn
ε ×R be a rotation hypersurface. Then f is pseudo-

parallel with φ(s) = λ(s)µ(s) + ε cos2 θ(s), where λ and µ are its principal curvatures.

Proof. Let f : Mn → Qn
ε × R be a rotation hypersurface. By Theorem 1.3.1, its

Weingarten operator is given by diag(λ, µ, . . . , µ), and we conclude this proof taking
φ(s) = λ(s)µ(s) + ε cos2 θ(s) in (2.2.2).

Putting together Remark 2.2.1, the results obtained in [70], Theorem 2.3.1 and Propo-
sition 2.3.2, the Classification Theorem of pseudo-parallel hypersurfaces of Qn

ε ×R can be
stated.

Theorem 2.3.3 (Classification Theorem). Let f : Mn → Qn
ε × R be a pseudo-parallel

hypersurface. Then one of the following occurs:

(i) n = 2 and φ is the Gaussian curvature;

(ii) f is umbilical;

(iii) f is a rotation hypersurface;

(iv) f : Mn−1 × R → Qn
ε × R is given by f(x, s) = (g(x), s), for a semi-parallel hyper-

surface g : Mn−1 → Qn
ε ;

(v) There exists a semi-parallel hypersurface g : Mn−1 → Qn
ε such that f : Mn−1×R→

Qn
ε × R is given by equation (1.4.2) in terms of g and a linear function a : R → R

with nowhere vanishing derivative.

Remark 2.3.4. An interesting class of hypersurfaces in Qn
ε × R consists of those that

have constant sectional curvature, and as we observed in Remark 2.2.1, such hypersurfaces
are also pseudo-parallel. We could ask how these hypersurfaces fit in the Classification
Theorem. We recall that constant sectional curvature hypersurfaces in product spaces
were investigated by other authors. The surface case were studied by J. Aledo, J.M.
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Espinar and J.A. Gálvez, in [3] and [4]. Among their results there are uniform height
estimates for compact graphs and a proof of the nonexistence of complete surfaces of
constant Gaussian curvature c ∈ (−∞,−1)∪(0, 1) in S2(1)×R and c < −1 in H2(−1)×R.
For n ≥ 3, a full classification of constant sectional curvature hypersurfaces in Qn

ε ×
R was obtained by F. Manfio and R. Tojeiro in [81]. It was proven that for n ≥ 4,
constant sectional curvature hypersurfaces of Qn

ε × R must be open subsets of rotation
hypersurfaces. Nonrotational examples appear when n = 3, but all of them have 0 as a
principal curvature in the T -direction, and they can be constructed by means of Theorem
1.4.1 (see section 6 in [81]). The totally geodesic slice Q3

ε × {0} has constant sectional
curvature ε and appears in case (ii), while a flat surface g : M2 → Qn

ε is semi-parallel and
it gives rise (through equation (1.4.2)) to a flat hypersurface in case (iv). We conclude
from these works that we have examples of constant sectional curvature hypersurfaces for
each case appearing in Theorem 2.3.3.

As a consequence of Theorem 2.3.3, we can classify all pseudo-parallel hypersurfaces
in Qn

ε × R which have constant mean curvature.

Corollary 2.3.5. Let f : Mn → Qn
ε × R (n ≥ 3) be a pseudo-parallel hypersurface with

constant mean curvature. Then f is either totally geodesic, a rotation hypersurface with
constant mean curvature, or it is given as in item (iv) of Theorem 2.3.3, where g(Mn−1)
is an open part of Sk(c1)×Sn−k−1(c2) (resp. Hk(c1)×Sn−k−1(c2)) if ε = 1 (resp. ε = −1),
for some real constants c1, c2 satisfying 1

c1
+ 1

c2
= ε and some k ∈ {1, . . . , n− 2}.

Proof. If cos θ vanishes identically, f is given as in item (iv) of Theorem 2.3.3. Then g is
semi-parallel and has constant mean curvature. It follows easily that either g is umbilical
or isoparametric (i.e. its principal curvatures are constant) with two distinct principal
curvatures (see Proposition 2.1.3). In the first case, f is a rotation hypersurface of Qn

ε ×R
whose profile curve is a vertical line. In the second case, g(Mn−1) is an open part of
Sk(c1) × Sn−k−1(c2) (resp. Hk(c1) × Sn−k−1(c2)) if ε = 1 (resp. ε = −1), for some c1, c2

satisfying 1
c1

+ 1
c2

= ε and some k ∈ {1, . . . , n− 2}.
Thus, we can suppose that cos θ is nowhere vanishing.
When f is umbilical, its unique principal curvature is constant over Mn. Using Co-

dazzi’s equation for X ∈ {T}⊥, we conclude that:

0 = cos θ(〈T, T 〉X − 〈X,T 〉T ) = cos θ sin2 θX.

Then, sin θ vanishes identically and f(M) is an open part of a totally geodesic slice
Qn
ε × {t0}, for some real constant t0.

When f has exactly two distinct principal curvatures, it is a rotation hypersurface
with constant mean curvature. An explicit expression of the profile curve is obtained
using the formulas of Theorem 3 in [101].

Finally, we suppose that f has exactly three distinct principal curvatures. Then f is
given as in item (v) of Theorem 2.3.3. As we observed in the proof of Theorem 2.3.1, the
parallels gs of g are all semi-parallel. Therefore the product of the principal curvatures of
gs is equals to −ε. Moreover, since cos θ is constant, from equation (1.4.3) we conclude
that the mean curvature of gs is constant on x and s. Using these two informations, we
conclude that the principal curvatures of gs are constant on x and s.

On the other hand, by a direct computation, the principal curvatures λ̂(x) and µ̂(x)
of gs are related with the principal curvatures λ̃(x) and µ̃(x) of g at x ∈ Mn−1 by the
following expression (see [81]):

λ̂(x) =
ε+ cotε(s)λ̃(x)

cotε(s)− λ̃(x)
, µ̂(x) =

ε+ cotε(s)µ̃(x)

cotε(s)− µ̃(x)
,
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where cotε(s) := Cε(s)
Sε(s)

. Thus, imposing that λ̂(x) and µ̂(x) are constant on x and s, we

conclude that λ̂(x)µ̂(x) = ε, which is a contradiction.

In particular, we have also a classification of minimal pseudo-parallel hypersurfaces of
Qn
ε × R.

Corollary 2.3.6. Let f : Mn → Qn
ε ×R (n ≥ 3) be a pseudo-parallel hypersurface. If f is

minimal, then f is either a totally geodesic hypersurface, a minimal rotation hypersurface,
or ε = 1 and f is given as in item (iv) of Theorem 2.3.3, where g(Mn−1) is an open part
of Sk(n−1

k
)× Sn−k−1( n−1

n−k−1
) for some k ∈ {1, . . . , n− 2}.

Proof. We observe that when cos θ vanishes identically it is known that minimal semi-
parallel hypersurfaces of Hn(−1) are totally geodesic (see Corollary 6.3 in [9]). We also
recall that minimal rotation hypersurfaces of Qn

ε ×R were classified in [40] (see Theorems
6 and 7). The rest of the proof is similar to the proof of Corollary 2.3.5.

Remark 2.3.7. The converse statement of Corollary 2.2.4 is false. For example, let
g : Mn−1 → Qn

ε be a semi-symmetric hypersurface which is not semi-parallel. Such
hypersurfaces do exist and for n ≥ 4 its Weingarten operator has the following form:
diag(λ, 0, . . . , 0). By taking f : Mn−1 ×R→ Qn

ε ×R given by f(x, s) = (g(x), s), accord-
ing to equations (2.2.4)-(2.2.6) we obtain a semi-symmetric (and in particular pseudo-
symmetric) hypersurface of Qn

ε × R. But since g is not semi-parallel, by item (iv) of
Theorem 2.3.3 we conclude that f is not pseudo-parallel.

2.4 Pseudo-parallel surfaces of S3 × R and H3 × R
In this section we prove some auxiliary results concerning pseudo-parallel surfaces in

Qn
ε × R, that will be useful later.

Let f : M2 → Qn
ε ×R be a pseudo-parallel surface. It follows from Ricci equation that

R⊥(e1, e2)ξ ∈ span{α(X, Y );X, Y ∈ TM}, for all ξ ∈ NfM(x).

Thus, the equation (1.2.8) is equivalent to the following equation:

R⊥(e1, e2)αij = 〈α12, αij〉(α11 − α22) + 〈α22 − α11, αij〉α12, (2.4.1)

where αij = α(ei, ej). On the other hand, the pseudo-parallelism condition is equivalent
to the following two equations:

R⊥(e1, e2)αii = (−1)i2(K − φ)α12, (2.4.2)

R⊥(e1, e2)α12 = (K − φ)(α11 − α22), (2.4.3)

where

K = c(1− ‖T‖2) + 〈α11, α22〉 − ‖α12‖2 (2.4.4)

is the Gaussian curvature of M2. As a consequence, we have the next lemma.

Lemma 2.4.1. Let f : M2 → Qn
ε ×R be a pseudo-parallel surface. Then, the mean vector

field H of f satisfies R⊥(X, Y )H = 0, for all X, Y ∈ TM .

Proof. Immediate by equation (2.4.2), since H = 1
2
(α11 + α22).
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Proposition 2.4.2. Let f : M2 → Qn
ε × R be a surface with flat normal bundle. Then

f is a pseudo-parallel immersion.

Proof. Since f has flat normal bundle, by equations (2.4.2) and (2.4.3) we conclude that
f is φ-pseudo-parallel by taking φ = K, where K is the Gaussian curvature of M2.

In the following, we have two propositions that is useful to construct examples of
pseudo-parallel surfaces.

Proposition 2.4.3. Let f : Mm → Qn
c be an isometric immersion and let j : Qn

c → Qn
c×R

be a totally geodesic immersion. If f is φ-pseudo-parallel, then j ◦ f is φ-pseudo-parallel.

Proof. In this proof, we denote the second fundamental form of f and j ◦ f respectively
by αf and αj◦f . In the same way, we denote the normal curvature tensors of f and
j ◦ f respectively by R⊥f and R⊥j◦f . Since j is a totally geodesic immersion, we have the
following relations:

αj◦f (Z,W ) = j∗α
f (Z,W ),

R⊥j◦f (X, Y )αj◦f (Z,W ) = j∗R
⊥
f (X, Y )αf (Z,W ),

Therefore, applying Definition 2.1.8 we obtain

(R̃(X, Y ) · αj◦f )(Z,W ) = R⊥j◦f (X, Y )αj◦f (Z,W )− αj◦f (R(X, Y )Z,W )

− αj◦f (Z,R(X, Y )W )

= j∗R
⊥
f (X, Y )αf (Z,W )− j∗αf (R(X, Y )Z,W )

− j∗αf (Z,R(X, Y )W )

= φ{−j∗αf ((X ∧ Y )Z,W )− j∗αf (Z, (X ∧ Y )W )}
= φ{−αj◦f ((X ∧ Y )Z,W )− αj◦f (Z, (X ∧ Y )W )}
= φ[(X ∧ Y ) · αj◦f ](Z,W ).

Proposition 2.4.4. Let f : Mm → Qn
ε × R be an isometric immersion and let j :

Qn
ε ×R→ Qn+l

c ×R be a totally geodesic immersion. If f is φ-pseudo-parallel, then j ◦ f
is φ-pseudo-parallel.

Proof. Is analogous to the proof of Proposition 2.4.3.

2.5 Non-existence theorem for pseudo-parallel sur-

faces in S3 × R and H3 × R
Now we present our main result concerning pseudo-parallel surfaces in Qn

ε × R.

Theorem 2.5.1. Let f : M2 → Qn
ε ×R be a pseudo-parallel surface which does not have

flat normal bundle on any open subset of M2. Then n ≥ 4, f is λ-isotropic and

K > φ, (2.5.1)

λ2 = 4K − 3φ+ ε(‖T‖2 − 1) > 0, (2.5.2)

‖H‖2 = 3K − 2φ+ ε(‖T‖2 − 1) ≥ 0, (2.5.3)
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where K is the Gaussian curvature, λ is a smooth real-valued function on M2, H is the
mean curvature vector field of f and T is the tangent part of ∂

∂t
, the canonical unit vector

field tangent to the second factor of Qn
ε × R.

Conversely, if f is λ-isotropic then f is pseudo-parallel.

Before we give a proof of Theorem 2.5.1 we recall that f : M2 → Qn
ε × R is a λ-

isotropic surface if, for each x ∈ M , the ellipse of curvature {α(X,X) ∈ NfM(x);X ∈
TxM with ‖X‖ = 1} is a sphere with radius λ(x), where λ : M2 → R is a smooth
function. The following result, due to Sakaki in [91] plays a vital role in the proof of
Theorem 2.5.1. Its statement is:

Theorem 2.5.2. (see [91]) Let f : M2 → Q3
ε × R be a minimal surface with ε 6= 0. If f

is λ-isotropic, then f is totally geodesic.

Now we are ready to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Let us suppose that f : M2 → Qn
ε × R is pseudo-parallel with

non vanishing normal curvature. Combining equations (2.4.1) to (2.4.4) we get

〈α12, αii〉(α11 − α22) + {2(−1)i+1(K − φ) + 〈αii, α22 − α11〉}α12 = 0, (2.5.4)

{‖α12‖2 + (φ−K)}(α11 − α22) + 〈α22 − α11, α12〉α12 = 0. (2.5.5)

Next, we prove that {α12, α11 − α22} is linearly independent. We can suppose φ 6= K.
Otherwise, since 〈R⊥(e1, e2)ξ, ζ〉 = −〈R⊥(e1, e2)ζ, ξ〉, by equations (2.4.2) and (2.4.3) we
would have R⊥ = 0, which is a contradiction.

Notice that α12 6= 0 and α11 6= α22. In fact, if α12 = 0 then R⊥(e1, e2)α12 = 0 which
implies by equation (2.4.3) that α11 = α22, and in this case f is umbilical and has flat
normal bundle, a contradiction. If α11 − α22 = 0, then R⊥(e1, e2)(α11 − α22) = 0, which
implies by equation (2.4.2) that α12 = 0.

Assume that there exist λ, µ ∈ R such that λα12+µ(α11−α22) = 0. Then, by equations
(2.4.2) and (2.4.3) we get λ(α11 − α22) − 4µα12 = 0. If µ 6= 0 then (α11 − α22) = −λ

µ
α12

and thus
(
−λ2
µ
− 4µ

)
α12 = 0, which lead us to λ2 = −4µ2 < 0, a contradiction. So µ = 0,

and therefore λ = 0.
Using this and equations (2.5.4) and (2.5.5) we obtain

〈α12, α11〉 = 〈α12, α22〉 = 0, (2.5.6)

〈α22 − α11, αii〉 = (−1)i2(K − φ), (2.5.7)

‖α12‖2 = K − φ > 0. (2.5.8)

From equation (2.4.4) we get

〈α11, α22〉 = 2K − φ+ ε(‖T‖2 − 1), (2.5.9)

‖α11‖2 = ‖α22‖2 = 4K − 3φ+ ε(‖T‖2 − 1) > 0, (2.5.10)

‖α11 − α22‖2 = 4(K − φ) > 0, (2.5.11)

‖H‖2 = 3K − 2φ+ ε(‖T‖2 − 1). (2.5.12)

In particular, f is λ-isotropic with λ2 = 4K − 3φ+ ε(‖T‖2 − 1).
Now, we prove that n ≥ 4. Suppose that n = 3. Since f has non flat normal

bundle, for any x ∈ M2 we have that R⊥(x)(e1, e2) : NfM(x) → NfM(x) is a non
zero antisymmetric linear operator, defined in a two-dimensional vector space. Thus, by
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Lemma 2.4.1 we conclude that H(x) = 0. But from Theorem 2.5.2, we conclude that f
is totally geodesic and in particular, R⊥(x) = 0, which is a contradiction.

Conversely, let us assume that f is λ-isotropic. Set X = cos θe1 + sin θe2. Then

λ2 = ‖α(X,X)‖2

= (cos4 θ + sin4 θ)λ2 + 2 sin2 θ cos2 θ〈α11, α22〉
+ 4 sin3 θ cos θ〈α22, α12〉+ 4 sin θ cos3 θ〈α11, α12〉
+ 4 sin2 θ cos2 θ‖α12‖2.

Since λ does not depend on θ, taking the derivative with respect to θ we get

0 =
dλ2

dθ

∣∣∣∣
θ=0

=
d

dθ
(‖α(X,X)‖2)|θ=0 = 4〈α11, α12〉,

0 =
dλ2

dθ

∣∣∣∣
θ=π

2

=
d

dθ
(‖α(X,X)‖2)|θ=π

2
= −4〈α22, α12〉.

On the other hand, with Y =
1√
2

(e1 + e2) we get

λ2 = ‖α(Y, Y )‖2

=
1

4
{2λ2 + 4‖α12‖2 + 2〈α11, α22〉},

that is,
λ2 = 2‖α12‖2 + 〈α11, α22〉.

Using this and the Gauss equation we get

‖α12‖2 =
1

3
{λ2 −K + ε(1− ‖T‖2)}.

From the Ricci equation R⊥(e1, e2)αii = 〈α22 − α11, αii〉α12, i = 1, 2, we obtain

R⊥(e1, e2)αii = 〈α22 − α11, αii〉α12

= (−1)i2‖α12‖2α12

= (−1)i
2

3
{λ2 −K + ε(1− ‖T‖2)}α12,

Using the Ricci equation once more we obtain

R⊥(e1, e2)α12 = ‖α12‖2(α11 − α22)

=
1

3
{λ2 −K + ε(1− ‖T‖2)}(α11 − α22).

Therefore, taking φ = 4K−λ2+ε(‖T‖2−1)
3

, we conclude that f is pseudo-parallel according to
equations (2.4.2) and (2.4.3).

2.6 Some examples

We now introduce the first examples of semi-parallel and pseudo-parallel surfaces of
Q3
ε ×R which are not locally-parallel and semi-parallel, respectively, and that are not just

inclusions of surfaces of Q3
ε into Q3

ε × R.
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Example 2.6.1. A general construction of submanifolds of Qn
ε × R with flat normal

bundle and T as a principal direction can be found in [80], by Mendonça–Tojeiro. For
our purpose, based on this work, the construction becomes: let g : J → Q3

ε be a regular
curve and {ξ1, ξ2} an orthonormal set of vector fields normal to g. Put

g̃ = i ◦ j ◦ g,
ξ̃k = i∗j∗ξk, for k ∈ {1, 2},

ξ̃0 = g̃, ξ̃3 = i∗
∂

∂t
,

where j : Q3
ε → Q3

ε × R and i : Q3
ε × R → E5 are the canonical inclusions. If α =

(α0, α1, α2, α3) : I → Q2
ε ×R is a smooth regular curve with α′3(s) 6= 0, ∀s ∈ I, we have

the following isometric immersion f : M2 = J × I → Q3
ε × R given by

f̃(x, s) = (i ◦ f)(x, s) =
3∑

k=0

αk(s)ξ̃k(x). (2.6.1)

At regular points, f is an isometric immersion with flat normal bundle and T as a
principal direction. Conversely, if f : M2 → Q3

ε × R is an isometric immersion with
flat normal bundle and T as a principal direction, then f is given by (2.6.1) for some
isometric immersion g : Q3

ε ×R and some smooth regular curve α : I → Q2
ε ×R whose its

last coordinate has non vanishing derivative.
In particular, when dealing with pseudo-parallel surfaces in Q3

ε×R, at least those that
have T as a principal direction are fully described by this method.

We now construct two simple examples. Let us define

Cε(s) =

{
cos(s), if ε = 1

cosh(s), if ε = −1
and Sε(s) =

{
sin(s), if ε = 1

sinh(s), if ε = −1.

By taking

g̃(x) = (Cε(θ(x)), Sε(θ(x)), 0, 0, 0),

ξ̃1(x) = (0, 0, 1, 0, 0), ξ̃2(x) = (0, 0, 0, 1, 0),

α0(s) =
√

1− εd2, α1(s) = d cos s, α2(s) = d sin s, α3(s) = s.

where 0 < d < 1, if ε = 1, or d > 0, if ε = −1, and θ : R2 → R is the smooth function
given by

θ(u) =
u√

1− εd2
,

we obtain a semi-parallel surface in Q3
ε × R that is not locally-parallel.

Another example can be obtained by taking 0 < d < 1 and

g̃(x) = (0, cos(x), sin(x), 0, 0, 0),

ξ̃1(x) = (1, 0, 0, 0, 0), ξ̃2(x) = (0, 0, 0, 1, 0),

α0(s) = dSε(s), α1(s) = dCε(s), α2(s) =
√
ε(1− d2), α3(s) = s,

where the surface obtained is pseudo-parallel Q3
ε ×R but not semi-parallel since its Gaus-

sian curvature does not vanish. Also, notice that it is not contained in a totally geodesic
slice of the form Q3

ε × {t}, for some t ∈ R.
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Question 2.6.2. Are there other examples, up to isometries, of pseudo-parallel surfaces
in Q3

ε × R (ε 6= 0) for which T is not a principal direction?

The next three examples show us that for n > 3 there exists pseudo-parallel surfaces
with non vanishing normal curvature.

Example 2.6.3. Let S2
1/3 be the 2-sphere of sectional curvature 1

3
and consider f : S2

1/3 →
S4 the classical Veronese surface, given by

f(x, y, z) = (
1√
3
xy,

1√
3
xz,

1√
3
yz,

1

2
√

3
(x2 − y2),

1

6
(x2 + y2 − 2z2)),

which is a locally-parallel, minimal and λ-isotropic immersion (as we can see in [21], [61]
and [93]) in S4 with non vanishing normal curvature. If i : S4 → S4 × R is the totally
geodesic inclusion given by i(x) = (x, 0), then by Proposition 2.4.3 we have that i ◦ f is
a pseudo-parallel immersion in S4

1 × R with non vanishing normal curvature.

