
Problemas sobre la Curvatura Media en Rn+1.

PROBLEMS ABOUT MEAN CURVATURE IN Rn+1.

Thesis submitted to
Universidad de Granada and Universidade Federal do Ceará
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Até um pingo de água em uma folha pode

se tornar algo incŕıvel quando visto de uma

perspectiva diferente.

Even a trickle of water on a leaf can become

something incredible when viewed from a dif-

ferent perspective.



ABSTRACT

This thesis is divided into three chapters. In the first chapter, it is done a brief introduc-

tion of the main tools necessary for the development of this work. In turn, in the second

chapter it develops the Jenkins-Serrin theory for vertical and horizontal cases. Regarding

the vertical case, it only proves the existence of the solution of Jenkins-Serrin problem for

the type I, when M is rotationally symmetric and has non-positive sectional curvatures.

However, with respect to the horizontal case, the existence and the uniqueness is proved

in a general way, namely assuming that the base space M has a particular structure. The

third and last chapter of this thesis is devoted to proving a result of the characterization

of translating solitons in Rn+1. More precisely, it is proved that the unique examples

C1�asymptotic to two half-hyperplanes outside a cylinder are the hyperplanes parallel to

en+1

and the elements of the family associated with the tilted grim reaper cylinder in Rn+1.

Keywords: Translating solitons. Jenkins-Serrin problem. Tilted grim reaper cylinder.
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0.1 INTRODUCTION

The techniques from the geometric flow has shown their power in the proof

of Thurston’s conjecture by ?? using Ricci flow and Penrose’s inequality by ? using the

inverse of the mean curvature flow. After that, the techniques coming from geometric flow

have been turned one of the most important tools of the di↵erential geometry. Besides

of the massive applications into geometric problems, these techniques have shown their

power into other areas as physic, computation etc.

Under this optical of geometric flow, here we are interested to study a particular

type of extrinsic geometric flow, namely the mean curvature flow (or flow of the mean

curvature vector field). So before proceeding, let us define what means a hypersurface flow

by their mean curvature vector field. Let N be a Riemannian manifold and F
0

: ⌃! N

be an immersion of ⌃ into N. Suppose that F : ⌃ ⇥ [0, T ) ! N is an one-parameter

family of immersions of ⌃ into N . Then we say that the family F : ⌃⇥ [0, T ) ! N flow

by their mean curvature vector field with initial data F
0

provided that

(

@tF (p, t) = ~H(F (p, t)) p 2 ⌃
F (p, 0) = F

0

(p) p 2 ⌃

where ~H(F (p, t)) denotes the mean curvature vector field of the hypersurface Ft(⌃) :=

F (⌃, t) at F (p, t). Here and after the mean curvature is the trace of the second funda-

mental form. When ⌃ is a compact hypersurface in N , the existence and the uniqueness

for short times can be seen in (?), (?) and (?). It is important we point out here that ?

proved the existence and uniqueness in a large class of geometric flows that contains the

mean curvature flow. On the other hand, Lorentz discussion about mean curvature can

be seen in (?).

Although we have defined the mean curvature flow in a general setting, actually

here we are interested to study the mean curvature flow in a Riemannian product M ⇥R,
where M is a complete Riemannian manifold with a Riemannian metric �. Indeed to be

honest here we are interested in a particular solution of the mean curvature flow called

the translating soliton (or translator) in M ⇥ R.
We say that an oriented hypersurface ⌃ in M ⇥R is a translating soliton with

speed c(> 0) provided that
~H = c@?

t ,

where ? denotes the normal projection over the normal bundle of ⌃.

The first fact about translating solitons are that they are eternal solution for

the mean curvature flow. Indeed, let F : M ⇥R⇥R ! M ⇥R be the flux of vector field

c@t, then the restriction of F to ⌃⇥R flow by their the mean curvature vector field, up to

intrinsic di↵eomorphism on ⌃ given by the tangent vector field c@>
t . Thus, up to change
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of coordinate on ⌃, one has

@tF(

p, t) = c@?
t .

The second, in fact the most important fact about translating solitons, they

are as the blow up limit near the singularity of the mean curvature flow. At this moment

we will focus in Rn+1 to define what means a singularity. Under this supposition, the

singularity come out naturally when we envelop a compact hypersurface in Rn+1 by mean

curvature. This means that there exists a maximum time, T
max

> 0, so that the flow

cannot be extended to a flow until T
max

+ ✏ for all ✏ > 0, see (?), (??), (?) and (?).

Indeed, as was proved by ?(see also ?) the behaviour of the flow near the singularity

is described by the form that the second fundamental form blow-up. More precisely,

he showed what follows: let ⌃ be an embedded and compact hypersurface in Rn+1 and

F : ⌃ ⇥ [0, T
max

) ! Rn+1 be the maximal flow (which means that T
max

is the maximal

time that the flow exists), then if At denotes the second fundamental form of ⌃t := Ft(⌃),

then max
⌃

t

|At|2 is unbounded as t ! T
max

. Actually, he proved that

max
⌃

t

|At|2 � 1

2(T � t)
.

Thus we classified the singularities according to the rate at which maxp2⌃
t

|At| blows up
as follows: if there is a constant C > 1 such that

max
⌃

t

|At|
p

2(T � t)  C,

then we say that the flow develops a Type I singularity at instant T . Otherwise, that is,

if

lim sup
t!T

max
⌃

t

|At|
p

(T � t) = +1,

we say that is a Type II singularity.

Once defined what a singularity means we can come back to talk how trans-

lating solitons appear the blow up near the singularity of the mean curvature flow. In

dimension two, ? proved, in the case of self-intersect convex (in a certain sense) planar

curves, that singularities of the shortening flow (the mean curvature flow in R2) are asymp-

totic (after a subtle rescaling) to the grim reaper curve y = � log(cosx), x 2 (�⇡/2, ⇡/2),

which is a translation curve with respect to translation along of the flow of e
2

. In higher

dimension n(� 2), ? proved that if M has non-negative mean curvature and if the flow

develops a type II of singularity, then after a particular rescaling the limit flow is the

evolution of a convex translating soliton in Rn+1 along of a flow of a vector v 2 Rn+1.

A remarkable property of translating solitons was obtained by ?. He proved

that translating solitons are minimal hypersurfaces in M ⇥R with respect to a conformal

metric called Ilmanen’s metric. In particular, we can use all local tools from the theory
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of minimal hypersurfaces in this setting.

Under this perspective of seeing translating solitons as minimal hypersurfaces,

here we use this parallel in order to study of translating solitons into two di↵erent terms.

The Jenkins-Serrin problem in M ⇥ R and classification of translating solitons in Rn+1.

In the Chapter ?? we study the Jenkins-Serrin problem inM⇥R. We start this

chapter by giving a brief digression of the problem. This is done turn our exposition more

didactic and for localize our problem in an optical of the theory already known. After

this digression, in the remaining part of this chapter we develop the results obtained in

(?) and (?) in collaboration with Esko Heinonen, Jorge H. Lira and Francisco Mart́ın. In

these two works, we obtained results of existence of Jenkins-Serrin problem in the vertical

case (graph along of the flow of @t) and in the horizontal case (graph Killing along of the

flow of a Killing vector field in M).

In turn in the Chapter ?? we study translating solitons in Rn+1. Similar what

we did in Chapter ??, we start this chapter by localizing our study in the perspective

what already known. After that, in the remaining part of the chapter, we develop the

results obtained in (?) and (?). In these two works, been the first one in collaboration

with Francisco Mart́ın, we obtained a result of characterization of two important families

of translating solitons in Rn+1, the hyperplanes parallel to en+1

and the family associated

with the tilted grim reaper cylinder. The ideas here are detected the shape of the hyper-

surface knowing its behaviour at the “wings” of the hypersurface. Doing a parallel with

the minimal case in Rn+1, our results could be seen as the “analogous” to the result of

characterization due to ?. They proved that the catenoids and the hyperplanes are the

unique examples of minimal hypersurfaces with finite total curvature and two embedded

ends in Rn+1. Although this little comparative, the technique used here di↵er from the

method used by ?, because here we essentially use the theory of varifolds to obtain our

results, however ? used in a clever way the Alexandrov’s method to detect the shape of

the hypersurface.
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0.2 BACKGROUND

In this section we shall give a brief revision of the most important results that

we are going to use throughout the thesis. This review will be divided into three parts.

In the first one, we shall do a little revision about di↵erential geometry that will be useful

later. In turn in the second one, we shall talk about Geometric measure theory, more

precisely, we are going to collect subject from the theory of varifolds that will be used

throughout the thesis. Finally, in the third and last part, we shall obtain the remaining

matter that we are going to need to develop the thesis about translating solitons.

0.2.1 Di↵erential geometry

This section is devoted to give a little review of two important facts from the

di↵erential geometry. The first is the classical analytic tool, the maximum principle. The

second fact is the existence of the Plateau problem in the piecewise convex Riemannian

manifold.

0.2.1.1 Minimal Hypersurfaces

Let N be a Riemannian manifold with a Riemannian metric g without bound-

ary and ⌃ ,! N be a hypersurface in N. Take any point q 2 ⌃, we denote by

Dr(p) = {v 2 Tp⌃ : |v| < r}

the tangent ball around p of radius r. Consider Tp⌃ as a vector subspace of TpN and let

⌫ be an unit normal vector to Tp⌃ in TpN. Fix a su�ciently small ✏ > 0 and denote by

Wr,✏(p) the solid cylinder around p, i. e.

Wr,✏(p) :=
�

expp(q + t⌫) : q 2 Dr(p) and |t| < ✏
 

,

where exp is the exponential map of N at p. Given a smooth function u : Dr(p) ! R, the
graph of u over Dr(p) is the set given by

Graph[u] :=
�

expp(q + u(q)⌫) : q 2 Dr(p)
 

.

Coming back to ⌃ now, it is known that if we take r and ✏ small enough,

then ⌃ \ Wr,✏(p) is a graph of a smooth function u defined over Dr(p). Endowing TpN

with the metric pull-back from g via exponential map expp we can see Graph[u] as the

hypersurface in TpN given by Graph[u] = {q + u(q)⌫ 2 TpN : q 2 Dr(p)}. We assume

this identification in the rest of the section.

Suppose now ⌃0 is another hypersurface in N . We say that ⌃0 lies locally one
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side of ⌃ if either ⌃0 \ ⌃ = ? or for all p 2 ⌃0 \ ⌃ we have N
⌃

(p) = N
⌃

0(p), and if

⌃\Wr,✏(p) = Graph[u] on Dr(p) and ⌃0\Wr,✏(p) = Graph[v] on Dr(p), then either u � v

or v � u on Dr(p), where here N
⌃

(respectively, N
⌃

0) denotes a local unit normal along

⌃ (respectively, ⌃0).

The local description for ⌃ as a graph shows its power when ⌃ is a minimal

hypersurface in N . To be precise, consider the notation of the first paragraph, con-

sider the local coordinate {x
1

, . . . , xn�1

} for Dr(p) ⇢ Tp⌃ ⇢ TpN , and the coordinate

{x
1

, . . . , xn�1

, xn = ⌫} for TpN. Arguing as in (?) we may conclude that the function u

satisfies an uniformly elliptic quasilinear equation. Besides of this, if v : Dr(p) ! R is

another smooth function so that Graph[v] is a minimal hypersurface in TpN too, then

the function w = u � v satisfies an uniformly elliptic di↵erential equation with smooth

coe�cients

aij@
2

ijw + bi@iw + cw = 0.

This last fact is the key point that we would want to mention here, because of

this PDE and the theory developed in (?) we can conclude the following two versions of

the maximum principle.

Theorem 0.2.1. Suppose that ⌃
1

and ⌃
2

are minimal hypersurfaces in N . If ⌃
1

\⌃
2

6= ?
and ⌃

1

lies locally one side of ⌃
2

, then ⌃
1

= ⌃
2

.

When the hypersurfaces and N have boundary, we have the following version of the

maximum principle.

Theorem 0.2.2. Let N be a Riemmannian manifold with non-empty boundary. Suppose

that ⌃
1

and ⌃
2

are minimal hypersurfaces in N with boundary so that @⌃
1

and @⌃
2

lie

on @N . If @⌃
1

\ @⌃
2

6= ? and ⌃
1

lies locally one side of ⌃
2

, then ⌃
1

= ⌃
2

.

Remark 0.2.1. Note that we can omit the hypothesis that N has boundary above by

assuming ⌃
1

and ⌃
2

⇢ ⌦ and @⌃
1

and @⌃
2

⇢ @⌦, where ⌦ ⇢ N is a smooth closed

domain in N .

In addition of these theorems, the local description as a graph also allows to

conclude the following result provided that N has dimension three, see (?) for the proof

of this result.

Theorem 0.2.3. Suppose that ⌃
1

and ⌃
2

are two minimal surfaces in N3 which have

non-empty intersection and do not coincide on an open set. Then ⌃
1

and ⌃
2

intersect

transversely except at an isolated set of points A. Moreover, given any point p 2 A there

exists a integer k � 2 and a neighbourhood U 3 p where the intersection consists of 2k

embedded arc meeting at p.

Remark 0.2.2. This theorem tells that if two minimal surfaces are not equal and have

non-empty intersection, then the set of intersection of these surfaces has a particular

structure depending if ⌃
1

and ⌃
2

are transversal or not. More precisely, If the tangent

planes of ⌃
1

and ⌃
2

at p are transversal, then A is locally a smooth curve across p. On
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the other hand, if ⌃
1

and ⌃
2

are not transversal at p, then A is locally an even set of

smooth curves meeting at p. Geometrically, this last fact tells that the graphs of ⌃
1

and

⌃
2

change of side near p, and the smooth curves are exactly the arcs where the graphs

change of side.

0.2.1.2 Schoen’s Estimate

In this part we are going to state Schoen’s theorem about the estimates of

the second fundamental form of stable surfaces. So before proceeding, let us define what

means hypersurface be stable in general setting. Let N be an n-dimensional oriented

Riemannian manifold with a Riemannian metric g and ⌃ be a minimal hypersurfaces in

N .

Definition 0.2.1. We say that ⌃ is stable provided that if X is a vector field in N with

compact support in N so that X(p)?Tp⌃ for all p 2 ⌃, and � : (�✏, ✏) ⇥ N ! N is an

one-parameter family of di↵eomorphisms so that �s(p) := �(s, p) = p for all p /2 suppX,

�
0

(p) = p and X = (�s)⇤
�

d

ds

�

|
s=0

, if @⌃ 6= ? we also assume X|@⌃ = 0, then it holds

d2

ds2 |
s=0

Ag[�s(⌃)] � 0.

Here Ag[⌃] indicates the area of ⌃ in N with the metric induced by g.

Next, we state the following result due to ? about estimates of the second

fundamental form of stable surface.

Theorem 0.2.4. Let ⌃ be an immersed stable surface in an 3�dimensional Riemannian

manifold N . Given r 2 (0, 1], and a point p 2 ⌃ such that the geodesic ball Br(p) in

⌃ has compact closure in ⌃. Then, there exists a constant c which depends only on the

curvature of N in Br(p) so that

|A|2(p)  c

r2
.

Furthermore, if B3

r (p) denotes a geodesic ball in N and B3

r (p)\⌃ has compact support on

⌃, then there exists a constant ✏ > 0 depending on the curvature of N in B3

r (p) and the

injectivity radius of N at p in such a way B3

✏r(p)\⌃ is a union of embedded discs having

the square of the norm of the second fundamental form bounded by c̃/r2 for a constant c̃

depending on the curvatures of N in B3

r (p).

Remark 0.2.3. Before proceeding we must say something about the previous theorem.

The previous theorem say that if we have a sequence of stable surfaces in {⌃n} so that

B3

r (p) \ ⌃n has compact support on ⌃n for all n. Then, there exists a ✏ > 0 depending

on the curvature of N in B3

r (p) so that |An|  c̃/r2 for a constant c̃ depending on the

curvatures of N in B3

r (p), where An indicates the norm of the second fundamental form

of B3

r (p) \ ⌃n.

This result and the following result we will be useful later. The proof of this
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result follows a similar argument as in Lemma 2.4 in (?), see also ?.

Lemma 0.2.1. Let ⌃ be an immersed stable surface in an 3�dimensional Riemannian

manifold N . Suppose that for same constant c > 0 we have

sup
⌃

|A|2  c

r2
.

Then, there exists a constant ✏ > 0 depending on the curvature of N so that if dist
⌃

(p, @⌃) >

2✏, then B
2✏(p) is a graph of a function u over Tp⌃ with gradient and Hessian bounded

by a constant only depends on N and ✏.

0.2.1.3 Existence of minimal embedded disk

The most important problems in di↵erential geometry in the last century was

to prove the existence of solutions of the Plateau’s problem. This problem asks the

following: given a finite family of simple closed curves in a three-dimensional Riemannian

manifold N3, then does it possible to find a minimal immersion in N with boundary this

family?

Although this problem was already known for Euler and Lagrange in the eigh-

teenth century, and by Plateau in the nineteenth century, the proof of the existence of

such solutions was given by ? and ? at the beginning of the last century, when M is

either R3 (?) or Rn+1 (?). After that, in a deeply work, ? extended the existence when

N is now a homogeneous manifold. A hard extension of the Morrey’s work was carried

out by ??. They proved the existence of solutions of Plateau’s problem when now N is a

piecewise convex manifold. So before we state this theorem, we need some notation.

Definition 0.2.2. A manifold N is called be piecewise convex, if N is a precompact do-

main with boundary of a large Riemannian manifold N̂ and @N is formed by a finite

family {Ni} of convex (with respect to the unit inward pointing normal) smooth hypersur-

face with boundary in N̂ with boundary in @N , each Ni is a compact domain of a smooth

surface N̂i in N̂ , Ni = N̂i \N and each @N̂i ⇢ @N̂ .

The main theorem can now be stated as follows.

Theorem 0.2.5 (Existence of minimal disk). Let N be a piecewise convex manifold and

� be a Jordan’s curve on @N null-homotopic. Then there exists a minimal embedded disk

into N with boundary �.

Besides of this theorem, later we will need of the following variation when we

have two Jordan’s curves in @N . This result is also due to ??

Theorem 0.2.6 (Existence of least area cylinder). Let N be a piecewise convex 3�manifold

and �
1

and �
2

two disjoint Jordan’s curves on @N . Assume that exist a bounded cylinder

C with boundary �
1

and �
2

and d{�
1

, �
2

} < d{�
1

}+d{�
2

}. Then there exists an immersed

connected least area cylinder in N with boundary �
1

and �
2

.
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Remark 0.2.4. Above d{�i} denotes the minimum of the area of all disk in N with

boundary �i and d{�
1

, �
2

} denotes the minimum of the area of all cylinder in N with

boundary �
1

and �
2

.

Remark 0.2.5. Notice that the solutions of the Plateau problem are stable surfaces in N.

0.2.2 Theory of varifolds

In this part we are going to follow the exposition given by ?, ? and ? for

theory of varifolds, see also appendix in (?) for a brief explanation or the recent reference

?. Throughout this part N denote an (n + 1)-dimensional Riemannian manifold with a

Rimennian metric g, d indicates the distance function in N and U ⇢ N is an open subset.

0.2.2.1 Hausdor↵ measure of dimension k

Let ↵(k) be the area of the unit ball in Rk. Whenever 0 < �  +1 and

A ⇢ U , we define

Hk
N�(A) = inf

C

(

X

S2C
↵(k)

✓

diam S

2

◆k
)

,

where C denotes a countable family of subset of U so that

A ⇢
[

S2C
S and diam S := sup

x,y2S
d(x, y)  �.

Each Hk
N� is an outer measure which satisfies Hk

N�1
(A)  Hk

N�2
(A) whenever

�
2

 �
1

and A ⇢ U. Moreover, if dist(A,B) > � one has Hk
N�(A[B) = Hk

N�(A)+Hk
N�(B)

by definition. These properties together tells that the limit

Hk
N(A) = sup

�>0

Hk
N�(A) = lim

�!0

Hk
N�(A)

there exists in [0,1] for all A ⇢ U and by Caratheodory’s criterion Hk
N is a outer measure

on the algebra of Borel set of U .

Definition 0.2.3 (k-dimensional Hausdor↵ measure). The measure Hk
N is called the k-

dimensional Hausdor↵ measure in U .

We have placed here the index N at Hk
N , di↵erentiating of the usual notation

Hk, to indicate that the measure Hk
N depends on the geometry of N . The next result

clarifies what we are trying to say.

Theorem 0.2.7. The measure Hn+1

N coincides with the Riemannian measure associated

with the metric g. That is, we have

Hn+1

N (A) =

Z

A

dµN for all A ⇢ U Borel set,
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where dµN denotes the element of volume Riemannian associated to g. Actually, for

all k 2 {1, . . . , n}, the measure Hk
N restricts to an k-dimensional submanifold ⌃ in U

coincides with the Riemannian measure associated with the metric g restricts on ⌃.

The proof of this fact can be seen in ? and ? for Rn+1 and ? for any

Riemannian metric in the chapter three. For simplicity from now on, we will denote Hk
N

by Hk whenever this does not generate problems.

0.2.2.2 Rectifiable set

We start by defining the main concept of this part.

Definition 0.2.4 (k-dimensional rectifiable set). We say that a set E is an k�dimensional

rectifiable set provided E = M
0

[ (
S1

i=1

Mi), where each Mi is a k�dimensional subman-

ifold of class C1 and Hk(M
0

) = 0.

Example 0.2.1. All submanifolds of dimension k in U are examples of k�dimensional

rectifiable sets.

Assume for instant that E is an k-dimensional rectifiable set in such a way

Hk(E \K) < +1 for all K ⇢ U compact. Thus Hk
xE is a Radon measure in U defined

by Hk
xE(A) = Hk(E \ A). Another example of Radon measure can be obtained as

follows: let ✓ be a non-negative locally finite Hk-integrable function on E, then Hk
x(✓, E)

defined by

Hk
x(✓, E)(A) :=

Z

A\E
✓(p)dHk(p)

is a Radon measure in U .

Next, we would like to define the tangent space to an k�dimensional rectifiable

set. Let E be an k-dimensional rectifiable set in U and p 2 U . Take r smaller than the

injectivity radius of p in N , hence expp : Br(0) ! Br(p) is a di↵eomorphim, and thus

exp�1

p (E \Br(p)) is an k-dimensional rectifiable set in Br(0) ⇢ TpN(= Rn+1), here Br(0)

denotes the open ball of radius r in TpN and Br(p) is the geodesic ball of radius r and

center p. Whenever � > 0 we define the map ⌘p,� : TpN ! TpN by setting ⌘p,�(q) =
q
�
.

With these notations we can state the next result about the existence of tangent spaces.

The proof of this result when N = Rn+1 can be seen in ?.

Proposition 0.2.1. Let E be an k-dimensional rectifiable set in U and ✓ : E ! R be a

locally finite Hk-integrable function. Then for Hk almost all p 2 E there exists an unique

k�dimensional subspace TpE of TpN such that as r ! 0 it holds

(⌘p,�)#(expp)
�1

#

Hk
x(✓, E)

⇤
* ✓(p)Hk

x(TpE), (1)

in TpN , here (⌘p,�)#(expp)
�1

#

Hk
x(✓, E)(A) := Hk

x(✓, E)((expp)(�A)) and

(⌘p,�)#(expp)
�1

#

Hk
x(✓, E)

⇤
* ✓(p)Hk

x(TpE)
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means

lim
�!0

Z

T
p

N

�(q)d(⌘p,�)#(expp)
�1

#

Hk
Ux(✓, E)(q) = ✓(p)

Z

T
p

N

�(q)dHk
x(TpE)(q),

for all � 2 C0

c (TpN).

Remark 0.2.6. Notice that the measure which we are adopting in TpN(= Rn+1) is the

standard Hausdor↵ measure Hk for Rn+1. Moreover, the measure (⌘p,�)#(expp)
�1

#

Hk
Ux(✓, E)

in B��1r(0) ⇢ TpN is defined by

(⌘p,�)#(expp)
�1

#

Hk
Ux(✓, E)(A) = Hk

Ux(✓, E)((expp)(�A)) =

Z

(exp

p

)(�A)\E
✓(d)dHk

U(d).

Definition 0.2.5 (Tangent space). The unique k�dimensional subspace TpE given by the

last proposition is called the tangent space to E at p.

Remark 0.2.7. It is important to point out here that the definition above coincides with

the classical definition of tangent space when E is a smooth submanifold in N.

0.2.2.2.1 Co-Area Formulae

We would like to finish this part by reminding the Co-Area formulae. This

formula gives a simple way to compute the integral of an Hk-integrable function in term

of the level-set of an C1 function. More precisely, let ⇢ : U ! R be a proper locally

Lipschtiz function and E be an k�dimensional rectifiable set in E, then for all Hk-

integrable function u one has

Z

E
r

u(p) ·
p

g(r⇢,r⇢)dHk(p) =

Z r

�1

Z

⇢�1
(s)\E

u(p)dHk�1(p)ds, (2)

where Er := E \ ⇢�1(�1, r]).

Remark 0.2.8. The proof and extension of this formula can be seen in ?, ? and ?.

0.2.2.3 Varifolds

For all k 2 {1, . . . , n+ 1} let

Gk(U) := {(p,⇧) : p 2 M and ⇧ is an k�dimensional subspace of TpM}

be the Grassmann manifold of all unorientated k�dimensional subspace of TN on U.

Definition 0.2.6 (Varifold). We say that V is an k-dimensional varifold in U , if V is a

non-negative Radon measure in Gk(U).

The space of all k�dimensional varifolds in U will be denoted by Vk(U). The

topology that we will consider in Vk(U) is the weak*-topology which is defined as follows:
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we say that Vi converges weakly* to V on Vk(U) if for all � 2 Cc(Gn(U)) it holds

lim
i!1

Z

G
k

(U)

�(x,⇧)dVi(x,⇧) =

Z

G
k

(U)

�(x,⇧)dV (x,⇧).

As {Vi} converges weakly to V , then we will write Vi
⇤
* V .

Denote by ⇡ : Gk(U) ! U the projection map of Gk(U) onto U defined by

⇡(p,⇧) = p. Let V be an k-dimensional varifold in U . From V we obtain a Radon measure

µV in U called the weight measure associated to V by setting µV (A) = V (⇡�1(A)).

Definition 0.2.7. We say that an k-dimensional varifold V has locally bounded area

provided that µV (F ) < 1 for all compact set F in U. More generally, we say that a

sequence of k�dimensional varifolds {Vi} has locally bounded area provided that for all

compact subset F in U there exists a constant c ( = c(F )) so that

µV
i

(F )  c(F ) for all i.

Next we define the support of an k�dimensional varifold V denoted by sptV

as the smallest closed set F so that µV (U \ F ) = 0. In particular, the support of an

k-dimensional varifold V is a subset of U . Notice this is not the support of V seen as

measure in Gn(U).

Definition 0.2.8. An k-dimensional varifold V is called connected provided sptV is a

connected subset in U .

Turn out that if W is an open subset of U , then we can get a natural k-

dimensional varifold on Gk(W ) from V denoted by V xG
k

(W )

by putting V xG
k

(W )

(A) :=

V (A \Gk(W )). Sometimes later in the proofs we are going to use the same notation for

V and its restriction to Gk(W ) without any comment. This omission of notation could

generate problems later, but whenever we were made to use of this convection, we shall

specify the sets.

In order get others important examples varifolds, let E be an k-dimensional

rectifiable set in U and ✓ a non-negative locally finite Hk-integrable function, we define

an k-dimensional varifold V (✓, E) by setting

V (✓, E)(A) :=

Z

{x2E : (x,T
x

E)2A}
✓(x)dHk(x) =

Z

E\⇡(A)

✓(x)dHk(x) for all A 2 Gn(U).