Conjecture 2.6.4. Up to isometries, there are no pseudo-parallel surfaces in Q4
ε×R with

non vanishing normal curvature that are minimal besides the surface in Example 2.6.3.

Example 2.6.5. It’s known by Chern in [25] that: “Any minimal immersion of a topo-
logical 2-sphere into S4 is a superminimal immersion”. So, by Theorem 2.5.1, we have
that any minimal immersion of a topological 2-sphere into a slice S4 × R with non van-
ishing normal curvature is pseudo-parallel with φ = 4K−1−λ2

3
. Moreover, if the Gaussian

curvature is not constant, the immersion is not semi-parallel.

Example 2.6.6. Let f : R2 → S5 be the surface given by

f(x, y) =
2√
6

(cosu cos v, cosu sin v,

√
2

2
cos(2u), sinu cos v, sinu sin v,

√
2

2
sin(2u)),

where u = 1√
2
x, v =

√
6

2
y.

This example, that appears in [92], is a minimal λ-isotropic flat torus with λ = 1√
2

and non vanishing normal curvature. In particular, f is a pseudo-parallel immersion in
S5 with φ = −1

2
.

Thus, if i : S5 → S5 × R is the totally geodesic inclusion given by i(x) = (x, 0), by
Proposition 2.4.3 we have that i ◦ f is a pseudo-parallel immersion in S5 × R with non
vanishing normal curvature.
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Chapter 3

Constant anisotropic mean curvature
surfaces

In this chapter we present the theory of constant anisotropic mean curvature surfaces.
We begin by introducing the variational problem whose critical points are the object of our
study. Then we derive the first variation formula for the anisotropic area functional, that
gives rise to the concept of anisotropic mean curvature, and we recall the second variation
formula and the stability operator. After it, we introduce the most fundamental surface
of constant anisotropic mean curvature: the Wulff shape. It is presented through a nice
geometric description known as the Wulff’s construction, and its algebraic formulation in
terms of the function of anisotropy is also presented. In the following section we define
the anisotropic Gauss map of a surface, the anisotropic analogous of the usual Gauss
map, but whose range now is the Wulff shape instead the unit sphere. We can recover the
anisotropic mean curvature of a surface by taking the derivative of its anisotropic Gauss
map. We finish this introduction chapter showing some interesting examples. Some
pictures of them and their isotropic counterparts are included. Among the examples we
present the CAMC cylinders, that will play a crucial role in the next chapter.

3.1 The variational problem

Let F : Sn → R be a smooth-positive function. Consider the following functional:

F(ψ) =

∫
Σ

F (N(x))dΣ, (3.1.1)

where ψ : Σ → Rn+1 is an immersed hypersurface with Gauss map N : Σ → Sn. Notice
that when F ≡ 1, F becomes the well-known area functional. We also recall the volume
functional, that is given by the following relation:

V(ψ) =

∫
Σ

〈ψ(x), N(x)〉dΣ. (3.1.2)

If U ⊂ Rn+1 is a bounded domain whose boundary is a finite union of smooth immersed
hypersurfaces {ψi : Σi → Rn+1}ki=1, the number

∑k
i=1 V(ψk) is the volume of U .

A natural question to ask is:

What are the critical points of the functional F?

27
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To answer this question we need to derive a variation formula for F . A smooth
variation (or deformation) of an immersed hypersurface ψ : Σ→ Rn is an application of
the form Ψ : (−ε, ε)× Σ→ Rn+1 given by

Ψ(t, x) = ψ(x) + s(t)ξ(x)

where s : (−ε, ε) → R is a smooth real-valued function with s(0) = 0 and ξ : Σ →
TRn+1 ≈ Rn+1 is a smooth vector field along Σ, called variation vector field. When
ξ(x) ⊥ ψ∗TxΣ we say that Ψ is a normal variation.

Let ψ : Σ → Rn+1 be a smooth, oriented immersed hypersurface. To obtain a first
variation formula for the functional F we consider a normal variation Ψ : (−ε, ε)× Σ →
Rn+1 of Σ given by:

ψt(x) = Ψ(t, x) = ψ(x) + tu(x)N(x).

where u : Σ→ R is a smooth function with compact support and N is the Gauss map of
ψ.

We recall that the first variation of the volume form dΣt and the Gauss map Nt of ψt
are given respectively by d

dt
dΣt = −nu(x)H(x) and d

dt
Nt(x) = − gradΣ u(x). Using these

informations together with the Divergence Theorem, the derivative of t 7→ F(ψt) at t = 0
becomes:

d

dt
F(Σt) =

d

dt

∫
Σ

F (Nt(x))dΣt =

∫
Σ

d

dt
F (Nt(x))dΣ +

∫
Σ

F (N(x))
d

dt
dΣt

=

∫
Σ

〈(gradSn F ) ◦N(x),− gradΣ u(x)〉dΣ− n
∫

Σ

u(x)H(x)F (N(x))dΣ

= −
∫

Σ

{divΣ(u · gradSn F ) ◦N)(x)− u(x) divΣ((gradSn F ) ◦N)}dΣ

− n
∫

Σ

u(x)H(x)F (N(x))dΣ

= −
∫
∂Σ

u(x)〈(gradSn F ) ◦N, η〉d(∂Σ) +

∫
Σ

u(x) divΣ((gradSn F ) ◦N)(x)dΣ

− n
∫

Σ

u(x)H(x)F (N(x))dΣ

= −
∫

Σ

u(x)[− divΣ((gradSn F ) ◦N)(x) + nF (N(x))H(x)]dΣ,

that is,

d

dt
F(Σt) = −

∫
Σ

u(x)[− divΣ((gradSn F ) ◦N(x) + nF (N(x))H(x)]dΣ. (3.1.3)

Definition 3.1.1. The quantity − divΣ((gradSn F )◦N)(x)+nF (N(x))H(x) that appears
in the integrand in equation (3.1.3) is called the anisotropic mean curvature of ψ with
respect to F and N at x ∈ Σ. We denote this quantity by Λ(x).

By equation (3.1.3) we obtain a conclusion: ψ is a critical point of the functional F
if, and only if Λ vanishes identically.

In this work, we are also interested in the study of the critical points of F among the
immersions that preserve volume. For this purpose, we have the following characteriza-
tion:

Proposition 3.1.2. Let F : Sn → R be a smooth positive function and let ψ : Σ→ Rn+1

be a smooth, oriented immersed surface. The following three statements are equivalent:
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i. the anisotropic mean curvature Λ of ψ with respect to F is constant Λ ≡ Λ0;

ii. for any compactly supported variation ψt of ψ that preserves the volume we have
that d

dt
F(ψt) = 0;

iii. for any compactly supported variation ψt of ψ we have that d
dt

[F(ψt)+Λ0V(ψt)] = 0.

To prove Proposition 3.1.2, we need the following auxiliary result.

Lemma 3.1.3. (see [75]) Let ψ : Σ → Rn+1 be an immersed hypersurface and let u :
Σ → R be a piecewise smooth real-valued function with compact support satisfying∫

Σ
u(x)dΣ = 0. Then there exists a normal variation ψt of ψ that preserves volume and

such that d
dt
ψt(x) = u(x)N(x) at t = 0, where N : Σ→ Sn is the Gauss map of ψ.

Proof of Proposition 3.1.2. We first prove that item [iii] implies item [ii]. Let ψt be a
normal variation of ψ that preserves volume. Then t 7→ V(ψt) is constant. Therefore
0 = d

dt
[F(ψt)− Λ0V(ψt)] = d

dt
F(ψt).

Now, let us assume that item [ii] implies item [i]. Let p ∈ Σ a point and choose D ⊂ Σ
a relatively compact domain that contains p in its interior. We define

Λ0 =

∫
D

Λ(x)dΣ∫
D

1dΣ
. (3.1.4)

Our task is to prove that Λ = Λ0 on D. Let us suppose that Λ(q) 6= Λ0, for some q ∈ D.
We define

D+ = {x ∈ D; Λ(x)− Λ0 > 0}, and D− = {x ∈ D; Λ(x)− Λ0 < 0}.

Since Λ is continuous (because H, F and N are continuous) we conclude that D+ and
D− are open subsets of D. Without loss of generality we can assume that q ∈ D+. By
the definition of Λ0 we have ∫

D

Λ(x)− Λ0dΣ = 0,

whence we conclude that D− is also non-empty. It is possible to choose positive smooth
functions v, w : Σ→ R such that p ∈ supp(v) ⊂ D+, supp(w) ⊂ D− and∫

D

(v(x) + w(x))(Λ(x)− Λ0)dΣ = 0. (3.1.5)

Put u := (v +w)(Λ−Λ0). We have that supp(u) ⊂ D+ ∪D−, and in particular u(x) = 0
for all x ∈ ∂D. Also, by equation 3.1.5 we have that

∫
Σ
u(x)dΣ = 0. Using Lemma 3.1.3,

there exists a normal variation ψt of ψ that preserves volume and satisfies

d

dt
ψt(x) = u(x)N(x).

Applying the first variation formula and using the hypothesis, we conclude at t = 0 that

0 =
d

dt
F(ψt) = −

∫
Σ

u(x)Λ(x)dΣ = −
∫

Σ

u(x)Λ(x)dΣ + Λ0

∫
Σ

u(x)dΣ

= −
∫

Σ

u(x)(Λ(x)− Λ0)dΣ = −
∫

Σ

(v(x) + w(x))(Λ(x)− Λ0)2dΣ < 0,
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leading to a contradiction. Therefore we conclude that Λ is locally constant, and since Σ
is connected, Λ ≡ Λ0, proving that item [i] is valid.

Finally, assume that item [i] is valid. By the formula (3.1.3) and the first variation of
the volume we have at t = 0 that

0 =
d

dt
[F(ψt) + Λ0V(ψt)] = −

∫
Σ

u(x)Λ(x)dΣ + Λ0

∫
Σ

u(x)dΣ

= −
∫

Σ

[Λ(x)− Λ0]u(x)dΣ.

Since u is a generic smooth compactly supported function on Σ, we conclude that Λ(x) =
Λ0, for all x ∈ Σ, which proves that item [iii] is valid.

Sometimes we refer a constant anisotropic mean curvature surface using the abbre-
viation CAMC-surface, or Λ-CAMC surface when we want to specify that it anisotropic
mean curvature is Λ.

The second variation of F is obtained in a similar way as we did for the first variation.
The computations and details can be found in [64]. Here we only recall that if ψ : Σ→ R
is an immersion with constant anisotropic mean curvature Λ, the second variation formula
of the functional F + ΛV is given by

d2

dt2
F(ψt) = −

∫
Σ

u(x) divΣ((D2F ◦N + F ◦N) gradΣ u)(x)dΣ

−
∫

Σ

‖(D2FN(x) + F (N(x))) · dNx‖2u(x)2dΣ, (3.1.6)

where D2Fy is the operator that represents HessSn Fy, that is,

〈D2FyX, Y 〉 = HessSn Fy(X, Y ), ∀X, Y ∈ TySn.

This formula motivates the following definition: denoting by C∞c (Σ) the space of com-
pactly supported smooth functions on Σ, the stability operator of F is the linear
operator L : C∞c (Σ)→ C∞c (Σ) given by:

Lu(x) := divΣ((D2F ◦N + F ◦N) gradΣ u)(x) + ‖(D2FN(x) + F (N(x))) · dNx‖2u(x).

In terms of the stability operator we can write equation (3.1.6) as

d2

dt2
F(ψt) = −

∫
Σ

uLudΣ.

If ψ : Σ→ Rn+1 is an isometric immersion with constant anisotropic mean curvature,
we say that ψ is stable if the stability operator L is negative-definite.

3.2 The Wulff’s construction

Let F : Sn → R a smooth positive function. For each x ∈ Sn, consider P (x) the
hyperplane orthogonal to the position vector x that lies at F (x)x. Then P (x) defines two
closed half-spaces of Rn+1, being one of them the half-space where x points outward, that
we call P−(x).
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Figure 3.1: The Wulff’s construction.

Definition 3.2.1. The Wulff shape of F is the defined as the boundary of the inter-
section of all the half-spaces P−(x) when x varies in Sn. We denote this set by WF .
Symbolically WF is given by

WF = ∂{y ∈ Rn+1; 〈y, x〉 ≤ F (x), ∀x ∈ Sn}. (3.2.1)

Notice that when F ≡ 1, WF becomes the n-dimensional sphere Sn.

Remark 3.2.2. In this work we always impose that

(HessSn F )y(·, ·) + F (y)〈·, ·〉 : TxΣ× TxΣ→ R (3.2.2)

is a positive symmetric bilinear form, for all x ∈ Σ. We call this assumption on F as the
convexity condition. The reason of this name will become clear now.

Consider the application G : Sn → Rn+1 given by:

G(y) = i∗(gradSn F )y + F (y)y, (3.2.3)

where i : Sn → Rn+1 is the canonical inclusion. For all X ∈ TxSn we have that

dGy(X) = (Di∗X gradSn F )y + 〈(gradSn F )y, X〉y + F (y)i∗X

= i∗∇X gradSn F − 〈gradSn F,X〉y + 〈(gradSn F )y, X〉y + F (y)i∗X

= i∗∇X gradSn F + F (y)i∗X.

From this equation we conclude that G is an immersion. Indeed, if dGy(X) = 0 for
some X 6= 0, then ‖∇X gradSn F‖ = F (y)‖X‖, but since we are assuming the convexity
condition on F , we have

0 = 〈dGy(X), dGy(X)〉 = ‖∇X gradSn F‖+ 2F (y)〈∇X gradSn F,X〉+ F (y)2‖X‖2

= ‖∇X gradSn F‖+ 2F (y)(HessSn F )y(X,X) + F (y)2‖X‖2

> ‖∇X gradSn F‖ − 2F (y)2‖X‖2 + F (y)2‖X‖2

= ‖∇X gradSn F‖ − F (y)2‖X‖2,
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which is a contradiction. We have also that

〈dGy(X), y〉 = 〈i∗∇X gradSn F + F (y)i∗X, y〉 = 0,

which means that the outward pointing Gauss map of G(Sn) is given by NW : x 7→ G−1(x).
Thus we are able to compute the second fundamental form of G. We have:

〈−d(NW ◦G)y(X), dGy(Y )〉 = −〈i∗X, dGy(Y )〉
= −〈i∗X, i∗∇Y gradSn F + F (y)i∗Y 〉
= −(HessSn F )y(X, Y )− F (y)〈X, Y 〉.

The convexity condition implies that G(Sn) has strictly positive Gaussian curvature, and
in particular, it encloses a strictly convex domain of Rn+1.

Now, since i∗ gradSn F is orthogonal to y we have

〈G(y), y〉 = F (y), (3.2.4)

whence we conclude that G(y) ∈ P (y). From the fact that NW (G(y)) = y and G(y) ∈
P (y) ∩ (G(y) + TG(y)G(Sn)), we conclude that P (y) = G(y) + TG(y)G(Sn). In particular,
by the convexity of G(Sn) we also conclude that G(Sn) is contained in P−(y). Therefore
G(Sn) is the Wulff shape WF .

Remark 3.2.3. It is useful to know that given a compact smooth hypersurface W ⊂ Rn+1

which bounds a strictly convex domain, we can recover the function F : Sn → R for which
W is its Wulff Shape. For this purpose, equation (3.2.4) gives a hint: if NW is the outward
pointing Gauss map of W , then NW : W → Sn is a diffeomorphism and we recover F by
just defining F (x) = 〈(NW )−1x, x〉.

An important feature of the Wulff shape is its minimizing property, which is the
content of the next Theorem:

Theorem 3.2.4. (Wulff’s Theorem, see Thm. 1.1 in [100]) Let F : Sn → R a smooth
positive function and let WF be its Wulff shape. Then F(WF ) ≤ F(ψ), among all
hypersurfaces ψ : Σ → Rn+1 enclosing the same volume as WF . Moreover, the equality
holds if and only if ψ(Σ) a rescaling of WF .

Remark 3.2.5. The Wulff’s construction were indeed formulated for integrands F : Sn →
R that are not neccessarly smooth. The same conclusion of Theorem 3.2.4 is valid, where
Riemannian manifolds give place to integral currents, a kind of more general spaces.

As a consequence Theorem 3.2.4 we conclude that WF has constant anisotropic mean
curvature and that it is stable. Actually, the Wulff shape plays the same role for the
anisotropic area functional F as the unit sphere Sn for the area functional. In [56], for
example, authors proved an anisotropic version of the famous Alexandrov Theorem (see
[6]):

Theorem 3.2.6. (see [56]) Let ψ : Σ→ Rn+1 be a compact hypersurface without bound-
ary embedded in Euclidean space, and let F : Sn → R be a positive, smooth function that
satisfies the convexity condition. If the anisotropic mean curvature of ψ with respect to
F is constant, then up to translations and homotheties, ψ(Σ) is the Wulff shape.

An anisotropic version of the Hopf Theorem was given independently by M. Koiso
and B. Palmer in [65] and by N. Ando in [7]. Namely, the Wulff shape WF is the only
topological 2-sphere immersed in R3 with constant anisotropic mean curvature. And many
other results concerning the Wulff shape can be found in the literature. For the interested
reader we mention for example [52], [53], [54], [55], [56], [65], [82] and [84].
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3.3 The anisotropic Gauss map

In this section we define the anisotropic version of the Weingarten operator, that
represents the differential of the anisotropic Gauss map and whose trace is the anisotropic
mean curvature. We compare the isotropic and anisotropic Weingarten operators and
rewrite the stability operator in terms of the last one.

Let us fix a smooth positive function F : Sn → R satisfying the convexity condition.
Consider an oriented immersed hypersurface ψ : Σ → Rn+1 with a fixed choice of Gauss
map, that we denote by N : Σ → Sn. Since the Wulff shape WF of F is a compact
smooth hypersurface that bounds a convex region of Rn+1, its pointing outward Gauss
map NW : WF → Sn is a diffeomorphism and the composition

ν := (NW )−1 ◦N : Σ→ WF (3.3.1)

is a well defined smooth application, that we call anisotropic Gauss map of ψ with
respect to F . For each p ∈ Σ, the normal space of WF at ν(p) is spanned by N(p), since
NW (ν(p)) = N(p). Then the differential of ν at p, which is an application from TpΣ
to Tν(p)WF , can be regarded as an application from TpΣ to itself. If A and AW are the
Weingarten operators of ψ(Σ) and WF with respect to N and NW , respectively, then

〈−dνp ·X, Y 〉 = 〈−d(NW )−1
N(p)dNp ·X, Y 〉 = 〈−A−1

W ◦ A ·X, Y 〉,

for any X, Y ∈ TpΣ, that is, −dνp is represented by AF := −A−1
W ◦ A : TpΣ → TpΣ, that

we call the anisotropic Weingarten operator of ψ with respect to F (and N).

Proposition 3.3.1. The anisotropic mean curvature satisfies:

Λ(p) = traceΣ(−dνp) = traceΣ(AF ).

Proof. First, we notice that

divΣ(gradSn F ◦N)p =
n∑

i,j=1

gij〈∇Xi(gradSn F ◦N), Xj〉

=
n∑

i,j=1

gij〈∇̃Xi(gradSn F ◦N), i∗Xj〉.

Thus, using the parametrization G : Sn → WF given in equation (3.2.3) and recalling that
(NW )−1 = G, we obtain

n∑
i,j=1

gij〈−dνp ·Xi, Xj〉 =
n∑

i,j=1

−gij〈dGN(p)dNp ·Xi, Xj〉

=
n∑

i,j=1

−gij〈i∗∇dNp·Xi gradSn F + F (N(p))dNpXi, i∗Xj〉

= −
n∑

i,j=1

gij〈∇dNp·Xi(gradSn F )N(p), Xj〉

+ F (N(p))
n∑

i,j=1

gij〈−dNpXi, Xj〉

= − divΣ(gradSn F ◦N)p + nF (N(p))H(p) = Λ(p).
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It is interesting to notice that the Wulff shape has constant anisotropic mean curvature
equals to −2, with respect to the outward pointing unit normal NW , since ν(p) = (NW )−1◦
NW (p) = p and therefore −dνp = −Id.

Another useful observation is the behaviour of the anisotropic mean curvature with
respect to homotheties. When ψ : Σ → Rn+1 is an isometric immersion with anisotropic
mean curvature Λ with respect to choice of a Gauss map N : ψ(Σ) → Sn, then for
any c 6= 0 the immersion ψ̃ : Σ → Rn+1 given by ψ̃(x) = cψ(x) has anisotropic mean
curvature Λ̃(x) = 1

c
Λ(x), with respect to Ñ : ψ̃(Σ) → Sn given by Ñ(ψ̃(x)) = N(ψ(x)),

for x ∈ Σ. Indeed, if {X1, . . . , Xn} is a basis of TpΣ, then the coefficients of the first
fundamental form of ψ and ψ̃ at p are respectively given by gij = 〈dψp(Xi), dψp(Xj)〉 and
g̃ij = 〈dψ̃p(Xi), dψ̃p(Xj)〉 = c2gij. Since ν̃(ψ̃(p)) = N−1

W (Ñ(ψ̃(p))) = N−1
W (N(ψ(p))) =

ν(ψ(p)), we have

Λ̃(p) := trace(−dν̃ψ̃(p)) =
n∑

i,j=1

g̃ij〈−dν̃ψ̃(p)dψ̃pXi, dψ̃pXj〉

=
n∑

i,j=1

gij

c2
〈−dνψ(p)dψpXi, cdψpXj〉

=
1

c

n∑
i,j=1

gij〈−dνψ(p)dψpXi, dψpXj〉

=
1

c
trace(−dνψp) =

1

c
Λ(p).

In particular, the image of the Wulff shape by the antipodal map has constant anisotropic
mean curvature equals 2 with respect to the inward point unit normal map.

There are some inequality relations involving the isotropic and the anisotropic Wein-
garten operators, as we can see in the next proposition.

Proposition 3.3.2. The following assertions are true:

(a) ‖AF‖2 = traceΣ(AtFAF ) =
h211
µ21

+
h212
µ21

+
h212
µ22

+
h222
µ22

;

(b) 4KF ≤ Λ2 ≤ ‖AF‖2 + 2KF ;

(c) 1
M2‖A‖2 ≤ ‖AF‖2 ≤ 1

m2‖A‖2;

(d) A2
F − ΛAF +KF Id = 0;

(e) traceΣ(A2
F ) = Λ2 − 2KF ;

(f) traceΣ(AAF ) = traceΣ(AFA) =
h211
µ1

+
h212
µ1

+
h212
µ2

+
h222
µ2

;

(g) H2 ≤ (h2
11 + h2

22) ≤ 2M2‖AF‖2,

wherem = inf{min{µ1(ν(p)), µ2(ν(p))}; p ∈ Σ} andM = sup{max{µ1(ν(p)), µ2(ν(p))}; p ∈
Σ} and KF := det(AF ).

Proof. Items (a), (e) and (f) are just computations. Items (c) is consequence of item (a).
Item (d) is the Cayley-Hamilton Theorem. Thus we prove only items (b) and (g). We
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have that

Λ2 =

(
h11

µ1

+
h22

µ2

)2

=
h2

11

µ2
1

+ 2
h11h22

µ1µ2

+
h2

22

µ2
2

=
h2

11

µ2
1

− 2
h11h22

µ1µ2

+
h2

22

µ2
2

+ 4
h11h22

µ1µ2

=

(
h11

µ1

− h22

µ2

)2

+ 4
h11h22

µ1µ2

≥ 4
h11h22

µ1µ2

≥ 4

(
h11h22 − h2

12

µ1µ2

)
= 4KF .

On the other hand, using item (a) we get

‖AF‖2 =
h2

11

µ2
1

+
h2

12

µ2
1

+
h2

12

µ2
2

+
h2

22

µ2
2

=

(
h11

µ1

+
h22

µ2

)2

− 2
h11h22

µ1µ2

+ h2
12

(
1

µ2
1

+
1

µ2
2

)
=

(
h11

µ1

+
h22

µ2

)2

− 2
h11h22

µ1µ2

+ h2
12

µ2
1 + µ2

2

µ2
1µ

2
2

≥
(
h11

µ1

+
h22

µ2

)2

− 2
h11h22

µ1µ2

+ 2h2
12

µ1µ2

µ2
1µ

2
2

=

(
h11

µ1

+
h22

µ2

)2

− 2
h11h22 − h2

12

µ1µ2

= Λ2 − 2KF .

Putting them together, we obtain

4KF ≤ Λ2 ≤ ‖AF‖2 + 2KF .

This proves item (b). To proof (g), we notice that

‖AF‖2 =
h2

11

µ2
1

+
h2

12

µ2
2

+
h2

12

µ2
1

+
h2

22

µ2
2

≥ h2
11

M2
+
h2

12

M2
+
h2

12

M2
+
h2

22

M2

≥ 1

M2
(h2

11 + h2
22)

and
H2 = (h11 + h22)2 = h2

11 + 2h11h22 + h2
22 ≤ 2(h2

11 + h2
22)

putting them together, we obtain

H2 ≤ 2(h2
11 + h2

22) ≤ 2M2‖AF‖2.

Now, we write the anisotropic mean curvature in terms of the isotropic principal
curvatures. It will be useful in the next chapter. For this purpose, let Σ ⊂ R3 be a
surface and let N : Σ → S2 be its Gauss map. Let us fix a point p ∈ Σ. Consider
{E1, E2} the principal directions of Σ at p, i.e.,

−dNpEi = κi(p)Ei, i ∈ 1, 2,
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where κ1(p) and κ2(p) are the principal curvatures of Σ at p. On the other hand, if {e1, e2}
are the principal directions of WF = G(S2) at G(N(p)), and µ1(N(p)), µ2(N(p)) are the
principal curvatures related to e1 and e2, respectively, we already know that

dGN(p)ei =
1

µi(N(p))
ei, i ∈ 1, 2,

Since we can identify TpΣ with TN(p)S2, we can write {E1, E2} in terms of the basis {e1, e2}
as:

E1 = a11(p)e1 + a21(p)e2,

E2 = a12(p)e1 + a22(p)e2,

with a11(p)2 + a21(p)2 = a12(p)2 + a22(p)2 = 1. In this way, if ν = G ◦N is the anisotropic
Gauss map of Σ, we have:

−dνpEi = −dGN(p)dNpEi = κi(p)dGN(p)Ei = κi(p)
2∑
j=1

aji(p)dGN(p)ej

=
2∑
j=1

κi(p)
aji(p)

µj(N(p))
ej.

Evaluating the anisotropic mean curvature we obtain

Λ = traceΣ(−dνp) =
2∑
i=1

〈−dνpEi, Ei〉

=
2∑
i=1

〈
2∑
j=1

κi(p)
aji(p)

µj(N(p))
ej,

2∑
k=1

aki(p)ek

〉

=
2∑

i,j=1

κi(p)
aji(p)

2

µj(N(p))
.

Defining γ1(p) = a11(p)2

µ1(N(p))
+ a21(p)2

µ2(N(p))
and γ2(p) = a12(p)2

µ1(N(p))
+ a22(p)2

µ2(N(p))
, we can write:

Λ(p) = γ1(p)κ1(p) + γ2(p)κ2(p). (3.3.2)

Thus, formula (3.3.2) relates the anisotropic mean curvature and the isotropic principal
curvatures. We remark that if

m := inf{µ1(y), µ2(y); y ∈ WF} and M := sup{µ1(y), µ2(y); y ∈ WF},

then we have that 1
M
≤ γ1(p), γ2(p) ≤ 1

m
, for all p ∈ Σ.

Before we end this section, we need to do some remarks about the Stability oper-
ator, that can be written in terms of the anisotropic Weingarten operator AF and the
Weingarten operator of the Wulff shape AW . Indeed, let us consider the second order
differential operator ∆F in Σ given by

∆Fu := divΣ(−A−1
W gradΣ u),

where AW is evaluated at the point ν(x) and u ∈ C2(Σ). When F ≡ 1, we have AW = −Id
and therefore ∆F is the usual Laplacian operator.
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As a consequence of this definition, we have:

Lu := divΣ(−A−1
W gradΣ u) + traceΣ(−A−1

W A2)u

= divΣ(−A−1
W gradΣ u) + traceΣ(AFA)u

= ∆Fu+ traceΣ(AFA)u

that is,
Lu := ∆Fu+ traceΣ(AFA)u

Remark 3.3.3. Consider a local frame {X1, . . . , Xn} on Σ. In this frame we can write:

∆Fu = −
n∑

i,j=1

gij{−A−1
W ∇XiXj(u)−Xi(−A−1

W Xj(u))}.

Thus, we conclude that ∆Fu depends only on the first and second derivatives of u, but not
on u. Moreover, it was proven in [71] that the operator ∆F is elliptic in Σ. Using this in-
formation we conclude that the stability operator L is also elliptic, and since traceΣ(AFA)
is a positive number, in view of the Maximum Principle (see Theorem A.1.3) if Lu = 0,
then u does not have an interior non-positive local minimum, unless u is constant.

Proposition 3.3.4. (see [26]) If ψ : Σ → R3 is an isometric immersion with constant
anisotropic mean curvature and N : Σ→ S2 is its Gauss map then

∆FN = − traceΣ(AFA)N.

3.4 Some examples

This section is devoted to show some classes of examples of CAMC-surfaces that is al-
ready known. Examples are useful in many sense. They provide a way to test conjectures
and help us to understand better the theory. They also permit us to compare similar
results with different anisotropy functions or with different ambient spaces. In the fol-
lowing subsections we present rotation and helicoidal examples with constant anisotropic
mean curvatures and the CAMC-cylinders, that play a vital role in the results of the next
chapter.

3.4.1 CAMC revolution surfaces

In the study of constant mean curvature surfaces of R3, the most important examples
are the Delaunay surfaces, i.e., the surfaces of revolution, found by C. Delaunay in [31].
Apart of the round spheres and round cylinders there are three more types of Delaunay
surfaces: unduloids, nodoids and catenoids. An interesting property of a Delaunay surface
Σ is that their profile curve can be generated by rolling a conic section C along a line
without slipping and taking the trace of one of the loci of C (see Fig. 3.2). Namely, when
C is a parabola, Σ is a catenoid; when C is an ellipse, Σ is an unduloid; and when C is a
hyperbola, Σ is a nodoid.

Besides being nice examples, Delaunay surfaces appear in a fundamental way in the
study of more general constant mean curvature surfaces. For example, in [67] it was shown
that the ends of any properly immersed surface with nonzero constant mean curvature in
R3 are asymptotic to a Delaunay surface. Also, Delaunay surfaces are useful to compare
with other constant mean curvature surfaces through the Maximum Principle.
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Figure 3.2: the unduloid (in red) as the geometric locus of a focus of a rolling ellipse (in
blue).

Revolution surfaces with constant anisotropic mean curvature was first studied by
Koiso and Palmer in [64]. We recall that in order to admit a rotationally symmetric
surface we need to impose that the function F : S2 → R is rotationally invariant, that
is, for some v ∈ S2 (the axis of rotation) and some function f : [−1, 1] → R we can
write F (w) = f(〈v, w〉). This condition is equivalent to require that the Wulff shape be
a rotation surface with axis parallel to v. The examples obtained in [64] are quite similar
to those of the isotropic case. If the Wulff shape is a rotation surface whose axis is, for
simplicity, parallel to e3 = (0, 0, 1) and whose profile curve is given by s 7→ (u(s), 0, v(s)),
where s is the arc length, then apart of the Wulff shape and the round cylinder with axis
parallel to e3, a Delaunay surface parametrized by ψ(s, t) = (α(s) cos t, α(s) sin t, β(s))
satisfies

I. α(u) = c
2u

if it is the anisotropic catenoid (the anisotropic minimal surface), for
some constant c > 0;

II. α(u) = u±
√
u2+Λc
−Λ

if it is the anisotropic unduloid, for some constants Λ < 0 and

c > 0, where α(u) is defined for |u| ≥
√
−Λc;

III. α(u) = u+
√
u2+Λc
−Λ

if it is the anisotropic nodoid, for some constants Λ < 0 and c < 0,
where α(u(s)) is defined for −∞ < s <∞.

In both items, β(u) =
∫ u

α′(u)(v◦u−1)′(u)du. Moreover, it was shown that anisotropic un-
duloids are embedded periodic surfaces, while the anisotropic nodoids are only immersed
and periodic, as occurs in the isotropic case.

Actually, the construction of anisotropic Delaunay surfaces is valid in the case where F
is defined only in an open part of S2 and the convexity condition does not hold everywhere.
But in our case where these two conditions hold, an additional information about catenoids
is valid: the profile curve is a graph over the whole of the vertical axis.

In [66] authors showed that the profile of anisotropic Delaunay surfaces can be obtained
as the trace of a point held in a fixed position relative to a curve that is rolled without
slipping along a line, generalizing the same construction of Delaunay in [31]. In the same
paper a more general construction of anisotropic Delaunay surfaces is given: instead of
the Wulff shape is assumed to be a surface of revolution, they only assume that it has the
property that all of its intersections with horizontal planes are mutually homothetic.

3.4.2 CAMC helicoidal surfaces

Another important class of surfaces are constituted by the helicoidal surfaces, that
is, those surfaces which are invariant under a helicoidal motion. It is known that heli-
coidal surfaces with constant mean curvature arise as isometric deformations of Delaunay
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Figure 3.3: Comparison between profile curves of unduloids, nodoids and the Wulff shapes.
The isotropic examples are coloured in red while their anisotropic counterpart are coloured
in blue. The Wulff shape here is given by {(x, y, z) ∈ R3; (x2 + y2)2 + z4 = 1}.

surfaces (see [17]). The best known example is the isometric deformation between the
catenoid and the helicoid.

By the nature of helicoidal motions, we need to impose again that the Wulff shape is
a rotation surface, and for simplicity, its axis is parallel to e3 = (0, 0, 1).

Any helicoidal surface can be parametrized by an application ψ : I × R → R3 whose
expression is:

ψ(r, θ) = (r cos θ, r sin θ, g(r) + λθ), (3.4.1)

where I is an interval of R and λ is a fixed real constant, the pitch of the surface. When
g is constant, for example, we have the classical helicoids.

As observed in [68], the classical helicoid has zero anisotropic mean curvature for
every rotationally symmetric anisotropic area functional. More generally, authors in [68]
derived a expression for the first derivative of g to obtain a helicoidal surface with constant
anisotropic curvature Λ through the representation in equation (3.4.1). Namely, g(r) can
be obtained by integrating the following equation:

[w(r)f(w(r))− w(r)2f ′(w(r))]rg′(r) =
Λr2

2
+ C,

where F (x, y, z) = f(z), w(r) = r√
r2+r2g′(r)2+λ2

and C is a real constant. When λ = 0, we

can recover the representation of anisotropic Delaunay surfaces that we showed in section
3.4.1.

Helicoidal surfaces can be written in another useful form, called twizzler representation:
the parametrization ψ : I × R→ R3 given by

ψ(s, t) = (α(s) cos(ωt)− β(s) sin(ωt), β(s) cos(ωt) + α(s) sin(ωt), t+ C), (3.4.2)
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where C and ω are real constants and s 7→ (α(s), β(s), 0) is a curve parametrized by arc
length called generating curve of ψ. Geometrically the surface is obtained as the orbit of
the generating curve under the helical action

t · (x, y, z) = ((x cos(ωt)− y sin(ωt), x cos(ωt) + y sin(ωt)), z + t).

We define the curve

η1(s) := −(α′(s)α(2) + β′(s)β(s)) and η2(s) := α(s)β′(s)− β(s)α′(s),

called treadmill sled of ψ. Geometrically this curve is obtained as the trace of the origin
when the curve (α, β) rolls on a treadmill located at the origin which is aligned along the
x-axis. For example, the treadmill sled of a circle with center at the origin is just a point,
while the treadmill sled of a circle of radius R whose center is at a distance r of the origin,
is a circle of radius r with center (0, R).

As showed in Theorem IV.I of [68], a necessary and sufficient condition for a helicoidal
surface represented in equation (3.4.2) have constant anisotropic mean curvature Λ is

Λ(η2
1 + η2

2) +
2η2

w

(
ωη1√

1+ω2η21

)√
1 + ω2η2

1

+ A = 0,

where A is a real constant and w(z) = 1
f(z)−zf ′(z) . We can recover the curve s 7→

(α(s), β(s)) through the expression (see Prop. IV.I in [68]):

(α(s), β(s)) = (η2(s) sin(ω0)− η1(s) cos(ω0),−η1(s) sin(ω0)− η2(s) cos(ω0)),

where ω0 =
∫

1
η21
dη2.

3.4.3 CAMC cylinders

One of the simplest kind of surfaces are cylinders. In the isotropic case, cylinders with
constant mean curvature are included in the family of rotation examples. However we
notice that cylinders of constant anisotropic mean curvature is known for any choice of
anisotropy function. Indeed, in [46] authors classify the so called anisotropic isoparametric
hypersurfaces of the Euclidean space, i.e., hypersurfaces whose anisotropic Weingarten
operator is constant. Apart of hyperplanes and homotheties of the Wulff shape, the
unique example of anisotropic isoparametric hypersurface in the Euclidean space are the
CAMC-cylinders (“Wulff shape cylinder” in the nomenclature of [46]). In this thesis,
cylinders with constant anisotropic mean curvature will play a vital role in Theorem
4.4.1. Thus, for completeness present the detailed construction of such cylinders in R3 in
the following proposition.

Proposition 3.4.1. (see [46]) Let F : S2 → R, be a smooth, positive function and let
WF be its Wulff shape. For each v ∈ S2, there exists a curve Γ such that the cylinder Cv
parametrized by ψ(s, t) = Γ(s)+tv (where s is a parameter for Γ) is a CAMC surface with
Λ = −2. Moreover, up to translations, such a cylinder is unique and if πv : R3 → {v}⊥
denotes the orthogonal projection onto the plane {v}⊥ and Ωv = int(πv(WF )), then πv(Γ)
lies inside Ωv. In particular, up to translations Cv intersects WF transversally.

Proof. Let us considerG : S2 → R3 given byG(x, y, z) = gradS2 F (x, y, z)+F (x, y, z)(x, y, z),
which is a parametrization of WF . Given v ∈ S2, we consider the great circle Γ̃ = S2∩{v}⊥
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and we define Γ := G(Γ̃). Then we define ψ(s, t) = Γ(s) + tv, whose image is a cylinder
that we call Cv.

Let s be an arc length parameter to Γ̃, which also works as a parameter for Γ (since
G is a diffeomorphism) and denote by NW and AW the Gauss map and its Weingarten
operator with respect to WF , respectively. Notice that AW is negative-definite, since WF

is convex and NW points outward WF . Also, we recall that NW = G−1. We claim that Cv
is well defined, that is, {Γ′(s), v} is linearly independent for all s. Indeed, if Γ′(s0) were
parallel to v for some s0, we would have

〈NW (Γ(s0)), v〉 = 〈Γ̃(s0), v〉 = 0

⇒〈dNW (Γ′(s0)), v〉 = 0

⇒〈dNW (Γ′(s0)),Γ′(s0)〉 = 0.

But 〈dNW (Γ′(s0)),Γ′(s0)〉 = −〈AWΓ′(s0),Γ′(s0)〉 > 0. We have a contradiction.
Now, notice that the outward pointing unit of Cv at ψ(s, t) coincide with Γ̃(s), the

outward unit normal of Γ̃ in {v}⊥. Indeed, we have that

〈Γ̃(s),Γ′(s)〉 =
d

ds
〈Γ̃(s),Γ(s)〉 − 〈Γ̃′(s),Γ(s)〉

=
1

2

d

ds
〈Γ̃(s), (gradS2 F )Γ̃(s) + F (Γ̃(s))Γ̃(s)〉

− 1

2
〈Γ̃′(s), (gradS2 F )Γ̃(s) + F (Γ̃(s))Γ̃(s)〉

=
1

2

d

ds
F (Γ̃(s))− 〈Γ̃′(s), (gradS2 F )Γ̃(s)〉 = 0.

Thus, the anisotropic Gauss map of Cv evaluated at ψ(s, t) is given by ν(s, t) = G(ñ(s)),
whence we conclude that

∂sψ(s, t) = Γ′(s)

∂tψ(s, t) = v

∂sν(s, t) = (G ◦ ñ)′(s) = Γ′(s) = ∂sψ(s, t)

∂tν(s, t) = 0.

Therefore ∂sψ(s, t) and ∂tψ(s, t) are anisotropic principal directions with anisotropic prin-
cipal curvatures −1 and 0, respectively, whence we conclude that Λ = trace−dν(s,t) = −1.

Also by the fact that the outward unit normal at ψ(s, t) is Γ̃(s), we conclude that πv(Γ)
coincides with ∂Ωv. In particular πv(Γ) is a planar convex curve.

Finally, we replace Γ by its image under the half scale homothety about the origin.
The resulting cylinder has constant anisotropic mean curvature −2 with respect to to
its outward pointing Gauss map and up to translations, it intersects the Wulff shape
transversally.
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Figure 3.4: Example of a CAMC anisotropic cylinder for WF = {(x, y, z) ∈ R3; (x2 +
y2)2 + y4 = 1}.



Chapter 4

Main results

In this chapter, we present the main results of this thesis. The first main result is
a Bernstein-type theorem for CAMC multigraphs, which states that the only CAMC
complete multigraphs are the planes. For its proof, we use some ideas found in [51].
Although this theorem is important by itself, it also has nice applications: for example,
one interesting consequence is our second main result, which states that complete CAMC
surfaces whose Gaussian curvature does not change sign are either CAMC cylinders or
homotheties of the Wulff shape, generalizing the isotropic version proved by T. Klotz and
R. Osserman in [63].

Another consequence of the Bernstein-type Theorem for CAMC multigraphs is the
third main result of this chapter: uniform height estimates for CAMC graphs over
closed domains with boundary contained in a plane. These estimates depend only on
the anisotropic mean curvature. As a corollary, we also obtain height estimates for com-
pact CAMC surfaces with planar boundary, with the additional hypothesis that the Wulff
shape is symmetric with respect to the plane which contains the boundary of the surface.
Using these estimates, we are able to prove, under certain hypothesis, that any properly
embedded CAMC surface with finite topology and at most one end is in fact the Wulff
shape, up to a homothety.

Our main difficulty in generalize such theorems for CAMC surfaces relies on the fact
that the anisotropic mean curvature is not necessarily invariant under reflections of the
ambient space, since F can assume different values in a point and its reflected image.
Because of this difficulty, part of this chapter is devoted to prove some auxiliary results:
a Compactness Theorem is useful to obtain complete Λ-CAMC surfaces as a limit of
compact pieces of a sequence of surfaces whose anisotropic mean curvature converges to
Λ; another useful result are uniform estimates for the diameter of horizontal slices of
Λ-CAMC graphs over closed domains, whose boundary is contained in a plane; we also
obtained a priori second fundamental form estimates for surfaces with bounded anisotropic
mean curvature and whose Gauss maps omit a disk. With these three Theorems we are
able to prove the Height Estimates for CAMC graphs.

In this chapter, all surfaces will have anisotropic mean curvature computed with re-
spect to a positive, smooth function F : S2 → R which satisfies the convexity condition
3.2.2.

4.1 Compactness theorem

We begin recalling a well-known result in surface theory that can be found in [88].

43
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Theorem 4.1.1. (see [88], Prop. 2.3) Let Σ be an immersed surface in R3 whose second
fundamental form A satisfies |A| < 1

4δ
for some constant δ > 0. Then for any x ∈ Σ with

dΣ(x, ∂Σ) > 4δ there is a neighborhood of x in Σ which is a graph of a function u over
the Euclidean disk of radius

√
2δ centered at x in the tangent plane of Σ at x. Moreover,

u satisfies

|u| < 2δ, | gradR2 u| < 1 and |HessR2 u| < 1
δ
.