Remark 0.2.9. Notice that k�dimensional submanifolds in U are examples of k-dimensional

varifolds.

Before we define two more important subspaces in Vk(U), we need some no-

tation. Let V be an k-dimensional varifold, we say that V is an k-dimensional rectifiable

varifold if there exist k-rectifiable set E in U and non-negative locally finite Hk-integrable
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function ✓ so that

V = V (✓, E).

If ✓ is an integer value function, thus we say that V is an k-dimensional integral varifold.

With these new notations, we denote by RVk(U) the space of all k-dimensional rectifiable

varifolds and IVk(U) ⇢ RVk(U) the space of all k-dimensional integral varifolds. These

two spaces, in fact the second ones, play an important role in this thesis.

0.2.2.4 First Variation

Let us begin this part by reminding the first variation formula for smooth sub-

manifolds. Let � : U ⇥ (�✏, ✏) ! U be an one-parameter family of proper di↵eomorphims

in U associated to the C1 vector field X with compact support on U , if ⌃ has boundary

we suppose that X|@⌃ ⌘ 0. We know from the di↵erential geometry, see for example (?)

or (?), that the following expression holds

d

dt t=0

Area[�t(⌃)] =
d

dt t=0

Hk[�t(⌃)] =

Z

⌃

div
⌃

X(p)dHk(p).

On the other words, this tells that the function

�⌃(X) :=
d

dt t=0

Area[�t(⌃)] =

Z

⌃

div
⌃

X(p)dHk(p)

is a linear functional on the space of all C1 vector field in U with compact support in

U so that X|@⌃ = 0. This is the key point that we would want to comment here, this

expression motives we define the first variation of a k�dimensional varifold as a linear

functional on the set of all C1 vector field in U with compact support.

Let V be an k-dimensional varifold on U and X be a C1 vector field in U with

compact support. We define the first variation formulae on the space of C1 vector fields

in N with compact support as the linear functional �V defined by

�V (X) =

Z

G
n

(U)

div
⇧

X(p)dV (p,⇧),

where here

div
⇧

X(p) =
k
X

i=1

g (rE
i

X,Ei)

and {Ei} is an orthonormal basis for ⇧ and r denotes the Levi-Civita connection of U

associated with the Riemannian metric g.

Definition 0.2.9. We say that an k-dimensional varifold V is stationary provided that

�V ⌘ 0.

Example 0.2.2. k-dimensional minimal hypersurfaces in U are examples of k-dimensional
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stationary varifolds in U.

The importance of the k-dimensional stationary varifolds for us here is that

they satisfy the monotonicity formula. More precisely, one important consequence of

�V ⌘ 0 is that the function

r 7! e⇤r
µV (Br(p))

↵(k)rk

is non-decreasing for all p 2 U when r is small enough, here the constant ⇤ depends

on the geometry of the ambient space N , see (?). In particular, for any k�dimensional

stationary varifolds the density ⇥k(V, p) always exists at each point p 2 U .

Definition 0.2.10. The s-dimensional density of V at p, denoted by ⇥s(V, p), is defined

by

⇥s(V, p) := lim
r!0

µV (Br(p))

↵(s)rs
,

here Br(p) indicates the geodesic ball in U with center p.

We finish this part of our study by stating the following result about the density

of stationary varifolds whose proof can be seen in (?).

Proposition 0.2.2 (Upper semicontinuous of density). Let {Vi} be a sequence of k-

dimensional stationary varifold which converges weakly* to V and {pi} be a sequence of

point in U that converges to p 2 U , then one has

⇥k(V, p) � lim sup⇥k(Vi, pi).

0.2.2.5 Compactness theorems

At this moment, we obtain the compactness theorems for varifolds setting.

These theorems will be one of the most important tools of this thesis. Before we state

these theorems, we need to introduce some notations.

Definition 0.2.11. Let V be an n-dimensional varifold in U . We say that p 2 sptV

is a regular point of V provided there exists an open neighbourhood W of p in U so that

sptV \W is a smooth hypersurface without boundary in W . The set of all regular points

of V will be denoted by reg V . The set sing V := (sptV \ reg V )\U is called the singular

set of V .

Definition 0.2.12. An n-dimensional integral varifold V is called stable provided it is

stationary and regV is stable in the sense of Definition ?? in U.

Example 0.2.3. All stable minimal hypersurfaces in N are examples of n-dimensional

stable integral varifolds.

Next we need to come back to use the notations from Section ?? for defining

what means convergence in an C1�topology.

Definition 0.2.13. Let {⌃i} be a sequence of hypersurfaces in U . We say that {⌃i}
converges in C1� topology with finite multiplicity to a smooth embedded hypersurface ⌃
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if

i. ⌃ consists of accumulations points of {⌃i}, that is, for each p 2 ⌃ there exists a

sequence {pi} such that pi 2 ⌃i, for each i 2 N, and p = limi pi;

ii. For every p 2 ⌃ there exists r, ✏ > 0 such that ⌃\Wr,✏(p) can be represented as the

graph of a function u over Br(p);

iii. For i large enough, the set ⌃i \Wr,✏(p) consists of a finite number, k, independent

of i, of graphs of functions u1

i , . . . , u
k
i over Dr(p) in such a way for all l 2 {1, . . . , k}

ul
i and any of its derivatives converges uniformly to u.

The multiplicity of a given point p 2 ⌃ is defined by k. As {⌃i} converges smoothly to ⌃,

then we will write ⌃i ! ⌃.

Once defines this last ingredient, we finally can talk about one of the main

tools of this thesis, the compactness theorems. We begin the statement of these results

with the compactness theorem for stationary integral varifold due to ? (see also ?).

Theorem 0.2.8 (Compactness Theorem for Stationary Integral Varifold). Let {Vi} be a

sequence of n�dimensional stationary integral varifolds in U whose area is locally bounded

in U , then a subsequence of {Vi} converge weakly* to an n�dimensional stationary integral

varifold V in U.

Remark 0.2.10. Notice that in the previous theorem we may have V = ?. Indeed, if

Vi := {x 2 Rn+1 : hx, en+1

i = i}, then {Vi} is a sequence of n-dimensional stationary

integral varifold in Rn+1, endowed with the Euclidean metric, whose area is locally bounded

and Vi
⇤
* ?.

Turn out that when we know that each varifold Vi is stable too, and if the

singular set of each Vi satisfies a subtle condition, then we can conclude that the conver-

gence above is stronger than weakly* convergence. This theorem is due to ? when the

singular set has “Hausdor↵ dimension” at most n � 2. The strong version that we are

going to start in a moment is due to ?( see also ? and ? for another extension when the

varifold has “prescribed mean curvature”). Before we state this theorem, we need one

more definition.

Definition 0.2.14 (↵�structure hypothesis). We say that an n�dimensional integral

varifold V satisfies the ↵�structure hypothesis provided that for all p 2 singV there exist

no r > 0 in such a way that sptV \ Br(p) is the union of a finite number of embedded

C1,↵ hypersurfaces with boundary in Br(p), all having a common C1,↵ boundary in Br(p)

containing p and no two intersecting except along of their boundary, here Br(p) denotes

the geodesic ball in U.

Theorem 0.2.9 (Strong Compactness Theorem). Let {Vi} be a sequence of n�dimensional

stable integral varifolds in U with locally bounded area. Suppose that if n � 7 then

Hn�7+�(sing Vi \ U) = 0 for all � > 0, if n = 7 then sing Vi \ U and if 1  n  6

then sing Vi \ U = ? for all i and each Vi satisfies the ↵�structure hypothesis. Then

there exist a subsequence {Vi
k

} ⇢ {Vk} and an n�dimensional stable integral varifold V
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in U so that:

i. Vi
k

⇤
* V in U ;

ii. sing V satisfies Hn�7+�(sing V \ U) = 0 for all � > 0 if n � 7, sing V \ U is

discrete if n = 7 and sing V \ U = ? if 1  n  6;

iii. sptVi
k

! sptV in U \ singV.

0.2.2.5.1 Area blow-up set

In general, it is not so easy task to prove that a sequence of n�dimensional

varifolds has locally bounded area. So we need to look for a criterion that ensures over

certain conditions the sequence must have locally bounded area. This criterion is due to

?, and it will be our focus of study now.

We begin our study with the following definition.

Definition 0.2.15. Let Z be a closed set in U . We say that Z is an (k, 0) subset of U

provided the following property holds: if u : U ! R is a C2 function so that u|Z has a

local maximum at p, then

Trkr2u  0,

where r2u denotes the Hessian of u and Trkr2 denote the sum of the k lowest eigenvalues

of r2u with respect to the Riemannian metric g.

The subtlety of this definition is that (n, 0) sets satisfy a kind of type of the

barrier principle, see ? for another extension for (k, 0) sets as k  n� 1.

Theorem 0.2.10 (Strong Barrier Principle). Let Z be an (n, 0) set in U and K be a

closed region of U with smooth, connected boundary @K such that Z ⇢ K and so that

g(~H@K , ⌫) � 0

everywhere on @K, where ~H@K(p) denotes the mean curvature vector field at p and ⌫

denotes the unit normal at p to @K which point into K. If Z contains any point of @K,

then it must contain all of @K.

The next result tells us that the (n, 0) set comes out naturally as the area

blow-up set from the sequence of n�dimensional minimal hypersurface. It is important

we point out here that this theorem is true when each ⌃i is in fact an n�dimensional

stationary varifold with “boundary”. We only enunciate this version because it is su�cient

for our future application, see ? for such extension.

Theorem 0.2.11 (Blow-up set structure). Let {Vi} be a sequence of n�dimensional

stationary integral varifold in U without “boundary” and define

B := {p 2 U : lim sup
i

Hn(⌃i \Br(p)) = +1 for every r > 0},
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then B is an (n, 0) set in U.

Definition 0.2.16. The set B above is called the area blow-up set of the sequence {Vi}.
Remark 0.2.11. Although we have not defined what the boundary of an n�dimensional

varifold means, this will not cause problems for us, because all varifolds that we will use

here have no boundary. For example, we can prove that the weakly limit of a sequence of

varifolds without boundary has not boundary too.

0.2.2.5.2 Regularity type Allard

We finish this part by stating a regularity theorem type Allard due to ?.

Before we state it, we need to introduce some notation.

Definition 0.2.17 (Converges of sets). We say that a sequence of subsets {Si} in U

converges as set to S ⇢ U if it holds

S := {p 2 U : lim sup
i

dist{p, Si} = 0} and so S = {p 2 U : lim inf
i

dist{p, Si} = 0}.

Now the regularity theorem promised can be stated as follows.

Theorem 0.2.12 (Regularity type Allard). Let {⌃i} be a sequence of n�dimensional,

properly embedded minimal hypersurface without boundary in U. Suppose that ⌃i converges

as sets to a subset of an n�dimensional, connected, properly embedded hypersurface with-

out boundary ⌃ in U . Assume also there exists a point p 2 ⌃ and a neighbourhood W

of p in U so that ⌃i \ W converges weakly to ⌃ \ W with multiplicity one. Then {⌃i}
converges smoothly to ⌃ and with multiplicity one everywhere.

Remark 0.2.12. Here ⌃i \W converges weakly to ⌃ \W with multiplicity one means

V (1,⌃i \W )
⇤
* V (1,⌃ \W ).

0.2.2.6 Maximum Principle for Varifolds

In this part we shall obtain the last ingredient that we will need later. Here

we are going to obtain the versions of the Theorem ?? and Theorem ?? and principle

of barrier for varifolds setting. These results for varifolds and the compactness theorems

from the last section are the two most important tools of this thesis.

Before we go on, we need to define a subtle variation of a varifold be stationary.

Definition 0.2.18. Let K be a closed domain of U with smooth boundary @K. We say

that an n�dimensional varifold V in K minimizes the area to the first order in K if one

holds

�V (X) � 0,

for all C1 vector field X with compact support in U so that g(X, ⌫@K) � 0 everywhere on

@K, where ⌫@K denotes the unit normal to @K which point into K.
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Once define this, we can state the next barrier principle due to ? and ?.

Theorem 0.2.13. Let K be a closed domain of U with smooth, connected boundary @K

so that

g(~H@K , ⌫@K) � 0

everywhere on @K, where ~H@K(p) denotes the mean curvature vector field at p and ⌫

denotes the unit normal at p to @K which point into K. Let V be an n-dimensional

varifold that minimizes to the first order in K. Thus

i. If spt V contains any point of @K, then it must contain all of @K and the mean

curvature of @K must be vanish everywhere on @K;

ii. If V is a stationary integral varifold, then V can be written as W +W 0, where W

and W 0 are stationary integral varifolds, the support of W is @K and the support of

W 0 is disjoint from @K.

Actually, later we will be interested in the following consequence of this theo-

rem.

Corollary 0.2.1. Let K be a closed domain of U with smooth, connected boundary @K

so that

g(~H@K , ⌫@K) � 0

everywhere on @K, where ~H@K(p) denotes the mean curvature vector field at p and ⌫

denotes the unit normal at p to @K which point into K. Let V be an n-dimensional

connected varifold that minimizes to the first order in K. Thus if sptV contains any

point of @K, then sptV = @K.

We finish our exposition about varifolds setting with the following two results.

The first ones was proved by ?. This result tells when the regular set of an n�dimensional

stationary varifold is connected.

Theorem 0.2.14 (Connectedness of the regular set). Suppose that V an n�dimensional

stationary varifold in U so that sptV is connected in U and Hn�2(singV ) = 0. Then

regV is connected in U .

The second result is a sharp generalization of Theorem ?? to the varifolds

setting due to ?.

Theorem 0.2.15 (Sharp Maximum Principle for Integral Varifold). Suppose that V
1

and

V
2

are n�dimensional stationary integral varifolds in U so that

Hn�1(sptV
1

\ sptV
2

) = 0,

then sptV
1

\ sptV
2

= ?.
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0.2.3 Translating solitons in M ⇥ R

In this part we obtain the remaining matter that we shall need later to develop

this thesis. Here we follow the exposition given by ? and ? to this subject. For the sake of

simplicity throughout this section M denotes a complete oriented Riemannian manifold

with a Riemannian metric � and c > 0 is a constant positive.

0.2.3.1 Translating Solitons

Let ⌃ be a oriented hypersurface in M ⇥R, we say that a hypersurface ⌃ is a

translating soliton with respect to the parallel vector field @t with translation speed c 2 R
provided that

~H = c @?
t ,

where ~H is the mean curvature vector field of ⌃ and ? indicates the projection onto the

normal bundle of ⌃. Hence, if N is the unit normal vector field along ⌃, then the mean

curvature of ⌃ satisfies

H = cg
0

(@t, N), (3)

where g
0

= � + dt2 denotes the Riemannian product metric in M ⇥ R.
Remark 0.2.13. For us the mean curvature H of ⌃ is the trace of the second fundamental

form of ⌃.

Before we go on, let us give one natural example of translating soliton inM⇥R.
Example 0.2.4. If ⌃ is a minimal hypersurface on M, then ⌃⇥R is a translating soliton.

Remark 0.2.14. Notice that the hypersurface M ⇥ {t} is not a translating soliton in

M ⇥ R.
As it was proven by ? translating solitons are minimal hypersurfaces with

respect to the so-called Ilmanen’s metric

gc := e
2c
m

t(� + dt2), (4)

where m = dimM.

Lemma 0.2.2 (T. Ilmanen). Translating solitons with translation speed c 2 R are minimal

hypersurfaces in the product M⇥R with respect to the Ilmanen’s metric gc = e
2c
m

t(�+dt2).

Proof. Indeed, let {Ei} be an orthonormal frame and N be an unit normal for ⌃ seen

as hypersurface in M ⇥ R endowed with the Riemannian metric g
0

, and consider the

orthonormal frame {e� c

m

tEi} and unit normal e�
c

m

tN for ⌃ seen now as hypersurface in

M ⇥R endowed with the Riemannian metric gc. Since gc is conformal to g
0

, then we have

the following relationship between the connections rc associated to gc and r0 associated

to g
0

rc
YX = r0

YX +
c

m
{g

0

(X, @t)Y + g
0

(Y, @t)X � g
0

(X, Y )@t} .
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From this equality follows

rc

e�
c

m

tE
i

(e�
c

m

tEi) = e�
2c
m

t
h

r0

E
i

Ei +
c

m
{g

0

(Ei, @t)Ei � @t]
o

.

Hence, one holds

�Hc = divc(e
� c

m

tN) = gc

⇣

rc

e�
c

m

tE
i

(e�
c

m

tN), e�
c

m

tEi

⌘

= �gc

⇣

rc

e�
c

m

tE
i

(e�
c

m

tEi), e
� c

m

tN
⌘

= �gc

⇣

e�
2c
m

t
h

rE
i

Ei +
c

m
{g

0

(Ei, @t)Ei � @t]
o

, e�
c

m

tN
⌘

= �e�
c

m

tg
0

⇣h

rE
i

Ei +
c

m
{g

0

(Ei, @t)Ei � @t]
o

, N
⌘

= �e�
c

m

t [g
0

(rE
i

Ei, N)� cg
0

(@t, N)]

= �e�
c

m

t [H � cg
0

(@t, N)] ,

where Hc indicates the mean curvature of ⌃ as hypersurface of M ⇥ R with respect

to the Riemannian metric gc and H denotes the mean curvature of ⌃ as hypersurface

of M ⇥ R with respect to the Riemannian metric g
0

. In particular, we have Hc =

e�
c

m

t [H � cg
0

(@t, N)]. This complete the proof of the lemma.

Remark 0.2.15. Notice that Ilmanen’s metric is not a complete metric in M⇥R, however
we need that (M ⇥ R, g

0

) be complete.

Actually, this lemma is not the original viewpoint of ?, in this moment we

come back to endow M ⇥ R with the metric g
0

. Doing this, ? saw translating solitons

are critical points of the area functional

Ag
c

[⌃] =

Z

⌃

dµc
⌃

=

Z

⌃

ec⌘dµ
⌃

where ⌘ = t|
⌃

and dµc
⌃

= ec⌘ dµ
⌃

is the area element of ⌃ induced by gc. A straightfor-

ward calculation shows that the Euler-Lagrange equation associated with this variational

problem is

H � cg
0

(@t, N) = 0.

Namely, assume that � : ⌃ ⇥ (�✏, ✏) ! M ⇥ R is a normal variation of ⌃ with support

compact on ⌃. Suppose that �⇤
�

d

ds

�

|
s=0

= vN, where v 2 C1
c (⌃) and define ⌃s = �s(⌃).

From the first variation formulae (see Lemma 5 in (?) or (?)) we know that

d

ds
dµ

⌃

s

= �vH
⌃

s

dµ
⌃

s

.
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Hence, one has

d

ds
Ag

c

[⌃s] =
d

ds

Z

⌃

s

dµc
⌃

s

=
d

ds

Z

⌃

s

ec⌘dµ
⌃

s

= �
Z

⌃

s

(H
⌃

s

� cg
0

(@t, N⌃

s

))ec⌘vdµ
⌃

s

,(5)

where dµ
⌃

s

indicates the Riemannian element of area of ⌃s seen as hypersurface of M⇥R
with the metric g

0

. This proof our claim.

Next we would like to figure out the second variation formulae at s = 0. We

can compute this as follows: di↵erentiating (??) at s = 0, then after simplification one

gets

d2

ds2 |
s=0

Ag
c

[⌃s] = �
Z

⌃

ec⌘v
d

ds |
s=0

(H
⌃

s

� cg
0

(@t, N⌃

s

))dµ
⌃

.

Turn out that if Z is a vector field on ⌃, then we have

0 =
d

ds
g
0

((�s)⇤(Z), N⌃

s

) = g
0

⇣

r
(�

s

)⇤( d
ds)

(�s)⇤(Z), N⌃

s

⌘

+ g
0

✓

Z,
d

ds
N

⌃

s

◆

= g
0

((�s)⇤(r@
s

Z), N
⌃

s

) + g
0

✓

Z,
d

ds
N

⌃

s

◆

= g
0

((�s)⇤(rZ@s), N⌃

s

) + g
0

✓

Z,
d

ds
N

⌃

s

◆

= g
0

✓

r
(�

s

)⇤(Z)

(�s)⇤

✓

d

ds

◆

, N
⌃

s

◆

+ g
0

✓

Z,
d

ds
N

⌃

s

◆

.

Thus, using that (�s)⇤
�

d

ds

�

|
s=0

= vN , we obtain that

d

ds |
s=0

N
⌃

s

= �rv.

Turn out that this implies that

d

ds |
s=0

g
0

(@t, N⌃

s

) = g
0

✓

@t,
d

ds
N

⌃

s

◆

= g
0

(@t,rv) .

On the other hand, using that (see Theorem 32 in (?) or (?))

d

ds |
s=0

H
⌃

s

= �v + (|A|2 + Ric(N,N))v,

we conclude that the second variation of the area is given by

d2

ds2 |
s=0

Ag
c

[⌃s] := �
Z

⌃

ec⌘vLg
c

[v]dµ
⌃

,



29

where the Jacobi operator Lg
c

is defined by

Lg
c

[v] = �v + cg
0

(@t,rv) + (|A|2 + RicM⇥R(N,N))v, v 2 C2(⌃),

where |A| is the norm of the second fundamental form of ⌃ and RicM⇥R is the Ricci

curvature of M ⇥ R, both calculated with respect to the Riemannian metric g
0

, and the

gradient and the divergent are computed with respect to the metric induces by g
0

on ⌃.

Definition 0.2.19. We say that a translating soliton ⌃ in M ⇥R is stable provided that

�
Z

⌃

vLg
c

[v]ec⌘dµ
⌃

� 0 for all v 2 C2

c (⌃).

Remark 0.2.16. Perhaps the better notation for stability above should be gc�stable to

indicate the dependence of the metric gc, but whenever we use this notion of stability we

shall specify what is the metric that the stability is being taken.

Remark 0.2.17. It is important to point out here that this definition of stability coincides

with that given in Definition ??.

0.2.3.1.1 Jacobi fields

Next, we would like to study a criterion for deciding when a certain translation

solution is stable. Motivated by what happens in the minimal case, this question of

deciding when this hypersurface is stable can be obtained by proving that a particular

function is a positive Jacobi field. So let us start by finding a particular Jacobi field.

Proposition 0.2.3. Let ⌃ be a translating soliton in M ⇥ R and Z be a Killing vector

field in M ⇥ R endowed with the metric g
0

in such a way that g
0

(Z, @t) is constant on

M ⇥ R. Define u := g
0

(Z,N) on ⌃, then u is a Jacobi field for Lg
c

, i. e. u satisfies

Lg
c

[u] = �u+ cg
0

(@t,ru) + (|A|2 + RicM⇥R(N,N))u = 0

Proof. Indeed, from Proposition 1 in (?) we know that u satisfies

�u+ g
0

(Z,rH) + (RicM⇥R(N,N) + |A|2)u = 0.

Next notice that ru = �2AZ> �rNZ. Indeed,

g
0

(X,ru) = X(u) = g
0

(rXZ,N) + g
0

(Z,rXN) = �g
0

(rNZ,X)� g
0

(Z,AX)

= �g
0

(rNZ,X)� g
0

(AZ>, X).

On the other hand, using that g
0

(Z, @t) is constant on ⌃ and so g
0

(rNZ, @t) = 0, one



30

obtains that

g
0

(rH,Z) = Z(H) = cZg
0

(@t, N) = cg
0

(@t,rZN) = �cg
0

�

@t, AZ
>�

= cg
0

(@t,ru) .

Thus, it holds Lg
c

[u] = 0.

Next we will see how we can get the stability from the previous result.

Proposition 0.2.4. Let ⌃ be a translating soliton in M⇥R so that there exists Z a Killing

vector field in M ⇥ R endowed with the metric g
0

in such a way that g
0

(Z,N)|⌃ > 0 and

g
0

(Z, @t) is constant on M ⇥ R.. Then ⌃ is stable.

Proof. Firstly note that for all ⇢ 2 C2

c (⌃) we have

Lg
c

[⇢u] = �(⇢u) + cg
0

(@t,r(⇢u)) + (Ric(N,N) + |A|2)(⇢u)
= ⇢Lg

c

[u] + u�⇢+ cug
0

(@t,r⇢) + 2g
0

(r⇢,ru)

= u [�⇢+ cg
0

(@t,r⇢)] + 2g
0

(r⇢,ru).

In turn, this equality and the divergence theorem imply

0 =

Z

⌃

div

✓

1

2
u2ec⌘r⇢2

◆

dµ
⌃

=
1

2

Z

⌃

⇥

g
0

(ru2,r⇢2) + cu2g
0

(@t,r⇢2) + u2�⇢2
⇤

ec⌘dµ
⌃

=

Z

⌃

�

2u⇢g
0

(ru,r⇢) + cu2⇢g
0

(@t,r⇢) + u2[⇢�⇢+ g
0

(r⇢,r⇢)]
 

ec⌘dµ
⌃

=

Z

⌃

⇥

(⇢u)Lg
c

[⇢u] + u2g
0

(r⇢,r⇢)
⇤

ec⌘dµ
⌃

.

Therefore

�
Z

⌃

(⇢u)Lg
c

[⇢u]ec⌘dµ
⌃

=

Z

⌃

u2g
0

(r⇢,r⇢)ec⌘dµ
⌃

� 0 for all ⇢ 2 C2

c (⌃). (6)

Finally, whenever � 2 C2

c (⌃) we also have ⇢ = �/u 2 C2

c (⌃), so putting this choice of ⇢

onto (??) one gets

�
Z

⌃

�Lg
c

[�]ec⌘dµ
⌃

� 0.

This completes the proof.

Remark 0.2.18. This Proposition also was proved by ? and ? when M has dimension

two.
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0.2.3.2 Vertical translating graphs

Let ⌃ be a translating soliton in M ⇥ R. Suppose that ⌃ is a vertical graph,

that is

⌃ = {(x, u(x)) 2 M ⇥ R : x 2 ⌦}

of a smooth function u defined in a domain ⌦ ⇢ M with boundary (possibly empty.) In

this case, we denote ⌃ = Graphv[u] and we refer to those solitons as vertical translating

graphs.

As consequence of (??), we would like to conclude that u must satisfy the

following partial di↵erential equation

divM

✓ru

W

◆

=
c

W
, (7)

whereW :=
p

1 + |ru|2, and the gradient and divergence operators are taken with respect

to the metric � of M . This can be done noting firstly that ⌃ can be oriented by the unit

upward pointing normal vector field

N =
1

W
(@t �ru)

with ru translated from x 2 ⌦ to the point (x, u(x)) 2 ⌃. Now consider an orthonormal

frame {Ei} to ⌃ and a orthonormal frame {ei} to M we compute

H = � div
⌃

N = �g
0

(rE
i

N,Ei) = �g
0

(rE
i

N,Ei)� g
0

(rNN,N) = � divM⇥R N

= � divM⇥R

✓

1

W
(@t �ru)

◆

= � divM⇥R

✓

1

W
@t

◆

+ divM⇥R

✓

1

W
ru

◆

= �g
0

✓

r
✓

1

W

◆

, @t

◆

+ g
0

✓

re
i

✓

1

W
ru

◆

, ei

◆

+ g
0

✓

r@
t

✓

1

W
ru

◆

, @t

◆

= g
0

✓

re
i

✓

1

W
ru

◆

, ei

◆

= divM

✓ru

W

◆

.

On the other hand, since H = cg
0

(@t, N) = c/W we get the claim.

Remark 0.2.19. The equation

divM

✓ru

W

◆

= H(

is called the equation of the graphs with prescribed mean curvature H.
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0.2.3.2.1 Homology inequality for vertical graphs

Let us continue assuming that ⌃ := Graphv[u] is a vertical translating graph

and N indicates the upward unit normal to ⌃, where u : ⌦ ! R is a smooth function.