Our first auxiliary result is the following Compactness Theorem:

Theorem 4.1.2. Let {Σn}n be a sequence of CAMC surfaces (possibly with boundary)
in R3. For each n ∈ N, take pn ∈ Σn and assume that the following conditions hold:

(i) There exists a sequence of positive numbers {rn}n with rn → ∞ such that the
geodesic disks DΣn(pn, rn) centered at pn of radius rn are well defined and contained
in the interior of Σn, i.e., dΣn(pn, ∂Σn) ≥ rn;

(ii) pn → p for a certain p ∈ R3;

(iii) If |σn| denotes the length of the anisotropic second fundamental form of Σn, then
there exists C > 0 such that |σn(x)| ≤ C for every n ∈ N and every x ∈ Σn;

(iv) Λn → Λ ∈ R, where Λn denotes the (constant) anisotropic mean curvature of Σn.

Then for any k ≥ 2 there exists a subsequence of {Σn}n that converges uniformly on
compact sets in the Ck-topology to a complete (possibly non-connected) immersed sur-
face Σ without boundary, that passes through p, with bounded curvature and constant
anisotropic mean curvature Λ.

Remark 4.1.3. As a consequence of item (c) in Proposition 3.3.2, the condition (iii) in
Theorem 4.1.2 can be replaced by the existence of a constant C ′ > 0 such that the norm
of the isotropic second fundamental form An of Σn satisfies ‖An‖ ≤ C ′, for every n ∈ N
and every x ∈ Σn.

Proof of Theorem 4.1.2. The proof is based on the ideas found in [15].
1st Part: In view of items (i) and (iii), the conditions of Theorem 4.1.1 is verified.

Thus there exist constants δ,M > 0 that only depend on C (and not on Λn or Σn) such
that for n sufficiently large:

a. an open neighborhood of pn ∈ Σ is the graph of a function un defined over the
Euclidean disk Dδ centered at the origin with radius δ in TpnΣn.

b. the C2-norm of un in Dδ is not greater than M .

Since each Σn has anisotropic mean curvature Λn, choosing adequate coordinates
(xn, yn, zn) in R3 so that TpnΣn coincides with the plane {zn = 0}, each function un
is a solution in Dδ of the anisotropic mean curvature equation:

Λn = A0(p, q)F̃ (Nn) +
4∑
i=1

Ai(p, q)F̃xi(Nn) +
∑

1≤i≤j≤4

Ai,j(p, q)F̃xixj(Nn) (4.1.1)

where A0, Ai and Ai,j are as in equation (A.3.1). We notice that such equations are
quasilinear elliptic PDE’s whose coefficients of second order depends smoothly on the
derivatives of un.
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We now use a trick that allow us to use the Schauder estimates for linear second-order
PDE’s in order to obtain a uniform boundedness of {un}n in the C2,α-norms over compact
domains. For each n ∈ N, consider the following linear second-order PDE:

Ln[u] := ãn(xn, yn)
∂2u

∂x2
n

+ b̃n(xn, yn)
∂2u

∂xnyn
+ c̃n(xn, yn)

∂2u

∂y2
n

= Λn, (4.1.2)

where the coefficients ãn, b̃n and c̃n are the same as the second order coefficients of
4.1.1, but evaluated on the solution un(xn, yn) of 4.1.1 and its first-order derivatives. By
construction, Ln[un] = Λn and ãn, b̃n and c̃n depends smoothly on the derivatives of un.

Notice that condition (b) above automatically implies that {un}n is uniformly bounded
in the C1,α(Dδ)-norm, for all 0 < α < 1. Thus, the coefficients of the equations (4.1.2)
are all uniformly bounded in the C0,α(Dδ)-norm. Then, using the Schauder estimates (see
[47], Corollary 6.3, or Theorem A.4.3), for any 0 < δ′ < δ we conclude that there exists
a constant C ′ (again independent of n) such that ‖un‖ ≤ C ′ in the C2,α(Dδ′)-norm. In
particular, all coefficients of L[un] = Λn are uniformly bounded in the C1,α(Dδ′)-norm.
Using a bootstrap argument, we eventually obtain

‖un‖Ck,α(Dδ′ )
≤ C ′′, 0 < α < 1,

for some constant C ′′ independent of n.

Thus we may apply the Arzela-Ascoli Theorem. There is a subsequence {un}n∈N1 of
{un}n∈N that converges on Dδ′ in the Ck-topology to a function u ∈ Ck(Dδ′), which by
item (iv) is a solution of

Λ = A0(p, q)F̃ (N) +
4∑
i=1

Ai(p, q)F̃xi(N) +
∑

1≤i≤j≤4

Aij(p, q)F̃xixj(N),

that is, the graph Σ of u is a Λ-CAMC surface in R3 with Gauss map N , that passes
through p and has second fundamental form bounded by C, by items (ii) and (iii).

2nd Part: Consider some y ∈ Dδ′ , and let q ∈ Σ be the corresponding point in the graph
of u. For each n ∈ N1 there exist points qn ∈ R3 in the graphs of un, all corresponding
to y. It is clear that {qn}n∈N1 converges to q. This means that {qn}n∈N1 and q can play
the same role as {pn}n∈N and p did in the first part of the proof. Thus, passing to a
subsequence if necessary so that condition (i) in the statement is fulfilled, we can repeat
the same process above to obtain a Λ-CAMC surface in R3 that extends Σ and is well
defined around q as a vertical graph over the disk of radius δ′ centered at the origin of
TqΣ.

Applying the argument of the last paragraph with a suitable choice of the points
y ∈ Dδ′ , it is possible, after a finite number of steps, to extend Σ in a geodesic disk
centered at p with radius δ1 := (2 − 1

2
)δ′. More generally, replacing Dδ′ by Dδ1 we can

extend Σ in a geodesic disk of radius δ2 = (3 − 1
2
− 1

4
)δ′, and proceeding inductively,

for any radius δl = (l + 1 −
∑l

j=1
1
2j

)δ′, with l ∈ N. By a standard diagonal process Σ
can be extended to a complete Λ-CAMC surface (which will also be denoted by Σ), that
passes through p, and whose second fundamental form is bounded by C. Moreover, Σ is
by construction a limit in the Ck topology on compact sets of the diagonal subsequence
of {Σn}n∈N mentioned above. Finally, it is important to observe that other connected
components could also appear in this process. This completes the proof.
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4.2 Second fundamental form and horizontal diame-

ter estimates

The next lemma is based in an analogous result by W. Meeks, in [78]. It gives estimates
for the connected components of horizontal slices of a CAMC graph with planar boundary,
and it will be useful later. Put in other words, the geometrical meaning of this lemma
is that, from a certain height of the planar boundary, the connected components of the
graph are contained in a cylinder of uniform radius.

Lemma 4.2.1. Let Σ ⊂ R3 be a graph z = u(x, y) over a closed (not necessarily bounded)
domain Ω ⊂ R2, with zero boundary values. Assume that Σ has constant anisotropic mean
curvature Λ 6= 0. Let d be the diameter of WF (the supremum of the Euclidean distance
between two of its points) and put R = d

√
3/|Λ|. Then, for every t > 2R, the diameter

of each connected component of Σ ∩ {|z| = t} is at most 2R. In particular, all connected
components of Σ ∩ {|z| ≥ t} for t > 2R are compact.

Proof. The proof is based on the ideas of Theorem 4 in [5] (see also Theorem 6.2 in [43]),
which in turn is a simplification of the original proof due by Meeks in [78], Lemma 2.4.
Here, for simplicity, we assume Λ = 2. The general case follows by taking a homothety.
Let P (t) be the foliation of R3 by horizontal planes, being P (t) the plane at height t.
Consider W the image of the Wulff shape WF by the antipodal map. In other words,
W has anisotropic mean curvature equals to 2 with respect to the inward pointing unit
normal vector. It is possible to show that W is contained in some sphere of radius R. To
fix ideas, let õ denote the center of such a sphere.

Since Σ is a graph, its Gauss map N for which the anisotropic mean curvature is
evaluated satisfies either 〈N, e3〉 < 0 or 〈N, e3〉 > 0 on Σ. Without loss of generality,
let us suppose that the first case occurs. Then, by the maximum principle we can also
suppose that Σ ⊂ {z ≥ 0}, that is, u is non-negative. Indeed, if there exists an interior
point q ∈ Ω where u(q) < 0, considering ô ∈ W as the highest point of W relative to
e3, since BR2(q, R) ∩ Ω is compact, for very negative values of s, the image W (s) of W
by the translation that takes ô to q + se3 does not intersect Σ. Thus, increasing s we
eventually obtain an interior contact point between W (s) and Σ. In this scenario, the
normals of W (s) and Σ coincide at the contact point, and locally, W (s) lies above Σ.
This contradicts the Maximum Principle.

Let us suppose that the theorem is not true. Then for some t > 2R there exists at least
one such connected component C(t) of Σ(t) := P (t) ∩ Σ whose diameter is greater than
2R. Without loss of generality we can also assume that P (t) intersects Σ transversally.
Thus, the connected components of Σ(t) are disjoint regular simple curves which do not
touch ∂Ω×{t}. Moreover, by the Jordan-Brower Theorem, these curves are the boundary
of connected regions in P (t) whose points lie below the graph of u (see Fig. 4.1).

Denote by Ω(t) ⊂ P (t) the region of P (t) bounded by C(t). We can find two points
p, q ∈ Ω(t) such that dR3(p, q) > 2R. Let β : [a, b]→ Ω(t) be a simple curve contained in
Ω(t) joining p to q and such that the Euclidean distance from p to q is maximal, among
the points of β. Let R the “rectangle” given by

R = {αs(r); s ∈ [a, b], r ∈ [0, t]}

where αs is the geodesic with initial data αs(0) = β(s) and (αs)
′(r) = −e3, being r an arc

length parameter for αs.
Since Σ is a graph and β lies in Ω(t), we conclude that R ⊂ Q, where Q is the

connected region of R3 between Σ and the plane P (0) = {z = 0}. Moreover, if η̂ is a
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Figure 4.1: in yellow, u−1([t,+∞)); in blue, u−1({t}); and in red, u−1({s}), for s > t.

horizontal unit vector orthogonal to p−q, by construction of β, R divides the solid region

S = {x+ lη̂;x ∈ R, l ∈ R}

in two connected components, C1 and C2, with ∂C1 ∩ ∂C2 = R.
Let p̃ ∈ R be a point whose distance to ∂R is greater than R. Such a point exists,

since the distance between P (0) and P (t) and the distance between αa and αb are both
greater than 2R. Define η as the horizontal line passing through p̃, parallel to η̂. Notice
that the distance of any point in η to ∂S is greater than R.

Let r be a parameter for η and consider, for each r ∈ R, the translation of the
Wulff shape from õ to η(r), which we will denote by W (r). Note that W (r) is contained
in the interior of S, for any r ∈ R. Also, for r sufficiently large, W (r) is completely
contained in C1, since R is compact. We then decreases r and consider only the piece
W̃ (r) := W (r) ∩ C2 which has gone through R. As we decrease r more and more, we
obtain one of the following two cases: either W̃ (r) could go through R completely, and
end up being entirely contained in Q (Fig. 4.2 (a)(b)(c)) or we obtain a first contact point
between W̃ (r) and ∂Q (Fig. 4.2 (d)(e)). In the first case we can move W̃ (r) upwards until
it reaches a first contact point with Σ. However, in both cases the contact point between
W̃ (r) and Σ occurs in the inner side of Σ, since W̃ (r) ⊂ Q. Moreover, the normal vectors
of W̃ (r) and Σ coincide at the contact point and W (r) is locally above Σ, whence we
conclude that both surfaces agree, by the Maximum Principle. This finishes the proof.

(a) (b) (c)

(d) (e)

Figure 4.2: two possible scenarios to obtain an inner contact point
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We recall a very important theorem due by Jenkins: a Bernstein’s Theorem for
anisotropic minimal surfaces.

Theorem 4.2.2. (see [62], Cor. pg. 198) Let Σ be an anisotropic minimal surface.
Assume that Σ is oriented and complete. If its Gauss map omits a disk of S2, then Σ is
a plane.

Now we are in conditions to present a Second Fundamental Form Estimates in terms
of the anisotropic mean curvature and the Gauss map.

Theorem 4.2.3. Let M,d, ρ be positive constants. Then there exists C = C(M,d, ρ) > 0
such that the following assertion is true:

Let Σ be any complete, immersed oriented surface in R3 with constant anisotropic
mean curvature Λ, possibly with non-empty boundary. Denote by N and σ its Gauss
map and its second fundamental form, respectively. Assume that

(i) |Λ| ≤M ;

(ii) N(Σ) omits a spherical disk of radius ρ.

Then for any p ∈ Σd := {x ∈ Σ; dΣ(x, ∂Σ) ≥ d}, we have

|σ|(p) ≤ C.

Here dΣ and |σ| denotes the intrinsic distance on Σ and the norm of the anisotropic second
fundamental form of Σ, respectively.

Proof. The idea of this proof is based on some of the arguments of Theorem 4.2, in [15].
Arguing by contradiction we are able to exhibit an anisotropic minimal graph that is
complete, whose second fundamental form is not identically zero. It contradicts Theorem
4.2.2.

Suppose that for each n ∈ N there is an isometric immersion fn : Σn → R3 with
constant anisotropic mean curvature Λn and Gauss map Nn : Σn → S2 verifying

(a) |Λn| ≤M ;

(b) Nn(Σn) omits a spherical disk of radius ρ;

and a point pn ∈ Σn such that dΣn(pn, ∂Σn) ≥ d but |σn(pn)| > n. Here dΣn and σn
denote the intrinsic distance on Σn and the second fundamental form of fn, respectively.
Passing to a subsequence, if necessary, we can suppose that for all n ∈ N, Nn(Σn) omits
the same open spherical disk of radius ρ/2. For convenience, we can change the Euclidean
coordinates and assume that such disk is centered in the north pole of S2.

Consider the compact intrinsic metric disk Dn = DΣn(pn, d/2) in Σn, whose distance
from ∂Σn is at least d/2. Let qn be the maximum on Dn of the function

hn(x) = |σn(x)|dΣn(x, ∂Dn), x ∈ Dn.

Clearly qn lies in the interior of Dn, as hn vanishes in ∂Dn. Putting λn = |σn(qn)| and
rn = dΣn(qn, ∂Dn), by hypothesis we have

λnrn = |σn(qn)|dΣn(qn, ∂Dn) = h(qn) ≥ h(pn) (4.2.1)

= |σn(pn)|dΣn(pn, ∂Dn) =
d

2
|σn(pn)| > dn

2
.
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Since rn = dΣn(qn, ∂Dn) ≤ d
2
, we conclude that λn →∞ as n→∞. Also, notice that for

every zn ∈ BΣn(qn, rn/2) we have (see Fig. 4.3)

dΣn(zn, ∂Dn) >
rn
2

=
1

2
dΣn(qn, ∂Dn) (4.2.2)

Consider now the immersed oriented surfaces gn : DΣn(qn, rn/2) → R3 obtained by

Figure 4.3: auxiliary
illustration exhibit-
ing constructions
done in the proof.

applying a rescaling of factor λn to the restriction of fn to DΣn(qn, rn/2), that is, gn = λnfn
restricted toDΣn(qn, rn/2). For short, we will sometimes writeMn to denote this immersed
surface given by gn. If we denote the second fundamental form of gn by σ̂n, using equation
(4.2.2), for any point zn ∈ DΣn(qn, rn/2) we obtain

|σ̂n(zn)| = |σn(zn)|
λn

=
hn(zn)

λndΣn(zn, ∂Dn)
≤ hn(qn)

λndΣn(zn, ∂Dn)
(4.2.3)

=
dΣn(qn, ∂Dn)

dΣn(zn, ∂Dn)
≤ 2.

In particular the sequence {Mn}n has uniformly bounded second fundamental form. Also,
notice that |σ̂(qn)| = 1, by construction. We recall that the radius of a compact Rie-
mannian surface with boundary is the maximum distance of points in the surface to its
boundary. In our case, the radius of Mn is at least λnrn/2 (if we compare the graph Mn

to its domain, in the Euclidean metric), which by equation (4.2.1) diverges to infinity as
n→∞.

Let now M̃n denote the translation of Mn that takes the point gn(qn) to the origin
of R3, and let ξn ∈ S2 denote the Gauss map image of Mn at qn. After passing to a
subsequence, we may assume that ξn → ξ as n → ∞, for some ξ ∈ S2. Thus {M̃n}n is a
sequence of surfaces with the norm of the second fundamental forms uniformly bounded
by 2, and equal to 1 at the origin.

Using Theorem 4.1.1, we conclude that there exist positive constants δ0, µ (indepen-
dent of n) such that for n large we can view a neighborhood of the origin in M̃n as a
graph of a function un over the disk D0

n of radius δ0 of its tangent plane T0M̃n = {ξn}⊥,
and such that ‖un‖C2(D0

n) ≤ µ. Since ξn → ξ in S2, after making δ0 smaller and µ larger,
if necessary, and for n large enough, we have that the same properties hold with respect
to the ξ-direction, that is:

(c) an open neighborhood of the origin in M̃n is the graph x3 = un(x1, x2) of a function
un over the Euclidean disk D0 = D(0, δ0) of radius δ0 in {ξ}⊥; here (x1, x2, x3) are
orthonormal Euclidean coordinates centered at the origin, with ∂

∂x3
= ξ.
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(d) the C2-norm of un in D0 is at most µ

Let Λ̃n denote the constant anisotropic mean curvature of M̃n. By item (a) and the
fact that the factors λn diverge to +∞ we conclude that {Λ̃n}n converges to zero. Also
notice that, since the graph of un has constant anisotropic mean curvature Λ̃n, then un is
a solution to the linear elliptic PDE for u:

Λ̃n = A0(p, q)F̃ (N) +
4∑
i=1

Ai(p, q)F̃xi(N) +
∑

1≤i≤j≤4

Aij(p, q)F̃xixj(N), (4.2.4)

where the coefficients A0, Ai and Aij are as in equation (A.3.1), with p = ux1 , q = ux2 ,
r = ux1x1 , s = ux1x2 , t = ux2x2 being the derivatives of u with respect to the variables

(x1, x2) and N =
(−ux1 ,−ux2 ,1)√

1+u2x1+u2x1
. As, by condition (d) above, the functions un are uniformly

bounded in the C1,α-norm in D0, we conclude that all coefficients of (4.2.4) are bounded
in the C0,α(D0)-norm. By the Schauder Estimates, for any 0 < δ < δ0 the C2,α-norm of
the functions un on D(0, δ) are uniformly bounded.

Once here, we may repeat the last part of the proof in Theorem 4.1.2 using the Arzela-
Ascoli Theorem and a diagonal argument, and conclude that a subsequence of the surfaces
M̃n converges uniformly on compact sets in the C2-topology to a complete anisotropic
minimal surface M∞ (since by construction {Λ̃n}n converges to zero) of bounded curvature
that passes through the origin. Moreover, the norm of the second fundamental form of
M∞ at the origin is equal to 1. Also, since all the surfaces M̃n have been obtained by
translations and homotheties in R3 of the original immersions fn : Σn → R3, and since
all the Gauss map images of the fn omit an open spherical disk of radius ρ/2 of the north
pole in S2, it follows that M∞ also omits such an open disk. By Theorem 4.2.2, we deduce
that M∞ is a plane. This contradicts the fact that the norm of the second fundamental
form of M∞ at the origin is equal to 1, finishing the proof.

Remark 4.2.4. In view of Proposition 3.3.2, item (c), the second fundamental form Σ
can be replaced by the anisotropic second fundamental form of Σ in the statement of
Theorem 4.2.3 without altering the conclusion.

4.3 Bernstein-type theorem for CAMC multigraphs

In this section we present a Bernstein-type Theorem for CAMC multigraphs, i.e.,
surfaces whose tangent plane at any of its points are not vertical (equivalently, each point
on the surface has a neighborhood in which the surfaces can be viewed as a vertical graph).
But first we need the following proposition.

Proposition 4.3.1. There is no entire vertical graph with constant mean anisotropic
curvature Λ 6= 0.

Proof. This proof is analogous to the classic CMC case (see [75], Cor. 3.3.3, for example).
Let Σ = u(R2) be an entire vertical Λ-CAMC graph, for some smooth function u : R2 → R.

Fix p = (0, 0, u(0, 0)) ∈ Σ and take R >
√

3
|Λ|d, where d is the diameter of the Wulff shape

WF . There exists M > 0 such that |u(x)| ≤M , for all x ∈ BR2((0, 0), R). Consider W̃ the
image of WF by the homothety of scaling factor −Λ/2. Thus W̃ has constant anisotropic
mean curvature Λ and it is possible to show that W̃ is contained in a round sphere of
radius R centered at some point ô ∈ R3. Then we define W (r) as the image of W̃ by the
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translation that takes the point ô to p+ re3, where e3 = (0, 0, 1). For r > M +R, W (r) is
completely above Σ. Decreasing r, we eventually obtain a first contact point between Σ
and W (r). If the normal vector of both surfaces coincide at the contact point, we apply
the Maximum Principle to conclude that Σ is contained in W (r), which is a contradiction.
Otherwise, we replace e3 by −e3 in the previous construction and proceed in the same
way. At this time the normals to Σ and W (r) at the contact point will coincide.

Now we are able to proof the first main result of this thesis:

Theorem 4.3.2. Let Σ be a complete vertical multigraph, that is, for any p ∈ Σ, TpΣ is
not a vertical plane. Suppose that Σ has constant anisotropic mean curvature Λ. Then
Σ is a plane.

Proof. If Λ = 0, the conclusion follows from Theorem 4.2.2. So, we can suppose, up to
a homothety, that Λ = 2, and by Proposition 4.3.1 we can also suppose that Σ is not an
entire graph.

Before proceed, we need to make some considerations and recall important facts. Let
N be a unit vector field along Σ. Since Σ is a vertical multigraph, without loss of generality
we can assume that Σ is a multigraph with respect to the plane {z = 0} and 〈N, e3〉 is
strictly positive. In particular, the Gauss map of Σ omits a hemisphere of S2, and by
the completeness of Σ we may apply Theorem 4.2.3 to conclude it has bounded second
fundamental form. Thus, by Theorem 4.1.1, there is δ > 0 such that for any point p ∈ Σ,
Σ is a graph over the disk D(0, δ) ⊂ TpΣ of radius δ, centered at the origin of TpΣ. Such
graph will be denoted by Up. Let π : R3 → R2×{0} be the canonical projection. We will
denote by Uvp the image of Up under the vertical translation that takes p to (π(p), 0).

Yet, we recall that given q ∈ R2, v ∈ S2 and δ > 0, there exists exactly one curve
Γ that passes through q such that Γ × R is a vertical 2-CAMC cylinder whose normal
vector at (q, 0) is v, as in Proposition 3.4.1. We denote by Γ(q, δ) the piece of Γ of length
δ with q as its mid-point. Also, if p ∈ Γ×R is one of its points, we denote by D(p, δ) the
neighborhood of p in Γ×R that is a graph over D(0, δ) ⊂ Tp(Γ×R). It is clear that the
projection of D(p, δ) by π coincides with Γ(π(p), δ).

Figure 4.4: Two pieces of curves Γ(q, δ) that passes through q but have opposite unit
normals there differ by a translation in R3.

With these considerations in mind, we begin proving the following assertion:

Claim 1: Let {pn}n ⊂ Σ be any sequence such that π(pn) → (q0, 0) ∈ R2 × {0}
and 〈N(pn), e3〉 → 0, that is, the planes TpnΣ are becoming vertical as n → ∞. Then
the surfaces Uvpn converge to D((q0, 0), δ), for some 2-CAMC cylinder Γ × R that passes
through (q0, 0). The convergence is in the C2-topology.
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Proof of Claim 1. By the compactness of S2 we can suppose, up to a subsequence, that
{N(pn)}n converges to a horizontal vector v0 ∈ S2, since 〈N(pn), e3〉 → 0. In particular,
the planes TpnΣ converge to the vertical plane Q orthogonal to v0 that passes through
(q0, 0). We choose Γ as the unique horizontal curve that passes through q0 such that Γ×R
is a vertical 2-CAMC cylinder whose normal direction at (q0, 0) coincides with v0.

Since Uvpn are graphs over D(0, δ) ⊂ TpnΣ and the planes TpnΣ converge to Q =
T(q0,0)(Γ×R), given any 0 < δ′ < δ, for n sufficiently large, the surfaces Uvpn are bounded
horizontal graphs over the disk D(0, δ′) ⊂ Q. Applying the same arguments of the proof
of Theorem 4.2.3, we deduce that a subsequence of these graphs converges to a 2-CAMC
surface S in the C2-topology. Moreover, S is tangent to Q at (q0, 0) and is a horizontal
graph over D(0, δ) ⊂ Q.

Now, we show that S = D((q0, 0), δ). If it was not the case, then the intersection
of S and D((q0, 0), δ) at (q0, 0) would be non-transversal, and therefore it would consist
of m smooth curves passing through (q0, 0), m ≥ 2, meeting transversally at (q0, 0) (see
[60], Corollary 4.6, pg. 159). In a neighborhood of (q0, 0), these curves separate S into
2m components. Adjacent components lie on opposite sides of D((q0, 0), δ). Hence in a
neighborhood of (q0, 0) in S, the unit normal vector field of S alternates from pointing
up and down (or vice-versa) with respect to e3. Since Uvpn converges to S in the C2-
topology, for n sufficiently large we have also that the unit normals points up and down,
contradicting the fact that 〈N, e3〉 is positive.

Finally, it is worth to emphasize that the uniqueness of the limit D((q0, 0), δ) is suf-
ficient to prove that the whole sequence {Uvn}n converges D((q0, 0), δ), and not only a
subsequence.

So, let us fix an arbitrary point p ∈ Σ and assume that Σ is, in a neighborhood
of p, a vertical graph of a function u(x1, x2) defined on BR2(π(p), R), the open ball of
R2 ∼= R2×{0} of radius R centered at π(p). Since we are assuming that Σ is not an entire
graph, there exists a largest value of R where u is well defined. In particular, there exists
a point q ∈ ∂BR2(π(p), R) where u cannot be extended on any of its neighborhoods.

Claim 2: For any sequence {qn}n ⊂ BR2(π(p), R) converging to q, the tangent planes
TpnΣ (where pn := (qn, u(qn))) converges to a vertical plane P . Moreover, such a plane is
tangent to BR2(π(p), R) at q.

Proof of Claim 2. First, we prove that any subsequence of TpnΣ converges to a vertical
plane. If it was not the case, since S2 is compact, there would exists a subsequence {qnk}k
such that {N(pnk)}k converges to some unit vector N0 satisfying 〈N0, e3〉 6= 0, and since
Σ has bounded geometry and δ is the same for all points of Σ, for qnk close enough to
q, the uniform graphs Upnk provide an extension of u on a neighborhood of q, which is a
contradiction.

Now we prove the second part. Let P be the vertical plane tangent to ∂BR2(π(p), R)
at q. Suppose that for some subsequence {qnk}k the planes TpnkΣ converge to a vertical
plane Q, Q 6= P . By Claim 1, Uvpnk converges in the C2-topology to D((q, 0), δ), for a

certain curve Γ. We know that D((q, 0), δ) is tangent to Q at (q, 0), and since Q 6= P ,
this implies that there are points of Γ(q, δ) in the interior of BR2(π(p), R). Let z be one
of these interior points. There exists a sequence {zk}k with zk ∈ Uvpnk such that zk → z.

Since the tangent plane of D((q, 0), δ) at z is also vertical, the gradient of u running along
{zk}k diverges (to see this, recall the expression of the normal vector field of a graph
and verify what occurs with the gradient as the normal tends to be horizontal). But the
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gradient of u at z is well defined, since z is an interior point of BR2(π(p), R). We have a
contradiction.

Putting together Claims 1 and 2 we have the following conclusion: there is a curve Γ,
profile of a 2-CAMC cylinder, that passes through q, tangent to BR2(π(p), R) at q and
such that for any sequence {qn}n ⊂ BR2(π(p), R) converging to q, {Uv(qn,f(qn))}n converges

uniformly in the C2-topology to the neighborhood D((q, 0), δ) of (q, 0) in Γ × R. The
curve Γ is unique, since its unit normal at (q, 0) is the limit of the normals of Uv(qn,f(qn))

at (qn, 0). Also, Γ(q, δ) lies outside BR2(π(p), R), otherwise, by the same arguments as in
the proof of Claim 2, we would have an interior point z of BR2(π(p), R) where gradR2 u(x)
diverges, as x ∈ BR2(π(p), R) approaches z.

Claim 3: Let γ : [0, 1) → R2 be the semi-open line segment parametrized by γ(t) =
tq + (1 − t)π(p). The function z(t) = u(γ(t)) satisfies either limt→1− z(t) = +∞ or
limt→1− z(t) = −∞, according to whether γ(t) lies either inside or outside Γ, for values of
t close to 1.

Proof of Claim 3. Consider any sequence {tn}n ⊂ [0, 1) converging to 1. Since γ(tn)→ q,
Claim 2 implies that T(γ(tn),z(tn))Σ are converging to a vertical plane, and as a consequence,
z′(tn)→ ±∞. So we can assume that the curve C := (γ, u ◦ γ) is strictly monotonous for
values of t close to 1.

Now, if z were bounded above, there would be a sequence {tn}n ⊂ [0, 1) with tn → 1−

and such that {(γ(tn), z(tn))}n converges to a point (q, c) ∈ R3, for some c ∈ R, that is,
(q, c) is a cluster point of C. Moreover, the monotonicity of γ implies that C would have
finite length up till (q, c), whence we conclude that {(γ(tn), z(tn))}n is a Cauchy sequence
on Σ. But since Σ is complete, we would have that (q, c) ∈ Σ, and in particular, Σ would
have a vertical tangent plane at (q, c), contradicting the fact it is a vertical multi-graph.

Finally, since we are supposing that 〈N, e3〉 > 0 on Σ, we deduce that if limt→1− z(t) =
+∞ (resp. −∞) then the (horizontal) limit of the unit normals of Σ along (γ(t), z(t))
points in the same direction as the vector (π(p)− q, 0) (resp. (q − π(p), 0)), which is the
unit vector of the limit cylinder Γ×R at (q, 0). Thus, the last assertion follows from the
fact that such a limit cylinder is oriented with respect to the its inner unit normal.

Let s be an arc length parameter to Γ and denote by q(s) ∈ Γ the point at distance s
from q = q(0) along Γ. Consider the following subset of R2:

Oε = {Γ(s) + tnΓ(s); s ∈ [−δ, δ], t ∈ (0, ε)}, (4.3.1)

where nΓ(s) ∈ R2 denotes the unit normal vector of Γ at q(s) that points toward π(p) for
s = 0.

For t0 ∈ [0, 1) we define:

Σt0 =
⋃

t0<t<1

U(γ(t),z(t)), (4.3.2)

which is a connected neighborhood of the curve {(γ(t), z(t)); t0 < t < 1} ⊂ Σ.

Claim 4: There exists t0 > 0 such that Σt0 does not intersect Γ×R. Moreover, Σt0 is
a vertical graph over an open domain in R2 that contains Oε, for some ε > 0. Also, this
graph extends u on Oε and satisfies u(x)→ ±∞ when x ∈ Oε converges to a point in Γ.

Proof of Claim 4. Consider Q(s) the vertical plane that is orthogonal to Γ and passes
through q(s). Recall that Uv(γ(t),z(t)) converges in the C2-topology to D((q, 0), δ) as t→ 1−.
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(a) (b)

Figure 4.5: The small tubular neighborhood Oε of Γ around q, according to two possible
scenarios: (a) nΓ(0) = (π(p)− q, 0); (b) nΓ(0) = (q − π(p), 0).

In particular, from the convergence in C1-topology and since tranversality is a stable
property, there exists t0 > 0 such that Q(s) intersects Σt0 transversally for all s ∈ [−δ, δ].

Consider the curves C(s) := Σt0 ∩ Q(s). By Claim 3, C(0) = C does not intersect
Γ × R. Let us see that C(s) does not intersect Γ × R, for all s ∈ (0, δ] (the argument is
similar for s ∈ [−δ, 0)).

Suppose that for some s0 ∈ (0, δ], C(s0) contains either a point in Γ×R or a point in
the opposite side of Γ × R relative to C(0). In the second case, by continuity, for some
intermediate value 0 < s1 ≤ s0, C(s1) has a point on Γ × R. Thus we can assume that
C(s0) contain a point in Γ×R. But the convergence of Uv(γ(t),z(t)) to D((q, 0), δ) as t→ 1−

implies that C(s0) converges to {q(s0)} × R as the height diverges to infinity. These two
facts obliges C(s0) to have a point where the tangent vector is vertical (see Fig. 4.6 (a)),
contradicting the fact that Σt0 is a vertical multigraph. As a consequence, we conclude
that for all s ∈ [−δ, δ], C(s) does not intersect Γ×R, and since these curves are asymptotic
to Γ× R, there exists ε > 0 such that Σt0 is a vertical graph over an open domain in R2

which contains Oε with the property that u(x)→ ±∞ when x ∈ Oε converges to a point
in Γ (see Fig. 4.6 (b)).

(a) (b)

Figure 4.6: (a) a vertical tangent in the opposite side of Γ×R relative to BR2(O,R); (b)
the curves C(s) for s ∈ [−δ, δ] extend u in Oε.

Next, notice that q(δ/2) plays the same role as q in Claims 2, 3 and 4. Replacing q
and C by q(δ/2) and C(δ/2), and since δ is uniform for any point of Σ, applying the same
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arguments of Claim 4, we are able to extend u analytically near Γ in a bigger domain of
the form

{Γ(s) + tnΓ(s); s ∈ [−δ/2, 3δ/2], t ∈ (0, ε′)},

for some 0 < ε′ ≤ ε. More generally, this argument can be applied inductively in both
sides of Γ relative to q, and if Γ(s) is an injective parametrization in the interval (a, b], for
some a < 0 < b, then there exists ε̃ > 0 for which we can extend u on the open domain

Vε̃ = {Γ(s) + tnΓ(s); s ∈ (a, b), t ∈ (0, ε̃)}. (4.3.3)

At this point we observe that the conclusions we obtained up to now are also applicable

Figure 4.7: The tubular neighborhood of Γ according to equation (4.3.3).

for any point p ∈ Σ and its associated point q ∈ ∂BR2(π(p), R), according to with R
is the maximum radius where Σ can be written as a vertical graph over the open ball
BR2(π(p), R), and its associated 2-CAMC cylinder Γ× R.

Another important observation here is that, since Σ is a multigraph (not necessarily
a graph), we can no longer guarantee that any extension u in a neighborhood Γ as in
equation (4.3.3), but for values of s in a bigger interval (a′, b′) ⊃ (a, b), will glue together
continuously as s reaches the values a and b. Despite this multi-evaluation difficulty, we
will prove in the following the existence of a domain big enough where u is a graph and
for which we can compare such a graph with the Wulff shape through the Maximum
Principle. To do so, we split our arguments into two cases, according to whether γ lies
locally either inside or outside the planar region bounded by Γ, for values of t close to 1.

Case 1: Let us suppose that there exists a point p ∈ Σ such that its associated point
q ∈ ∂BR2(π(p), R) and its associated 2-CAMC cylinder Γ × R verify that the interior
planar region bounded by Γ, that we call Ω, contain points of the line segment joining
π(p) to q.

In this case, we claim that u can be extended on the whole Ω. Indeed, consider q̃ ∈ Γ
where the unit normals of Γ at q and q̃ coincide. Let v := q̃ − q and for t ∈ [0, 1] define
Γt = Γ + tv, the image of Γ under the translation by the vector tv. In particular Γ0 = Γ
and for 0 < t ≤ 1, Γt divides Ω into two bounded regions (only one region, if t = 1). We
are interested only in the region whose boundary contains q, that we call Ω(t).

By the arguments after Claim 4, we know that for sufficiently small values of t, u
can be extended to Ω(t). Let us suppose that there exists a first value 0 < t0 < 1 for
which u cannot be extended to Ω(t), for t > t0. Then, there exists a point q0 ∈ Γt0
where u cannot be extended on any of its neighborhoods. Since u can be extended in an
interior tubular neighborhood of Γ − {q̃}, we conclude that q0 ∈ Ω. Consider a point p0

on the graph of u and R′ > 0 such that the open ball BR2(π(p0), R′) ⊂ Ω(t0) and q0 ∈
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Figure 4.8: Definitions of the curve Γ(t) and the open domain Ω(t).

∂BR2(π(p0), R′). Notice that by construction u is well defined on BR2(π(p0), R′) − {q0}.
Reasoning as in Claims 1, 2 and 3, there exists a curve Γ′ which is a translated copy of
Γ, that passes through q0 and have there a tangency point with BR2(π(p0), R′). Also,
as x ∈ BR2(π(p0), R′) approaches to Γ′, u(x) diverges to either +∞ or −∞ according to
whether BR2(π(p0), R′) is contained in the interior or the exterior open region delimited
by Γ′, respectively. For the first case, in a small neighborhood U ⊂ Γ′ of q0, we have that
U −{q0} is also contained in Ω(t0), and in these points we deduce that u diverges to +∞,
contradicting the fact that u is well defined in Ω(t0) (see Fig. 4.9 (a)). In the second
case, note that Γ′ intersects Γ. Let x ∈ Γ∩ Γ′ be one of these points (see Fig. 4.9 (b)). If
{xn} ⊂ Ω(t0) is converging to x, by the fact that x ∈ Γ we deduce that u(xn)→ +∞. On
the other hand, since x ∈ Γ′ we also deduce that u(xn)→ −∞, leading to a contradiction.

(a) (b)

Figure 4.9: Extension of u on Ω(t0). Two possible scenarios occur: (a) Γ′ 6= Γt0 ; (b)
Γ′ = Γt0 .

From these informations, we conclude that Σ contains a vertical graph of a function u
defined over the open domain Ω bounded by Γ. Moreover, if x ∈ Ω approaches to a point
in Γ, then u(x)→ +∞.

Now, consider W the image of the Wulff shape by the antipodal map. With respect
to the inner pointing unit normal, W has anisotropic mean curvature 2. Recall that
G : S2 → R3 given by G(x, y, z) = gradS2 F (x, y, z)+F (x, y, z)(x, y, z) is a parametrization
of the Wulff shape. Thus −G parametrizes W and since it is a diffeomorphism, we define
the south hemisphere of W as the set S = −G(S2

+), where S2
+ = {(y1, y2, y3) ∈ S2; y3 ≥ 0}.

In view of Proposition 3.4.1, consider W (0) a copy of W obtained after a translation in a
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way that its orthogonal projection over R2×{0} contains Ω in its interior. In other words,
Γ×R is transversal to W (0). Let W (r) be the image of W (0) after a vertical translation
by re3. We define S(r) analogously. For very negative values of r, S(r)∩Σ = ∅. Increasing
r we eventually obtain a first interior contact point between S(r) and Σ. As the normal
vectors of S(r) and Σ at the contact point coincide, we conclude by the Maximum Principle
that Σ = W (r), leading to a contradiction since Σ is not compact.

Case 2: For any point p ∈ Σ with associated point q ∈ ∂BR2(π(p), R) and associated
2-CAMC cylinder Γ× R, π(p) lies outside the planar region defined by Γ.

Take any point p0 ∈ Σ and consider R > 0 the maximum radius for which Σ is the
vertical graph of a smooth function u defined on B(π(p0), R). Let q0 ∈ ∂B(π(p0), R) be
a point where u cannot be extended on any of its neighborhoods and let Γ0 × R denote
the 2-CAMC vertical cylinder tangent to B(π(p0), R) at q0 on its concave side.

Consider q̃0 ∈ Γ0−{q0} the unique point for which the normal lines of Γ0 at q0 and q̃0

are parallel. Let 2Γ0 be the curve obtained as the image of Γ0 by a double scale homothety
followed by a translation in such a way that 2Γ0 is tangent to Γ0 at q̃0 and contains Γ0 in
its interior (see Fig. 4.10).

Let H : [0, 1] × S1 → R2 be a smooth, injective homotopy so that for each t ∈ [0, 1],
Ht := H(t, ·) : S1 → R2 parametrizes the image of Γ0 by a homothety followed by a
translation, in such a way that: (a) for 0 ≤ t < 1, Ht(S1) is contained in the interior
region bounded by 2Γ0; (b) H0(S1) is contained in B(π(p0), R)∪{q0} and it is tangent to
∂B(π(p0), R) at q0; (c) H1(S1) = 2Γ0.

Figure 4.10: Definitions of the convex curve Ht(S1) and the compact domain Ωt.

For each t ∈ [0, 1], let Ωt denote the compact convex domain bounded by Ht(S1), and
consider St the connected component of Σ∩ (Ωt×R) that contains p0. If 0 ≤ t1 ≤ t2 ≤ 1,
it is clear that St1 ⊂ St2 . Our objective is to show that S1 is a vertical graph, that is, u
can be extended on π(S1). To do so, consider I the set of values t ∈ [0, 1] for which St is
a graph of (an extension of) u defined over a domain Ω̃t ⊂ Ωt given as

Ω̃t = Ωt − (D0 ∪D1 ∪ · · · ∪Dm(t)), (4.3.4)

for some m(t) ∈ N. Here each Di is the compact convex domain bounded by some
translation of the curve Γ0, and Di ∩Dj ∩ Ωt = ∅, for 0 ≤ i < j ≤ m. Note that in such
decompositions Di ∩ Ωt could consist of only one point.

First we note that 0 ∈ I, in which case Ω̃0 = Ω0 −D0, being D0 the compact domain
bounded by Γ0. We also observe that if 0 < t1 < t2 and t2 ∈ I, then t1 ∈ I. Therefore, I
is an interval of the form [0, a) or [0, a] for some a ≤ 1. Moreover, the same domains Di

appearing in the decomposition of Ω̃t1 (according to equation (4.3.4)) will appear in the



58 CHAPTER 4

decomposition of Ω̃t2 . In particular, the numbers m(t) are non-decreasing with respect to
t.

Suppose that I = [0, a] for some 0 < a < 1. In particular, there exists m(a) ∈ N such
that Sa is a graph over

Ω̃a = Ωa − (D0 ∪D1 ∪ · · · ∪Dm(a)). (4.3.5)

We want to prove that for small values ε > 0, Sa+ε is a graph over Ωa minus the same
domains D0, D1, . . . , Dm(a). Note that for any i ∈ {1, . . . ,m(a)} we have that Γi ∩ ∂Ωa

either consists of two points or Γi is tangent to Ωa on its concave side. Indeed, if it
does not occur, we conclude that Di ⊂ Ωa, and in particular Di ⊂ Ω1, which implies that
Di∩D0 6= ∅, since two translations of Γ0 do not fit inside 2Γ0 without have an intersection
point. But again Di ⊂ Ωa implies that Di ∩D0 ∩Ωa 6= ∅, which is a contradiction. Thus,
in any case, by the arguments of the first part of this proof u can be extended in a small
exterior tubular neighborhood of each curve Γi, around their intersection points with
∂Ωa. Note that there are finitely many such intersection points, since the intersection
of each Γi with ∂Ωa consists of at most two points. Thus, we can choose such exterior
tubular neighborhoods so small that they do not overlap each other (see Fig. 4.11). The
remaining points of ∂Ωa constitute a compact set satisfying that for each of its points
there is a small neighborhood where u can be extended. Therefore, for small values ε > 0,
the domains D0, D1, . . . , Dm(a) are mutually disjoint inside Ωa+ε and Sa+ε is a graph over
Ωa+ε − (D0 ∪D1 ∪ · · · ∪Dm(a)).