Notice that since @t is a Killing vector field in M⇥R endowed with the Riemannian metric

g
0

, and it holds g
0

(N, @t) = 1/W > 0, since |@t|2 = 1 then we can apply Proposition ?? to

conclude that ⌃ is stable. As we will use of this fact many times throughout the thesis,

we enunciate it as a lemma.

Lemma 0.2.3. All vertical translating graphs are stable.

Indeed, as we shall prove now using ideas come from ?, vertical translating

graphs are in fact strictly area-minimizing inside the cylinder ⌦⇥ R.
Proposition 0.2.5. Let u : ⌦ ! R a smooth function over a smooth domain ⌦ ⇢ M

so that Graphv[u] is a vertical translating graph in M ⇥ R. Assume that ⌃ is any other

hypersurface in solid cylinder ⌦⇥ R so that @⌃ = @Graphv[u]. Then, it holds

Ag
c

[Graphv[u]]  Ag
c

[⌃].

Moreover, the equality is arrived if, and only if ⌃ = Graphv[u].

Proof. Suppose first that ⌃ lies one-side of Graphv[u] and let U be the domain in ⌦⇥ R
limited by ⌃ and Graphv[u]. Next, consider the vector field X in ⌦ ⇥ R obtained from

the unit upward pointing normal N
Graph

v

[u] to Graphv[u] by parallel transport along the

flux of @t. That is, X is given by

X(p, t) = ect
✓

@t
W

� ru

W

◆

for all (p, t) 2 ⌦⇥ R.

We have

divM⇥R X = divM⇥R



ect
✓

@t
W

� ru

W

◆�

= cg
0

✓

@t,

✓

@t
W

� ru

W

◆◆

ect + ect divM⇥R

✓

@t
W

� ru

W

◆

=



c
1

W
� divM

✓ru

W

◆�

ect = 0.

Thus divM⇥R X = 0, and the divergence theorem applying to U and X implies, up to a

sign, that

0 =

Z

Graph

v

[u]

g
0

(X,N
Graph

v

[u])dHn �
Z

⌃

g
0

(X,N
⌃

)dHn �
Z

Graph

v

[u]

ectdHn �
Z

⌃

ectdHn

= Ag
c

[Graphv[u]]�Ag
c

[⌃].

This completes the proof when ⌃ lies oneside of Graphv[u]. The general case can be
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obtained by breaking the hypersurface ⌃ into many parts so that each part lies one-side

of Graphv[u]. Finally, the fact about the equality follows remarking that we can not have

the equality if any part of ⌃ does not lie in Graphv[u].

Remark 0.2.20. This proposition also was proven by ? when M = Rn.

0.2.3.3 Horizontal translating graphs

Next we would like to define what means a horizontal inM⇥R. More precisely,

in the context of ?, we would like to define what means a graph over Killing. At this

time we will suppose that M is the warped product Sn�1 ⇥⇢ R, where the factor Sn�1 is

complete hypersurface endowed with a Riemannian metric % and ⇢ is any positive smooth

function in Sn�1. With these notations the Riemannian metric that we are assuming at

M is

h
0

= %+ ⇢2(x)ds2. (8)

In particular the Riemannian metric in M ⇥ R is

g
0

= %+ ⇢2(x)ds2 + dt2. (9)

Remark 0.2.21. We know from (?) that this structure of the warped product in M

is always obtained when M admits a complete non-singular Killing field with integrable

orthogonal distribution.

With this convention for M we define P = Sn�1 ⇥ R, with the Riemannian

metric h
0

= %+dt2 and write M2⇥R = P⇥⇢R. By a horizontal graph in M⇥R(= P⇥⇢R)
over a domain ⌦ ⇢ P means a hypersurface ⌃ ⇢ M ⇥ R given by

⌃ = {(p, u(p)) 2 P⇥⇢ R (= M ⇥ R) : p 2 ⌦},

where u : ⌦! R is a smooth function. Sometimes, to simplify the notation, we will write

also Graphh[u] to mean the horizontal graph of u.

Remark 0.2.22. The horizontal graphs, that we are considering in this paper, are graphs

in the direction of the Killing field @s. However, we are representing them as “vertical”

graphs since they are graphs in P⇥⇢R “over” a domain in P. Therefore the last coordinate
is the coordinate associated to the flow lines of @s. Moreover, for us a horizontal line means

a flow line of the vectorfield @s, i.e. {q}⇥ R = {(q, s) 2 P⇥⇢ R (= M ⇥ R) : s 2 R}.
We have just seen at Lemma ?? that translating solitons in M⇥R are minimal

hypersurface in M ⇥ R endowed the metric gc := et
2c
m g

0

. In particular, since we are

considering the Riemannian metric g
0

= h
0

+ ⇢2ds2 = % + dt2 + ⇢2(x)ds2 in M ⇥ R, the
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Ilmanen’s metric can be written as

gc = et
2c
m (%+ dt2 + ⇢2(x)ds2) = hc + et

2c
m ⇢2(x)ds2,

where hc denotes the restriction of Ilmanen’s metric gc to P. Note that gc is still a warped

metric. Di↵erentiating of the vertical case, in the remain part of this subsection we will

always consider the metric hc in P and the metric gc in P⇥
et

c

m ⇢(x)
R(= M ⇥ R). Also, to

simplify the notation we will denote by f : M ⇥ R ! R the function f(x, t) = e
c

m

t⇢(x).

Suppose ⌃ = Graphh[u] that is a horizontal translating graph in M ⇥R, where
u : ⌦ ⇢ P ! R is a smooth function. Thus ⌃ can be oriented by the unit upward pointing

normal vector field

N =
1

f

@s
W

� f
ru

W
,

where W =
p

1 + f 2hc(ru,ru) and to simplify the notation, we continue denoting by

ru the translation ru from x 2 ⌦ to the point (x, u(x)) 2 ⌃. Next notice that from (??)

we can check that u satisfies the partial di↵erential equation

divP

✓

f 2

ru

W

◆

= 0 in ⌦, (10)

where the gradient and divergence are taken with respect to the metric hc in P. Indeed,

observe that

N =
1

f

@s
W

� f
ru

W
=

@s
f 2Wf

� ru

Wf

,

where fWf = W. Since Graph[u] is a minimal hypersurface in (M ⇥ R, gc) we have

0 = div
⌃

(N) = divM⇥R (N) = divM⇥R

✓

@s
f 2Wf

� r̄u

Wf

◆

= divM⇥R

✓

@s
f 2Wf

◆

� divM⇥R

✓r̄u

Wf

◆

=
1

f 2Wf

divM⇥R (@s) + gc

✓

r
✓

1

f 2Wf

◆

, @s

◆

� divM⇥R

✓r̄u

Wf

◆

= � divM⇥R

✓r̄u

Wf

◆

= � 1

f 2

gc

✓

r̄@
s

✓r̄u

Wf

◆

, @s

◆

� divP

✓ru

Wf

◆

=
1

f 2

gc

✓

r̄@
s

@s,
r̄u

Wf

◆

� divP

✓ru

Wf

◆

,

where ru denotes the gradient of u on (P, hc = gc|P), r̄u indicates the gradient of u in

(M⇥R, gc) and we have used the fact that P is totally geodesic inM⇥R. As gc(@s, @s) = f 2,

one obtains

2fgc(X, r̄f) = X(f 2) = X(gc(@s, @s)) = 2gc(r̄X@s, @s) = �2gc(r̄@
s

@s, X),
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for all X 2 X(M ⇥ R). Consequently,

r̄@
s

@s = �fr̄f (11)

and therefore, using again that P is totally geodesic, we conclude that

0 = hc

✓rf

f
,
ru

Wf

◆

+ divP

✓ru

Wf

◆

=
1

f
divP

✓

f
ru

Wf

◆

=
1

f
divP

✓

f 2

ru

W
.

◆

Remark 0.2.23. Di↵erent of the vertical case, in the horizontal case seems more simple

to work with Ilmanen’s metric than the product metric in M ⇥R. There are two facts that

motives this, the first is that we are seeing translating solitons are minimal hypersurfaces

in M ⇥ R and so we can apply the local theory of minimal hypersurfaces in this setting.

The second facts is for simplicity even. For example, in Section ?? we will need to define

other metric in M ⇥ R conformal to gc, and we will work with a so-called f�geodesic

throughout this section and this could generate confusion.

0.2.3.3.1 Homology inequality for horizontal graphs

Here we will adapt the computations done in subsection ?? above for horizontal

translating graphs setting. So suppose that ⌃ := Graphh[u] is a horizontal translating

graph and N indicates the upward unit normal along of ⌃, where u : ⌦! R is a smooth

function. Since @s is a Killing vector field in P ⇥ R(= M ⇥ R) endowed with the metric

g
0

, and it satisfies g
0

(N, @s) = f/W > 0, then from Proposition ?? we can conclude the

next result.

Lemma 0.2.4. All horizontal translating graphs are stable.

The analogous of Proposition ?? for horizontal translating graphs setting can

be stated as follows.

Proposition 0.2.6. Let u : ⌦ ! R a smooth function over a domain ⌦ ⇢ P so that

Graphh[u] is a horizontal translating graph in P ⇥ R(= M ⇥ R). Assume that ⌃ is any

other hypersurface in the Killing cylinder ⌦⇥ R such way that @⌃ = @Graphh[u]. Then,

one has

Ag
c

[Graphh[u]]  Ag
c

[⌃].

Moreover, the equality is true provided that ⌃ = Graphh[u].

Proof. Essentially the proof of this case follows a similar strategy of the proof of Propo-

sition ??, but here we are using the metric gc in M ⇥R. Suppose first that ⌃ lies oneside

of Graphh[u] and let U be the domain in ⌦ ⇥ R limited by ⌃ and Graphh[u]. Consider

the vector field X in ⌦⇥ R obtained from the unit upward pointing normal N
Graph

h

[u] of

Graphh[u] by parallel transport across the along line of the flow of @s. That is, X is given
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by

X(p, s) =
1

f

@s
W

� f
ru

W
for all (p, s) 2 ⌦⇥ R.

Using that Graphh[u] is minimal one gets

divP⇥R X = 0.

Thus the divergence theorem applying to U and X implies, up to a sign, that

0 =

Z

Graph

h

[u]

gc(X,N
Graph

h

[u])dµGraph

h

[u] �
Z

⌃

gc(X,N
⌃

)dµH

�
Z

Graph

h

[u]

dµ
Graph

h

[u] �
Z

⌃

dµ
⌃

= Ag
c

[Graphh[u]]�Ag
c

[⌃].

This completes the proof when ⌃ lies oneside of Graphh[u]. The general case can be

obtained by breaking the hypersurface ⌃ into many parts so that each part lies one-side

of Graphh[u]. Finally, the fact about the equality follows remarking that we can not have

the equality if any part of ⌃ does not lie in Graphh[u].
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0.3 JENKINS-SERRIN THEORY FOR TRANSLATING GRAPHS

Let Mn be a complete Riemannian manifold and ⌦ ⇢ M be a domain (not

necessarily bounded) with piecewise smooth boundary. Assume that the boundary can

be composed as @⌦ = �
0

[ �
1

[ �
2

, where the sets �
1

and �
2

are disconnected so that

any smooth connected component of �i does not intersect any other smooth connected

component of �i for i 2 {1, 2}. A classical problem in di↵erential geometry is to find

su�cient and necessary conditions for the existence of prescribed mean curvature surfaces

with possibly infinite boundary data. More precisely, we want to solve the Dirichlet

problem
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

div

✓

f 2

rup
1+f2|ru|2

◆

= H(x, u,ru), in ⌦;

u = &, on �
0

;

u = +1, on �
1

;

u = �1, on �
2

,

(12)

where H : M ⇥C2,↵(M)⇥TM ! R is a locally Lipschitz function, f : M ! R is a known

smooth function and & : �
0

! R is a given continuous function called the continuous data.

The most famous and most important example of solutions of the equation

(??) in M = R2 with ⌦ = [�⇡/2, ⇡/2] ⇥ [�⇡/2, ⇡/2] and f ⌘ 1 was given by H. Scherk

in 1834. Namely, he showed that the function u = log(cos x/ cos y) is a solution of (??)

with �
0

= ? and H ⌘ 0. After this graph becomes known as Scherk’s minimal surface.

Passing a hundred years, ? associated the existence of solutions of (??) when

H ⌘ 0 and f ⌘ 1 in M = R2 over bounded domain with algebraic conditions involving

the length of “admissible polygons” in the domain. The central idea in (?) was using

part of Scherk’s surface as barrier to study the divergence set associated with a monotone

sequence of solution of (??). As consequence of this local analysis over the divergence

set and the algebraic conditions over the “admissible polygons” they guaranteed that the

divergence set is empty. That way they ensured that a subsequence of a sequence of

solution of (??) must converge to a function which is a solution of (??) with prescribed

data on �
0

. After that, the Dirichlet problem (??) becomes known as the Jenkins-Serrin

problem.

An important extension of Jenkins and Serrin ideas was carried by ? when H

is constant. He extended the results of Jenkins and Serrin in R3, when f ⌘ 1, M = R2

and over bounded domains. Besides this, he gave local existence for general domain in Rn.

Unfortunately, his approach does not work well for domains with complicated topology

in Rn.

Using a very di↵erent method, ? and ? studied the case of prescribed mean

curvature when f ⌘ 1, but now H is not constant. They extended the results of (?) for
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solutions of (??) when H satisfies some “structural conditions”. Their idea was to replace

the algebraic conditions involving the length of “admissible polygons” found out by ? for

conditions on certain functional defined on Caccioppoli sets. An elegant exposition of

Massari’s ideas in the case H ⌘ 0 and f ⌘ 1 can be found in ?.

More recently the Jenkins-Serrin problem has been studied in many di↵erent

settings and we mention here the works that we have found. Beginning with ? who

studied the existence of solution of (??) in H2 ⇥ R, when ⌦ ⇢ H2 is a bounded domain,

H ⌘ 0 and f ⌘ 1. They results was extended firstly by ? for S2 ⇥ R, and it also was

extended by ? in a general way for M2⇥R, when now M2 denotes a complete Riemannian

surface and ⌦ ⇢ M2 is a geodesically convex and bounded domain. ? remarked that the

results obtained by ? can be extended to more general domains than geodesicaly convex

by using the Perron’s method. Furthermore, they proved the existence of solutions of

(??) when H ⌘ 0, f ⌘ 1 and ⌦ could be an unbounded domain in M.

Using ideas close to the approaching of ?, ? extended results further into the

case of Sol
3

when H ⌘ 0 and f is a subtle known function. Her idea was to see Sol
3

as the warped space H2 ⇥y R. After that, she proved that is possible to carry out the

Nelli, Rosenberg and Pinheiro ideas into this new ambient. Another interesting extension

of now the original viewpoint of ? ideas was given by ?. They proved the existence of

minimal sections of the Riemannian bundle ⇡ : ]PSL
2

(R) ! H2 over any “admissible

domain” in H2.

A very interesting application of Jenkins and Serrin ideas was obtained by ?.

They proved the existence of solution of (??) with f ⌘ 1 andH ⌘ 0, and now ⌦ is an “ideal

polygon” in H2. After that, as application of them results they constructed a harmonic

di↵eomorphism of H2 into the complex plane C. Later these results was generalized by ?

for any Hadamard surface. In fact, almost all results that we have mentioned until now

have a natural extension when f ⌘ 1 and H is a constant, but in this setting the domain

must satisfy some conditions over the “reflection” of the edges. As an example of these

extensions, we can quote the results obtained by ??? and ?.

Using a di↵erent approach, ? studied the existence of Scherk type solutions

for the Jang’s equation in Riemannian manifolds with dimension at most 7. Moreover, as

application their techniques, they proved the existence solution of (??) with �
0

= ?, H

constant and f ⌘ 1 when now M could be a Riemannian manifold of dimension at most

7.

Once we have done this brief digression about the Jenkins-Serrin problem, we

can finally say what was our contribution in this setting. In this chapter, we study the

Jenkins-Serrin problem for translating graphs in M ⇥ R in the vertical direction and the

horizontal direction. As we have seen at the subsection ?? and the subsection ??, the

equation (??) also describe the equation of vertical translating graphs, with f ⌘ 1 and

H = c/
p

1 + |ru|2 by (??), and the equation of the horizontal translating graphs, with
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f a known function which depends on the horizontal (Killing) vector field and H ⌘ 0 by

(??).

Here we will divide our studied into two parts. Firstly, we work in the horizon-

tal case. The problem in this setting comes out because of no completeness of Ilmanen’s

metric. However, we overcome this di�culty by using ideas which were developed by ?

and by ?. In the second part of this chapter we study the equation of vertical translating

graphs. This can be carried out by using minimal graphs as a barrier. Unfortunately,

this procurement only allows to prove the existence of Jenkins-Serrin solution of type I.

Essentially, the problem when we try to execute the whole Jenkins and Serrin ideas in

this setting lies in the fact that we must understand which means H = 1/
p

1 + |ru|2 on

the equation (??). This term comes out because the vector field @t is only conformal in

M ⇥ R endowed with Ilmanen’s metric. However, we would like to point out here that ?

have proven the existence of Scherk vertical translating graphs in R3 when ⌦ is a rhombus

domain in R2.

This chapter is structured into two parts. In the first part, we develop the

Jenkins-Serrin theory for horizontal translating graph. Besides this, we finish this first

part by giving some special examples of “admissible domains” in R3 and H2⇥R. In turn,

in the second part we carry out the Jenkins-Serrin theory for vertical translating graph

setting.

0.3.1 Horizontal case

Let us remember some notations from Section ??. In what follows, we will

fix c > 0. Notice that since we are working at dimension two, then M = S ⇥⇢ R, where
S is either S1 or R and ⇢ : S ! R is a positive smooth function. Moreover, as we are

seeing M ⇥ R = P ⇥⇢ R, where P = S ⇥ R with the metric h
0

= '(x)2dx2 + dt2. Thus

the Ilmanen’s metric can be written as gc = hc + f 2ds2, where hc = ect('(x)2dx2 + dt2)

is the metric induces on P by gc and f 2 = ect⇢2(x). From now on we always adopt the

Riemannian metric gc in M ⇥ R and the Riemannian metric hc in P. Moreover r will

denote the Riemannian connection associated to gc.

We know from (??) that the graph of a function u : ⌦ ! R is a horizontal

translating graph provided that

divP

✓

f 2

ru

W

◆

= 0 in ⌦,

where W =
p

1 + f 2hc(ru,ru), and the gradient and divergence are taken with respect

to the metric hc in P, and ⌦ is a domain in P. Moreover, we orient Graphh[u] by the unit

normal

N =
1

f

@s
W

� f
ru

W
.
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0.3.1.1 A conformal geometry in M ⇥ R

Our interest here is to collect some computations from a conformal geometry

of (M ⇥ R, gc) that we will be used later.

Let � : [0, 1] ! M ⇥ R be a parametrized curve in M ⇥ R. We define the

f -length of �, denoted by Lf [�], as the length of � with respect to the conformal metric

f 2gc. That is

Lf [�] =

Z

1

0

f(�(r))
q

gc(�0(r), �0(r))�(r) dr. (13)

We will work with a special type of curves that will play the role of geodesic

in this horizontal case.

Definition 0.3.1. Let � be a curve in M ⇥ R . We say that � is an f -geodesic provided

� is a geodesic in M ⇥ R with respect to the metric f 2gc.

By di↵erential geometry we know that

Proposition 0.3.1. Let � be a curve in M ⇥R. Then � is an f�geodesic, if and only if,

r̄�0�0 = gc(�
0, �0)

r̄f

f
� 2gc

✓r̄f

f
, �0
◆

�0, (14)

where r̄r�
0 denotes the covariant derivative of �0 along � with respect to gc.

Proof. We just need to use the following relationship between the connections associated

to the metric gc and f 2gc

r̃YX = r̄YX + gc

✓

X,
r̄f

f

◆

Y + gc

✓

Y,
r̄f

f

◆

X � gc (X, Y )
r̄f

f
,

where r̃ (respectively, r) denotes the Levi-Civita connection in M ⇥ R with the metric

�c = f 2gc = e2 log fgc (respectively, gc) and the definition of f�geodesic.

Definition 0.3.2 (f -curvature). Let � be a curve in P. The (scalar) f -curvature of � is

kf [�] := kh
c

[�]� hc

✓rf

f
,N

◆

, (15)

where kh
c

[�] denotes the geodesic curvature of � in (P, hc) and N 2 TP denotes the unit

normal along �.

Remark 0.3.1. Using again the formulae

r̃YX = r̄YX + gc

✓

X,
r̄f

f

◆

Y + gc

✓

Y,
r̄f

f

◆

X � gc (X, Y )
r̄f

f
,

where r̃ (respectively, r) denotes the Levi-Civita connection in M ⇥ R with the metric

�c = f 2gc = e2 log fgc (respectively, gc), we see that the definition above is exactly the
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definition of geodesic curvature in M ⇥R with the metric �c. Notice also that P continues

been totally geodesic in P⇥ R(= M ⇥ R) with the metric �c.

Before proceeding, we will remark some properties of f -geodesics that will be

used later.

Proposition 0.3.2. We have the following properties

(i) Let � be a curve in P. If � ⇥ R := {(p, s) 2 P ⇥⇢ R(= M ⇥ R) : p 2 �, s 2 R}
denotes the cylinder over �, then

kf [�] = H�⇥R,

where H�⇥R denotes the mean curvature of � ⇥ R in (M ⇥ R, gc).
(ii) A curve � on P is an f -geodesic in P, if and only if, � is an f -geodesic in M ⇥ R.
(iii) Let � be a curve in P and consider the Killing rectangle over �, with height h, defined

by � ⇥ [0, h] = {(p, s) 2 P⇥⇢ R : p 2 �, s 2 [0, h]}, where h > 0. Then we have

Ag
c

[� ⇥ [0, h]] =

Z

1

0

Z h

0

f(�(r))
p

hc(�0(r), �0(r)) drdz = hLf [�],

where Ag
c

[�⇥ [0, h]] denotes the area of �⇥ [0, h] with respect to the metric gc. Note

that the length of a segment {((x, t), s) : s 2 [0, h]} of a flow line through the point

(x, t) 2 P is given by hf(x, t).

Proof. Regarding (i) notice that {�0, @s/f} is an orthonormal frame for �⇥R, so one has

H̄�⇥R =
�r̄�0�0 + r̄@

s

/f (@s/f)
�?

=

✓

r̄�0�0 � r̄f

f

◆?
,

here we are using the fact that r̄@
s

@s = �fr̄f which was proved in (??). Now if N 2 TP
denotes the unit normal to �, then the horizontal left of N defined by N(p, s) := N(p) is

an unit normal vector field along � ⇥R. Therefore, the scalar mean curvature of � ⇥R is

given by

H�⇥R = gc
�r̄�0�0, N

�� gc

✓r̄f

f
,N

◆

= gc(r�0�0, N)� gc

✓rf

f
,N

◆

= kf [�].

This concludes the proof of item i. About (ii), we can see it from (??), since P is totally

geodesic in M ⇥ R. Finally, (iii) can be checking by computing the metric induced by gc

in � ⇥ R and the definition of area.

Remark 0.3.2. From (ii) above, we see that there is a correspondence between f -geodesics
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and minimal cylinders over P in M ⇥ R.
We finish this part by recalling some properties from the classical theory about

the existence of geodesics and exponential mapping that will be used later, see for example

? or ? for more information about this subject.

Proposition 0.3.3. The f -geodesics are critical points of the f -length with respect to

proper variations. Moreover, the f -geodesics are local minimizers of the f -length.

and

Proposition 0.3.4. Given any point p 2 P, then there exists a neighbourhood U 3 p

such that given any q
1

, q
2

2 U then there is a unique f -geodesic joining q
1

and q
2

, and the

interior of this f -geodesic lies in U .

Remark 0.3.3. The neighbourhood given by Proposition ?? will be called geodesically

f -convex neighbourhood.

0.3.1.2 Local existence

Here we would like to prove the local existence for the equation

div

✓

f 2

ru

W

◆

= 0 (16)

over admissible domains that are geodesically f�convex too. So we start by defining

what means a domain be admissible.

Definition 0.3.3 (Admissible domain). Let ⌦ ⇢ P be a precompact domain. We say

that ⌦ is an admissible domain if @⌦ is a union of f -geodesic arcs A
1

, . . . , As, B1

. . . , Br,

f -convex arcs C
1

, . . . , Ct, and the end points of these arcs and no two arcs Ai and no two

arcs Bi have a common endpoint, see Figure ??

Definition 0.3.4 (Admissible polygon). Let ⌦ be an admissible domain. We say that

P is an admissible polygon if P ⇢ ⌦, the boundary of P is formed by edges of @⌦ and

f -geodesic arcs on ⌦, and the vertices of P are chosen among the vertices of ⌦, see Figure

??

Suppose now that ⌦ ⇢ P is an admissible domain with @⌦ = [iJi, where

the family {Ji} ⇢ @⌦ is a closed cover of @⌦ and satisfies Ji \ Ji+1

= ↵i for all i 2
{1, . . . , v � 1}, and Jv \ J

1

= ↵v, where {↵i} denotes the set of endpoints of the arcs

Ji. Let c = {ci : Ji ! R} be a family of bounded continuous functions. Consider the

curve �c ⇢ @⌦ ⇥ R given by �c(x) = (x, ci(x)) if x 2 int Ji and �c is a (horizontal) line

joining (↵i, ci(↵i)) and (↵i, ci+1

(↵i)) if x = ↵i. As we shall see now it is always possible to

get a solution of (??) with boundary data �c over a geodesically f -convex domain. Here

bounded data �c means that the solution equals to ci on int Ji.

Theorem 0.3.1 (Local Existence). Let ⌦ be a geodesically f -convex domain which is

also an admissible domain in P as above. Let c = {ci : Ji ! R} be a family of bounded
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Figure 1 – Admissible domain (left) and an admissible domain with an admissible
polygon (right).

continuous functions and �c the curve associated to c. Then there exists an unique solution

of (??) with boundary data ci on Ji.

Proof. By Proposition ?? (i) the domain bounded formed by the part of the solid cylinder

over ⌦ between P+ infi ci and P+supi ci is piecewise convex in the sense of Definition ??

with respect to the metric gc. Therefore, we can solve the Plateau problem with boundary

data �c by Theorem ??. So it remains to prove that this Plateau’s solution is a graph

over the domain ⌦ ⇢ P.
Firstly, let us prove that the tangent space at any point of ⌃ does not contain

@s. In fact, suppose that there exists a point (p
0

, r) = p 2 ⌃ (p
0

2 ⌦) so that @s 2 Tp⌃.

Admit {@s, v} is an orthonormal basis for Tp⌃, where v 2 TpPr, where Pr := {(p, r) 2
P ⇥ R : p 2 P}. By Proposition ?? and Proposition ?? there exists an f�geodesic

↵ through p at 0 and ↵0(0) = v. Moreover, since ⌦ is geodesicaly f�convex, then ↵

does not accumulate inside ⌦ and goes out to ⌦. This means that ↵ must go out ⌦, and

clearly ↵ intersects @⌦ just at two points. Consider now ⇤ := ↵ ⇥ R the cylinder over

↵ which is minimal in M ⇥ R by Remark ?? (i). By our assumption ⇤ and ⌃ have the

same tangent space at p. Therefore, near p, I = ⌃ \ ⇤ contains at least two curves that

intersect transversely at p by Theorem ??. If there exists a closed curve � in I \ @⌃, then
� is the boundary of a minimal disk D in ⌃. Thus we could choose a geodesic curve ⇣ in

D so that the totally geodesic surface ⇣ ⇥ R touches D at an interior point. But this is

impossible by Theorem ??.

Since I does not contain a closed curve, each of the branches leaving p must

go to @⌃. Moreover, � intersects @⌦ at two points so at least two of these branches

must go to the same point or horizontal segment on @⌃. However, this fact yields again

closed curve that bounds a minimal surfaces and we get a contradiction with Theorem

??. Therefore Tp⌃ does not contain @s.

With this information in mind we would like to show that int⌃ is a graph.
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We can work out this as follows: suppose there exist two consecutive points p and q in

⌃ which lie in the same horizontal line passing through a point of ⌦. We know that

⌃ divides ⌦ ⇥ R at two connected components. So by our hypothesis, we can orient ⌃

so that gc (N, @s) > 0, where N is the unit normal along ⌃. On the other hand, since

p and q are consecutive we must have either gc (N(p), @s) > 0 and gc (N(q), @s) < 0 or

gc (N(p), @s) < 0 and gc (N(q), @s) > 0 which is impossible. Therefore, any vertical line

over any point of ⌦ intersects ⌃ just in an unique point. In particular, ⌃ must be a graph

over ⌦ of a smooth function u : ⌦! R.
The uniqueness of Graphh[u] can be obtained as follows: consider the foliation

{Graphh[u + s]}s of ⌦ ⇥ R(⇢ P ⇥ R). If there exists other v : ⌦ ! R solution of (??)

so that v|J
i

= ci di↵erent of u, then Graphh[v] must intersect some Graphh[u + s] at an

interior point which is impossible by Theorem ??.

Remark 0.3.4. It is important to point out here that the Theorem ?? (and then Theorem

??) is not in contradiction with Proposition 30 of (?) because the cylinder over the domain

considered by them is neither f -convex nor an admissible domain in the sense of Definition

??. They proved that in R3 = [e
3

]? ⇥ R there are convex domains with respect to the

Euclidean metric on [e
3

]? which does not admit horizontal translating graph solution.

0.3.1.3 Interior gradient estimate

The next step to study the Jenkins-Serrin problem is to understand how we

can get the solutions of (??) for more general domains, once that the Theorem ?? is only

local. As it is classical, this can be done by using Perron’s method. However, for use it we

need to get a compactness theorem for solutions of (??). In turn, this can be obtained by

getting an interior gradient estimate. So allow us to begin by getting the interior gradient

estimate.

Proposition 0.3.5 (Interior gradient estimate). Let {un} be a sequence of solutions of

(??) on a domain ⌦ ⇢ P, not necessarily admissible neither geodesically f�convex. Let

p 2 ⌦ and r > 0 be small enough so that the g
0

-geodesic ball B
2r(p) ⇢⇢ ⌦. Assume that

|un(q)|  K for all n 2 N and q 2 B
2r(p). Then there exists a constant c > 0 such that

sup
q2B

r

(p)

hc(run(q),run(q))  c for all n 2 N.

Proof. The proof will be done by contradiction. Assume that

sup
q2B

r

(p)

hc(run(q),run(q)) ! +1.
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Thus, up to extracting a subsequence, we would find a sequence {xn} ⇢ Br(p) such that

hc(run(xn),run(xn)) ! 1

as n ! 1. Since Br(p) is compact in (M ⇥R, g
0

) (see Remark ??) we could assume that

xn ! x1 in (M ⇥R, gc). On the other hand {un(xn)} is a bounded sequence, so we could

also assume un(xn) ! ↵ as xn ! x1.

Let ⌃n = {(x, un(x)) 2 P ⇥ R(= M ⇥ R) : x 2 B
2r(p)} be the horizontal

translating graph of un over the ball B
2r(p). Then {⌃n} is a sequence of stable gc-minimal

surfaces, by Proposition ??, with locally bounded area in {(x, s) 2 P⇥R(= M ⇥R) : x 2
B

2r(p) and s 2 R} since we have

Ac[⌃n]  1

2
Ac[K],

for all compact subset K of B
2r(p) so that @K is C1 by Proposition ??. Therefore all

conditions of Theorem ?? are satisfy, so we could assume, up to a subsequence, that

⌃n ! ⌃1, where ⌃1 is a smooth stable minimal surface inside of the cylinder B
2r ⇥R(⇢

P⇥R), since the singular set is empty at dimension 2. Note that ⌃1 is not empty because

(x1,↵) 2 ⌃1.

Claim 0.3.1. Each connected component of ⌃1 is a smooth horizontal graph.

Proof of the Claim ??. If the contrary of this is true, then we could suppose that there

exists a connected component S ⇢ ⌃1 that is not a graph over a subset of B
2r(p). Because

each ⌃n is a graph over B
2r(p), and ⌃n ! ⌃1 smoothly, we obtain that any horizontal line

(q,R), q 2 B
2r(p), intersects S in a connected subset on S. Since we are assuming that S

is not a graph, there exists a horizontal line (q,R), q 2 B
2r(p), such that (q, [a, a+ ✏]) ⇢ S

for some ✏ small.

Let S(✓) = {((x, t), s + ✓) 2 P⇥ R : ((x, t), s) 2 S} be a translation of S by ✓

in the direction of @s. Since (q, [a, a+ ✏]) ⇢ S, Theorem ?? would imply that S(✓) = S for

all ✓ 2 (0, ✏) and it would follow that S is a cylinder S 0 ⇥R ⇢ P⇥R, where S 0 is a curve

in B
2r(p). But this is impossible since each ⌃n ⇢ {(x, [�K,K]) : x 2 B

2r(p)}. Therefore

S is a horizontal graph of a continuous function u1.

To conclude that S is a graph of a smooth function, we will use a Radó-

Alexandrov type argument. For this, we denote by

⇤� = {((x, t), �) : (x, t) 2 P, � 2 R}

a foliation of M ⇥ R by surfaces. Define

S
+

(�) = {((x, t), s) 2 S : s  �} and S�(�) = {((x, t), s) 2 S : s � �}
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to be the parts of S that lies on di↵erent sides of ⇤�, and

S⇤
+

(�) = {((x, t), � � s) : ((x, t), s) 2 S
+

}

the reflection of S
+

with respect to ⇤�. Since S is a graph of a continuous function, S⇤
+

(�)

and S�(�) can intersect only along the boundary lying on the plane ⇤�.

Now assume that there exists a point q = ((x, t), u1(x, t)) 2 S so that the

normal to S at q is perpendicular to @s. Then, reflecting with respect to the plane

⇤u1(x,t) through q, we would obtain that S⇤
+

(u1(x, t)) and S�(u1(x, t)) would intersect

along the plane ⇤u1(x,t), and they would have a common tangent plane at q so that

locally they lie on di↵erent sides of this tangent plane. So Theorem ?? implies that

S⇤
+

(u1(x, t)) = S�(u1(x, t)) but this is a contradiction since S is a graph. Therefore S

is a graph of a smooth function.

Claim 0.3.2. ⌃1 is connected.

Proof of the Claim ??. Indeed, notice that the projection of ⌃1 over B
2r(p) is onto, be-

cause each horizontal line across the point of B
2r(p) intersects ⌃n. Now if ⌃1 was not

connected, then we could find a simple closed curve ↵ in B
2r(p) ⇥ R that intersects ⌃1

at an unique point, since each connected component of ⌃1 is a horizontal graph. So this

curve would intersect ⌃n at a unique point for all n large enough, but this arrives at a

contradiction because each simple closed curve in B
2r(p)⇥R must intersect ↵ at an even

number of points counting the multiplicity. This proves that ⌃1 is connected.

Now the assumption hc(run(xn),run(xn)) ! 1 as n ! 1 implies that the

normal to ⌃1 at (x1,↵) is perpendicular to @s. But this is a contradiction with ⌃1 being

a graph of a smooth function over an B
2r(p). Therefore, there exists a constant c so that

sup
q2B

r

(p)

hc(run(q),run(q))  c for all n 2 N.

We finish this part by showing how the compactness theorem follows from the

interior gradient estimate. Here ⌦ continues to be a domain, not necessarily admissible

domain neither geodesically f�convex.

Proposition 0.3.6 (Compactness Theorem). Let {un} be a sequence of solutions of (??)

on a domain ⌦ ⇢ P. Suppose that {un} is locally bounded on compact subsets of ⌦. Then

there exists a subsequence of {un} that converges smoothly on compact subsets of ⌦ to a

solution u of (??).

Proof. First of all we have to observe that the Proposition ?? tells that for all compact
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subset K ⇢⇢ ⌦, there exists a constant c(K) > 0 (depending on K) so that

hc(run,run)  c(K) on K for all n.

Now the Di Giorgi-Nash-Moser estimate implies that for all compact subset K ⇢ ⌦ the

C1,↵�norm of {un} is bounded by a constant that depends only K. In turn, Schauder’s

estimates implies that the Ck�norm of {un} on compact subset K ⇢ ⌦ is bounded by a

constant that depends only K.

Now Arzelá-Ascoli’s Theorem and the Diagonal argument show that there

exist a function u : ⌦! R so that a subsequence of {un} converges uniformly on compact

subsets of ⌦ to u and u is a solution of (??). Here we are using that the restriction of the

metric gc to ⌦⇥ R is complete, so we can use Arzelá-Ascoli’s theorem

0.3.1.4 Perron’s method

As we have mentioned earlier in this part we want to extend Theorem ?? over

more general domains. Here we will follow the elegant exposition given by ? for Perron’s

method.

Given u 2 C0(⌦), we say that u is a subsolution in ⌦ ⇢ P if for all A ⇢⇢ ⌦ and

every solution v of (??) in A such that u  v on @A, we have u  v in A. A supersolution

is defined in a similar way but with opposite inequality.

As we will see now this flexible version of subsolution (respectively, supersolu-

tion) for (??) enjoys of the following useful properties.

(i) A function u 2 C2(⌦) is a subsolution (respectively, supersolution) if and only if

divP

✓

f 2

ru

W

◆

� 0

✓

divP

✓

f 2

ru

W

◆

 0

◆

;

Proof. Namely the maximum principle implies that if divP
�

f 2

ru
W

� � 0, then u is a

subsolution. Suppose now that u is a subsolution and divP
�

f 2

ru
W

�

< 0 at p 2 ⌦. Take
a geodesic ball Br(p) ⇢⇢ ⌦ which is geodesicaly f�convex and divP

�

f 2

ru
W

�

< 0 on

Br(p). By Theorem ??, there exists a function v : Br(p) ! R solution of (??) so

that v ⌘ u on @Br(p). In turn the maximum principle implies that v < u in Br(p)

which is impossible since u is a subsolution. Therefore, it holds divP
�

f 2

ru
W

� � 0.

(ii) Suppose that ⌦ is a bounded domain. Let u 2 C0(⌦) be a subsolution and v 2 C0(⌦)

be a supersolution such that u  v on @⌦, then u  v in ⌦;

Proof. Admit there exists p 2 ⌦ so that sup
⌦

(u � v) = u(p) � v(p) > 0 and call

M = u(p)� v(p) > 0. Let Br(p) ⇢⇢ ⌦ be a geodesic ball in a such that way u 6= v

on @Br(p). By Theorem ?? there exist functions ū, v̄ : Br(p) ! R solutions of (??)

so that ū = u on @Br(p) and v̄ = v on @Br(p). By our hypothesis over u and v we
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must have

u  ū and v̄  v in Br(p).

In particular,

M � sup
@B

r

(p)

(ū� v̄) � (ū(p)� v̄(p)) � (u(p)� v(p)) = M.

Hence, by the maximum principle, one has ū � v̄ ⌘ M in Br(p), consequently we

also must have u� v = ū� v̄ = M on @Br(p) which is impossible.

(iii) Let u be a subsolution in ⌦ and A be a subset strictly contained in ⌦. Assume that

v 2 C2(A) is a solution of (??) with v = u on @A. Define a function U 2 C0(⌦)

(called lifting of u in A by v) given by

U(p) =

8

<

:

v(p), p 2 A

u(p), p 2 ⌦ \ A.

Then U is a subsolution in ⌦. Similar result holds also for supersolutions;

Proof. Notice first of all that U � u in ⌦, since v � u in A by definition of subsolu-

tion. Now let B ⇢ ⌦ be a domain and w be a solution of (??) in B such that w � U

on @B. This implies that w � U � u in @B. Consequently, since u is subsolution

it holds w � u in B. Therefore, one has w � U in B \ A. In turn, as we also have

w � U in @B \ A and U = v is a solution of (??) in B \ A, then we must have

w � U in B \ A too, by the maximum principle.

(iv) If u
1

, . . . , ur are subsolutions in ⌦, then u := max{u
1

, . . . , ur} is a subsolution in ⌦.

On the other hand, If u
1

, . . . , ur are supersolution in ⌦, then u := min{u
1

, . . . , ur}
is a supersolution in ⌦.

Proof. In fact, take any domain B ⇢ ⌦ and any solution v of (??) in B so that

v � max{u
1

, . . . , ur} on @B. Then one has v � ui for all i on @B, consequently

it holds v � ui for all i in B. In particular, v � max{u
1

, . . . , ur} in B. About

the second statement, if we put vi = �ui, then the first part implies the second

part.

Now suppose that ⌦ is a bounded domain (not necessarily admissible domain)

and let c : @⌦ ! R be a bounded function. We say that a function u 2 C0(⌦) is a

subfunction (superfunction) relative to c if u is a subsolution (supersolution) in ⌦ and

u  c (u � c) on @⌦. Observe that by (iii) inf c is a subfunction relative to c and sup c is a

superfunction relative to c. Denote by Sc the set of all subfuctions relative to c. Essentially,

as we shall see now, the Perron’s method gives a constructive way to construct solutions

of (??) from Sc.
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Theorem 0.3.2 (Perron’s method). The function u(p) = supv2S
c

v(p) is a smooth solution

of (??) on ⌦.

Proof. The proof follows the same strategy as in (?). Firstly, notice that inf c  u  sup c

by (ii). Secondly, take any point p 2 ⌦ and let {un} be a sequence in Sc such that

un(p) ! u(p). If replacing un by max{un, inf c} we can suppose that un is bounded.

Thirdly, choose a geodesic ballBr(p) ⇢⇢ ⌦ so that @Br(p) is f�convex. This f�convexity

allows to get for all n a smooth function vn : Br(p) ! R so that vn = un on @Br(p), by

Theorem ??. In turn, by (i) and (ii) we must have un  vn. In particular, if Vn denotes

the lifting of un in Br(p) by vn then Vn(p) ! u(p).

On the other hand, by Proposition ?? up to a subsequence {Vn} converges on

compact subset of Br(p) to a solution V of (??) in Br(p), observe that V (p) = u(p). So

if we could conclude that V = u in Br(p) we finish the proof. Namely, we already have

V  u in Br(p), so we need to prove that V � u in Br(p). Suppose, then there exists

q 2 Br(p) so that V (q) < u(q), therefore there exists ū 2 Sc so that V (q) < ū(q). If

we define wn = max{Vn, ū} then wn 2 Sc by (iv). Now let Wn be the unique solution

of (??) with Wn = wn on @Br(p) and call W̄n the lifting of wn in Br(p) by Wn. By

Proposition ?? we can suppose {W̄n} converges to a solution W̄ of (??) in Br(p) and such

function satisfies V  W̄  u in Br(p). Moreover, as V (q) < ū(q), we have V (q) < W̄ (q)

and W̄ (p) = V (p), since V (p) = u(p) Hence, by the maximum principle we arrive at a

contraction.

Suppose that ⌦ is a bounded admissible domain (not necessarily geodesicaly

f�convex) with @⌦ = [Ji, where Ji’s are connected f-convex arcs on @⌦ so that Ji \ Jk

is either an endpoint of both arcs or is empty, and let c = {ci : Ji ! R} be a family of

bounded continuous functions. Then, as we will see now the Perron’s solution has the

specific boundary behaviour.

Theorem 0.3.3 (Perron’s method-boundary data). Suppose that u is the solution given

by Theorem ??. Then u satisfies u = ci on int Ji.

Proof. Fix an f�convex arc Ji. Take any point p 2 intJi and let Br(p) a geodesic ball

which is f�convex. If we call ⌦0 := Br(p) \ ⌦̄, then for r small enough we conclude

that ⌦0 is geodesicaly f�convex and ⌦0 does not intersect any vertices of ⌦, see Figure

??. Moreover, by “smoothly” the corner of ⌦0, we get an C2 domain ⌦00 ⇢ ⌦ which is

also geodesicaly f�convex such that a part of Ji centred at p lies in @⌦00, see Figure ??.

In turn using this domain and by Theorem ?? there exist w+, w� : ⌦00 ! R such that

w± = ci in @⌦00 \ Ji, w+ � maxi{supJ
i

ci} and w�  mini{infJ
i

ci}. Thus we shall have

by the maximum principle and (ii) that

w�  u  w+ in ⌦00.
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Figure 2 – Representation of ⌦0(left) and ⌦00(right).

In particular, we must have u(p) = ci(p) and u continuous at p.

0.3.1.5 Maximum principle

This part of the section is devoted to obtain a particular variation of the

maximum principle. Here the admissible domains are these according to the definition

??.

Theorem 0.3.4 (Maximum principle). Let ⌦ ⇢ P be a bounded admissible domain.

Suppose that u
1

and u
2

are solutions of (??) such that

lim inf
x!@⌦

(u
2

(x)� u
1

(x)) � 0

with possible exception of finite number of points {q
1

, . . . , qr} = E ⇢ @⌦. Then u
2

� u
1

in ⌦ with strict inequality unless u
2

= u
1

.

Proof. The proof follows a similar strategy of the proof given by (?). We start by defining

a function ' : ⌦! R given by

' =

8

>

>

>

<

>

>

>

:

K � ✏, if u
1

� u
2

� K;

u
1

� u
2

� ✏, if ✏ < u
1

� u
2

 K;

0, if u
1

� u
2

 ✏,

where K, ✏ > 0 are constants, K large and ✏ small. We have that ' is a locally Lipschitz

function with 0  '  K, r' = ru
1

�ru
2

in the set {x 2 ⌦ : ✏ < u
1

(x)� u
2

(x) < K}
and r' = 0 almost everywhere in the complement of this set.

For each point qi 2 E, let B✏(qi) be an open geodesic disk with center qi

and radius ✏. Denote ⌦✏ = ⌦ \ [iB✏(qi) and suppose that @⌦✏ = ⌧✏ [ ⇢✏, where ⇢✏ =

[i(@B✏(qi) \ ⌦) and ⌧✏ = @⌦✏ \ @⌦. Since lim inf(u
2

� u
1

) � 0 in @⌦ \ E, we have ' ⌘ 0

in a neighbourhood of ⌧✏. Define

J :=

Z

⇢
✏

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

, (17)
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where ⌫ is the unit outer normal to ⌦✏ and Wi =
p

1 + f 2hc(rui,rui). From (??), and

0  '  K, we obtain from (??) that

J  2K
r
X

i=1

Lf [@B✏(qi)]. (18)

On the other hand, since ' is a locally Lipschitz function, we have

divP



'

✓

f 2

ru
1

W
1

� f 2

ru
2

W
2

◆�

= hc

✓

r', f 2

ru
1

W
1

� f 2

ru
2

W
2

◆

+ '



divP

✓

f 2

ru
1

W
1

◆

� divP

✓

f 2

ru
2

W
2

◆�

,

almost everywhere in ⌦. Therefore, by the divergence theorem, one obtains

J =

Z

⌦

✏



hc

✓

r', f 2

ru
1

W
1

� f 2

ru
2

W
2

◆

+ '

✓

divP

✓

f 2

ru
1

W
1

◆

� divP

✓

f 2

ru
2

W
2

◆◆�

�
Z

⌦

✏

hc

✓

r', f 2

ru
1

W
1

� f 2

ru
2

W
2

◆

. (19)

Now if Ni =
@
s

fW
i

� f ru
i

W
i

, then

hc

✓

ru
1

�ru
2

, f 2

ru
1

W
1

� f 2

ru
2

W
2

◆

= gc (N1

�N
2

,W
1

N
1

�W
2

N
2

)

= W
1

� (W
1

+W
2

)gc(N1

, N
2

) +W
2

=
1

2
(W

1

+W
2

)gc(N1

�N
2

, N
1

�N
2

). (20)

From (??), (??) and (??) we get

2K
r
X

i=1

Lf [@B✏(qi)] � 1

2

Z

⌦

✏

\{0<u1�u2<K}
(W

1

+W
2

)gc(N1

�N
2

, N
1

�N
2

) � 0,

and in particular, letting ✏ ! 0 we arrive that

Z

{0<u1�u2<K}
(W

1

+W
2

)gc(N1

�N
2

, N
1

�N
2

) = 0.

Therefore N
1

= N
2

in {x 2 ⌦ : 0 < u
1

� u
2

< K}, and consequently also ru
1

= ru
2

in

the same set. As K was arbitrary, we conclude that ru
1

= ru
2

whenever u
1

> u
2

.

To finish the proof, assume that {0 < u
1

�u
2

} contains a connected component

with non-empty interior. Then, by the previous argument, u
1

= u
2

+c, where c is a positive

constant, and consequently by maximum principle we have u
1

= u
2

+c in ⌦. On the other

hand, as lim inf(u
2

�u
1

) � 0 for any approach of @⌦\E, cmust be a non-positive constant,
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which is impossible, and therefore u
2

� u
1

.

0.3.1.6 Scherk’s translator barrier

The next step to extend the Jenkins-Serrin theory to the horizontal translating

setting it is to construct a specific solution that looks like a part of Scherk’s surface. This

is the natural generalization of the barriers used by ? to get information about monotony

sequences of solutions of (??). Our proof follows a similar strategy as in (?), (??) and

(?).

Proposition 0.3.7 (Scherk’s surface). Let ⌦ ⇢ P be a geodesically f -convex and admis-

sible domain whose boundary @⌦ is an union of four f -geodesic arcs A
1

, A
2

, C
1

and C
2

so

that A
1

and A
2

do not have common endpoints. Assume also that

Lf [A1

] + Lf [A2

] < Lf [C1

] + Lf [C2

].

Then, given any bounded continuous data ci : Ci ! R, there exists a solution u of (??)

such that u = ci on Ci and u ! 1 along A
1

[ A
2

.

Proof. The proof will be divided into two cases depending on the continuous boundary

data ci.

Case c
1

= c
2

⌘ 0.

Consider the sequence of curves {�n} ⇢ @⌦⇥R, where �n(x) = (x, 0) for all x 2 C
1

[C
2

,

�n(x) = (x, n) for all x 2 A
1

[A
2

and �n is a “horizontal” segment joining the vertices (x, 0)

and (x, n) when x is a vertex of @⌦. By Theorem ?? there exists a solution un : ⌦ ! R
of (??) with the continuous curve �n as the boundary. Moreover, by Theorem ?? the

sequence {un} is monotone increasing. So we need to prove that {un} is locally bounded

on compact subsets of ⌦ and hence, by Theorem ??, we can obtain a subsequence of

{un} converging smoothly on compact subsets of ⌦ to a solution u of (??) satisfying the

required properties.

In order of control the sequence on compact subsets of ⌦, we construct a

minimal cylinder, and for this, consider the minimal disk Dh
i = Ci ⇥ [0, h], that is the

rectangle over Ci with height h. Then Dh
i is an area-minimizing, that means that it has

least area. Indeed, suppose that ⌃ is any minimal disk with boundary @Dh
i .

As we are considering the metric gc in M ⇥ R, and so we equip ⌃ with the

Riemannian metric that is the restrictions of gc onto ⌃. If we write h
⌃

= s|
⌃

as the

“height function” of ⌃, we see that

rh
⌃

= (r̄s)> =
@s
f 2

� gc

✓

N
⌃

,
@s
f 2

◆

N
⌃

. (21)
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Taking the divergence we can conclude that

�⌃h
⌃

= div
⌃

(rh
⌃

) = div
⌃

✓

@s
f 2

� gc

✓

N
⌃

,
@s
f 2

◆

N
⌃

◆

= div
⌃

✓

@s
f 2

◆

� gc

✓

N
⌃

,
@s
f 2

◆

div
⌃

(N
⌃

) = gc

✓

@s,r⌃

✓

1

f 2

◆◆

= �2gc
�r⌃ log f,r⌃h

⌃

�

,

in the second line we have used that ⌃ is minimal and @s is a Killing vector field. Thus,

one has �⌃h
⌃

+ 2gc
�r⌃ log f,r⌃h

⌃

�

= 0, and hence h
⌃

is harmonic with respect to

the weighted Laplacian, so the maximum principle implies that the maximum and the

minimum of h
⌃

are attained at the boundary of ⌃. Therefore, the co-area formulae (??)

gives

Ag
c

[⌃] =

Z

⌃

dµ
⌃

=

Z h

0

Z

h�1
⌃ (t)

1
p

gc(rh
⌃

,rh
⌃

)
dstdt.

From (??) one obtains

gc(rh
⌃

,rh
⌃

) = gc

✓

@s
f 2

� gc

✓

N
⌃

,
@s
f 2

◆

N
⌃

,
@s
f 2

� gc

✓

N
⌃

,
@s
f 2

◆

N
⌃

◆

=
1

f 2

gc

✓

@s
f

� gc

✓

N
⌃

,
@s
f

◆

N
⌃

,
@s
f

� gc

✓

N
⌃

,
@s
f

◆

N
⌃

◆

 1

f 2

.

Consequently, by Proposition ?? and Remark ?? (iii) we have

Ag
c

[⌃] �
Z h

0

Z

h�1
⌃ (t)

fdstdt =

Z h

0

Lf [h
�1

⌃

(t)]dt

�
Z h

0

Lf [Ci]dt = Ag
c

[Ci ⇥ [0, h]] = Ag
c

[Dh
i ]

and Dh
i is an area-minimizing with respect to the area functional.

Now, to construct the cylinder, consider first the piecewise cylinder

Ch := ⌦ [ ⌦h [ (A
1

⇥ [0, h]) [ (A
2

⇥ [0, h]),

where ⌦h = {(p, h) 2 P⇥ R(= M ⇥ R) : p 2 ⌦}. As

Ag
c

(Ch) = 2Ag
c

[⌦] +Ag
c

[A
1

⇥ [0, h]] +Ag
c

[A
2

⇥ [0, h]],

it holds

Ag
c

[Ch]�Ag
c

[Dh
1

]�Ag
c

[Dh
2

] = 2Ac[⌦] + h(Lf [A1

] + Lf [A2

]� Lf [C1

]� Lf [C2

]) < 0,

provided that h � h
0

for some h
0

large enough. Fix some h � h
0

, then by Theorem ??
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there exists a stable minimal cylinder ⇥h inside ⌦⇥ R with boundary @Dh
1

and @Dh
2

.

Observe that ⇥h is above Graphh[un] for all n. In fact, if we translate ⇥h to

height n we see by Theorem ?? that ⇥h does not intersect Graphh[un]. Furthermore, if

we translate ⇥h comes back we see that ⇥h does not intersect Graphh[un] until we arrive

in the original position of ⇥h by Theorem ??. Consequently, ⇥h is above Graphh[un] for

all n.

Next, denote by ⌥ the connected component of ⌦ ⇥ R \ ⇥h which is non-

compact. Notice that the set ⌥ = {(p, s) 2 ⌥ : |s|  } is piecewise convex for all  � h

in the sense of Definition ??. So for all  � h there exists a stable minimal cylinder

C in ⌥ with boundary @(C
1

⇥ [0,]) [ @(C
2

⇥ [0,]) by Theorem ??. Notice also that

the family {C} has locally bounded area in ⌦ ⇥ R since each solution of the Plateau’s

problem is also a minimum of the area functional amount our hypersurface with the same

boundary.