Figure 4.11: Decomposition of the domain Ω̃a+ε.

Assume next that I = [0, a), a ≤ 1. Note that Sa is a graph. To see this, suppose that
there would be two points p1, p2 ∈ Sa with π(p1) = π(p2). We assume that π(p1) = π(p2)
do not lie in ∂Ωa, otherwise since Sa is a vertical multigraph and p1 6= p2, we could find
p̃1 close to p1 and p̃2 close to p2 in Sa such that p̃1 6= p̃2 and whose projections under
π coincide and lie in the interior of Ωa. Since Sa is connected, there are two curves
c1, c2 : [0, 1] → Sa joining p1 to p0 and p2 to p0, respectively. If π ◦ c1([0, 1]) intersects
∂Ωa, from the fact that X = {s ∈ [0, 1]; π ◦ c1(s) ∈ ∂Ωa} is compact and that for every
s ∈ X there is a neighborhood of c1(s) in Sa that is a vertical graph, we can cover c1(X)
with such neighborhoods and after extracting a finite subcover, it is possible to deform
c1 in order to obtain a new curve c̃1 : [0, 1] → Sa joining p1 to p0, whose image under π
does not intersect ∂Ωa. The same argument is valid for c2. Thus π ◦ c1 and π ◦ c2 are
compact curves contained in the interior of Ωa, implying the existence of b < a so that
π ◦ c1([0, 1]), π ◦ c2([0, 1]) ⊂ Ωb. In particular we conclude that p1 and p2 belongs to Sb.
But it contradicts the fact that Sb is a graph. Therefore Sa is a graph.

Now we prove that Sa is a graph over Ωa, with exception of exactly the same do-
mains Di which appear in the decomposition of Ωb, for b < a, and domains bounded by



4.3. BERNSTEIN-TYPE THEOREM FOR CAMC MULTIGRAPHS 59

translations of Γ0 that are tangent to ∂Ωa on its concave side.
Given any b < a, we can write

Ω̃b = Ωb − (D0 ∪D1 ∪ · · · ∪Dm(b)), (4.3.6)

for some m(b) ∈ N, where each Di is the compact convex domain bounded by some
translation of the curve Γ0, and Di ∩Dj ∩ Ωb = ∅, for any 0 ≤ i < j ≤ m(b). Moreover,
since c ∈ I for any b < c < a, we conclude that Di∩Dj∩Ωc = ∅, for all 0 ≤ i < j ≤ m(b).
Thus, if Di ∩Dj ∩ Ωa 6= ∅ for some 0 ≤ i < j ≤ m(b), the intersection necessarily occur
in ∂Ωa (see Fig. 4.12 (a)). Let us see that neither this scenario occur. Without loss of

(a) (b)

Figure 4.12: (a) The intersection Γi ∩ Γj occurs necessarily in ∂Ωa; (b) Auxiliary figure
to prove the boundedness of m(t).

generality, we can suppose j > 0. We claim that Γj has points outside Ωa. Indeed, if it
does not occur, we would have that Γj ⊂ Ωa, implying that Γj ∩Γ0∩Ωa 6= ∅. As Γj 6= Γ0,
the intersection Γj∩Γ0 consists of either one point, if Γj and Γ0 are tangent, or two points,
otherwise. In the first case, the tangency point is not q̃0, otherwise Γj would be tangent to
2Γ0 on its concave side, and in particular Γj would lie outside Ωb. However, we know that
u can be extended in a small exterior tubular neighborhood of Γ0 around this tangency
point, and this gives a contradiction. Thus, the intersection Γj ∩ Γ0 consists of exactly
two points, and at least one of them necessarily belongs to Ωc, for some 0 < c < a, since
Γj ⊂ Ωa and Γj could have at most one point in common with ∂Ωa. In other words, we
would conclude that Dj ∩D0 ∩Ωc 6= ∅, which contradicts c ∈ I. Thus, by the arguments
in the first part of the proof we can extend u in small exterior tubular neighborhood of Γj
around its intersections with ∂Ωa, and in particular this implies that Di ∩Dj ∩ Ωa = ∅.

On the other hand, since t 7→ m(t) is non-decreasing, we need to show that m(t) is
bounded as t→ a−. If it does not happen, we would have a strictly monotonous sequence
{tn}n with tn → a− and domains {Dm(tn)}n (which rises in the decomposition of Ω̃tn),
each one bounded by translations Γtn of Γ0, and mutually disjoint inside Ωa. We also can
suppose that Γtn are tangent to ∂Ωtn on its concave side, and that Γtn ∩ ∂Ωa = {qn1 , qn2 }.
In particular there exists a cluster point q∗ ∈ ∂Ωa of {qn1 , qn2 }n. Let v∗ ∈ R2 denote
the inner unit normal of ∂Ωa at q∗ and consider the curve γ∗ : (0, 1] → R2 given by
γ∗(s) = q∗ + sv∗ (see Fig. 4.12 (b)). Note that u is well defined along γ∗, for small values
s > 0. Given any sequence {sn}n ⊂ (0, 1] with sn → 0+, we have that the planes TpnΣ
(pn := (γ∗(sn), u(γ∗(sn)))) are becoming vertical, otherwise by the same arguments as in
the proof of Claim 2 we could extend u in a neighborhood of q∗. Thus Claim 1 implies
the uniform graphs Uvpn converge to D((q∗, 0), δ), for some CAMC cylinder Γ∗ × R that
passes through (q∗, 0). Moreover, the unit normal of D((q∗, 0), δ) at (q∗, 0) is parallel to
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v∗. Indeed, if it is not the case, Γ∗(q∗, δ) would have points in the interior of Ωb, for all
b < a sufficiently close to a. Suppose that for some b < a and some i ∈ {1, . . . ,m(b)}, the
curve Γ∗(q∗, δ) intersects ∂Di. In this case, since q∗ /∈ Di, there is a point x ∈ Γ∗(q∗, δ)
that lies outside Di, but inside the exterior tubular neighborhood of ∂Di for which u
is well defined. Choosing b < c < a sufficiently close to a, we can also suppose that
x ∈ Ω̃c. If Γ∗(q∗, δ) does not intersect ∂Di for any b < a and any i ∈ {1, . . . ,m(b)}, the
existence of such a point x ∈ Γ∗(q∗, δ) is trivial. In any case, for each n ∈ N there exists
bn = (π(bn), u(π(bn))) ∈ Uvpn so that {bn}n converges to (x, 0). But since the planes TbnΣ
are becoming vertical, we conclude that | gradu(π(bn))| → ∞, which is impossible since
π(bn)→ x and u is well defined around x. Thus, the unit normal of D((q∗, 0), δ) at (q∗, 0)
is parallel to v∗. Moreover, as {qn1 , qn2 }n converges to q∗, at points sufficiently close to qn1
and qn1 the normals of the graph of u are becoming horizontal and point inward ∂Dm(tn),
whence we may also deduce that the unit normal of D((q∗, 0), δ) at (q∗, 0) coincides with
−v∗. In particular, Γ∗ is tangent to ∂Ωa at q∗ on its concave side. From now on, the
arguments in the proofs of Claims 3 and 4 are also applicable for D((q∗, 0), δ), and we
conclude that u can be extended in a small exterior tubular neighborhood of Γ∗ around
q∗, as in equation (4.3.4). In other words, q∗ is an isolated point of ∂Ωa, which is a
contradiction. We denote ma := sup{m(t); t < a}.

Now, if y is any point in ∂(Ωa − π(Sa)) which does not lie in the boundary of the
domains Di for any b < a, then there exists a curve Γy, translation of Γ0, which is
tangent to ∂Ωa at y on its concave side, such that u can be extended in a unique way
on an small exterior tubular neighborhood of Γy around y. From the same arguments
we use previously, we deduce that there are only finitely many such points y in ∂Ωa. If
yma+1, . . . , yma+k ∈ ∂Ωa denote such points, the domains Dma+1, . . . , Dma+k corresponding
to the curves Γy1 , . . . ,Γyk , respectively, together with the domains D0, D1, . . . , Dma satisfy:

• Di ∩Dj ∩ Ωa = ∅, ∀0 ≤ i < j ≤ ma + k;

• π(Sa) = Ωa − (D0 ∪D1 ∪ · · · ∪Dma ∪Dma+1 ∪ · · · ∪Dma+k),

and this proves that a ∈ I.

We conclude from all these arguments that I = [0, 1] and S1 is a graph of an extension
of u defined over

Ω̃1 = Ω1 − (D0 ∪D1 ∪ · · · ∪Dm(1)), (4.3.7)

for some m(1) ∈ N, where {D0, D1, . . . , Dm(1)} consists of mutually disjoint compact
domains such that ∂Di is a translation of Γ0, for each 0 ≤ i ≤ m(1). Moreover, by Claim
3 u(x)→ −∞ as x ∈ Ω̃1 approaches to ∂Di, for any i ∈ {0, 1, . . . ,m(1)}.

As we did in Case 1, consider W the image of the Wulff shape by the antipodal map
and W (0) the copy of W obtained after a translation in such a way that its orthogonal
projection over R2 × {0} coincides with Ω1. Let W (r) be the image of W (0) after a
vertical translation by re3. For very positive values of r, W (r)∩ S1 = ∅. Decreasing r we
eventually obtain a first contact point x ∈ W (r)∩S1. We observe that x does not belong
to ∂S1, otherwise the unit normal of S1 at this point would be horizontal, contradicting
the fact that Σ is a vertical multigraph. Thus x is an interior contact point, and as
the normal vectors of W (r) and S1 at x coincide, we conclude that W (r) = S1, by the
Maximum Principle, leading to a contradiction. Therefore, the complete multigraph Σ
with constant anisotropic mean curvature 2 does not exist, finishing the proof.

An immediate consequence of Theorem 4.3.2 is the following corollary.
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Corollary 4.3.3. Let Σ be a complete CAMC surface whose Gauss map image is con-
tained in a closed hemisphere of S2. Then Σ is either a plane or a CAMC cylinder.

Proof. The hypothesis implies that there exists a ∈ S2 such that 〈N, a〉 ≥ 0 on Σ. We
recall that Proposition 3.3.4 implies

∆F 〈N, a〉+ traceΣ(AAF )〈N, a〉 = 0.

Since this equation is elliptic, by the Maximum Principle, either 〈N, a〉 = 0 or 〈N, a〉 > 0.
In the first case we deduce that Σ is either a CAMC cylinder or a plane parallel to a. In
the second case, we deduce that Σ is a CAMC multigraph, and Theorem 4.3.2 implies Σ
is a plane.

Another interesting corollary of Theorem 4.3.2 concerns about CAMC surfaces whose
Gauss curvature does not change sign.

Theorem 4.3.4. Let Σ ⊂ R3 be a complete immersed surface of constant anisotropic
mean curvature Λ 6= 0. If the Gaussian curvature of Σ does not change sign then Σ is one
of the following surfaces:

(i) a CAMC cylinder;

(ii) the Wulff shape (up to a homothety).

Our proof of Theorem 4.3.4 relies on very different techniques to those used in the
proof of its isotropic version, given by T. Klotz and R. Osserman, in [63]. For this reason,
we need to recall three results:

Theorem 4.3.5. (Pogorelov’s Theorem, see [86] and [87]; Hartman-Nirenberg Theorem,
see [50]) Let Σ ⊂ R3 be a complete immersed surface with vanishing Gaussian curvature
everywhere. Then Σ is a generalized cylinder.

Theorem 4.3.6. (Sacksteder’s Theorem; see [94] or [18]) Let Σ ⊂ R3 be a complete and
oriented immersed surface with non-negative Gaussian curvature. Suppose that at least
for one point on Σ, the Gaussian curvature is positive. Then Σ is embedded in R3 and it
is the boundary of an open convex subset of R3.

Theorem 4.3.7. (The principal curvature theorem for hypersurfaces; see [95]) Let Σ be a
complete immersed orientable hypersurface in Rn+1, which is not a hyperplane, and let A
denote its Weingarten operator with respect to a global unit normal field. Let Ω ⊂ R−{0}
be the set of nonzero values assumed by the eigenvalues of A and put Ω+ = Ω ∩ (0,+∞)
and Ω− = Ω ∩ (−∞, 0).

(i) If Ω+ and Ω− are both nonempty, inf Ω+ = sup Ω− = 0;

(ii) If Ω+ or Ω− is empty then the closure of Ω is connected.

Proof of Theorem 4.3.4. We begin by observing that up to a homothety, we may assume
that Λ > 0.

Let us suppose that the Gaussian curvature of Σ is non-negative. If it vanishes every-
where, by Theorem 4.3.5 we obtain item (i). So, we can suppose that there exists a point
on Σ where the Gaussian curvature is positive. In this case we apply Theorem 4.3.6 to
conclude that Σ is embedded in R3 and that it is the boundary of an open convex subset
of R3. If Σ is compact, the anisotropic version of the Alexandrov’s Theorem (see [56])
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implies that it is the Wulff shape, up to a homothety. Thus we may assume that Σ is not
compact. In particular, since Σ is the boundary of an open convex set, if N : Σ → S2

denotes its Gauss map (for which Λ is evaluated), we have that N(Σ) is contained in a
closed hemisphere of S2. By Corollary 4.3.3 we deduce that Σ is a Λ-CAMC cylinder.

If the Gaussian curvature is non-positive, the principal curvatures of Σ have opposite
signs, let us say, κ1(p) ≤ 0 and κ2(p) ≥ 0, for all p ∈ Σ. Recalling formula 3.3.2 we have

Λ = γ1(p)κ1(p) + γ2(p)κ2(p),

where 1
M
≤ γ1(p), γ2(p) ≤ 1

m
and m,M are respectively the infimum and supremum of

the principal curvatures of the Wulff shape. Therefore,

γ2(p)κ2(p) = Λ− γ1(p)κ1(p) ≥ Λ,

which implies

κ2(p) ≥ Λ

γ2(p)
≥ mΛ.

So, we have k1(p) ≤ 0 ≤ mΛ ≤ k2(p), whence we conclude that Σ is a flat surface by
applying Theorem 4.3.7. Applying Theorem 4.3.5 again we conclude that Σ is a CAMC
cylinder.

4.4 Height estimates for CAMC graphs

Putting together the results of the previous sections, we are able to proof uniform
height estimates for CAMC graphs, that is stated precisely in the next theorem:

Theorem 4.4.1. Let Λ 6= 0 be a real number. Then there is a constant C = C(Λ) > 0
such that for any closed (not necessary bounded) domain Ω of the plane Π = {v}⊥ and
smooth function u : Ω→ R that vanishes on ∂Ω and whose graph Σ over Π is a Λ-CAMC
surface, the height of any point p ∈ Σ relative to Π is at most C.

Remark 4.4.2. The best constant C in Theorem 4.4.1 satisfies the following property

C(µΛ) =
1

|µ|
C(Λ), for any µ 6= 0. (4.4.1)

Proof of Theorem 4.4.1. The proof is by contradiction, and for simplicity we will assume
that Λ > 0. Let us suppose that there is no uniform height estimates for Λ-CAMC graphs
with planar boundary. Thus, for each n ∈ N there are a unit vector vn, a Λ-CAMC graph
Σn over Πn = {vn}⊥ with ∂Σn ⊂ Πn and a point pn ∈ Σn such that the height of pn
relative to Πn is greater than n.

Since θn := 〈Nn, vn〉 is a non-vanishing function, for all n ∈ N, up to a subsequence
of {Σn}n (that we also call it {Σn}n) we can suppose, without loss of generality, that
〈Nn, vn〉 > 0 on Σ, for all n ∈ N, and that vn → v0, for some unit vector v0. By the
Maximum Principle, as in the proof of Lemma 4.2.1, we conclude that Σn is contained in
the half-space {y ∈ R3; 〈y, vn〉 ≤ 0}, for all n ∈ N. So, from now on, for simplicity, we
adopt a new coordinate system in R3 where v0 = e3 = (0, 0, 1).

Let Σ∗n := Σn ∩ {y ∈ R3; 〈y, vn〉 ≤ 2R}, where R is given by Lemma 4.2.1. For n
large enough we have pn ∈ Σ∗n. Let qn ∈ Σ0

n be the point of maximum distance relative
to Πn and let Σ1

n be the image of Σ0
n by the translation that takes qn to the origin of

R3. Since θn > 0, for all n ∈ N, by Theorem 4.2.3 (with d = 2R) there is a constant



4.4. HEIGHT ESTIMATES FOR CAMC GRAPHS 63

M that only depends on Λ (but not on n) such that {|σn|}n is uniformly bounded by
M , where σn denotes the second fundamental form of Σ0

n. Notice that the distance in
R3 of the origin to ∂Σ0

n is diverging to +∞, since dR3(pn,Πn) > n. In other words, this
means that the geodesic disks DΣ0

n
(0, n) are contained in the interior of Σ0

n, and we may
apply Theorem 4.1.2 in order to obtain a subsequence of {Σ0

n}n that converges uniformly
on compact sets in the C2-topology to a complete (possibly non-connected) Λ-CAMC
surface Σ∞ that passes through the origin and whose norm of its second fundamental
form σ∞ is bounded by M . Moreover, Σ∞ is tangent to the horizontal plane at the origin,
since Nn(qn) = vn → e3. From now on, we only consider the connected component of Σ∞
that passes through the origin, and we still denoting it by Σ∞.

Let us define θ∞ = 〈N∞, e3〉, where N∞ is the unit normal vector field of Σ∞, with
N∞((0, 0, 0)) = e3. As the graphs Σ0

n converge uniformly on compact sets to Σ∞ and
θn > 0, for all n ∈ N, we conclude that θ∞ ≥ 0 on Σ∞. In other words, the Gauss map
image of Σ∞ is contained in a closed hemisphere of S2, and by Corollary 4.3.3 we conclude
that Σ∞ is a Λ-CAMC cylinder. In particular, the image of N∞ is a great circle passing
through N∞((0, 0, 0)) = e3, contradicting that θ∞ is non-negative.

A first consequence of Theorem 4.4.1 are Height Estimates for compact CAMC surfaces
with planar boundary. Since its proof involves the Alexandrov’s Reflection Method, we
need to impose an additional assumption: the plane that contains the boundary of the
surface is also a symmetry plane for the Wulff shape.

Theorem 4.4.3. Suppose that the anisotropy function F : S2 → R is invariant under the
reflection of S2 that fixes the geodesic S2 ∩ {v}⊥, for some v ∈ S2. Let Σ be any compact
Λ-CAMC surface (Λ 6= 0), that is embedded in R3 and whose boundary is contained in
the plane {v}⊥. If C = C(Λ) is given as in Theorem 4.4.1, then the height of any point
p ∈ Σ relative to {v}⊥ is at most 2C.

Proof. The proof is an application of the Alexandrov Reflection Method, based on the
classical one due by Meeks in [78]. For simplicity, we consider v = e3. Let {P (t)}t∈R
be the foliation of R3 by horizontal planes, being P (t) the image of R2 × {0} after a
translation by the vector te3. We define Σ+(t) = Σ∩{z ≥ t} and Σ̃(t) the image of Σ+(t)
under the reflection of R3 that fixes P (t).

By contradiction, we suppose that there is a point p ∈ Σ such that its height with
respect to P (0) is greater than 2C. Since Σ is compact, for t > 0 sufficiently large,
P (t) ∩ Σ = ∅. There is a first value t1 > 2C in which P (t1) meets Σ. For values of t
sufficiently close to t1, we have that

(i) Σ+(t) is a graph over P (t);

(ii) Σ̃(t) lies inside the open region bounded by Σ and P (0).

Now we decrease t until we reach a first value t2 < t1 when items (i) and (ii) fail to
occur simultaneously. By Theorem 4.4.1, item (i) certainly fails when t < t1−C, whence
we conclude that t2 ≥ t1 −C > C and that Σ̃(t2) does not intersect ∂Σ. Thus, Σ̃(t2) and
Σ have an interior contact point or there exists some point on Σ ∩ P (t2) whose tangent
plane is vertical, which means that Σ̃(t2) and Σ have a boundary tangent point (see 4.13).
In both cases the normal vectors of Σ̃(t2) and Σ coincide at the contact point, and by the
Maximum Principle we conclude that Σ = Σ(t2) ∪ Σ̃(t2), that is, Σ is a compact surface
with no boundary.
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Figure 4.13: Two possible scenarios when t = t2.

Another consequence of the Height Estimates for CAMC graphs is the following the-
orem.

Theorem 4.4.4. Let Σ be any compact Λ-CAMC (Λ 6= 0) surface, that is embedded
in R3 and whose boundary is contained in the plane {v}⊥, for some v ∈ S2. Consider
three linearly independent vectors v1, v2, v3 ∈ R3 and suppose that the anisotropy function
F : S2 → R is invariant under the reflections in S2 that fix the geodesics S2 ∩ {vi}⊥, for
i ∈ {1, 2, 3}. Let d denote the diameter of ∂Σ. Then there exists a constant C = C(Λ, d)
such that the distance of any point p ∈ Σ relative to {v}⊥ is at most C.

Proof. For simplicity, we assume that v = e3. Also, we suppose that e3 is not parallel to
vi, for i ∈ {v1, v2, v3}, otherwise the conclusion follows directly from Theorem 4.4.1. Let
R be the radius of a circle in R2 × {0} centered at the origin O which contains ∂Σ. For

example, after a translation of Σ we can take R =
√

3d
2

.