Fix & > . Translating the cylinder C to height & �  and coming back to the

original position we see that C and C& do not have point contact in ⌦ ⇥ R. Moreover,

along of the horizontal segment across the endpoints of the arc Ci, we see by Theorem ??

that C and C& cannot have the same tangent plane. So the tangent plane of C& on the

common part of the horizontal segment across the endpoints of Ci is controlled by the

tangent plane of Ch.
Now for all n > h(n 2 N) let ⌃n the cylinder obtained by translating C

2n down

by height �n. Then {⌃n} is a sequence of stable hypersurfaces with locally bounded

area. At that time we cannot use Theorem ?? to conclude that ⌃n ! ⌃1, because ⌃n

has boundary. However, from Theorem ?? and Lemma ??, we may conclude what follows.

Claim 0.3.3. After passing to a subsequence we have ⌃n ! (A
1

⇥ R) [ (A
2

⇥ R).

Proof of the Claim ??. The proof of this fact can be done as follows. Let Br(p) be a

geodesic ball in ⌦ ⇥ R what does not intersect @(⌦ ⇥ R). If we take r small enough we

can ensure that each connected component of ⌃n \Br(p) is a graph of its tangent plane,

by Theorem ?? and Lemma ??. If there is one component, then a similar argument as

in Proposition ?? proves that, after passing to a subsequence, we may assume that this

sequence converges as graphs to a function defined over a open subset of the plane tangent

plane limit of the sequence of tangent plane. If there are more than one component, then

we apply this argument to each component.

On the other hand, if Br(p) intersects @(⌦ ⇥ R), then as the tangent plane

of Ch. at the boundary control the range of the tangent plane of ⌃n, this implies that

we have uniformly estimates at the boundary. Consequently, we can apply the previous

argument, with the boundary now, to conclude that, after passing to a subsequence, we

can suppose that the sequence {⌃n\Br(p)} converges. Now, the diagonal argument joint

with a covering of ⌦⇥ R imply that {⌃n} must converges in ⌦⇥ R to a smooth surfaces
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⌃1 with boundary @(A
1

⇥ R) [ @(A
2

⇥ R).
To conclude that ⌃1 = (A

1

⇥R)[ (A
2

⇥R), we parametrize Ci by ⇣i : [0, 1] !
Ci. Taking the correct orientation in Ci, we can find a foliation of ⌦ by f�geodesic

satisfies what follows: if t 2 [0, 1] then we denotes by �t the unique f�geodesic in ⌦ joint

⇣
1

(t) and ⇣
2

(t), �
0

= A
1

and �
1

= A
2

. Next, we consider the family of minimal surfaces

{�t ⇥ R}t2[0,1] in ⌦⇥ R. If ⌃1 is not (A
1

⇥ R) [ (A
2

⇥ R), then we can find a t 2 (0, 1)

so that �t ⇥ R touches ⌃1 either at a finite point or at a infinite point.

Turn out that Theorem ?? implies that the first case is impossible. Regarding

the second case, it implies that dist(⌃1,�t⇥R) = 0, consequently there exists a sequence

of point {pn} in ⌃1 so that lim
n

dist(pn,�t ⇥ R) = 0, notice that {pn} is away from the

boundary of ⌃1. Let ⇤n be the surface obtained from the translation of ⌃1 by �xn.

Then by the previous argument {⇤n}, after passing to a subsequence, must converges to

smooth surface with boundary ⌃0 in ⌦⇥ R. Furthermore, ⌃0 touches �t ⇥ R at a finite

point, so by Theorem ?? we must have ⌃0 = �t⇥R which is impossible since the boundary

of ⇤n is away from �t ⇥ R.

In particular, this claim says that the sequence of {⇡(C
2n)} is an exhaustion

of ⌦, where ⇡ denotes the projection over P. Finally, in order of finish the proof, we must

observe that the same argument of the proof of Theorem ?? allows us to conclude that

u|c1[c2 ⌘ 0.

General case (c
1

and c
2

are a bounded function).

Suppose that |ci|  K and let v : ⌦ [ C
1

[ C
2

! R be the function of the first case. Let

{�n ⇢ @⌦⇥R} be the sequence of curves, where �n(x) = (x,min{n, ci(x)}) for all x 2 Ci,

�n(x) = (x, n) for all x 2 A
1

[A
2

and �n is a horizontal segment joining the vertices (x, 0)

and (x, n) when x is a vertex of @⌦. By Theorem ?? there exists a solution un : ⌦! R of

(??) with continuous boundary curve �n. Moreover, by Theorem ?? the sequence {un} is

monotone non-decreasing and �K  un  v+K in ⌦. Hence, by Theorem ?? we obtain

that {un} converges smoothly on compact subsets of ⌦ to a solution u of (??) with the

required properties. As it was mentioned earlier, this last claim about the continuous

data can be obtained by using the same strategy of the proof of Theorem ??.

Now let us do some applications of the previous result.

Proposition 0.3.8. Let ⌦ ⇢ P be a bounded domain such that @⌦ is a union of an

f -geodesic arc A and an f -convex arc C with their endpoints. Assume there exists a

geodesically f -convex domain ⌦0 ⇢ P so that ⌦ ⇢ ⌦0 and its boundary @⌦0 is a union of

four f -geodesic arcs A
1

, A
2

, C
1

and C
2

so that A
1

and A
2

do not have common endpoints

and A ⇢ A
1

. Moreover assume that

Lf [A1

] + Lf [A2

] < Lf [C1

] + Lf [C2

].
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Then, given any bounded continuous function ⇣ : C ! R, there exists a solution of (??)

in ⌦ such that u ! 1 on A and has the continuous boundary data ⇣ on C.

Proof. Let {�n} ⇢ @⌦ ⇥ R be a sequence of curves, where �n(x) = (x,min{⇣(x), n}) for
all x 2 C, �n(x) = (x, n) for all x 2 A and �n is a horizontal segment joining the vertices

(x, 0) and (x,min{⇣(x), n}) when x is a vertex of @⌦, then by Theorem ?? there exists a

solution un : ⌦ ! R of (??) with continuous boundary curve �n. Moreover, by Theorem

?? the sequence {un} is an increasing. Now, if v denotes the function over ⌦0 given by

the previous result with continuous data 0, then we must have

inf
C

⇣  un  sup
C

⇣ + v in ⌦

by Theorem ??. Thus, Theorem ?? yields that un converges on compact subsets of ⌦ to

a solution u of (??). Finally, if we argue as in the proof of Theorem ?? we can conclude

that u has the specific continuous data.

Until now we have proven that the continuous data of the limit of a convergent

sequence of solution of (??) can be controlled, if the sequence is defined over specific

geodesicaly f�convex domains. Now we will extend this fact to encompass the general

domains.

Proposition 0.3.9. Let ⌦ ⇢ P be a domain. Suppose that � is an f -convex arc in @⌦.

Let {un} be a sequence of solutions of (??) that converges uniformly to a solution u of

(??) on compact subsets of ⌦. Suppose that un 2 C0(⌦ [ �) and un|� converge uniformly

on compact subsets of � to a function ⇣ : � ! R that is continuous or ⇣ ⌘ ±1. Then u

is continuous in ⌦ [ � and u|� = ⇣.

Proof. Given p 2 �, assume that ⇣(p) > K, where K is a fixed constant. After of all,

let us observe that if we prove that there exists a neighbourhood U of p in ⌦ [ � so that

u > K in U to conclude that u is continuous at p. The same argument works if we want

to prove the existence of this neighbourhood when ⇣(p) < K. In particular, these claims

tells that we can argue as in the proof of Theorem ?? to conclude that u has the specific

continuous data.

In order of proof the previous claim, fix a constant K̄ 2 (K, ⇣(p)). Since un|�
converge uniformly to ⇣ on compact subsets of �, there exists a subarc � ⇢ � containing p

in its interior so that un > K̄ for all n � n
0

on �, for some n
0

large enough. Moreover, we

can assume that � lies in a neighbourhood of p which is geodesically f -convex by taking

� small enough. Notice also that, if � is small enough, we have two cases to analyse:

(i) � is an f -geodesic;

(ii) there exists a sequence {pn} ⇢ � \ {p} so that pn ! p and kf [�](pn) > 0.

Suppose � is an f -geodesic, then we can construct an admissible domain � ⇢ ⌦ with

four edges A
1

, A
2

,�0 and � so that A
1

and A
2

do not have common endpoints, and
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Lf [A1

] + Lf [A2

] < Lf [�0] + Lf [�]. By Proposition ?? there exists a solution v of (??) so

that v ! 1 along A
1

[ A
2

, v = K̄ on � and v = K̃ on �0, where K̃ = inf�0 un > �1,

since un converge on compact subset to u. Now by Theorem ?? we conclude v < u in �.

On the other hand, if there exists a sequence {pn} ⇢ � \ {p} so that pn ! p

and kf [�](pn) > 0, then we can get a domain � ⇢ ⌦ so that @� = ⌘ [ �0, where �0 is a

subarc of � which contain p in its interior and ⌘ is a f�geodesic arc joining the endpoints

of �0. By Proposition ?? there exists a solution v : �! R of (??) so that v ! 1 along ⌘

and v = K̄ on �0. Again by Theorem ?? we must have v < u in �. In particular, in both

cases there exists a small neighbourhood U of p in ⌦ [ � so that u � K̄ > K in U.

Notice that the previous proof motives the proof of the following proposition.

Proposition 0.3.10. Let ⌦ ⇢ P be a bounded domain and � ⇢ @⌦ be a strictly f -convex

curve with respect to inner unit normal to @⌦. Suppose that {un} is a sequence of solutions

of (??) in ⌦ such that un �  (respectively un  ) on �, where K is a constant. Then

given any compact subarc � ⇢ � there exists a neighbourhood U(�) (depending of �) in

⌦ and a constant K(�) > 0 (depending of �) such that un �  � K(�) (respectively

un  +K(�)) for all n in U(�).

Proof. The proof can be done as follows: since � is strictly f�convex we can break up

� into some small subarcs {�
1

, . . . , �i} so that � = [�j, �j�1

\ �j is a small not empty

subarc on � and each �j lies in a geodesicaly f�convex neighbourhood of P. For each

�j let ⌘j the f�geodesic arc in ⌦ joining the endpoints of �j and call �j the subdomain

in ⌦ with boundary �j [ ⌘j. Turn out that if we are careful, we can assume that every

domain �j satisfies the condition of Proposition ??, so for every j there exists a solution

vj : �j ! R so that vj =  on �j and vj ! �1 (respectively vj ! +1) on ⌘j. Using

these functions are barrier we construct the neighbourhood U(�) and find the constant

K(�).

0.3.1.7 Straight line lemma

This section is devoted to give a geometric proof of the straight line lemma

by using tools get from geometric measure theory. This lemma says that the unique

possibility of a solution of (??) blow-up (respectively down) along of � is if � is an

f�geodesic. The ideas that we will develop here are inspired on the argument of (?).

Lemma 0.3.1 (Straight line lemma). Let ⌦ ⇢ P be a domain such that � ⇢ @⌦ is an

open arc and suppose that u : ⌦! R is a solution of (??). If u(x) ! ±1 when x ! �,

then � is an f -geodesic.

Proof. Let us suppose that u ! +1 along �. Fix any p 2 � and let Br((p, 0)) a geodesic

ball in P⇥ R (= M ⇥ R) with center (p, 0) and radius small so that Br((p, 0)) \ (@(⌦⇥
R) \ (�⇥R)) = ?. Take any sequence {pn} ⇢ ⌦ with pn ! p and pn 2 Br((p, 0)), we also
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will suppose that pn 6= pm if n 6= m. Consider the sequence of surface in P⇥R (= M ⇥R)
given by {⌃n = Graph[u� u(pn)]} Our hypothesis says that ⌃n \Br((p, 0)) is not empty

for all n. Let Sn be the connected component of ⌃n \ Br((p, 0)) which contains (pn, 0).

We know by Proposition ?? and Proposition ?? that {Sn} is a sequence of stable surfaces

with bounded area in Br((p, 0)), so by Theorem ?? we may assume, after passing to a

subsequence, Sn ! S1, where S1 is a smooth not empty surface in Br((p, 0)) because

(p, 0) 2 S1. In order of conclude the proof, we would like to prove that S1 would lie in

� ⇥ R. In particular, this last claim implies that � is smooth on a subarc centred at p.

If there exists any point q 2 S1 \ � ⇥ R ⇢ ⌦ ⇥ R, then by definition of C1

convergence there exists a sequence of point {qn} so that qn 2 Sn and qn ! q. Bringing

back this information to u, this says that qn = (q̂n, u(q̂n) � u(pn)), consequently it holds

u(q̂n) ! +1 too. Hence, since we are assuming Br((p, 0))\@(�⇥R) = ?, then {q̂n} can

not accumulate neither in any other part of @⌦ unless � nor inside ⌦ too. Thus q̂n ! �

which arrives at a contradiction since q /2 � ⇥ R. Therefore S1 ⇢ � ⇥ R. In particular

� must be smooth too. Furthermore, the condition S1 ⇢ � ⇥ R also implies that � is a

f�geodesic by Remark ?? (i).

Before proceeding to prove the next proposition we need to observe the fol-

lowing consequence of the previous proof.

Proposition 0.3.11. Let ⌦ ⇢ P be a domain and � ⇢ @⌦ be an f�geodesic. Assume

that u : ⌦! R is a solution of (??) so that u(x) ! ±1 when x ! �. Thus, if Br((p, 0))

is a su�ciently small geodesic ball in P⇥R (= M ⇥R) with center (p, 0) 2 �⇥R so that

Br((p, 0))\(@(⌦⇥R)\(�⇥R)) = ?, then there exists n
1

so that if n > n
1

then the number

of connected component of ⌃n \Br((p, 0)) is exactly one, where ⌃n = Graphh[u� u(pn)].

Proof. We start by defining A = Br((p, 0))\ (�⇥R) and for ✏ << r we define U✏ := {x 2
Br((p, 0)) : dist{x,A} < ✏}, ⌥✏ := Br((p, 0)) \ U✏ and A✏ := @U✏ \A (the other connected

component of @U✏ inside Br((p, 0))).

Claim 0.3.4. Given ✏ << r there exists n
0

so that if n > n
0

, then ⌃n \ Br((p, 0)) does

not intersect ⌥✏.

Proof of the Claim ??. In fact, notice that the projection K✏ of ⌥✏ over P is a compact

subset of ⌦. Hence, the portion of corresponded of the image K✏ in Graph[u] is a compact

subset of P ⇥ R. Therefore, since we are assuming u(pn) ! +1, there exists n
0

so that

n > n
0

implies ⌃n does not intersect intersects ⌥✏.

Now we would like to conclude that the number of connected component is

exactly one for n large enough. Otherwise, we could form two sequences {�k} and { k}
so that �k and  k lie in ⌃n

k

\ Br((p, 0)). By Claim ?? for all ✏ << r there exists k
0

so that k > k
0

implies �k and  k must lie in U✏. This fact joint with the condition of

{�k} and { k} are sequences of stable surfaces with locally bounded area implies that,



59

up to a subsequence, �k and  k converge smoothly to A, by Theorem ?? perhaps with

multiplicity.

Now take ✏ << Area[A\B r

2
((p, 0))] so that the cylinder C✏ in @B r

2
((p, 0)) with

boundary @{A\B r

2
((p, 0))}[@{A✏\B r

2
((p, 0))} satisfiesAg

c

[C✏] < Ag
c

[\B r

2
((p, 0))]. Using

the previous information about the convergence of �k and  k we may conclude that there

exists k
0

so that if k > k
0

then �k and  k lie in U✏ and

�

�Ag
c

[A \B r

2
((p, 0))]�Ag

c

[�k \ B r

2
((p, 0))]

�

� <
✏

2

and

�

�Ag
c

[A \ B r

2
((p, 0))]�Ag

c

[ k \B r

2
((p, 0))]

�

� <
✏

2
.

In particular, if k > k
0

the cylinder Bk in @Br((p, 0)) with boundary @�k and @ k satisfies

Ag
c

[Bk]  Ag
c

[C✏] <
1

2
Ag

c

[A \B r

2
((p, 0))]

<
1

2

�Ag
c

[�k \B r

2
((p, 0))] +Ag

c

[ k \ B r

2
((p, 0))]

 

+
✏

2
(22)

On the other hand, by Proposition ?? it holds

Ag
c

[Bk] > Ag
c

[�k \B r

2
((p, 0))] +Ag

c

[ k \ B r

2
((p, 0))]

for all k. So from (??), if k > k
0

one has

✏ > Ag
c

[�k \B r

2
((p, 0))] +Ag

c

[ k \B r

2
((p, 0))],

which is impossible. Therefore, there exists n
1

> n
0

so that if n > n
1

then the number

of connected component on ⌃n \ Br((p, 0)) is exactly one. It is important we point

out here that the strategy above also proves that the multiplicity of the convergence

⌃n \ Br((p, 0)) ! A is one.

Before we state the next proposition we need some notation. Let � ⇢ @⌦ be a

smooth open arc. We know that in a small neighbourhood U of � in ⌦ the distance function

dist(�, ·) is smooth function and (r, q) 2 [0, ✏)⇥� ! expq(�r⌫(q)) is a local coordinate to

U , where expq denotes the exponential map at q with respect to the Riemannian metric

gcand ⌫ denotes the unit outer normal to � with respect to ⌦.

Proposition 0.3.12. Suppose that u : ⌦ ! R is a solution of (??) and � ⇢ @⌦ is an

f -geodesic. Then for every � 2 (0, 1) and every compact arc � ⇢ � there exists ⌘(�,�) > 0



60

so that if dist(p,�) < ⌘, then

1 � hc

✓

f
ru

W
, ⌫

◆

(p) � 1� � , if u ! +1 along �

and

�1  hc

✓

f
ru

W
, ⌫

◆

(p)  �1 + � , if u ! �1 along �,

where W 2 = 1 + f 2gc(ru,ru) and ⌫ denotes the unit outer normal along @⌦✏ := {x 2
⌦ : dist(x, @⌦) = ✏} for all ✏ 2 (0, ⌘(�, �))

Proof. Assume that u ! +1, the same proof works when u ! �1. If our claim is not

true, then there exist � 2 (0, 1) and a sequence {pn} ⇢ U ⇢ ⌦ so that dist(�, pn) ! 0 but

� hc(N(pn, u(pn)), ⌫) = hc

✓

f
ru

W
, ⌫(pn)

◆

(pn)  1� �, (23)

where N denotes the unit upward normal to Graph[u]. Thus, up to a subsequence, we

may assume that pn ! p 2 �. Now we are going to use the argument of the last proof to

conclude the proof. Let Br((p, 0)) be a geodesic ball in P⇥R (= M⇥R) with center (p, 0)

and radius small so that Br((p, 0)) \ {@(⌦ ⇥ R) \ (� ⇥ R)} = ?. Consider the sequence

of surface {⌃n = Graph[u � u(pn)]} ⇢ P ⇥ R (= M ⇥ R). By the previous argument,

we may assume that ⌃n has one unique connected component Sn inside Br((p, 0)), and

therefore (pn, 0) 2 Sn. So {Sn} is a sequence of stable surfaces with locally bounded area

in Br((p, 0)), and consequently it holds Sn ! S1, where S1 = (� ⇥ R) \ Br((p, 0)), but

this contraction (??) unless hc(N(pn, u(pn)), ⌫(pn)) ! 1. However, this is not the case,

because N is the unit upward normal to Graph[u].

0.3.1.8 Flux formula

This subsection is dedicated to the study of the flow formula. So first of all,

let us start by defining what means that. Let ⌦ ⇢ P be a domain such that @⌦ is C1

smooth. Suppose u : ⌦ ! R is a solution of (??), then by the divergence theorem, one

has
Z

@⌦

f 2

W
hc(ru, ⌫) = 0,

where ⌫ is unit outer normal to @⌦. This motivates us to define a flux

Fu[�] =

Z

�

f 2

W
hc(ru, ⌫). (24)

We would conclude that (??) makes sense ever when u is not smooth on �.

Namely, let ↵ be a curve in ⌦ with the same endpoint of � and call D the domain in ⌦
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with boundary � [ ↵, motivated by the divergence theorem applied to D, we define

Z

�

f 2

W
hc(ru, ⌫) := �

Z

↵

f 2

W
hc(ru, ⌫),

where ⌫ denotes the unit outer normal to D. It remains to conclude that the previous

definition independent of the ↵. In fact, let � be another curve with the same endpoints

of � and D the 2�chair in ⌦ with boundary ↵[ �. The divergence theorem applied to D

allows us to conclude
Z

�

f 2

W
hc(ru, ⌫) := �

Z

↵

f 2

W
hc(ru, ⌫),

where ⌫ denotes here the unit outer normal to D. In particular, regarding the orientation

on ↵ and � endowed by � one gets

Z

�

f 2

W
hc(ru, ⌫) :=

Z

↵

f 2

W
hc(ru, ⌫),

Now we will collect some properties of the flux formula that it will be useful

later.

Lemma 0.3.2. Let u be a solution of (??) in an admissible domain ⌦.

(i) Then, for all piecewise smooth polygon P(not necessary admissible) in ⌦ we have

Fu[@P ] = 0,

(ii) Then for every curve � in ⌦ we have

|Fu[�]|  Lf [�],

(iii) Then, if � ⇢ @⌦ is an f -geodesic such that u tends to +1 on �, we have

Fu[�] = Lf [�],

(iv) Then, if � ⇢ @⌦ is an f -geodesic such that u tends to �1, we have

Fu[�] = �Lf [�],

(v) Then, if � ⇢ @⌦ is an f -convex curve , i.e. kf [�] � 0 along �, such that u is

continuous and finite on �, then

|Fu[�]| < Lf [�].

Proof. The divergence theorem and (??) imply (i). Moreover, since
�

�

f
W
hc(ru, ⌫)

�

� =

|hc(N, ⌫)|  1, where N denotes the unit upward normal to Graph[u] it holds |Fu[�]| 
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Lf [�]. Thus, we have (ii).

Regarding (iii), let ⌘ be an arc of � and ⌘✏ be a curve in ⌦ which distances ✏

of ⌘. Call ↵✏
1

and ↵✏
2

the curves that connected the endpoints of ⌘ and ⌘✏. If we denote

by P the domain with boundary ⌘ [ ⌘✏ [ ↵✏
1

[ ↵✏
2

, then by (i) and (ii) one holds

Fu[⌘] = �Fu[⌘✏]� Fu[↵
✏
1

]� Fu[↵
✏
2

] � �Fu[⌘✏]� Lf [↵
✏
1

]� Lf [↵
✏
1

], (25)

where ⌫ denotes the unit outer normal to @P . On the other hand, given � 2 (0, 1) if we

take ✏ is small enough (✏ < �) then by Proposition ?? one has

� Fu[⌘✏] = �
Z

⌘
✏

f 2

W
hc(ru, ⌫) >

Z

⌘
✏

f(1� �) = (1� �)Lf [⌘✏], (26)

since the unit outer normal to � is minus the unit outer normal to ⌘✏ in the orientation

considered by Proposition ??. Since Lf [↵✏
1

] ! 0 as ✏ ! 0, then from (??) and (??) it

holds

Fu[⌘] > (1� �)Lf [⌘✏]� Lf [↵
✏
1

]� Lf [↵
✏
1

]

Letting � ! 0 we obtain Fu[⌘] � Lf [⌘]. Therefore Fu[⌘] = Lf [⌘]. Since ⌘ was arbitrary,

then the same conclusion is true by �. Notice that essentially the same argument proves

(iv) up to a sign.

It remains to prove (v). In order to prove that, fix any p 2 � and let Br(p) be

a geodesic ball in P so that Br(p)\(@⌦\�) = ? and Br(p) lies in a geodesicaly f�convex

neighbourhood. By Theorem ?? there exists a solution v : Br(p)\⌦! R of (??) so that

v = u on @(Br(p) \ ⌦) \ (� \ Br(p)) and v = u+ 1 on � \Br(p). Using that

hc

✓

rv �ru, f 2

rv

Wv

� f 2

ru

W

◆

=
1

2
(Wv +Wu)gc(Nv �Nu, Nv �Nu),

where Wu :=
p

1 + f 2gc(ru,ru) and Nu = @
s

fW
u

� f ru
W

u

, by the proof of Theorem ?? and

v and u are solutions of (??) one has

Z

B
r

(p)\⌦
div

✓

{v � u}
⇢

f 2

rv

Wv

� f 2

ru

Wu

�◆

=

Z

B
r

(p)\⌦
hc

✓

rv �ru, f 2

rv

Wv

� f 2

ru

Wu

◆

> 0.

In turn, by the divergence theorem, we have

0 <

Z

@(B
r

(p)\⌦)

hc

✓

{v � u}
⇢

f 2

rv

Wv

� f 2

ru

Wu

�

, ⌫

◆

=

Z

B
r

(p)\�
hc

✓

f 2

rv

Wv

� f 2

ru

Wu

, ⌫

◆

= Fv[� \ Br(p)]� Fu[� \Br(p)].

Thus, Lf [� \ Br(p)] � Fv[� \ Br(p)] > Fu[� \ Br(p)]. In turn, if w : ⌦ \ Br(p) ! R is a

solution of (??) so that w = u on @(Br(p)\⌦)\(�\Br(p)) and w = u�1 on �\Br(p) one
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obtains �Lf [�\Br(p)] < Fu[�\Br(p)]. Therefore it holds Lf [�\Br(p)]] > |Fu[Br(p)\�]|,
and consequently Lf [�] > |Fu[�]|.

We finish this subsection with the following variation of the items (iii) and

(iv).

Lemma 0.3.3. Let {un} be a sequence of solutions of (??) on a domain ⌦ ⇢ P so that

un’s are continuous up to �, where � is an f�geodesic on @⌦. Then

(i) If {un} diverges uniformly to +1 on compact subset of �, while remaining uniformly

bounded on compact subset of ⌦, then

lim
n!1

Fu
n

[�] = Lf [�],

(ii) If {un} diverges uniformly to �1 on compact subset of ⌦, while remaining uniformly

bounded on compact subset of �, then

lim
n!1

Fu
n

[�] = Lf [�],

Proof. We will prove (i) firstly. The proof of this item follows of the following claim joint

with the argument used for prove item (iii) in Lemma ??.

Claim 0.3.5. Given ✏ 2 (0, 1) there exists a � > 0 depends only on ✏ so that if dist(p, �) <

�, then

hc

✓

f(p)
run

Wn

(p), ⌫(p)

◆

> 1� ✏ for all n,

where W 2

n = 1+f 2|run|2 and ⌫(p) indicates the outer unit normal to ⌦\{q 2 ⌦ : dist(q, �) �
dist(p, �)} at p.

Proof of the Claim ??. To prove this fact we need of Theorem ?? and Lemma ??. Here

we will use the fact that horizontal graphs are stable by Lemma ??.

Suppose that this claim is not true, then there could ✏ 2 (0, 1) so that the

claim is not true for all n. This means that we could find a sequence of point {pk} 2 ⌦
so that pk ! p 2 int� and a sequence of index {nk} in such that way that

� hc

⇣

N
Graph

h

[u
n

k

]

(pk), ⌫(pk)
⌘

= hc

✓

f(pn)
run

k

Wn
k

(pk), ⌫(pk)

◆

 1� ✏ for all k, (27)

where N
Graph

h

[u
n

k

]

(pk) indicates the unit upward normal to Graphh[un
k

].

In turn, using that {un
k

} is unbounded on � and bounded on compact subset of

⌦, then we could find a r > 0 small enough so that the intrinsic geodesic ball Bk = Br(pk)

in Graphh[un
k

] belong to Graphh[un
k

]\@Graphh[un
k

] for all k and this ball is a graph over

the tangent plane T
(p

k

,u
n

k

(p
k

))

Graphh[un
k

]. Now, up to a subsequence, we could assume

that the sequence of geodesic ball {Bk} converges to a graph B1 over the tangent plane
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⇡ = lim
k

T
(p

k

,u
n

k

(p
k

))

Graphh[un
k

]. However, (??) implies that �hc (NB1(p), ⌫(p)) � 1 � ✏.