For each i ∈ {1, 2, 3} we consider Pi and Qi the two supporting planes of B(O,R),
both perpendicular to the vector vi, with Pi lying at vi. Let P+

i and Q+
i the half-spaces

defined by Pi and Qi which are disjoint of B(O,R), respectively. By Theorem 4.4.1, there
is a constant C ′, depending only on Λ, such that the heights of Σ ∩ P+

i with respect to
Pi and Σ ∩ Q+

i with respect to Qi is smaller than C ′, for i ∈ {1, 2, 3}. Notice that these
height estimates do not depend on the diameters of Σ ∩ Pi and Σ ∩Qi.

Put P̃i = Pi + C ′vi and Q̃i = Qi − C ′vi. If Si denotes the slab between P̃i and Q̃i, for
i = {1, 2, 3}, since {v1, v2, v3} is linearly independent, we conclude that P = S1∩S2∩S3 is
a bounded open region of R3 containing B(O,R). Moreover, P is contained in a open ball
B(O,C), whose radius C depends on R (which in turn depends on d) and C ′, finishing
the proof.

4.5 Properly embedded CAMC surfaces

We say that a Riemannian surface Σ has finite topology if there is a compact sur-
face without boundary K and a finite quantity of points p1, . . . , pn ∈ K such that Σ is
diffeomorphic to K − {p1, . . . , pn}. In this case, for each i ∈ {1, . . . , n} there is a neigh-
borhood Di of pi in K where Di has the same topology of the closed disk B(0, 1) ⊂ R2

and such that Di ∩ Dj = ∅ for i 6= j. Identifying Σ with K − {p1, . . . , pn}, each subset
Ai = Di − {pi} is called an end of Σ. Notice that each Ai has the same topology of the
annulus S1 × [0, 1).

Remark 4.5.1. If Σ has finite topology and is properly embedded in R3 then its ends do
not intercept and diverge to the infinity.
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The following auxiliary result concerns about the geometry of the annular ends of a
properly embedded surface with constant anisotropic mean curvature. Its isotropic version
was firs proved by W. Meeks in [78]. Later, a simpler proof appeared in [67], whose ideas
involved there are also applicable in the anisotropic case, with the Wulff shape playing
the role of the round sphere. By this reason we omit the proof.

Lemma 4.5.2 (Separation Lemma). Let A ⊂ R3 be a properly embedded annulus (i.e.,
A is diffeomorphic to S1 × [0, 1)) with constant anisotropic mean curvature Λ 6= 0 and
let P1 and P2 two parallel planes in R3. Denote by P+

1 (resp. P+
2 ) the half-space of R3

defined by P+
1 (resp. P+

2 ) which does not contain P2 (resp. P1). If the distance between

P1 and P2 is greater than 2
√

3d
|Λ| , where d denotes the diameter of the Wulff shape, then all

the connected components of Σ ∩ P+
1 or Σ ∩ P+

2 are compact.

Putting together the height estimates for compact CAMC surfaces given in Corollary
4.4.3 and Lemma 4.5.2 we can infer an important theorem about properly embedded
CAMC surfaces with at most one end and an additional hypothesis under the anisotropy
function:

Theorem 4.5.3. Let Σ ⊂ R3 be a properly embedded Λ-CAMC (Λ 6= 0) surface
with finite topology and at most one end. Consider three linearly independent vectors
v1, v2, v3 ∈ R3 and suppose in addition that the anisotropy function F is invariant under
the reflections in S2 which fix the geodesics S2 ∩ {vi}⊥, for i ∈ {1, 2, 3}. Then, up to a
homothety, Σ is the Wulff shape.

Proof. The idea of this proof is to show that Σ is contained in a slab defined by two
parallel planes orthogonal to v1. This conclusion applied also for v2 and v3 permit us to
deduce that Σ is contained in a bounded region defined as the intersection of three slabs
provided by v1, v2 and v3. Thus, from the hypothesis that Σ is properly immersed, we
conclude it is a compact CAMC surface, and since it is also embedded, Theorem 3.2.6
implies that Σ is the Wulff shape, up to a homothety.

Let P1 and P2 be two parallel planes orthogonal to v1, whose distance is greater than
D := 2

√
3d
|Λ| , where d is the diameter of the Wulff shape. We can suppose, without loss of

generality that both P1 and P2 intersect Σ, otherwise we can translate P1 and P2 along
v1 preserving their distance in such a way that either Σ is contained in the slab defined
by P1 and P2, that is our desired scenario, or both P1 and P2 intersect Σ. Consider also
a new coordinate system (x, y, z) in R3 where v1 spans the z-axis and P1 = {z = D}
and P2 = {z = −D}. Since Σ is a properly embedded surface with at most one end, we
can decompose Σ = Σ0 ∪ A, where Σ0 is an embedded compact surface with boundary
and A is a properly embedded annulus. In particular, A satisfy the hypothesis of Lemma
4.5.2, and we can deduce that all the connected components of Σ ∩ {z ≥ D} or {z ≤ D}
are compact. Without loss of generality, we can suppose that Σ ∩ {z ≥ D} has this
property. Thus, each connected component of Σ ∩ {z ≥ D} is a Λ-CAMC surface with
planar boundary, whence we deduce that Σ ⊂ {z ≤ D + C}, where C is the uniform
height bound given in Corollary 4.4.3.

Now consider the planes {z = D−2C} and {z = −D−2C}. By applying Lemma 4.5.2
for these planes, we conclude that all the connected components of Σ∩ {z ≥ D− 2C} or
Σ∩{z ≤ −D−2C} are compact. If Σ∩{z ≥ D−2C} would have this property, the same
arguments of the last paragraph permit us to deduce that Σ ⊂ {z ≥ D−2C+C = D−C},
contradicting our assumption that Σ intersects the plane {z = D}. Thus we deduce that
the connected components of Σ∩ {z ≤ −D− 2C} are compact and using Corollary 4.4.3
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again, we conclude that Σ ⊂ {z ≥ −D − 3C}. Therefore, Σ is contained in the slab
{−D − 3C ≤ z ≤ D + C}, finishing the proof.



Appendix A

The Maximum Principle

For convenience to the reader, we include this appendix, where we present the details
of the main technique we use along the second part of this thesis: the Maximum Principle.
The first section is devoted to the interior and boundary versions of the Maximum Prin-
ciple for second-order elliptic linear operators. In second section, similar versions of the
Maximum Principle for quasi-linear operators are obtained. It is done by reducing to the
linear case. Finally, in the third section we present the notions to stablish the geometric
version of the Maximum Principle, known as the Tangency Principle, that is formulated
at the end of this section specifically for anisotropic mean curvatures.

A.1 Linear second-order partial differential operators

Let Ω ⊂ Rn be a domain (i.e. an open and connected subset of Rn). In this section
we are concerned on linear second order differential operators L : C2(Ω)→ C0(Ω) of the
form:

Lu :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x), (A.1.1)

where aij, bi and c are, for every i, j ∈ {1, . . . , n}, continuous real-valued functions defined
on Ω. Here we also suppose that the second order coefficients are symmetric, that is,
aij = aji, for every i, j ∈ {1, . . . , n}.

Definition A.1.1. The operator L given in (A.1.1) is said to be:

i. elliptic at x ∈ Ω if the matrix [aij(x)] is positive definite. If this condition is valid
for all x ∈ Ω we say just that L is elliptic;

ii. uniformly elliptic if the eigenvalues of [aij(x)] are bounded below and above by a
positive constant;

iii. locally uniformly elliptic if for each x ∈ Ω there exists a neighborhood U of x so
that L is uniformly elliptic.

More precisely, if {λ1(x), . . . , λn(x)} are the eigenvalues of [aij(x)] and

λ(x) = min{λi(x); 1 ≤ i ≤ n},
Λ(x) = max{λi(x); 1 ≤ i ≤ n},

67
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then L is elliptic at x ∈ Ω if and only if

0 < λ(x)
n∑
i=1

ξ2
i ≤

n∑
i,j=1

aij(x)ξiξj ≤ Λ(x)
n∑
i=1

ξ2
i , (A.1.2)

for every (ξ1, . . . , ξn) ∈ Rn − {0}. In the sense of equation (A.1.2), L is uniformly elliptic
if and only if 0 < λ ≤ λ(x) ≤ Λ(x) ≤ Λ for some positive numbers λ and Λ. Thus, L is
locally uniformly elliptic if for any x0 ∈ Ω there exist a neighborhood U ⊂ Ω of x0 and
positive constants λ(x0) and Λ(x0) such that

λ(x0)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ(x0)|ξ|2, ∀x ∈ U, ∀ξ ∈ Rn.

The simplest linear second-order elliptic operators we must bear in mind is the Lapla-
cian Operator ∆ : C2(Ω)→ C0(Ω). It is given by:

∆u =
n∑
i=1

∂2u

∂x2
i

. (A.1.3)

It is easy to check that the Laplacian Operator is uniformly elliptic on Rn. When n = 2,
from the Theory of holomorphic functions it is known that a sub-solution of the Laplacian
does not have a local maximum in the interior of its domain. This phenomenon also
happens for any elliptic second-order linear differential operator as we can see in the next
theorem.

Theorem A.1.2. (Interior Maximum Principle) Let Ω ⊂ Rn be a domain and let L :
C2(Ω) → C0(Ω) be an elliptic second-order linear differential operator, as in equation
(A.1.1), with c ≤ 0. Let u ∈ C2(Ω) ∩ C0(Ω) satisfying Lu > 0 on Ω.

i. If c ≡ 0, u does not have a maximum in Ω;

ii. If c ≤ 0, u does not have a non-negative local maximum in Ω.

Proof. Let x0 ∈ Ω be an interior local maximum of u. Then the Hessian matrix of u
at x0, Hessu(x0), is negative semi-definite. Consider A(x0) = [aij(x0)] the matrix of
the second-order coefficients of L, evaluated at x0. In particular, A(x0) is symmetric and
positive-definite, since we are assuming that L is elliptic. Thus, there exists an orthogonal
matrix P that diagonalizes A(x0), that is,

PA(x0)P−1 =

 λ1

. . .

λn

 ,
for some λi > 0, i ∈ {1, . . . , n}.

Using that ∂iu(x0) = 0 for all i ∈ {1, . . . , n}, a direct computation gives

trace(A(x0) Hessu(x0)) =
n∑

i,j=1

aij(x0)
∂2u

∂xi∂xj
(x0) = Lu(x0)− c(x0)u(x0).

Either item [i] or item [ii] being satisfied, in both cases we conclude that trace(A(x0) Hessu(x0)) >
0, since Lu > 0 on Ω.
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On the other hand, since the trace is invariant for similar matrices, we have

trace(A(x0) Hessu(x0)) = trace(PA(x0) Hessu(x0)P−1)

= trace(PA(x0)P−1P Hessu(x0)P−1)

= trace(PA(x0)P−1C) =
n∑
i=1

λicii,

where C := P Hessu(x0)P−1 = [cij]. Since Hessu(x0) is negative semi-definite and P is
orthogonal, we conclude that C is also negative-semi definite. Thus, for the canonical
basis {e1, . . . , en} of Rn we have cii = 〈Cei, ei〉 ≤ 0, for all i ∈ {1, . . . , n}. Therefore

trace(A(x0) Hessu(x0)) ≤ 0,

which is a contradiction.

Theorem A.1.3. Let Ω ⊂ Rn be a domain and let L : C2(Ω) → C0(Ω) be a locally
uniformly elliptic second-order linear differential operator, as in equation (A.1.1). Let
u ∈ C2(Ω) ∩ C0(Ω) satisfying Lu ≥ 0 on Ω.

i. If c ≡ 0 and u has a local maximum at x0 ∈ Ω, then u is constant in a neighborhood
of x0;

ii. If c ≤ 0 and u has a non-negative local maximum at x0 ∈ Ω, then u is constant in
a neighborhood of x0.

Proof. Let x0 in Ω an interior local maximum of u. Since L is locally uniformly elliptic,
there exists r > 0 and positive numbers λ(x0) and Λ(x0) such that

u(x) ≤ u(x0)

and

λ(x0)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ(x0)|ξ|2,

for all x ∈ B(x0, r) and for all ξ ∈ Rn. Here B(x0, r) denotes the Euclidean ball centered
at x0 of radius r.

Let us suppose, by contradiction, that u is non-constant in any neighborhood of x0.
This means that:

• ∃y ∈ B(x0, r/2) such that u(y) < u(x0), and

• ∃δ0 > 0 such that B(y, δ0) ⊂ B(x0, r) and x0 ∈ ∂B(y, δ0).

Set U(x0) = {x ∈ Ω;u(x) = u(x0)} and define

δ := inf{ρ > 0;B(y, ρ) ⊂ B(x0, r) and ∂B(y, ρ) ∩ U(x0) 6= ∅}.

Claim: 0 < δ ≤ δ0. Indeed, since u(y) < u(x0), by continuity there exists 0 < δ̃ < δ0

such that u(x) < u(x0), for all x ∈ B(y, δ̃). Since B(y, δ0) ⊂ B(x0, r) we can enlarge

δ̃ until B(y, δ̃) reach a first point x′ ∈ ∂B(y, δ̃) such that u(x′) = u(x0). It necessarily
occurs for some 0 < δ̃ ≤ δ0 since x0 ∈ B(y, δ0).

Conclusion: from the definition of δ, u(x) < u(x0) for all x ∈ B(y, δ) and there exists
x′ ∈ ∂B(y, δ) with u(x′) = u(x0).
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Figure A.1: illustration

Take 0 < δ′ < δ so that B(x′, δ′) ⊂ B(x0, r) and a point p ∈ [y, x′] = {sy+(1−s)x′; s ∈
[0, 1]} so that |p−x′| > δ′ (see Fig. A.1). In particular, u(x) ≤ u(x0), for all x ∈ B(x′, δ′).

Let K be a constant to be determined and define

v(x) = e−K|x−p|
2 − e−K|x′−p|2 , x ∈ B(x′, δ′). (A.1.4)

Then, we compute Lv to obtain

Lv(x) = e−K|x−p|
2

(
4K2

n∑
i,j=1

aij(x)(xi − pi)(xj − pj)− 2K
n∑
i=1

aii(x)

)

− 2Ke−K|x−p|
2

n∑
i=1

bi(x)(xi − pi) + c(x)v(x)

= 4K2e−K|x−p|
2

(
n∑

i,j=1

aij(x)(xi − pi)(xj − pj)

)

− 2Ke−K|x−p|
2

(
n∑
i=1

aii(x) +
n∑
i=1

bi(x)(xi − pi)

)
+ e−K|x−p|

2
(
c(x)− c(x)eK(|x−p|2−|x′−p|2)

)
= e−K|x−p|

2

(4K2M(x)− 2KN(x) + P (x)),

where

M(x) :=
n∑

i,j=1

aij(x)(xi − pi)(xj − pj);

N(x) :=
n∑
i=1

aii(x) +
n∑
i=1

bi(x)(xi − pi);

P (x) := c(x)− c(x)eK(|x−p|2−|x′−p|2).

SinceB(x′, δ′) is compact andM,N and P are continuous, we can find constants M̃, Ñ , P̃ ∈
R, independent of K, such that, for every x ∈ B(x′, δ′), M(x) ≥ M̃ , N(x) ≤ Ñ and
P (x) ≥ P̃ , where M̃ > 0 since L is uniformly elliptic on B(x′, δ′). Therefore,

Lv(x) ≥ e−K|x−p|
2

(4K2M̃ − 2KÑ + P̃ ), ∀x ∈ B(x′, δ′),
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Note that P (x) is bounded below by a constant independent of K, given by

c1 := min{c(x);x ∈ B(x′, δ′)}.

Thus, if c ≡ 0 in equation (A.1.1), we can take P̃ ≡ 0.
So, since M̃ > 0, we can find K > 0 such that 4K2M̃ − 2KÑ + P̃ > 0 and thus

Lv(x) > 0, for all x ∈ B(x′, δ′).

Now, for all t > 0 we have

L(u+ tv) = Lu+ tLv ≥ tLv > 0 in B(x′, δ′),

since Lu ≥ 0 on Ω.
Let ∂B(x′, δ′) = F1∩F2, where F1 = ∂B(x′, δ′)∩B(p, |x′ − p|) and F2 = ∂B(x′, δ′)−F1

(see Fig. A.1). Note that

a. if x ∈ F2, then |x− p| > |x′ − p| and so v(x) < 0;

b. if x ∈ F1, then u(x) < u(x0).

Putting together items a and b and the fact that F1 is compact, we can find t > 0 such
that

u(x) + tv(x) < u(x0), for all x ∈ ∂B(x′, δ′). (A.1.5)

Let z ∈ B(x′, δ′) the maximum of u+ tv on B(x′, δ′), that is

u(z) + tv(z) ≥ u(x) + tv(x) for all x ∈ B(x′, δ′).

Since u(z) + tv(z) ≥ u(x′) + tv(x′) = u(x′) = u(x0), we conclude from (A.1.5) that
z ∈ B(x′, δ′) and it is a maximum (non-negative maximum, if c ≤ 0) of u+ tv on B(x′, δ′).

Applying Theorem A.1.2 for u + tv in B(x′, δ′), we get a contradiction. Thus, there
exists r > 0 such that u(x) = u(x0) for all x ∈ B(x0, r).

Corollary A.1.4. Let Ω ⊂ Rn be a domain and let L : C2(Ω) → C0(Ω) be a locally
uniformly elliptic second-order linear differential operator, as in equation (A.1.1). Assume
that Lu ≥ 0 and u ≤ 0 on Ω. Let x0 ∈ Ω be a point such that u(x0) = 0. Then u ≡ 0 on
Ω.

Proof. Consider the following set

U = {x ∈ Ω;u(x) = 0}.

By the continuity of u, U is a closed subset of Ω. Moreover, U 6= ∅, since x0 ∈ U . If we
can proof that U is also a open subset of Ω we conclude that U = Ω, and by continuity,
u ≡ 0 on Ω. For this purpose, consider L0 : C2(Ω)→ C0(Ω) given by L0 = L+ (q− c)Id,
where q(x) = min{c(x), 0}. That is,

L0v(x) =
n∑

i,j=1

aij(x)
∂2v

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂v

∂xi
(x) + q(x)v(x).

Then L0 is also a locally uniformly elliptic second-order linear differential operator and
since q − c ≤ 0 on Ω, we have that

L0u = Lu+ (q − c)u ≥ 0 on Ω

Thus, if y ∈ U , then y is a local maximum of u and applying Theorem A.1.3 we conclude
that there exists ε > 0 such that u ≡ u(y) = u(x0) on B(y, ε). Therefore U is open.
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Remark A.1.5. Using the arguments of the proof of Corollary A.1.4 we can show that in
Theorem A.1.3, the neighborhood of x0 where u is constant coincides with the connected
component of the neighborhood where x0 is a local maximum of u. This remark will be
useful later.

Theorem A.1.6. (Boundary Maximum Principle) Let Ω ⊂ Rn be a domain such that ∂Ω
is smooth and let L : C2(Ω) → C0(Ω) be a locally uniformly elliptic second-order linear
differential operator, as in equation (A.1.1). Let u ∈ C2(Ω)∩C0(Ω) satisfying Lu ≥ 0 on
Ω. Let x0 ∈ ∂Ω so that

• u is C1 at x0;

• u(x0) ≥ u(x) for all x ∈ Ω ∩B(x0, ε), for some ε > 0;

• ∂u
∂η

(x0) ≥ 0, where η is the inward normal to ∂Ω.

Then,

i. If c ≡ 0, u is constant in a neighborhood of x0;

ii. If c ≤ 0 and u(x0) ≥ 0, u is constant in a neighborhood of x0.

Proof. Let us assume, by contradiction, that u is non-constant in any neighborhood of
x0. Since ∂Ω is smooth, there exists ρ > 0 and x′ ∈ Ω such that B(x′, ρ) ⊂ Ω and
∂B(x′, ρ) ∩ ∂Ω = {x0}.

Let 0 < ρ′ < min{ρ, ε} be such that u(x) ≤ u(x0) for all x ∈ B(x0, ρ
′) ∩ (Ω ∪ {x0}).

Consider the compact set

K := {x ∈ Ω; |x− x0| ≤ ρ′, |x− x′| ≤ ρ} = B(x0, ρ′) ∩B(x′, ρ)

and define
v(x) = e−δ|x−x

′|2 − e−δ|x′−x0|2 , x ∈ K,

where δ is a constant to be determined.
In the same way we did in the proof of Theorem A.1.3, we can find δ > 0 such that

Lv(x) > 0, for all x ∈ K.

Take 0 < ρ̃ < ρ′ so that B(x0, ρ̃) ∩B(x′, ρ̃) = ∅ and consider

K̃ = {x ∈ Ω; |x− x0| ≤ ρ̃, |x− x′| ≤ ρ} = B(x0, ρ̃) ∩B(x′, ρ)

and write ∂K̃ = F1 ∪ F2, where F1 = ∂K̃ ∩B(x′, ρ) and F2 = ∂K̃ − F1 (see Fig. A.2).
Therefore, we have

i. If x ∈ F2, |x− x′| = ρ = |x0 − x′|. Therefore v(x) = 0.

ii. If x ∈ F1, then u(x) < u(x0). Indeed, let us suppose that u(x) = u(x0) for some x ∈
F1. Since F1 ⊂ B(x0, ε)∩Ω and, by hypothesis, u(y) ≤ u(x0) for all y ∈ B(x0, ε)∩Ω,
we conclude that x would be a maximum for u restricted to B(x0, ε) ∩ Ω. Then,
applying Theorem A.1.3 with Remark A.1.5, u ≡ u(x0) is constant in B(x0, ε) ∩ Ω,
which contradicts our assumption that u is non-constant on any neighborhood of
x0.
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Figure A.2: illustration

Thus, since F1 is compact, from item ii we can choose t > 0 such that

u(x) + tv(x) ≤ u(x0), for all x ∈ F1.

Putting this information together with item i, we conclude that

u(x) + tv(x) ≤ u(x0), for all x ∈ ∂K̃.

Define ξ(x) = u(x) + tv(x)− u(x0), for x ∈ K̃. We have that

Lξ = Lu+ tLv − cu(x0) > 0,

since Lu ≥ 0 on K by hypothesis and we know that Lv > 0 on K. We have also that
ξ ≤ 0 on ∂K̃ and ξ(x0) = 0. Thus, applying Theorem A.1.2 we conclude that

ξ(x) ≤ 0, for all x ∈ K̃.

Using this information and the fact that s 7→ ξ(x0 + sη) has a right derivative at s = 0
(because u is C1 at x0), we conclude that ∂ξ

∂η
(x0) ≤ 0. Thus,

t
∂v

∂η
(x0) =

∂ξ

∂η
(x0)− ∂u

∂η
(x0) ≤ 0,

since ∂u
∂η

(x0) ≥ 0, by hypothesis. On the other hand, computing t∂v
∂η

(x0) we get:

t
∂v

∂η
(x0) = −2tδ〈η, x0 − x′〉e−δ|x0−x

′|2 > 0,

since x0−x′ is orthogonal to ∂Ω at x0 pointing outward. Thus we get a contradiction.

Corollary A.1.7. Let Ω ⊂ Rn be a domain such that ∂Ω is smooth and let L : C2(Ω)→
C0(Ω) be a locally uniformly elliptic second-order linear differential operator, as in equa-
tion (A.1.1). Assume that Lu ≥ 0 and u ≤ 0 on Ω. Let x0 ∈ ∂Ω be a point such that
u(x0) = 0. Assume also that u is C1 at x0 and ∂u

∂η
(x0) ≥ 0, where η is the normal vector

of ∂Ω pointing inward. Then u ≡ 0 on Ω.

Proof. Consider U = {x ∈ Ω;u(x) = 0}. The same arguments of the proof of Corollary
A.1.4 shows that U is an open and closed subset of Ω. We need only guarantee that U 6= ∅.
Let L0 be as in the proof of Corollary A.1.4. Applying Theorem A.1.6 to L0 we conclude
that there exists ε > 0 such that u is constant and equals to u(x0) on B(x0, ε) ∩ Ω. This
implies that U 6= 0, since u(x0) = 0 and x0 is a boundary point of Ω.
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A.2 Quasilinear second-order partial differential pper-

ators

Now we consider quasilinear second order differential operators, that is, differential
operators that are linear on the second order terms. Our objective is to extend the
Maximum Principles of the previous section to this kind of differential operator.

Let Ω ⊂ Rn be a domain and consider the quasilinear second order differential operator
Q : C∞(Ω)→ C∞(Ω) of the form:

Qu :=
n∑

i,j=1

aij(x, u,∇u)
∂2u

∂xi∂xj
(x) + b(x, u,∇u), (A.2.1)

where aij, b are, for every i, j ∈ {1, . . . , n}, continuous real-valued functions defined on
Ω × R × Rn. Here ∇u denotes the gradient of u, that is, ∇u = ( ∂u

∂x1
, . . . , ∂u

∂xn
), and we

suppose again that the second order coefficients are symmetric, that is, aij = aji, for every
i, j ∈ {1, . . . , n}.

Definition A.2.1. The operator Q given in A.2.1 is said to be:

i. elliptic at (x, p, q) ∈ Ω × Rn × R if the matrix [aij(x, p, q)] is positive definite. If
this condition is valid for all (x, p, q) ∈ Ω× Rn × R we say just that Q is elliptic;

ii. uniformly elliptic if the eigenvalues of [aij(x, p, q)] are bounded below and above
by a positive constant;

iii. locally uniformly elliptic if for each (x, p, q) ∈ Ω there exists a neighborhood U
of (x, p, q) so that L is uniformly elliptic.

In other words, if {λ1(x, p, q), . . . , λn(x, p, q)} are the eigenvalues of [aij(x, p, q)] and

λ(x, p, q) = minλi(x, p, q); 1 ≤ i ≤ n,

Λ(x, p, q) = maxλi(x, p, q); 1 ≤ i ≤ n,

then Q is elliptic if and only if

0 < λ(x, p, q)
n∑
i=1

ξ2
i ≤

n∑
i,j=1

aij(x, p, q)ξiξj ≤ Λ(x, p, q)
n∑
i=1

ξ2
i , (A.2.2)

for every (x, p, q) ∈ Ω × Rn × R and for every (ξ1, . . . , ξn) ∈ Rn − {0}. In the sense of
equation (A.2.2), Q is uniformly elliptic if and only if 0 < λ ≤ λ(x, p, q) ≤ Λ(x, p, q) ≤ Λ
for some positive numbers λ and Λ. Thus, L is locally uniformly elliptic if for any
(x0, p0, q0) ∈ Ω×Rn×R there exist a neighborhood U of (x0, p0, q0) and positive constants
λ(x0, p0, q0) and Λ(x0, p0, q0) such that

λ(x0, p0, q0)|ξ|2 ≤
n∑

i,j=1

aij(x, p, q)ξiξj ≤ Λ(x0, p0, q0)|ξ|2, ∀(x, p, q) ∈ U, ∀ξ ∈ Rn.

Lemma A.2.2. (Hadamard Lemma) Let U ⊂ Rn be a convex domain and let f : U → R
be a C1 function. Then

f(x)− f(y) =
n∑
i=1

hi(x, y)(xi − yi)
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where x = (x1, . . . , xn), y = (y1, . . . , yn) and

hi(x, y) =

∫ 1

0

∂f

∂xi
(sx+ (1− s)y)ds,

for all i ∈ {1, . . . , n} and for all x, y ∈ U .

Proof. Given x, y ∈ U , consider the function g : [0, 1]→ U given by g(s) = f(sx+(1−s)y).
Since U is convex, g is well defined. Using the Chain’s Rule and the Fundamental Theorem
of Calculus, we have

f(x)− f(y) = g(1)− g(0) =

∫ 1

0

g′(s)ds

=

∫ 1

0

n∑
i=1

∂f

∂xi
(sx+ (1− s)y)(xi − yi)ds

=
n∑
i=1

hi(x, y)(xi − yi).

Lemma A.2.3. Let Ω ⊂ Rn be a domain and let uk : C2(Ω) ∩ C0(Ω), k = 1, 2 be
two functions that satisfies Qu2 ≥ Qu1 on Ω, where Q is an second-order quasi-linear
differential operator given as in equation (A.2.1).

Then u := u2 − u1 satisfies an elliptic linear equation Lu ≥ 0, where L is an elliptic
second-order linear differential operator. Moreover, if Q is locally uniformly elliptic, then
L is also locally uniformly elliptic

Proof. Define φ : Ω× R× Rn × Rn2 → R by

φ(x, z, p, q) =
n∑

i,j=1

aij(x, z, p)qij + b(x, z, p),

where p = (p1, . . . , pn) ∈ Rn, q = (q11, . . . , q1n, . . . , qn1, . . . , qnn) ∈ Rn and x = (x1, . . . , xn) ∈
Ω.

Since Q(u2) ≥ Q(u1), we have

φ(x, u2(x), p2(x), q2(x))− φ(x, u1(x), p1(x), q1(x)) ≥ 0, ∀x ∈ Ω, (A.2.3)

where

qk(x) = (∂2
11u

k(x), . . . , ∂2
1nu

k(x), . . . , ∂2
n1u

k(x), . . . , ∂2
nnu

k(x)), and

pk(x) = (∂1u
k(x), . . . , ∂nu

k(x)), for k = 1, 2.

Using Hadamard Lemma, we can rewrite inequality (A.2.3) as

n∑
i,j=1

Aij(x)(∂2
iju

2(x)− ∂2
iju

1(x)) +
n∑
i=1

Bi(x)(∂iu
2(x)− ∂iu1(x)) (A.2.4)

+ C(x)(u2(x)− u1(x)) ≥ 0, (A.2.5)
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for all x ∈ Ω, where

Aij(x) =

∫ 1

0

∂φ

∂qij
(x, su2(x) + (1− s)u1(x), s gradu2(x) + (1− s) gradu1(x))ds;

=

∫ 1

0

aij(x, su
2(x) + (1− s)u1(x), s gradu2(x) + (1− s) gradu1(x))ds;

Bi(x) =

∫ 1

0

∂φ

∂pi
(x, su2(x) + (1− s)u1(x), s gradu2(x) + (1− s) gradu1(x))ds;

C(x) =

∫ 1

0

∂φ

∂z
(x, su2(x) + (1− s)u1(x), s gradu2(x) + (1− s) gradu1(x))ds,

where ∂φ
∂qij

, ∂φ
∂pi

and ∂φ
∂z

denotes the partial derivatives of φ(x, z, p, q) in the directions

(0, 0, 0, eij), (0, 0, ei, 0) and (0, 1, 0, 0), respectively.

Defining L : C2(Ω)→ C0(Ω) by

Lu(x) =
n∑

i,j=1

Aij(x)∂2
iju(x) +

n∑
i=1

Bi(x)∂iu(x) + C(x)u(x) = 0,

we get a second-order linear differential operator, and by equation (A.2.5) we conclude
that u := u2 − u1 satisfies Lu ≥ 0.

Denoting by τ(x, s) = (x, su2(x)+(1−s)u1(x), s gradu2(x)+(1−s) gradu1(x)), since
Q is elliptical, we have that

λ(τ(x, s))|ξ|2 ≤
n∑

i,j=1

aij(τ(x, s))ξiξj ≤ Λ(τ(x, s))|ξ|2.

Therefore∫ 1

0

λ(τ(x, s))ds|ξ|2 ≤
n∑

i,j=1

∫ 1

0

aij(τ(x, s))dsξiξj =
n∑

i,j=1

Aij(x)ξiξj ≤
n∑

i,j=1

Λ(τ(x, s))ds|ξ|2,

and since λ(τ(x, s)) and Λ(τ(x, s)), we conclude that
∫ 1

0
λ(τ(x, s))ds and

∫ 1

0
Λ(τ(x, s))ds

are also positive, whence we deduce that L is elliptic. From these arguments we also
conclude that L is locally uniformly elliptic when Q is locally uniformly elliptic.

Theorem A.2.4. Let u1, u2 : Ω → R be two functions of class C2 defined on an open
domain Ω of either Rn or the half-space {(x1, . . . , xn) ∈ Rn;xn ≥ 0} such that 0 ∈ Ω.
Assume also that Qu2 ≥ Qu2, where Q is a locally uniformly elliptic second-order quasi-
linear differential operator given as in equation (A.2.1). Then,

i. if 0 is an interior point at Ω, u2(0) = u1(0) and u2 ≤ u1 in Ω, then u2 ≡ u1 in Ω;

ii. if 0 is a boundary point at Ω, u2(0) = u1(0), ∂u2

∂xn
(0) = ∂u1

∂xn
(0) and u2 ≤ u1 in Ω,

then u2 ≡ u1 in Ω.

Proof. Consider u := u2 − u1. Applying Lemma A.2.3 we conclude that there exists an
elliptic second order differential operator L such that Lu ≥ 0. The conclusion follows
from applying Corollary A.1.4 in item [i] and Corollary A.1.7 in item [ii].
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A.3 The Tangency Principle for anisotropic mean cur-

vatures

In this section we present a geometric interpretation of the Maximum Principle, known
as the Geometric Tangency Principle, that is the main tool used along this thesis. We
begin showing an explicit form of the anisotropic mean curvature for graphs. After it, we
recall the notions of interior tangency point and boundary tangency point between two
surfaces. Finally, we present the Geometric Tangency Principle applied for anisotropic
mean curvatures.

Let F : S2 → R be a smooth, positive function and consider F̃ : R3 − {0} → R its
homogeneous extension, that is

F̃ (x) = |x|F
(
x

|x|

)
, x ∈ R3 − {0},

and consider ψ : (u, v) ∈ Ω 7→ (u, v, h(u, v)) ∈ R3 the parametrization of the graph of a
function h defined over some domain Ω ⊂ R2. We may expand the expression

Λ(x) = − divΣ((gradSn F ) ◦N)(x) + nF (N(x))H(x)

in terms of F̃ and h. Thus ψ has anisotropic mean curvature Λ if and only if h satisfies
the following PDE:

Λ = A0(p, q)F̃ (N) + A1(p, q)F̃x(N) + A2(p, q)F̃y(N) + A3(p, q)F̃z(N) (A.3.1)

+ A11(p, q)F̃xx(N) + A12(p, q)F̃xy(N) + A13(p, q)F̃xz(N)

+ A22(p, q)F̃yy(N) + A23(p, q)F̃yz(N) + A33(p, q)F̃zz(N),

where N is the Gauss map of ψ, p = hu, q = hv, r = huu, s = huv, t = hvv and

Ak(p, q) := ak(p, q)r + 2bk(p, q)s+ ck(p, q)t

Akl(p, q) := akl(p, q)r + 2bkl(p, q)s+ ckl(p, q)t

with
a0 (p, q) = 1+q2

(1+p2+q2)
3
2

b0 (p, q) = −pq
(1+p2+q2)

3
2

c0 (p, q) = 1+p2

(1+p2+q2)
3
2

a1 (p, q) =
p(1+q2)

(1+p2+q2)2
b1 (p, q) = −p2q

(1+p2+q2)2
c1 (p, q) =

p(1+p2)
(1+p2+q2)2

a2 (p, q) =
q(1+q2)

(1+p2+q2)2
b2 (p, q) = −pq2

(1+p2+q2)2
c2 (p, q) =

q(1+p2)
(1+p2+q2)2

a3 (p, q) =
−(1+q2)

(1+p2+q2)2
b3 (p, q) = pq

(1+p2+q2)2
c3 (p, q) =

−(1+p2)
(1+p2+q2)2

and

a11 (p, q) =
(1+q2)

2

(1+p2+q2)
5
2

b11 (p, q) =
−pq(1+q2)
(1+p2+q2)

5
2

c11 (p, q) = p2q2

(1+p2+q2)
5
2

a12 (p, q) =
−2pq(1+q2)
(1+p2+q2)

5
2

b12 (p, q) = 2p2q2+1+p2+q2

(1+p2+q2)
5
2

c12 (p, q) =
−2pq(1+p2)
(1+p2+q2)

5
2

a13 (p, q) =
2p(1+q2)

(1+p2+q2)
5
2

b13 (p, q) =
q(1−p2+q2)
(1+p2+q2)

5
2

c13 (p, q) = −2pq2

(1+p2+q2)
5
2

a22 (p, q) = p2q2

(1+p2+q2)
5
2

b22 (p, q) =
−pq(1+p2)
(1+p2+q2)

5
2

c22 (p, q) =
(1+p2)

2

(1+p2+q2)
5
2

a23 (p, q) = −2p2q

(1+p2+q2)
5
2

b23 (p, q) =
p(1+p2−q2)
(1+p2+q2)

5
2

c23 (p, q) =
2q(1+p2)

(1+p2+q2)
5
2

a33 (p, q) = p2

(1+p2+q2)
5
2

b33 (p, q) = pq

(1+p2+q2)
5
2

c33 (p, q) = q2

(1+p2+q2)
5
2
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It is important to notice that equation (A.3.1) is a quasi-linear second-order PDE
whose coefficients of first and second order are smooth functions that do not depend on
h, but only on its first derivatives. Since we are assuming that D2F + F · Id is positive
definite, it is possible to show that such PDE is also elliptic. Thus, we may apply the
results of the previous section. For this purpose, we present now the notions of tangency
and boundary interior point between two surfaces.

Definition A.3.1. Let Σ1 and Σ2 be two immersed surfaces in R3. Let p ∈ Σ1 ∩ Σ2 be
an intersection point such that:

• p is an interior point for both Σ1 and Σ2;

• TpΣ1 = TpΣ2;

• the unit normal vectors of Σ1 and Σ2 at p coincide.

In these conditions, we say that p is an interior tangent point of Σ1 and Σ2.

Definition A.3.2. Let Σ1 and Σ2 be two surfaces with boundary immersed in R3. Let
p ∈ Σ1 ∩ Σ2 be an intersection point such that:

• p is a boundary point for both Σ1 and Σ2, that is, p ∈ ∂Σ1 ∩ ∂Σ2;

• TpΣ1 = TpΣ2;

• the unit normal vectors of Σ1 and Σ2 at p coincide.

• the interior co-normal vectors of Σ1 and Σ2 at p coincide.

In these conditions, we say that p is an boundary tangent point of Σ1 and Σ2.

Let Σ be an immersed surface of R3, with or without boundary, and let p ∈ Σ be one
of its points. Denote by TpΣ the tangent plane of Σ at p. In a sufficiently small domain Ω
of TpΣ (that contains the origin, if p is an interior point of Σ or such that p ∈ ∂Ω, if p is a
boundary point of Σ) we can write Σ as the graph of a smooth function h : Ω ⊂ TpΣ→ R.
More precisely, if N(p) is a unit vector orthogonal to Σ at p and {E1, E2} is an orthonormal
basis of TpΣ, then in a small neighborhood of p, Σ is parametrized in the following form:

(x, y) ∈ Ω 7→ xE1 + yE2 + h(x, y)N(p), (A.3.2)

for some smooth function h : Ω ⊂ TpΣ→ R.
Now, consider two surfaces Σ1 and Σ2 (with or without boundary) immersed in R3.

Assume that p ∈ Σ1∩Σ2 is an interior or boundary tangent point, according to Definitions
A.3.1 and A.3.2. Since the normal vectors and tangent planes of Σ1 and Σ2 coincide at
p, we can write both Σ1 and Σ2 as a graph of smooth functions h1, h2 : Ω → R defined
in the same domain through equation (A.3.2). Thus, we can compare Σ1 and Σ2 through
the following definition:

Definition A.3.3. We say that Σ1 is above (resp. below) Σ2 around p if h1 ≥ h2 (resp.
h1 ≤ h2) in a neighborhood of (0, 0) ∈ Ω, and we denote this by Σ2 ≤ Σ1 (resp. Σ1 ≤ Σ2).

Theorem A.3.4. Let F : S2 → R be a smooth, positive function that satisfies the
convexity condition: D2F (x) + F (x)Id is positive definite for all x ∈ S2. Let Σ1 and Σ2

be two immersed surfaces in R3 and let p ∈ Σ1 ∩ Σ2 be either an interior or a boundary
tangency point between Σ1 and Σ2. Assume that:
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Figure A.3: illustration

i. Σ1 ≥ Σ2 around p;

ii. Λ1 ≤ Λ2 around p.

Then Σ1 and Σ2 agree on a neighborhood of p. In particular, Λ1 = Λ2 in this neighborhood.

Proof. First of all, we recall that the anisotropic mean curvature operator (that we call
Q in this proof) is quasi-linear (see equation (A.3.1)), and since we are assuming that F
satisfies the convexity condition, it is also locally uniformly elliptic.

For simplicity we assume that p = (0, 0, 0), the tangent planes of Σ1 and Σ2 at p
coincide with the plane {z = 0}, that we identify with R2, and the normals of Σ1 and Σ2

at p coincide with e3 = (0, 0, 1). For a sufficiently small domain Ω of R2 that contains
the origin if p is an interior tangency point or 0 ∈ ∂Ω if p is a boundary tangency point,
we consider smooth real-valued functions u1 and u2 defined on Ω whose graphs coincide
around p with Σ1 and Σ2, respectively. The hypothesis implies that u2 ≤ u1 on Ω and
also that Qu1 ≤ Qu2. Define u = u2 − u1. Then u ≤ 0 on Ω and by Theorem A.2.4 we
conclude that there exists an uniformly elliptic second-order linear differential operator
L, as in equation (A.1.1), such that Lw ≥ 0. Moreover, since Q does not depend on u,
by the arguments in the proof of Lemma A.2.3 we deduce that c ≡ 0 in equation (A.1.1).

We need to consider two cases:

Case 1: p is an interior tangency point between Σ1 and Σ2. In this case the origin is a
local maximum of u and applying Corollary A.1.4, we conclude that u ≡ 0 on Ω, that is,
Σ1 = Σ2 around p.

Case 2: p is a boundary tangency point between Σ1 and Σ2. By Definition A.3.2 the
normals and interior co-normals of Σ1 and Σ2 coincide at p, whence we deduce that

∂u

∂η
(0) =

∂u2

∂η
(0)− ∂u1

∂η
(0) = 0.

where η is the inward co-normal vector of Ω at the origin. Since u(0) = 0, applying
Corollary A.1.7 we conclude again that u ≡ 0 on Ω.

A.4 Other theorems

Theorem A.4.1. (Ascoli–Arzelà) Let K be a compact metric space and let F be a
bounded subset of C0(K). Assume that F is uniformly equicontinuous, that is,

∀ε > 0 ∃δ > 0 such that d(x1, x2) < δ ⇒ |f(x1)− f(x2)| < ε, ∀f ∈ F .

Then the closure of F in C0(K) is compact.
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Definition A.4.2. Let U ⊂ Rn be a bounded open domain. We denote by Ck;α(U),
(0 < α ≤ 1) the space consisting of functions f ∈ Ck(U) satisfying [f ]k;α;U < ∞. This
space is indeed a Banach space equipped with the norm

‖f‖k;α;U := ‖f‖k;U + [f ]k;α;U .

Theorem A.4.3. (Interior Schauder Estimates for Classical Solutions) For α ∈ (0, 1), let
u ∈ C2;α(U) be a solution of an second-order linear equation

Lu :=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x),

under the additional assumptions

i. Ellipticity of L: form some 0 < λ ≤ Λ,

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2, for all x ∈ U and ξ ∈ Rn; (A.4.1)

ii. C0;α-boundedness of the coefficients: aij, bi, c ∈ C0;α(U), for some α ∈ (0, 1) and

1

λ

(
n∑

i,j=1

‖aij‖0,α,U +
n∑
i=1

‖bi‖0,α,U + ‖c‖0,α,U

)
≤ Λα. (A.4.2)

Then for U ′ ⊂⊂ U , we have

‖u‖2;α;U ′ ≤ C

(
1

λ
‖f‖α;U + ‖u‖0;U

)
,

where C depends only on n, α, Λ
λ

; Λα and dist(U ′; ∂U).
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