In particular, there are points in the projection of B1 over P outside ⌦, consequently it

also there are points in the projection of Bk over P outside ⌦ for all k large enough which

is impossible. This proves the claim

Regarding the item (ii). The proof of it follows from the following claim, which

the proof is exactly the same of the previous proof, joint with the argument used for prove

item (iii) in Lemma ??.

Claim 0.3.6. Given ✏ 2 (0, 1) there exists a � > 0 depends only on ✏ so that if dist(p, �) <

�, then

hc

✓

f(p)
run

Wn

(p), ⌫(p)

◆

> 1� ✏ for all n.

0.3.1.9 Divergence and convergence sets

The next step to extend the Jenkins-Serrin theory to our setting is to know

which are the structure of the divergence and convergence sets of a monotonic sequence

of solutions of (??). This study we will be done in this subsection. We will begin by

establishing the next result about the structure of convergence set.

Proposition 0.3.13 (Structure of convergence set). Let {un} be an increasing (respectively

decreasing ) sequence of solutions of (??) over a domain ⌦ ⇢ P. Then there exists an

open set C ⇢ ⌦, called the convergence set, such that {un} converges on compact subsets

of C to a solution of (??) and diverges uniformly to +1 (respectively �1) on compact

subsets of D = ⌦ \ C. The set D will be called the divergence set of {un}. Moreover, if

{un} is bounded at a point p 2 ⌦, then the convergence set C is non-empty.

Proof. Suppose that {un} is an increasing sequence. In fact, up to a reflection in P⇥R (=

M ⇥R), we can always suppose this without loss of generality. Given any point p 2 ⌦\C
and suppose that un(p) ! ↵ 2 R. Take ✏ small enough so that @B✏(p) is a strictly f -

convex curve, i.e. kf [@B✏(p)] > 0, where B✏(p) denotes the geodesic ball with center p

and radius ✏ on P. Consider the sequence of surfaces {⌃n = Graph[un|B
✏

(p)]} in the solid

cylinder B✏(p)⇥R. As {⌃n} is a sequence of stable surfaces with locally bounded area, by

Proposition ?? and Proposition ??, then after passing to a subsequence, we may suppose

that {⌃n} converges smoothly to ⌃1 in B✏(p)⇥R, here we are using the fact that we are

working in a 3�dimensional manifold M ⇥ R and so we have regularity at Theorem ??,

i. e. there is not singular set.

As u
1

 un for all n, we can use the approaching of Proposition ?? to obtain

that ⌃1 is a smooth graph u1 over Br(p). Hence un|B
r

(p) converges on compact subsets

to u1, here it is the whole sequence {un} since it is increasing. Therefore Br(p) ⇢ C and
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this completes the proof that C is open and non-empty if there exists a point p 2 ⌦ such

that {un(p)} is a bounded sequence.

Now we are going to see how we can determine the structure of divergence set

by using what we have just developed until now.

Proposition 0.3.14 (Structure of divergence set). Let ⌦ ⇢ P be an admissible domain

whose boundary is a union of f -convex arcs Ci. Let {un} be either an increasing or a

decreasing sequence of solutions of (??) over ⌦ such that for all open arcs Ci the functions

un extend continuously to Ci and either un|C
i

converge uniformly to a continuous function

or +1 or �1, respectively. If D denotes the divergence set of {un}, then D satisfies the

following properties.

(i) @D consists of a union of a set of non-intersecting interior f -geodesics in ⌦, joining

two points of @⌦, and arcs on @⌦. These arcs will be called chords. Moreover, a

component of D cannot be an isolated point;

(ii) No two interior chords in @D can have a common endpoint at a convex corner of

D;

(iii) A component of D cannot be an interior chord;

(iv) The endpoints of interior f -geodesic chords are among the vertices of @⌦.

Proof. Let us assume that {un} is an increasing sequence. If D = ⌦ there is nothing

to prove, so we can suppose that D 6= ⌦. Under this hypothesis, Lemma ?? implies

that @D consists of interior f -geodesics in ⌦ and arcs of @⌦. We will prove initially

that D cannot have isolated points. Indeed, if p is an isolated point of D, then we can

construct a quadrilateral domain ⌦0 ⇢ ⌦ satisfying the condition of Proposition ?? so that

p 2 int⌦0. Moreover, we can suppose that ⌦0 does not intersect D \ {p}. Now consider

M = supC1[C2
|un| < 1, where C

1

and C
2

denotes the large edges of ⌦0. If v denotes the

function given by Proposition ??, then by Theorem ?? one gets �M �v  un  M +v in

⌦0 which is impossible since un(p) ! +1. This contradiction shows that D cannot have

isolated points. Note that this argument proves also that a chord of @D cannot have an

endpoint in the interior of ⌦, since we can get a domain ⌦0 satisfying the conditions of

Proposition ?? so that the endpoint of this chord lies in ⌦0 and a part of this chord lies

in ⌦0.

Next we prove that the interior f -geodesics are non-intersecting. In fact, if the

contrary of this was true, then we can construct a triangle � with edges a
1

, a
2

and a
3

so

that a
1

, a
2

⇢ @D and � lies either in C or in D. Assume first that � lies in C. Then by

Lemma ?? (i) we have

0 = Fu
n

[@�] = Fu
n

[a
1

] + Fu
n

[a
2

] + Fu
n

[a
3

]. (28)

Since a
1

and a
2

lies on @D we have limn Fu
n

[ai] = �Lf [ai] for i = {1, 2}, by Lemma ??. On

the other hand, again by Lemma ?? we have |Fu
n

[a
3

]|  Lf [a3], so we get a contradiction
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with (??). Therefore we must have � ⇢ D. In turn, we must have limn Fu
n

[ai] = Lf [ai]

for i = {1, 2}. To see this, note that since ai ⇢ @C for i = {1, 2}, then by Lemma ??, we

must have limn Fu
n

[ai] = �Lf [ai] for i = {1, 2} in C. Now using the previous argument

we arrive again to a contradiction, and this proves (i).

In order to prove (ii), assume that there exist two interior chords �
1

and �
2

with a common endpoint p 2 @⌦. Again, we can construct a triangle � with edges a
1

, a
2

and a
2

so that a
1

, a
2

⇢ @D and � lies either in C or in D. Then the same argument as

above proves (ii).

To prove the assertion (iii), suppose that � is an interior chord that is a con-

nected component of D. Fix any point p 2 � which lies in int⌦. Clearly we can con-

struct a quadrilateral domain ⌦0 such that it satisfies the properties of Proposition ??. If

@⌦0 = A
1

[ A
2

[ C
1

[ C
2

, then � only intersects A
1

and A
2

at an unique interior point

on these arcs and ⌦0 does not intersect D \ �. Consider M = supC1[C2
|un| < 1 and

let v : ⌦0 ! R be the function given by Proposition ??. Using Theorem ?? one obtains

�M�v  un  M+v in ⌦0 which is impossible since an arc of � lies in ⌦0. This concludes

the proof of the (iii).

Finally, assume that there exists a chord � with endpoint p 2 intCi for some

Ci. If kf [Ci](p) > 0 then Lemma ?? gives us a contradiction. On the other hand, if

kf [Ci](p) = 0, then we have two cases to check: either there is a sequence {pn} ⇢ Ci

so that pn ! p and kf [Ci](pn) > 0 or there is a subarc ⌘ of Ci so that kf [⌘] ⌘ 0 and p

lies in the interior of ⌘. The first case would imply that it is possible to find a domain �

satisfying the condition of Proposition ?? so that p lies in the interior of the arc of @�

which is not an f -geodesic and � ⇢ ⌦. Suppose first that {un} is unbounded on Ci and

let v : � ! R be the function given by Proposition ?? with continuous data 0 satisfying

v ! �1 along ↵, where ↵ is the part of @� which is f�geodesic. If K is an arbitrary

fixed constant, then by Theorem ?? one has

�v +K < un in � for all n large enough .

Thus, since K was arbitrary, this implies that a small neighbourhood of p lies in D,

but this is impossible because � ⇢ @D. On the other hand, if {un} is bounded on Ci

and v : � ! R is the function given by Proposition ?? with continuous data K, where

K = supC |un|, then by Theorem ?? one obtains un  v in �, which again leads at a

contradiction.

Hence, there exists a subarc ⌘ of Ci so that kf [Ci] ⌘ 0 on ⌘ and p lies in the

interior of ⌘. Again, we have two cases to check: either {un} is unbounded or {un} is

bounded on Ci. If {un} is unbounded on Ci, then we can find a triangle � with edges

a
1

, a
2

and a
2

so that a
1

⇢ �, a
2

⇢ Ci and a
3

lies in C, and a similar argument as in the

proof of i. would lead at a contradiction. In turn, if {un} is bounded on �, we can find a
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triangle � with edges a
1

, a
2

and a
3

so that a
1

⇢ �, a
2

⇢ D \ Ci and a
3

lies in D which is

impossible. This finish the proof of (iv).

The next proposition summarizes what we shall need about the structure of

divergence set later.

Proposition 0.3.15. Let ⌦ ⇢ P be an admissible domain whose boundary is the union

of f-convex arcs Ci. Let {un} be either an increasing or a decreasing sequence of solutions

to (??) over ⌦ such that for every open arc Ci, un extends continuously to Ci and either

un|C
i

converge uniformly to a continuous function or +1 or �1, respectively. Let D be

the divergence set of {un}. Then each connected component of D is an admissible polygon

in ⌦.

0.3.1.10 Existence of Jenkins-Serrin graphs

Finally, in this subsection we are going to prove the existence and uniqueness

of Jenkins-Serrin solution of (??). Before stating the main result, we need some notations.

Henceforth ⌦ will denote an admissible domain in P so that

@⌦ =

 

l
[

i=1

Ai

!

[

 

t
[

j=1

Bj

!

[

 

z
[

k=1

Ck

!

,

where the arcs Ai and Bj are f -geodesics and the arcs Ck are f -convex.

Definition 0.3.5. A function u : ⌦! R is called a Jenkins-Serrin solution of (??) over

⌦ with continuous boundary data ck : Ck ! R if u is a solution of (??) such that u = ck

on Ck for all k, u ! +1 on Ai for all i, and u ! �1 on Bj for all j. If {Ck} = ?,

then we only require that u ! +1 on Ai for all i and u ! �1 on Bj for all j.

Moreover, we will need of the following notation. Let P be an admissible

polygon in ⌦, we define

↵f (P) =
X

A
i

⇢@P
Lf [Ai] and �f (P) =

X

B
i

⇢@P
Lf [Bi].

Theorem 0.3.5 (Existence of Jenkins-Serrin graph). Let ⌦ ⇢ P be an admissible domain

such that for any admissible polygon P ⇢ ⌦ we have

2↵f (P) < Lf [@P ] and 2�f (P) < Lf [@P ]. (29)

Then

(a) If {Ck} 6= ? and ck : Ck ! R are given continuous functions, then there exists a

Jenkins-Serrin solution of (??) with continuous boundary data ck.

(b) If {Ck} = ? and ↵f (⌦) = �f (⌦), then there exists a Jenkins-Serrin solution of

(??).
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Furthermore, if u is a Jenkins-Serrin solution of (??) with continuous boundary data

ck : Ck ! R

and if {Ck} 6= ?, then inequalities (??) hold for all admissible polygon P in ⌦, and if

{Ck} = ? then we also have ↵f (⌦) = �f (⌦).

Proof. The proof will be divided into three cases depending on the structure of @⌦.

1st Case: Assume that {Bj} = ? and each function ck is continuous and bounded from

below.

By Theorem ?? and Theorem ?? there exists a solution un of (??) satisfying un|Ai = n

and un|Ck = min{n, ck}. Moreover, by Theorem ?? the sequence {un} is increasing. Let

D be the divergence set of {un}. If D 6= ?, then by Proposition ?? each connected

component of D is an admissible polygon to ⌦. Taking any connected component P ⇢ D
and using Lemma ?? and Lemma ?? we conclude that

0 = Fu
n

[@P ] =
X

A
i

⇢@P
Fu

n

[Ai] + Fu
n

"

@P \
[

A
i

⇢@P
Ai

#

,

�

�

�

�

�

X

A
i

⇢@P
Fu

n

[Ai]

�

�

�

�

�

 ↵f (P)

and

lim
n

Fu
n

"

@P \
[

A
i

⇢@P
Ai

#

= �Lf

"

@P \
[

A
i

⇢@P
Ai

#

= �Lf [@P ] + ↵f (P), (30)

where the first equality in (??) holds due to the argument that we used to prove the asser-

tion (i) in Proposition ??. This would imply Lf [@P ]  2↵f (P), which is a contradiction,

and therefore we must have D = ?. Now by Proposition ?? a subsequence of {un} (in

fact, all sequence since it is increasing) converges uniformly on compact subsets of ⌦ to a

solution u of (??). Furthermore, Proposition ?? says that u has the required properties.

Now we prove that the existence of a solution implies the structural conditions

(??). For this, suppose that u : ⌦! R is a Jenkins-Serrin solution of (??) with boundary

data ck : Ck ! R, where ck is continuous and bounded from below. Take any admissible

polygon P in ⌦. By Lemma ?? we have

↵f (P) = Fu

"

[

A
i

⇢@P
Ai

#

= �Fu

"

@P \
[

A
i

⇢@P
Ai

#

< Lf

"

@P \
[

A
i

⇢@P
Ai

#

= Lf [@P ]� ↵f (P),
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since there exists at least one arc ⌘ of @P so that either ⌘ lies in ⌦ or ⌘ coincides with an

arc Ck. Therefore 2↵f (P) < Lf [@P ] for each admissible polygon P in ⌦.

2nd Case: Assume that {Ai} 6= ?, {Bj} 6= ? and {Ck} 6= ?.

By the first case there exist solutions u+ and u� of (??) so that

u+ ⌘ 0 on {Bj}, u+|Ck = max{0, ck} and u+ ! +1 on {Ai}

and

u� ⌘ 0 on {Ai}, u�|Ck = min{0, ck} and u� ! �1 on {Bj}.

Moreover, by Proposition ?? and Proposition ?? for each n there exists a solution un of

(??) so that

un ⌘ n on {Ai}, un|Ck = c̃k and un ⌘ �n on {Bj},

where

c̃k =

8

>

>

>

<

>

>

>

:

n, if ck � n;

ck, if � n  ck  n;

�n, if ck  �n.

Since u�  un  u+, by Theorem ??, then by Proposition ?? and Proposition

?? a subsequence of {un} must converge uniformly on compact subsets of ⌦ to a solution

u of (??) with the required boundary data.

To conclude this case, we prove that the existence of a solution implies the

structural conditions (??). Suppose that u : ⌦ ! R is a Jenkins-Serrin solution with

continuous boundary data ck : Ck ! R. Take any admissible polygon P in ⌦. If P 6= ⌦,
then there exists an edge of @P which lies in ⌦, and from Lemma ?? we obtain

�f (P) = �Fu

2

4

[

B
j

⇢@P
Bj

3

5 = Fu

2

4@P \
[

B
j

⇢@P
Bj

3

5

< Lf

2

4@P \
[

B
j

⇢@P
Bj

3

5 = Lf [@P ]� �f (P).

Therefore 2�f (P) < Lf [@P ], and by the first case, we have also

2↵f (P) < Lf [@P ]

for each admissible polygon P 6= ⌦. As these conditions are satisfied also when P = ⌦,

by Lemma ?? (v) we finish the proof the second case.

3rd Case: Assume that {Ck} = ?.
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Firstly, notice that the hypothesis on ⌦ implies that l = t, i.e. there are equal number

of arcs Ai and Bj. For each n let vn be the solution of (??) satisfying vn|Ai = n and

vn|Bj = 0. Clearly by Theorem ?? we must have 0  vn  n. Given any c 2 (0, n), we

denote

Ec = {p 2 ⌦ : vn(p) > c} and Fc = {p 2 ⌦ : vn(p) < c}.

Let Ei
c be the connected component of Ec whose closure contains Ai, and similarly let F j

c

be connected component of Fc whose closure contains Bj. Notice that if Ec 6=
S

i E
i
c, then

vn is a constant by maximum principle. Hence Ec =
S

i E
i
c, and similarly we conclude

that Fc =
S

j F
j
c .

Now let c be so close to n that {Ei
c}’s are pairwise disjoint. This is possible

by our assumption on ⌦ and un. Define

µ(n) = inf{c 2 (0, n) : Ei
c \ Ej

c = ? for all i 6= j}.

Since ⌦ is compact, there exists at least one pair i and j so that

E
i

µ(n) \ E
j

µ(n) 6= ?.

Moreover, for each i there exists j so that

F i
µ(n) \ F j

µ(n) = ?,

because if this was not the case, then [iF
i
µ(n) would be connected, and consequently

E
i

µ(n) \ E
j

µ(n) = ?.

Now, for every n, we define the function un = vn � µ(n). We would like to

prove that {un} is locally bounded on compact subsets of ⌦. To do this, we note that by

the first case there exist auxiliary functions u+

i and u�
i that satisfy

u+

i ⌘ 0 on @⌦ \ Ai, u+

i |Ai

= +1

and

u�
i |Bj

⌘ �1 for j 6= i, and u�
i = 0 on @⌦ \

[

j 6=i

Bj.

Then, given any p 2 ⌦, we define the functions

u+(p) = max
i

{u+

i (p)} and u�(p) = max
i

{u�
i (p)},

and claim that

u�  un  u+

holds in ⌦.
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Let p 2 ⌦, and note first that if un(p) = 0, then we have the claim. Therefore,

we suppose that un(p) > 0, which implies that vn(p) > µ(n), and consequently we must

have p 2 Ei
µ(n). Since un  u+

i on @Ei
µ(n), then by Theorem ?? we must have un  u+

i  u+

in Ei
µ(n). As u

� is negative, we have the desired inequality un(p) > 0. Finally, if un(p) < 0

we can apply the same argument replacing Ei
µ(n) by F i

µ(n). Therefore {un} is locally

bounded on compact subsets of ⌦.

By construction

un|Ai = n� µ(n) and un|Bj = �µ(n),

and to finish the proof, we show that {n � µ(n)} and {µ(n)} are diverging to infinity.

Then we would have that a subsequence of {un} converges uniformly on compact subsets

of ⌦ to a solution u of (??) with the desired properties. We show that {n�µ(n)} diverges,

and similar argument proves the claim also for {µ(n)}. On the contrary, suppose that

there exists a subsequence of {n� µ(n)} converging to a finite limit ⌧ . This implies that

µ(n) ! +1 and hence

un = n� µ(n) ! ⌧ on Ai and un = �µ(n) ! �1 on Bj.

Let u be the solution obtained from a convergent subsequence of {un} so that

u ! ⌧ on Ai and un ! �1 on Bj.

From Lemma ?? one has

0 = Fu[@⌦] = Fu

"

[

i

Ai

#

+ Fu

"

[

j

Bj

#

,

but other the hand Lemma ?? also gives

�

�

�

�

�

Fu

"

[

i

Ai

#

�

�

�

�

�

< ↵f (⌦) and Fu

"

[

j

Bj

#

= ��f (⌦),

which is a contradiction with our hypothesis on ⌦. Consequently {n� µ(n)} is diverging

to infinity.

Finally, let us prove that the existence implies the structural conditions (??)

in ⌦. Really, recall that we proved in the previous case that the existence of Jenkins-

Serrin solution implies the structural conditions (??) for each admissible polygon P 6= ⌦.
Therefore, it remains to prove the last structural condition when P = ⌦. But the last
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condition follows now by Lemma ??, since

�f (⌦) = �Fu

"

[

j

Bj

#

= Fu

"

@⌦ \
[

j

Bj

#

= Fu

"

[

i

Ai

#

= ↵f (⌦).

The uniqueness of Jenkins-Serrin solution will follow from a little variation of

the ideas of the proof of Theorem ??.

Theorem 0.3.6 (Uniqueness of Jenkins-Serrin graph). Let ⌦ ⇢ P be a bounded admissible

domain and suppose that u
1

and u
2

are solutions of (??). Then, if {Ck} 6= ? and u
1

= u
2

on {Ck}, we have u
1

= u
2

in ⌦. In turn, if {Ck} = ?, then u
2

� u
1

is a constant.

Proof. Consider

' =

8

>

>

>

<

>

>

>

:

K, if u
1

� u
2

� K;

u
1

� u
2

, if �K < u
1

� u
2

 K;

�K, if u
1

� u
2

 �K,

where K is a large constant. Then ' is a Lipschitz function such that �K  '  K,

r' = ru
1

� ru
2

in the set {x 2 ⌦ : � K < u
1

(x) � u
2

(x) < K} and r' = 0 almost

everywhere in the complement of {x 2 ⌦ : �K < u
1

(x)� u
2

(x) < K}. Let

⌦✏,� = {x 2 ⌦ : dist(x, @⌦) � ✏} \
[

p2⌥
B�(p),

where ✏, � > 0 are small constants with � > ✏ and ⌥ denotes the set of endpoints of Ai

and Bj. Define also a function

J =

Z

@⌦
✏,�

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

, (31)

where ⌫ denotes the outer unit normal to @⌦✏,�. Since ' is a Lipschitz function, the

divergence theorem and (??) give

J =

Z

⌦

✏,�

hc

✓

r', f 2

ru
1

W
1

� f 2

ru
2

W
2

◆

=

Z

⌦

✏,�

1

2
(W

1

+W
2

)gc(N1

�N
2

, N
1

�N
2

), (32)

where Ni =
@
s

fW
i

� f ru
i

W
i

.

On the other hand, observe that the boundary @⌦✏,� is formed by arcs A0
i, B

0
j,

C 0
k and parts of @B�(p) when p moves along ⌥. Here A0

i = @⌦✏,�\{x 2 ⌦ : dist(x,Ai)  ✏}
and similarly for B0

j and C 0
k.
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Next we define

� = @⌦✏,� \
[

i

A0
i

[

j

B0
j

[

k

C 0
k.

With this notation we obtain

J =

Z

�

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

(33)

+

Z

S
i

A0
i

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

+

Z

S
j

B0
j

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

+

Z

S
k

C0
k

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

.

Since ' = 0 in {Ci} if � is small enough, the first and the last terms of (??) can be

estimated by

�

�

�

�

Z

�

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

�

�

�

�

 2K
X

p2⌥
Lf [@B�(p)] (34)

and
�

�

�

�

�

Z

S
k

C0
k

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

�

�

�

�

�

 2✏
X

k

Lf [Ck]. (35)

Regarding the second and third term of (??), note that the arcs A0
i and B0

j are ✏-close to

Ai and Bj, respectively. By Proposition ??, if ✏ is small enough,

1 � hc

✓

f
rui

Wi

, ⌫

◆

� 1� � on �, if u ! +1 along �0 and distH(�, �0) < ✏

and

�1  hc

✓

f
rui

Wi

, ⌫

◆

 �1 + � on �, if u ! �1 along �0 and distH(�, �0) < ✏,

where �0 is an arc of @⌦ and distH denotes the Hausdor↵ distance. In particular, these

inequalities yield

�

�

�

�

�

Z

A0
i

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

�

�

�

�

�

 K�Lf [A
0
i] (36)
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and
�

�

�

�

�

Z

B0
j

'



hc

✓

f 2

ru
1

W
1

, ⌫

◆

� hc

✓

f 2

ru
2

W
2

, ⌫

◆�

�

�

�

�

�

 K�Lf [B
0
j]. (37)

Finally from (??), (??), (??), (??), (??) and (??) one has

Z

⌦

✏,�

1

2
(W

1

+W
2

)gc(N1

�N
2

, N
1

�N
2

)  2✏
X

i

Lf [Ci] + 2K
X

p2⌥
Lf [@B�(p)]

+
X

i

K�Lf [A
0
i] +

X

j

K�Lf [B
0
j].

Letting � ! 0 above, we conclude that N
1

= N
2

in {�K < u
1

� u
2

< K}.
Thus ru

1

= ru
2

in {�K < u
1

� u
2

< K}, but since K was arbitrary constant, then we

shall have u
1

= u
2

+ c in ⌦, where c is a constant. In turn, if {Ci} 6= ? we must have

c = 0.

0.3.1.11 Examples of admissible domains in R3 and H2 ⇥ R

We finish this part of our work by giving some examples of domains that satisfy

(??) in R3 and in H2 ⇥ R.

0.3.1.11.1 Examples in R3

In this case P is a vertical plane (R2) containing the vector e
3

in R3, so after

to rotation, we can suppose that P = R2 := {(0, x
2

, x
3

) : x
2

and x
3

2 R}. Moreover, the

Ilmanen’s metric is given by gc = ecx3h·, ·i, where h·, ·i denotes the Euclidean metric of

R3, and consequently the function f is given by f = ec
x3
2 .

Next we are going to obtain the expression of the f�geodesic equation in term

of the Euclidean metric in P = R2 . To do this, recall that as we are assuming the metric

hc = gc|P in P and the equation of f�geodesic is

kh
c

[�]� hc

 

r̃f

f
, Ñ

!

= 0,

here Ñ denotes the unit normal to � in P and the gradient r̃f is taken with respect to

hc. As the metric hc is conformal to the Euclidean metric in h·, ·i, then for all vector field

X we have

f 2hr̃f,Xi = hc

⇣

r̃f,X
⌘

= X(f) = hr̃f,Xi,
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where rf indicates the gradient of f with respect to the Euclidean metric h·, ·i. Therefore

r̃f =
rf

f 2

=
c

2

e
3

f
. (38)

In turn, it is known that we have the following relationship between the metric hc in P
and the Euclidean metric h·, ·i

r̃XY = rXY +
c

2
{hX, e

3

iY + hY, e
3

iX � hX, Y ie
3

} ,

where r̃ denotes the Levi-Civita’s connection associated to hc and r denotes the Levi-

Civita’s connection associated to h·, ·i. Hence,

kh
c

[�] =
hc

⇣

r̃r�
0, Ñ
⌘

hc (�0, �0)
=

D

r̃r�
0, Ñ
E

h�0, �0i

=

D

rr�
0 + c

2

{h�0, e
3

i�0 + h�0, e
3

i�0 � h�0, �0ie
3

} , N
f

E

h�0, �0i
=

1

f

hrr�
0, Ni

h�0, �0i � c

2f
he

3

, Ni, (39)

where r̃r� (respectively rr�) denotes the covariant derivative of �0 with respect to hc

(respectively h·, ·i) and N denotes the unit normal to �, notice that Ñ = N/f.

From (??) and (??) one obtains

0 = kh
c

[�]� hc

 

r̃f

f
, Ñ

!

=
1

f

hrr�
0, Ni

h�0, �0i � c

2f
he

3

, Ni � c

2f
he

3

, Ni

=
1

f

⇢hrr�
0, Ni

h�0, �0i � che
3

, Ni
�

.

Thus, it holds

k[�] = chN, e
3

i, (40)

where k[�] denotes the scalar curvature of � in P, N denotes the unit normal to � and

h·, ·i is the Euclidean metric of P = R2. In particular, f -geodesic are translating curves

in R2.

It remains to compute all translating curves in R2. Let us assume that c > 0

and notice that if � is a line in P parallel to e
3

, then � is a translating curve in P by

(??). In turn, if we suppose that � = {(0, x,�(x)) 2 P : x 2 (a, b)}, where a < b, then

�0 = (0, 1,�0(x)) and N = (0,��0
(x),1)p

1+(�0
)

2
, so one has

k[�] =
�00

(1 + (�0)2)
3
2

and chN, e
3

i = c
p

1 + (�0)2
.
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Figure 3 – Basic solution.

+1

+1

0 0

Thus, � satisfies the ODE
�00

1 + (�0)2
= c. (41)

However, x 2 (�⇡/(2c), ⇡/(2c)) 7! �(x) = �1

c
log cos(cx) is a solution of (??) and �0 =

tan(cx) ! +1 as x ! ±⇡/(2c). These conditions say that the lines parallel to e
3

and

the grim reaper curve Gc = (0, x,�1

c
log cos(cx)) (x 2 (�⇡/(2c), ⇡/(2c))) are the unique

translating curves in P, up to translation in P, since they are geodesics with respect to a

conformal metric.

Now we are going to see how we can produce admissible domains ⌦ ⇢ P that

are bounded by vertical line segments and parts of the grim reaper curves, see Figure ??.

If we assign boundary data +1 on the parts of the grim reaper curve (corresponding

to the edges A
1

, A
2

in Theorem ??) and continuous data (0 in Fig. ??) on the vertical

segments (corresponding to the edges C
1

, C
2

), the condition for the existence of solutions

becomes

Lf [A1

] + Lf [A2

] < Lf [C1

] + Lf [C2

].

Consider the following parametrizations

A
1

= ↵
1

=

⇢✓

0, x, a� 1

c
log cos(cx)

◆

: x 2 (r, s)

�

,

A
2

= ↵
2

=

⇢✓

0, x, b� 1

c
log cos(cx)

◆

: x 2 (r, s)

�

,

C
1

= ⇣
1

=

⇢

(0, r, x) : x 2
✓

a� 1

c
log cos(cs), b� 1

c
log cos(cs)

◆�

, and

C
2

= ⇣
2

=

⇢

(0, s, x) : x 2
✓

a� 1

c
log cos(cr), b� 1

c
log cos(cr)

◆�

for the edges of ⌦ in the plane P ⇢ R3, where �⇡/(2c) < s < r < ⇡/(2c), a, b 2 R and
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a < b. Then from (??) we have

Lf [A1

] = Lf [↵1

] =

Z s

r

f(↵
1

)
p

gc(↵0
1

,↵0
1

)↵1
dx =

Z s

r

ec(a�
1
c

log cos(cx))
q

1 + tan2(cx)dx

= eca
Z s

r

sec2(cx)dx = c�1eca(tan(cs)� tan(cr)).

Analogously, we conclude

Lf [A2

] = c�1ecb(tan(cs)� tan(cr))

Lf [C1

] = c�1 sec(cs)(ecb � eca)

Lf [C2

] = c�1 sec(cr)(ecb � eca)

In particular, it holds

Lf [A1

] + Lf [A2

] = c�1(ecb + eca)(tan(cr)� tan(cs)) (42)

Lf [C1

] + Lf [C2

] = c�1(ecb � eca)(sec(cr) + sec(cs)).

If we fix a < b, then choosing r � s > 0 small enough, we ensure that Lf [A1

] + Lf [A2

] <

Lf [C1

] + Lf [C2

].

On the other hand, if r > s are fixed, then choosing b � a > 0 small enough

in (??), we can guarantee that Lf [A1

] + Lf [A2

] > Lf [C1

] + Lf [C2

]. In particular, if we

rename Ci by Bi, there are b > a and r > s so that Lf [A1

] + Lf [A2

] = Lf [B1

] + Lf [B2

],

and we obtain the structural condition of the case (b) in Theorem ??.

0.3.1.11.2 Examples in H2 ⇥ R

At this time we are going to consider the hyperbolic plane H2 as a warped

product H2 = R⇥ex R with the metric

dx2 + e2xds2. (43)

Then the vector field @s is a Killing field with norm |@s|(x,s) = ex, and the x-axis is an

integral curve of the distribution orthogonal to @s. In this case we can take the vertical

plane P in H2 ⇥ R to be the vertical plane over x-axis

P = {(x, t, s) : x, t 2 R, s = 0},
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and with this choice we have f = ec
t

2 ex. Recall that we are endowing P with metric

hc = ect(dx2 + dt2). Furthermore, by (??) we have that � is a f -geodesic provided that

kh
c

[�] = hc

 

r̃f

f
, Ñ

!

,

where Ñ is the unit normal along � and r̃f is taken with respect to the metric hc in P.
Using the metric hc is conformal to the Euclidean metric h

0

= dx2 + dt2, we conclude

r̃f

f
= e�ctrf

f
= e�ct

⇣ c

2
@t + @x

⌘

.

On the other hand, it also holds

kh
c

[�] =
hc

⇣

r̃r�
0, Ñ
⌘

hc (�0, �0)
=

h
0

⇣

r̃r�
0, Ñ
⌘

h
0

(�0, �0)

=
1

h
0

(�0, �0)
h
0

✓

rr�
0 +

c

2
{h

0

(�0, @t)�0 + h
0

(�0, @t)�0 � h
0

(�0, �0)@t} , N
e

c

2 t

◆

=
1

e
c

2 t

h
0

(rr�
0, N)

h
0

(�0, �0)
� c

2e
c

2 t
h
0

(@t, N) = e�ct/2kh0 [�]� e�ct/2h
0

⇣ c

2
@t, N

⌘

,

where r̃r� (respectively rr�) denotes the covariant derivative of �0 with respect to hc

(respectively h
0

) and N denotes the unit normal to � and Ñ = e�ct/2N , where N denotes

the unit normal along � with respect to h
0

= dx2 + dt2 and kh0 [�] denotes the scalar

geodesic curvature of � with respect to h
0

. Therefore, we have

kh0 [�] = h
0

(c@t + @x, N) , (44)

From this equality, we may conclude that lines in the direction c@t + @x are f -geodesics

in P.
To compute the other f -geodesics, let us denote ~⌧ = @x + c@t and ~& = c@x � @t

and notice that {~& ,~⌧} is a positive frame of P. As the curve cannot be tangent to ⌧ , write

�(x) = x~& + '(x)~⌧ , where x 2 R and ' is a smooth function. As �0 = ~& + '0(x)~⌧ , then

N = 1

|~⌧ |
p

1+('0
(x))2

(�'0(x)~&+⌧) and rr�
0 = �00 = '00(x)~⌧ . From (??) we can conclude that

0 = kh0 [�]� h
0

(c@t + @x, N)

=
1

h
0

(�0, �0)
h
0

(rr�
0, N)� h

0

(⌧, N)

=
1

|~⌧ |2(1 + ('0(x))2)
'00(x)

|~⌧ |p1 + ('0(x))2
� 1

|~⌧ |p1 + ('0(x))2
.
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Therefore, one holds
'00

1 + ('0)2
= |~⌧ |2.

Consequently '(x) = �|~⌧ |�2 log cos(|~⌧ |2x) for x 2 (�⇡/(2|~⌧ |2), ⇡/(2|~⌧ |2)). Using trans-

lation of � we can conclude that f -geodesics of P are either lines in the direction of ~⌧

or translating the curve � above, which is the grim reaper curve in the direction of ~⌧ .

Finally, the argument of the subsection ?? allows us to conclude the existence of similar

basic domains.

0.3.1.11.2.1 A new example of translating soliton in Hn+1 ⇥ R

Notice that since we are assuming H2 = R ⇥ex R, then by Remark (??) one

concludes what follows.

Proposition 0.3.16. The hypersurface �⇥R is a complete, properly embedded translating

soliton in H2 ⇥R with respect to @t with speed c. Moreover, ↵⇥R is a complete, properly

embedded translating soliton in H2 ⇥ R, where ↵ is any line parallel to ~⌧ = @x + c@t.

Remark 0.3.5. We say that a translating soliton ⌃ in M ⇥ R is complete provided that

it is complete as hypersurface in M ⇥ R with the product metric.

Actually, this ingenuous trick of seeing translating solitons as Killing cylinder

it does not a punctual fact for surfaces. We shall see now that it is possible to get one

example of translating soliton that looks like the grim reaper cylinder in Hn+1 ⇥ R by

seeing it as a Killing cylinder over on a specific curve.

Consider the following model for the hyperbolic space as a warped product in

Hn+1 = Rn+1 endowed with the metric

e2xn+1(dx2

1

+ · · ·+ dx2

n) + dx2

n+1

and in Hn+1 ⇥ R we adopt the Riemannian metric

g := e2xn+1(dx2

1

+ · · ·+ dx2

n) + dx2

n+1

+ dt2.

Assuming these, we choose P2 := R2 = {0, . . . , 0
| {z }

n

} ⇥ R2 endowed with the

Riemannian metric h := dx2

n+1

+ dt2, notice that P is totally geodesic in Hn+1 ⇥R. Next,
consider the family of Killing vector fields {@

1

, @
2

, . . . , @n}, observe that P is a leaf of the

normal distribution associated to this family.

Now let �n be a curve on P2 so that the Killing cylinder Rn⇥�n is a translating

soliton in Rn ⇥ P2 (= Hn+1 ⇥ R) with respect to @t and speed c, and N denotes the unit

normal vector field along �n. In particular, we can get a unit normal vector field N in

Rn ⇥ �n by defining N(x, p) := N(p), for all (x, p) 2 Rn ⇥ ⌃.
Remark 0.3.6. Notice that we are considering the coordinate {x

1

, . . . , xn, p} in Rn⇥�n,
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because of this, we wrote Rn ⇥ �n in the place of �n ⇥ Rn to denote the Killing cylinder

over �n.

Assume that �n is a parametrization by arclength of �n, and consider the local

orthonormal frame {�0
n, @1/e

x
n+1 , . . . , @n/e

x
n+1} for Rn ⇥ �n. Thus, one has

�ch(N, @t) = �cg(N, @t) = divR⇥�
n

N

= g
�r�0

n

N, �0
n

�

+
n
X

i=1

g

✓

r @

i

e

x

n+1
N,

@i
exn+1

◆

= �h (N,rr�
0
n) +

n
X

i=1

g

✓

r @

i

e

x

n+1
N �rN

✓

@i
exn+1

◆

,
@i

exn+1

◆

= �kP2 [�n] +
n
X

i=1

g

✓

N,
@i

exn+1

�

,
@i

exn+1

◆

= �kP2 [�n]�
n
X

i=1

g

✓

@i
exn+1

, N

�

,
@i

exn+1

◆

= �kP2 [�n]�
n
X

i=1

g

✓

LN

✓

@i
exn+1

◆

,
@i

exn+1

◆

= �kP2 [�n]�
n
X

i=1

g

✓

N

✓

1

exn+1

◆

@i,
@i

exn+1

◆

= �kP2 [�n] + ng(N, @n+1

)

= �kP2 [�n] + n · h(N, @n+1

)

Therefore

kP2 [�n] = h(N, c@t + n@n+1

). (45)

In particular, �n must be a translating curve in P2 with respect to the vector ~⌧n :=

c@t + n@n+1

.

Now we would like to compute all translating curves with respect to ~⌧n. Nat-

urally the lines parallel to ~⌧n are translating curves in P2 with respect to ~⌧n. To compute

the remains translating curves we argue as early: define ~&n = �n@t + c@n+1

and suppose

that �n = x~&n + 'n(x)~⌧n. Arguing as early we shall conclude that

'n(x) = �|~⌧n|�2 log cos(|~⌧n|2x) for x 2 ��⇡/(2|~⌧n|2), ⇡/(2|~⌧n|2)
�

.

In particular, using that the translating curves are geodesics with respect to a con-

formal metric in P2, we may conclude that all translating curves with respect to ~⌧n

in P are the lines parallel to ~⌧n and �n(x) := x~&n � |~⌧n|�2 log cos(|~⌧n|2x)~⌧n, for x 2
(�⇡/(2|~⌧n|2), ⇡/(2|~⌧n|2)) , up to translation. This fact and (??) imply the next result.

Proposition 0.3.17. The hypersurface Rn ⇥ �n is a complete, properly embedded trans-

lating soliton in Hn+1 ⇥ R with respect to @t with speed c. Moreover, Rn ⇥ ↵n is also a
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complete, properly embedded translating soliton in Hn ⇥ R, where ↵n is any line parallel

to ~⌧n = n@n+1

+ c@t.

Remark 0.3.7. The example Rn⇥↵n already appeared in (?), however the first one Rn⇥�n

is a new example of a complete, properly embedded translating soliton in Hn+1 ⇥ R. For
n = 1, the example R1 ⇥ �

1

already has appeared in (?).

0.3.2 Vertical case

We start this part by fixing some notation and recalling some notation from the

subsection ??. Henceforth in this part M will be a complete Riemannian surface endowed

with a rotationally symmetric metric � whose sectional curvatures are non-positive. Let

⌦ be a domain in M and u : ⌦! R be a smooth function.

We know from subsection ?? that Graphv[u] is a translating soliton provided

that

divM

✓ru

W

◆

=
c

W
, (46)

whereW :=
p

1 + |ru|2, and the gradient and divergence operators are taken with respect

to the metric � on M . Besides this, we orient Graphv[u] by the unit normal vector field

N =
1

W
(@t �ru).

We finish this introduction we the following lemma.

Lemma 0.3.4. Suppose that � is a curve in M . Then the mean curvature eH�⇥R of �⇥R
in (M ⇥ R, gc) is given by

eH�⇥R(x, t) = e�
c

2 tk[�](x) (47)

up to a sign, for all (x, t) 2 � ⇥ R. Here k[�] is the scalar curvature of � in (M, �).

Proof. Indeed, in Lemma ?? we have proved that the mean curvature of a hypersurface ⌃

in M⇥R with the product metric and the Ilmanen’s metric has the following relationship

Hc = e�
c

m

t [H � cg
0

(@t, N)] ,

here Hc (respectively H) denotes the mean curvature of ⌃ in M ⇥ R with the metric gc

(respectively � + dt2). From this equality, using that the mean curvature of the cylinder

is equal to the scalar curvature of the curve, we conclude the proof of the lemma.

0.3.2.1 Local Existence

Following what we have done in the horizontal case, in this part we shall prove

the local existence of solution of (??) over admissible domains. So, before proceeding, we

will define what is an admissible domain in the vertical case.
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Definition 0.3.6 (Admissible domain). Let ⌦ be a connected domain in M . We say that

⌦ is an admissible domain provided that it is geodesicaly convex and bounded domain,

and @⌦ is a union of geodesic arcs A
1

, . . . , As, B1

. . . , Br, convex arcs C
1

, . . . , Ct, the end

points of these arcs and that no two arcs Ai and no two arcs Bi have a common endpoint.

Remark 0.3.8. Here the geodesic and convexity are taken with respect to the metric � in

M.

Definition 0.3.7 (Admissible polygon). Let ⌦ be an admissible domain. We say that P
is an admissible polygon provided that P ⇢ ⌦ and the vertices of P are chosen among the

vertices of ⌦.

Remark 0.3.9. Recall that a domain ⌦ is called to be a geodesicaly convex domain, if

two any points in ⌦ can be joined by a geodesic segment contained in ⌦.

Now suppose that ⌦ ⇢ M is an admissible domain with @⌦ = [iJi, where

the family {Ji} ⇢ @⌦ is a closed cover of @⌦ which satisfies Ji \ Ji+1

= ↵i for all

i 2 {1, . . . , v � 1}, and Jv \ J
1

= ↵v, where {↵i} denotes the set of endpoints of the arcs

Ji. Let c = {ci : Ji ! R} be a family of bounded continuous functions. Consider the

curve �c ⇢ @⌦⇥R given by �c(x) = (x, ci(x)) if x 2 int Ji and �c is a vertical line joining

(↵i, ci(↵i)) and (↵i, ci+1

(↵i)) if x = ↵i. Using the classical results about the solvability of

the Plateau problem, we can conclude that it is always possible to get a solution of (??)

with boundary data ci over an admissible domain.

Theorem 0.3.7 (Local existence). Suppose that ⌦ is an admissible connected domain as

above which is also geodesicaly convex. Let �c be the curve in @⌦ ⇥ R associated to the

family c = {ci : Ji ! R}. Then there exists an unique solution of (??) with data ci on

int Ji.

Proof. The proof is similar to that given in Theorem ??. Firstly, note that the domain

in ⌦ ⇥ R limited by Graphv[' � t] and Graphv[' + t] (t > 0) is piecewise convex in the

sense of Definition ??, where ' : M ! R indicates the rotationally symmetric function

given by ? at Theorem 5. Namely by Lemma ?? @⌦⇥ R is mean convex in M ⇥ R with

the metric gc. Thus, there exists an embedded minimal disk ⌃ in ⌦ ⇥ R endowed with

metric gc with boundary �c by Theorem ??. Therefore, it remains to prove that int(⌃) is

a vertical graph over ⌦.

Firstly, let us show that for all p 2 int(⌃) the tangent space Tp⌃ does not

contain @t. Otherwise there exists a point p 2 int(⌃) such that p 2 M ⇥ {c} for some

c 2 R and that the tangent space Tp⌃ contains @t. Take an orthonormal basis {@t, v}
of Tp⌃, where v is tangent to M ⇥ {c}. Let � be the unique geodesic in M ⇥ {c} with

respect to g
0

such that �(0) = p and �0(0) = v. Note that � intersects @(⌦ ⇥ R) exactly
in two points, since � cannot accumulate inside ⌦ because it is geodesicaly convex.

Now we know from Lemma ?? (or Remark ??) that �⇥R is minimal in M⇥R
endowed with the metric gc and Tp(� ⇥ R) = Tp⌃. So, near p the set I = ⌃ \ (� ⇥ R)
contains at least two curves that intersect transversely at p, by Theorem ??. Turn out
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that if there exists a closed curve ↵ in I \@⌃, then ↵ is the boundary of a minimal disk D

in ⌃. Thus we could choose a geodesic curve � in D so that the totally geodesic surface

� ⇥ R touches D at an interior point. But this is impossible by Theorem ??.

Finally, using a similar strategy as at the end of Proposition ?? we shall con-

clude that ⌃ is a vertical graph and it is unique.

0.3.2.2 Maximum principle

As the last step to prove the main theorem of this part, we will need to obtain

a version of the maximum principle that is applicable in our setting, so we will get this

now. In this part, the norm, the gradient and the divergent are taken with respect to the

metric � in M.

Proposition 0.3.18 (Maximum principle). Let ⌦ ⇢ M be an admissible domain. Suppose

that u
1

and u
2

satisfy

div

 

ru
1

p

1 + |ru
1

|2

!

� div

 

ru
2

p

1 + |ru
2

|2

!

,

and lim inf(u
2

�u
1

) � 0 for any approach of @⌦, with possible exception of finite numbers

of points {q
1

, . . . , qr} = E ⇢ @⌦. Then u
2

� u
1

on @⌦ \ E with strict inequality unless

u
2

= u
1

.

Proof. Let K and " be positive constants, with K large enough and " small enough to be

defined. Define a function

' =

8

>

>

>

<

>

>

>

:

K � ", if u
1

� u
2

� K;

u
1

� u
2

� ", if " < u
1

� u
2

 K;

0, if u
1

� u
2

 ".

Notice that ' is Lipschitz with 0  '  K. In fact, we have r' = ru
1

�ru
2

in the set {" < u
1

� u
2

< K} and r' = 0 almost everywhere in the complement

of {" < u
1

� u
2

< K}. In particular, we have a control of r' in the compact set

{" < u
1

� u
2

< K}, and therefore in whole ⌦. Around any point qi 2 E, consider an

open geodesic disk B"(qi) of radius " and center qi. Let ⌦" := ⌦ \ [B"(qi), and suppose

that @⌦" = ⌧"[⇢", where ⇢" = [(@B"(qi)\⌦) and ⌧" = @⌦"\@⌦. Since lim inf(u
2

�u
1

) � 0

in @⌦ \ E, we have ' ⌘ 0 in a neighbourhood of ⌧".

Next we would like to study the quantity

J :=

Z

⇢
"

'

⇢

�

✓ru
1

W
1

, ⌫

◆

� �

✓ru
2

W
2

, ⌫

◆�

, (48)

where ⌫ is the unit outer conormal to ⌦" and Wi =
p

1 + |rui|2.
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Naturally the condition 0  '  K implies from (??) that

J  2K
r
X

i=1

||@B"(qi)||, (49)

where ||@B"(qi)|| denotes the length of @B"(qi) with respect to the Riemannian metric �.

On the other hand, using that ' is a Lipschitz functions one concludes

div

✓

'

⇢ru
1

W
1

� ru
2

W
2

�◆

= r'

⇢ru
1

W
1

� ru
2

W
2

�

+ '

⇢

div

✓ru
1

W
1

◆

� div

✓ru
2

W
2

◆�

,

almost everywhere in ⌦. Thus, by divergence theorem ones gets

J =

Z

⌦

"

⇢

�

✓

r',

✓ru
1

W
1

� ru
2

W
2

◆◆

+ '

✓

div

✓ru
1

W
1

◆

� div

✓ru
2

W
2

◆◆�

�
Z

⌦

"

�

✓

r',

✓ru
1

W
1

� ru
2

W
2

◆◆

. (50)

Now if Ni :=
@
t

W
i

� ru
i

W
i

, then

�

✓

ru
1

�ru
2

,

✓ru
1

W
1

� ru
2

W
2

◆◆

= g
0

(N
1

�N
2

,W
1

N
1

�W
2

N
2

)

= W
1

� (W
1

+W
2

)g
0

(N
1

, N
2

) +W
2

=
1

2
(W

1

+W
2

)g
0

(N
1

�N
2

, N
1

�N
2

). (51)

From (??), (??) and (??) we get

2K
r
X

i=1

||@B"(qi)|| � 1

2

Z

⌦

"

\{0<u1�u2<K}
(W

1

+W
2

)g
0

(N
1

�N
2

, N
1

�N
2

) � 0.

Letting " ! 0 we obtain

Z

{0<u1�u2<K}
(W

1

+W
2

)g
0

(N
1

�N
2

, N
1

�N
2

) = 0.

Hence N
1

= N
2

in {0 < u
1

� u
2

< K} which implies that we must have ru
1

= ru
2

in

{0 < u
1

� u
2

< K}. In turn, as K was arbitrary constant, then ru
1

= ru
2

in the set

{0 < u
1

� u
2

}. Finally, to complete the proof, let us suppose now that {0 < u
1

� u
2

}
contains a connected component with non-empty interior. By the previous argument

u
1

= u
2

+ c, where c is a positive constant, so by the maximum principle u
1

= u
2

+ c in

⌦. On the other hand, as lim inf(u
2

� u
1

) � 0 for any approach of @⌦ \E, then c must be

non-positive, which is impossible. This finishes the proof.

Remark 0.3.10. Di↵erent what happen in the horizontal case, Proposition ?? is a com-
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parison principle for divergence form operators. This fact deserves be pointed out here

because the comparison principle and the maximum principle are not equivalent in general

setting.

0.3.2.3 Existence of Jenkins-Serrin graphs type I

Before we star the main result of existence, let us fix some notations. From

now on ⌦ will be an admissible domain in M so that

@⌦ =

 

l
[

i=1

Ai

!

[

 

z
[

k=1

Ck

!

,

where the arcs Ai are geodesics and the arcs Ck are convex in M with the metric �.

Definition 0.3.8. A function u : ⌦! R is called a Jenkins-Serrin solution of (??) type

I over ⌦ with continuous boundary data ck : Ck ! R if u is a solution of (??) such that

u = ck on Ck for all k, u ! +1 on Ai for all i.

Moreover, we will need of the following notation. Let P be an admissible

polygon in ⌦. Then with the notations above, we define

↵(P) =
X

A
i

⇢@P
L�[Ai],

where L�[⌘] denotes the length of ⌘ is taken with respect to the metric �.

Theorem 0.3.8 (Existence of Jenkins-Serrin graph type I). Let ⌦ ⇢ M be an admissible

domain with {Bi} = ?. Given any continuous data ck : Ck ! R, there exists a Jenkins-

Serrin solution u : ⌦! R for the translating soliton equation with continuous data u|C
k

=

ck, if for any admissible polygon P we have

2↵(P) < L�(P). (52)

Proof. Define a family of curves {�n} by setting �n(x) = (x, n) for all x 2 Ai, �n(x) =

(x,min{ck, n}) for all x 2 int Ck for all j and �n is the vertical segment joint (x, n) to

(x,min{ck(x), n}) when x is a vertices of ⌦. By Theorem ??, for all n 2 N, there exists

un : ⌦! R so that Graph[un] is a vertical translating graph in ⌦⇥ R with boundary �n.

Notice that if n > m we have un � um on @⌦, so un > um in ⌦ by Proposition ??. Hence

{un} is a monotone sequence. Next, taking into account results of ? or ?, the structural

conditions (??) guarantees that there exists a Jenkins-Serrin solution v : ⌦ ! R for the

minimal graph equation with continuous data ck. Since

div

 

v
p

1 + |v|2

!

= 0 <
1

p

1 + |un|2
= div

 

un
p

1 + |un|2

!
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and lim inf(v� un) � 0 on @⌦ \E, where E is the set of vertices of ⌦, the Proposition ??

implies v > un for all n. Therefore limun = u exists and satisfies

div

 

u
p

1 + |ru|2

!

=
1

p

1 + |u|2

in ⌦. Clearly u|C
k

= ck and u ! +1 as we approach Ai for all i.
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0.4 CHARACTERIZATION OF THE FAMILY ASSOCIATED TO THE TILTED

GRIM REAPER CYLINDER

Di↵erentiating what we have done in Section ?? which we have proven the

existence of Jenkins-Serrin graphs in the vertical direction and the horizontal (Killing)

direction, in this section we are interested to obtain a characterization of a particular

family of complete translating solitons in Rn+1, naturally the family associated to the

tilted grim reaper cylinders.

We just have seen in Subsection ?? that the grim reaper curve and the line

parallel to e
2

are the unique examples of translating soliton in R2 with respect to the

vector e
2

, up to a translation. From this curve grim reaper we can create new examples

of soliton by taking the product of this curve with Rn�1, the resultant hypersurface is

called the grim reaper cylinder. This hypersurface has the following parametrization

F
0

:
��⇡

2

, ⇡
2

�⇥ Rn�1 �! Rn+1

given by

F
0

(x
1

, . . . , xn) = (x
1

, . . . , xn,� log cosx
1

).

On the other hand, from this hypersurface we also can produce other examples

of translating solitons just by subtle scaling and rotating F
0

in such a way that keeps the

translating velocity en+1

. In this way, we obtain an one-parameter family of translating

solitons parametrized by

F✓ :
⇣

� ⇡
2 cos(✓)

, ⇡
2 cos(✓)

⌘

⇥ Rn�1 �! Rn+1

defined by

F✓(x1

, . . . , xn) = (x
1

, . . . , xn,� sec2(✓) log cos(x
1

cos(✓)) + tan(✓)xn), (53)

where ✓ 2 [0, ⇡/2). Notice that the limit of the family F✓, as ✓ tends to ⇡/2, is a hyperplane

parallel to en+1

(see Figure ??). The family
n

F✓

⇣⇣

� ⇡
2 cos(✓)

, ⇡
2 cos(✓)

⌘

⇥ Rn�1

⌘o

✓2[0,⇡/2)
is

called the family associated to the tilted grim reaper cylinder.

Another interesting example of translating solitons in Rn+1 (n � 2) was given

by ?, they proved the existence of an entire graphical translator in Rn+1 over Rn(= Rn ⇥
{0}) that is rotationally symmetric, strictly convex with translating velocity en+1

. This

example becomes known as the translating paraboloid soliton or bowl soliton. Moreover,

they found an one-parameter family {W n
� }�>0

of rotationally invariant cylinders called

translating catenoids soliton (see Figure ??). The parameter � control the size of the neck

of each translating soliton. The limit, as � ! 0, of W n
� consists of two copies of the bowl
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Figure 4 – The regular grim reaper cylinder in R3 and the tilted grim reaper for ✓ = ⇡/4
and the translating catenoid W 2

2

.

soliton with a singular point at the axis of symmetry. Furthermore, they classified all the

translating solitons of revolution by proving that the family of translating catenoids and

the bowl soliton are the unique examples of rotationally symmetric translating solitons in

Rn+1 with translating velocity en+1

, up to a translation.

Until here all the examples that we have mentioned have a trivial topology

which means that they could be seen as the sphere Sn without either one or two points or

a simply connected region on Sn. Examples with no trivial topology in R3 were obtained

by using Kapouleas’s techniques. These examples were given by ?, ?, ?, ? and ?. It is

important we point out here that the examples obtained by Nguyen have infinite topology.

More recently, ? (see also ?) proved the existence one-parameter family of

strictly convex vertical translating graphs in Rn+1 called��wing of width w. Furthermore,

they classified all complete vertical translating graphs in R3. More precisely, they showed

that the family of the grim reaper cylinder, the bowl soliton and the family of ��wings

are the unique examples of complete vertical translating graphs in R3 (see Figure ??).

Using this result of classification, ? proved the existence and uniqueness of example of

translating soliton like Scherk in R3. Moreover, taking subtle limit on the domain they

got a two-parameter family of new examples of translating solitons, one like the helicoid,

other doubly periodic like Scherk and two another new examples, without analogous with

the minimal case, the Scherknoid and Pitchfork (see Figure ?? and Figure ??).

Another result of classification for bowl soliton was given by ?. He character-

ized the bowl soliton as the only convex translating soliton which is an entire graph. Very

recently, ? have proved that a complete vertical translating graph must be convex. In

particular, complete entire vertical translating graph must be the bowl soliton by Wang’s

theorem.

Using a little di↵erent approaching, ? showed that any strictly convex, uni-
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Figure 5 – The catenoid translator W 2

2

.

formly two-convex translator which is non-collapsing is necessarily rotationally symmetric.

In this line of work, ? proved that a translator which arises as a proper blow-up limit of

a two-convex mean curvature flow of immersed hypersurfaces is rotationally symmetric.

Some interesting classification results for the grim reaper cylinders was found by ?. They

proved the uniqueness of grim reaper cylinders in Rn+1 when n 2 {2, 3} in function of the

range of the second fundamental form.

Using the Alexandrov’s method of moving hyperplanes, ? get the first char-

acterization of the bowl soliton in term of its asymptotic behaviour. More precisely, they

proved that if a translating soliton is C1-asymptotic to a bowl soliton, then it must be

the Bowl soliton. Besides that, these authors obtained one of the first characterizations

of the family of tilted grim reaper cylinders, as the only connected translation solitons in

Rn+1, n � 2, such that the function |A|2H�2 has a local maximum in M \H�1(0), where

H denotes de scalar mean curvature.

Another characterization of the grim reaper cylinder in R3, in terms of its

asymptotic behaviour, was given by ? (see also ?). They proved that the grim reaper

cylinder is the only connected, properly embedded, translating soliton of dimension 2,

with locally bounded genus and being C1-asymptotic to two di↵erent half-planes. Their

clever ideas was to use the maximum principle combined with a compactness theorem

for minimal surfaces in 3-manifolds due to ? to determine the asymptotic shape of the

surface. Finally, the authors applied the maximum principle to prove that if a translating

soliton is smoothly asymptotic to a grim reaper cylinder, then it must coincide with the

grim reaper cylinder.

Unfortunately, as it is not known whether White’s compactness theorem has

an extension for higher dimensions and, even in dimension 3, it does not work without

the hypothesis of locally bounded genus, then the proof in ? fails for higher dimensions

and without the hypothesis of locally bounded genus. Moreover, the tilted grim reaper

cylinder given by (??) is C1�asymptotic to two half-hyperplanes outside a non-horizontal

cylinder (see Remark ?? below). Hence, it is natural to ask if it is possible to generalize
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Figure 6 – ��wing translator(left) and the pitchfork translator(right).

the theorem for arbitrary dimensions n � 2, without any further assumptions about the

topology of the soliton or the axis of the cylinder.

These questions were what motivated our works in (?) and (?). As we shall

see afterwards the variation of the maximum principle from Subsection ?? and the com-

pactness theorems from Subsection ?? allow to give a positive answer to these questions.

This chapter is structured as follows. In the Section ?? we fix some notations

that we going to use after and refine the Proposition ?? for any Killing vector field in Rn+1.

In turn in the Section ??, we obtain a lemma which shows that every complete, properly

embedded translating soliton in Rn which is C1�asymptotic to two half-hyperplanes has

a surprising amount of internal dynamical periodicity in the space IVn(Rn+1). Finally,

in the Section ?? we prove our main theorems.

0.4.1 Translating solitons in Rn+1

We remind the notations that we use throughout this chapter. Recall that

an oriented hypersurface M ⇢ Rn+1 is called to be a translating soliton provided that it

satisfies
~H = v?,

where v is a fixed vector and ~H denotes the mean curvature vector field. In particular,

one has

H = hv,Ni, (54)

where N denotes the unit normal along M . To make our study more simple, we will

always suppose from now on that v = en+1

, where B = {e
1

, e
2

, . . . , en+1

} is the canonical

basis of Rn+1. Moreover, as translating solitons are minimal hypersurfaces is Rn+1 with

Ilmanen’s metric g = e
2
n

x
n+1h·, ·i, where h·, ·i is the Euclidean metric, then from now on we

always adopt in Rn+1 the metric g, unless otherwise stated. Thus we are seeing translating

solitons are minimal hypersurfaces. Recall that for us a complete translating soliton M

in Rn+1 means that the hypersurface M is complete in Rn+1 with the Euclidean metric.
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Figure 7 – The scherkenoid translator.

Next, we need to define what means a hypersurface be asymptotic to half-

hyperplanes outside a cylinder.

Definition 0.4.1. Let H a open half-hyperplane in Rn+1 and w the unit inward pointing

normal of @H. For a fixed positive number �, denote by H(�) the set given by

H(�) := {p+ tw : p 2 @H and t > �} .

We say that a smooth hypersurface M is Ck�asymptotic to the open half-hyperplane H
if M can be represented as the graph of a Ck� function ' : H �! R such that for every

✏ > 0, there a (big) � > 0, so that for any j 2 {1, 2, . . . , k} it holds

sup
H(�)

|'| < ✏ and sup
H(�)

|Dj'| < ✏.

We say that a smooth hypersurface M is Ck�asymptotic outside a cylinder to two half-

hyperplanes H
1

and H
2

provided there exists a solid cylinder C such that:

i. The solid cylinder C contains the boundaries of the half-hyperplane H
1

and H
2

,

ii. M \ C consists of two connected components M
1

and M
2

that are Ck�asymptotic to

H
1

and H
2

, respectively.

Remark 0.4.1. The solid cylinders in Rn+1 with the Euclidean metric that we are con-

sidering are those that are isometric to D(r)⇥Rn�1, where D(r) is the disk of radius r in

R2.

Let us give some examples that are C1�asymptotic to two hyperplanes outside

a cylinder.

Example 0.4.1. The hyperplanes parallel to en+1

are C1�asymptotic outside a cylinder

to two half-hyperplanes.

Example 0.4.2. Each element of the family of the grim reaper cylinders is C1�asymptotic

to two half-hyperplanes outside a particular tilted cylinder.
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Figure 8 – Intersection of the cylinder C✓(1)(blue) with the plane [en, en+1

].

Proof. To see this, observe that the map F✓ defined early is a parametrization of Graphv[f✓],

where

f✓ :
⇣

� ⇡
2 cos(✓)

, ⇡
2 cos(✓)

⌘

⇥ Rn�1 �! R

x = (x
1

, . . . , xn) 7�! � sec2(✓) log cos(x
1

cos(✓)) + tan(✓)xn

.

Remarked this, we consider the vectors u✓ := � sin(✓)en + cos(✓)en+1

and

En(✓) = cos(✓)en + sin(✓)en+1

(see Figure ??). Next we define the solid cylinder C✓(s) =
{x 2 Rn+1 : hx, e

1

i2 + hu✓, xi2  s2} and the half-hyperplanes

H� :=

⇢

x 2 Rn+1 : hx, e
1

i = � ⇡

2 cos(✓)
and hx, u✓i � 0

�

and

H
+

:=

⇢

x 2 Rn+1 : hx, e
1

i = ⇡

2 cos(✓)
and hx, u✓i � 0

�

.

We want to conclude that Graphv[f✓] is C1�asymptotic toH� andH
+

outside

C✓(s) for some subtle choose of s. To do this, first observe that if x = (x
1

, . . . , xn, xn+1

) 2
Graphv[f✓], then it holds hx, u✓i � 0, since x

1

2
⇣

� ⇡
2 cos(✓)

, ⇡
2 cos(✓)

⌘

. Thus, if r(x) =

hx, u✓i denotes the height function in Rn+1 with respect to the vector u✓, then r � 0 on

Graphv[f✓].

Now if (x
1

, . . . , xn,� sec(✓) log cos(x
1

cos(✓)) + tan(✓)xn) = (y
1

, . . . , yn, yn+1

),

then

y
1

=
1

cos(✓)
arctan

⇣

±
p

e2r(x) cos(✓) � 1
⌘

. (55)



93

In particular, this equality implies that Graphv[f✓] can be seen as the union of two hori-

zontal graphs defined over H� and H
+

, respectively. Indeed, considering the orthonormal

basis {e
2

, . . . , en�1

, En(✓), u✓} in H± one has

H� =

(

x = � ⇡

2 cos(✓)
e
1

+
n�1

X

j=2

↵jej + ↵nEn(✓) + ru✓ : ↵i 2 R and r � 0

)

.

and

H
+

=

(

x =
⇡

2 cos(✓)
e
1

+
n�1

X

j=2

↵jej + ↵nEn(✓) + ru✓ : ↵i 2 R and r � 0

)

.

Therefore, Graphv[f✓] = Graphh[f�] [Graphh[f
+

], where f± : H± ! R are defined by

f± =
1

cos(✓)
arctan

⇣

±
p

e2r cos(✓) � 1
⌘

.

Finally, we fix some � > 0, and we take s(�) so that

1

cos2(✓)
arctan2

⇣p
e2� cos(✓)�1

⌘

+ �2 = s(�)2.

With this choice one has

Graphv[f✓] \ C✓(s(�)) = Graphh[f�|H�(�)] [Graphh[f
+

|H+(�)],

where H±(�) = {x 2 H± : hx, u✓i � �}. Using this equality, we can conclude that

Graphv[f✓] is C1�asymptotic to H�(�) and H
+

(�) outside C✓(s(�)).
We would like to finish this part with the next general results whose proof is

similar to that given at Lemma ?? and Proposition ??. The expression Ag[⌃] indicates the

area of the hypersurface ⌃ as a hypersurface in Rn+1 with the metric g and Graph⇧[f ] :=

{x + f(x)⌫ : x 2 ⌦}, where ⌫ is an unit normal vector to ⇧. Notice that h⌫, en+1

i is

constant.

Proposition 0.4.1. Suppose that Graph⇧[f ] is a translating soliton in M ⇥ R. Then

Graph⇧[f ] is stable in Rn+1 with the metric g.

Proposition 0.4.2. Let f : ⌦ ! R a smooth function over a domain ⌦ ⇢ ⇧, where ⇧

is a hyperplane in Rn+1. Suppose that Graph⇧[f ] is a translating graph in Rn+1. Assume

that ⌃ is any other hypersurface inside the cylinder {x + s⌫ : x 2 ⌦ and s 2 R} so that

@⌃ = @Graph⇧[f ], thus we have

Ag[Graph⇧[f ]]  Ag[⌃].
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Moreover, the equality is true provided that ⌃ = Graph⇧[f ].

0.4.2 Dynamic lemma and applications

Throughout this subsection we are fixing ✓ 2 [0, ⇡/2), and we continue to call

u✓ := � sin(✓) · en + cos(✓) · en+1

. Furthermore, given any r > 0 we consider the cylinder

C✓(r) := {x 2 Rn+1 : hx, e
1

i2 + hu✓, xi2  r2}.

Henceforth, Mn denotes a complete, connected, properly embedded translating soliton in

Rn+1 such that, outside C✓(r), M is C1�asymptotic to two half-hyperplanes H
1

and H
2

.

Our main lemma can be stated as follows.

Lemma 0.4.1 (Dynamics Lemma). Let M be a hypersurface as above. Suppose that

{bi}i2N is a sequence in [e
1

, u✓]? and let {Mi}i2N be a sequence of hypersurfaces given by

Mi := M + bi. Then there exist a connected n�dimensional stationary integral varifold

M1 and a subsequence {Mi
k

} ⇢ {Mi} so that

(i) Mi
k

⇤
* M1 in Rn+1;

(ii) sing M1 satisfies Hn�7+�(sing M1 \ (Rn+1 \ C✓(r))) = 0 for all � > 0 if n � 7,

sing M1 \ (Rn+1 \ C✓(r)) is discrete if n = 7 and sing M1 \ (Rn+1 \ C✓(r)) = ? if

1  n  6;

(iii) Mi
k

! sptM1 in Rn+1 \ (C✓(r) [ singM1).

Remark 0.4.2. Above we are using the same notation for the varifold associated to Mi
k

and for itself. So at i. we are seeing Mi
k

as an n-dimensional varifold, however, at iii.

we are seeing Mi
k

as a hypersurface in Rn+1.

Proof. The strategy of the proof follows a similar argument as in (?),(?) and (?). However,

this proof is di↵erent of those proofs because we use Proposition ?? to conclude that the

sequence has locally bounded area.

From our assumption on M , there exist smooth functions '
1

: H
1

! R and

'
2

: H
2

! R such way M \ C✓(r) = Graph⇧1 ['
1

] [ Graph⇧2 ['
2

], where ⇧i denotes

the hyperplane in Rn+1 which contains Hi. Notice that Mi \ C✓(r) = Graph⇧1 ['i
1

] [
Graph⇧2 ['i

2

], where 'i
j(x) = 'j(x� bi)

Claim 0.4.1. {Mi \ C✓(r)} has locally bounded area.

Proof of the Claim ??. Indeed, fix any point p 2 Rn+1 \ C✓(r) and take ✏(> 0) small

enough so that B✏(p) does not intersect C✓(r), where B✏(p) denotes the geodesic ball in

Rn+1 with center p and radius ✏ (see Figure ??). With this notation, whenever B✏(p)

intersects any connected component of Mi \ C✓(r) Proposition ?? implies that

Ag[B✏(p)
\

(Mi \ C✓(r))]  1

2
Ag[@B✏(p)].
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Figure 9 – Transversal section of the behaviour of Mi.

This completes the proof.

Now the claim above implies that the area blow-up set

B := {p 2 Rn+1 : lim supAg(Mi \Br(p)) = 1 for every r > 0} (56)

lies inside the cylinder C✓(r) and is an (n, 0) set by Theorem ??. We would like to conclude

that B = ?, so the sequence {Mi} has locally bounded area. Arguing by contradiction,

let us suppose that B 6= ?. In this case, we could take a tilted grim reaper cylinder whose

axis is perpendicular to C✓(r) and it does not intersect B. Now we could move the tilted

grim reaper cylinder until we get a first point of contact with B, but Theorem ?? implies

that B must contain the tilted grim reaper cylinder, which is absurd.

Therefore the sequence {Mi} has locally bounded area, by Theorem ?? there

exists a subsequence of {Mi
k

} that converges weakly⇤ to the stationary integral varifold

M1. Furthermore, as outside C✓(r) both connected components of Mi are graphs, so

stable by Proposition ?? and satisfies the ↵�structure hypothesis (Definition ??), then

we can apply Theorem ?? to conclude that Mi
k

! spt M1 in Rn+1 \ (C✓(r) [ sing M1)

and the singular set sing M1 satisfies (ii), notice that the ↵�structure hypothesis is

automatically satisfied in this case, since it is the limit of varifolds that satisfies it. In

particular, this implies that sptM1 is smooth outside C✓(r) and away from sing M1.

Using this last fact, we can conclude the connectedness of spt M1 as follows.

Taking into account that any loop in Rn+1 intersects spt M1 in an even numbers of points

(counting multiplicity), since each Mi is an embedded, then both wings of M1 must lie

in the same connected component. Indeed, if this was not true, then we could choose

the above mentioned loop intersecting spt M1 at one unique point (because spt M1 is

smooth outside C✓(r) [ sing M1) which is absurd. This implies that if spt M1 is not

connected, there would be a connected component inside the cylinder. In this case we can

consider a suitable tilted grim reaper (whose axis is perpendicular to u✓) of su�ciently

large coordinates in the direction of u✓ so that it does not intersect the solid cylinder.
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Now, if we move it in the direction of �u✓ until it touches the component inside the

cylinder at a first point of contact, then we get a contraction because the component

inside the cylinder must be the whole tilted grim reaper by Theorem ??. Hence spt M1
is connected.

Next we would like to apply this lemma to obtain some consequences over the

behaviour of the half-hyperplane H
1

and H
2

. More precisely, we prove that w
1

and w
2

must be parallel to u✓. Furthermore, we prove that if the half-hyperplanes H
1

and H
2

are

parts of the same hyperplane, then M must coincide with a hyperplane parallel to en+1

.

In particular, we get a characterization of the hyperplane parallel to en+1

.

Lemma 0.4.2. Let M be a hypersurface as above. Then, the normals to the boundary of

the half-hyperplanes H
1

and H
2

must be parallel to u✓. Moreover, if H
1

and H
2

are parts

of the same hyperplane ⇧, then M must coincide with ⇧.

Proof. The proof will be by contraction. Assume that the half-hyperplane

H
1

= {p+ tw
1

: p 2 @H
1

, t > 0}

is not parallel to direction of translation u✓. Notice that ej and En(✓) are perpendicular

to w
1

for all j 2 {2, . . . , n � 1} by our definition of C1�asymptotic, where En(✓) :=

cos(✓)en + sin(✓)en+1

. In this case, w
1

form a non-vanishing angle only with e
1

, that we

denote by ↵ := ](e
1

, w
1

). Suppose that cos↵ > 0. For given real numbers t and l, we

consider the tilted grim reaper cylinder:

Gt,l :=
n

F✓(x1

� t, x
2

, . . . , xn) + te
1

+ lu✓ : |x
1

� t| < ⇡
2 cos(✓)

, (x
2

, . . . , xn) 2 Rn�1

o

.

Let w
1

be the unit inward pointing normal vector of @H
1

. For every � > 0 con-

sider the closed half-hyperplanes H
1

(�) := {p+ tw
1

: p 2 @H
1

and t � �}. Consider Z+

1,�

denote the half-space in Rn+1 which contains H
1

(�) and whose boundary contains @H
1

(�)

and is perpendicular to w
1

. By our assumptions about M , if � is su�ciently large then

M+

1

(�) := M \Z+

1,� is su�ciently close to H
1

. From this we may conclude that there exist

su�ciently large t
0

, l
0

2 R so that Gt0,l0 does not intersect M+

1

(�) (see Figure ??). In fact,

we can choose t
0

so that @M+

1

(�) \ St0 = ?, where St0 =
⇣

t
0

� ⇡
2 cos(✓)

, t
0

+ ⇡
2 cos(✓)

⌘

⇥ Rn.

Since H
1

is not parallel to u✓, then if we translate Gt0,l0 into the direction of �u✓ we

conclude that there exists a first l
1

such that either Gt0,l0�l1 and M+

1

(�) have a point of

contact or dist
�Gt0,l0�l1 ,M+

1

(�)
�

= 0 and M
1

(�) \ Gt0,l0 = ?.

According to Theorem ?? the first case cannot be possible because of our

assumptions onM. On the other hand, the second case implies that there exists a sequence
�

pi = (p1i , . . . , p
n+1

i )
 

in M+

1

(�) such that:

a. The sequence
�hpn+1

i , u✓i
 

is bounded in R;
b. limi dist

�Gt0,l0�l1 , pi
�

= 0.
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Figure 10 – Transversal section of the behaviour of M+

1

(�) and Gt0,l0 .

Notice that the sequence {p1i } is bounded (by the asymptotic behaviour of Gt0,l0�l1).

Thus, up to a subsequence, we can suppose {p1i } ! p11 and {hpi, u✓i} ! pu✓1 . Consider the

sequence of hypersurfaces
�

Mi := M � (0, p2i , · · · , pn+1

i ) + hpi, u✓iu✓

 

in Rn+1. By Lemma

??, we can suppose that Mi * M1, where M1 is a connected stationary integral varifold.

Now Proposition ?? implies

⇥(M1, p1) � lim sup⇥(Mi, p
⇤
i ) = 1,

where p⇤i = p1i e1+ hpi, u✓iu✓. Hence it holds p1 2 sptM1, and it follows that sptM1 and

Gt0,l0�l1 have a point of contact at p1. Therefore, by Corollary ?? one has

spt M1 = Gt0,l0�l1 ,

but this is impossible by our assumption about w
1

be not parallel to u✓. Therefore H
1

must be parallel to u✓. Analogously, we can conclude that cos↵ cannot be negative and

that H
2

is parallel to u✓.

Finally, if H
1

and H
2

are part of the same hyperplane ⇧, which we suppose

to be [e
1

]? up to a rotation. We would like to conclude that the first coordinate must be

constant on M . Otherwise the first coordinate x
1

takes an extreme value either at point

in M or along of a sequence
�

pi = (p1i , . . . , p
n+1

i )
 

such that {hpi, u✓i} ! pu✓1 . Theorem

?? implies that the first case is impossible. Regarding the second case, suppose that

{x
1

(pi)} ! supM x
1

(> 0) and denote ⇧
1

:= sup
M

x
1

e
1

+ span[e
2

, . . . , en, u✓]. We consider
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the sequence
�

Mi := M � (0, p2i , . . . , p
n+1

i ) + hpi, u✓iu✓

 

,

by Lemma ??, a subsequence converges to M1, where M1 is a connected stationary

integral varifold, thus (reasoning as above) we have an interior point of contact between

sptM1 and ⇧
1

. So, by Corollary ?? we conclude that spt M1 = ⇧
1

, which is impossible.

This shows that the first coordinate x
1

is constant. Therefore M must be the hyperplane

⇧.

We finish this subsection by getting the following version of the maximum

principle.

Lemma 0.4.3. Let M be a hypersurface as above and assume that the half-hyperplanes

H
1

and H
2

are not included one inside the other. Consider a domain ⌃ of M (not

necessarily compact) with non-empty boundary @⌃ such that the function x 7! hx, u✓i of

⌃ is bounded. Then the supremum and the infimum of the x
1

�coordinate function of ⌃

are reached along the boundary of ⌃ i.e., there exists no sequence {pi} in the interior of

⌃ such that lim
i!1

dist (pi, @⌃) > 0 and either lim
i!1

x
1

(pi) = sup
⌃

x
1

or lim
i!1

x
1

(pi) = inf
⌃

x
1

.

Proof. Notice first that if there exists q 2 int⌃ so that x
1

(q) = sup
⌃

x
1

, then Theorem

?? gives us that ⌃ = ⇧(x
1

(q)), where ⇧(x
1

(q)) := {x 2 Rn+1 : hx, e
1

i = x
1

(q)}. Thus
x
1

(q) < sup
⌃

x
1

for all q 2 int⌃. Analogously, we also see that x
1

(q) > inf
⌃

x
1

for all

q 2 int⌃.

Now let us assume that there exists a sequence {pn} ⇢ ⌃ in such that way

that

lim
i!1

dist (pi, @⌃) > 0 and lim
i!1

x
1

(pi) = sup
⌃

x
1

.

Consider the sequence of hypersurfaces
�

Mi := M � (0, p2i , · · · , pn+1

i ) + hpi, u✓iu✓

 

in Rn+1.

Naturally Lemma ?? says that Mi * M1, after passing to a subsequence, where M1 is

a connected stationary integral varifold, and we may also admit that hpi, u✓i ! pu✓1 . Now

Proposition ?? implies

p1 = sup
⌃

x
1

e
1

+ pu✓1u✓ 2 sptM1.

In particular, sptM1 touches ⇧ = {x 2 Rn+1 : hx, e
1

i = sup
⌃

x
1

} at p1 and lies locally

oneside of ⇧. Thus, Theorem ??, after a subtle choice of an open set U containing p1
(see Figure ??), implies ⇧ ⇢ sptM1, but this contrary our hypothesis over M , and in

particular over the behaviour of M1.

0.4.3 Proof of the main theorems

This part is devoted to prove the main theorems. To sake our exposition more

didactic, we are going to divide our proof into three cases when ✓ 2 [0, ⇡/2), when ✓ = ⇡/2
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Figure 11 – Transversal section of the open set U (blue) and part of sptM1(red) inside
U.

and the minimal case.

0.4.3.1 Case ✓ 2 [0, ⇡/2)

In this subsection we will continue by denoting u✓ = � sin(✓) · en + cos(✓) · en+1

and En(✓) := cos(✓)en + sin(✓)en+1

, where ✓ 2 [0, ⇡/2). Our goal in this subsection is to

prove the following result.

Theorem 0.4.1. Let f : M �! Rn+1 be a complete, connected, properly embedded trans-

lating soliton and consider C✓(r) := {x 2 Rn+1 : hx, e
1

i2 + hu✓, xi2  r2}, where r > 0.

Assume that M is C1-asymptotic to two half-hyperplanes outside C✓(r). Then we have

one, and only one, of these two possibilities:

(a) Both half-hyperplanes are contained in the same hyperplane ⇧ parallel to en+1

and

M coincides with ⇧;

(b) Both half-hyperplanes are included in di↵erent parallel hyperplanes and M coincides

with a tilted grim reaper cylinder associated to ✓, up to translation.

The proof of this theorem will be done soon after many technical lemmas.

Before proceeding , we need some notations that we will use throughout the whole section.

Consider the foliation of Rn+1 given by

⇧(t) =
�

x 2 Rn+1 : hx, e
1

i = t
 

. (57)

Furthermore, given A ⇢ Rn+1 and t 2 R, we consider the sets

A
+

(t) = {x 2 A : hx, e
1

i � t} , A�(t) = {x 2 A : hx, e
1

i  t}

A+(t) = {x 2 A : hx, u✓i � t} , A�(t) = {x 2 A : hx, u✓i  t} .
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Recall that we are assuming that the translating velocity is en+1

. From Lemma

??, we already know that the hyperplane must be di↵erent ifM is not a hyperplane parallel

to u✓, so we only need to work in the case when the half-hyperplanes H
1

and H
2

lie in

di↵erent and parallel hyperplanes to u✓ and en+1

. Thus we may assume without loss of

generality that the half-hyperplanes are contained in ⇧ (��) and ⇧ (�), for a certain � > 0.

Once we have fixed these notations, our first result is to prove that both half-hyperplanes

point in the same direction of u✓.

Lemma 0.4.4. The two connected components of M which lie outside the cylinder C✓(r)
point in the same direction of u✓.

Proof. First of all, notice that M cannot be asymptotic to the half-hyperplanes

H
1

=
�

x 2 Rn+1 : hx, u✓i < r
1

< 0, x
1

= ��
 

and

H
2

=
�

x 2 Rn+1 : hx, u✓i < r
2

< 0, x
1

= �
 

.

This can be obtained as a consequence of Theorem ??, when one compares M with a

suitable copy of a tilted grim reaper transverse to the hyperplane ⇧(0) (as we did at the

end of the proof of Lemma ??).

For the remaining cases, we proceed by contradiction. Suppose at first that

H
1

=
�

x 2 Rn+1 : hx, u✓i > r
1

> 0, x
1

= ��
 

and

H
2

=
�

x 2 Rn+1 : hx, u✓i < r
2

< 0, x
1

= �
 

for some r
1

> 0 and r
2

< 0. Given t and l in R, let Gt,l be the tilted grim reaper cylinder

defined by

Gt,l :=
n

F✓(x1

� t, x̂) + te
1

+ lu✓ : |x
1

� t| < ⇡
2 cos(✓)

, x̂ 2 Rn�1

o

, (58)

where if we denote x̂ = (x
2

, . . . , xn), then F✓(x1

� t, x̂) means F✓(x1

� t, x
2

, . . . , xn).

Consider G
⇡

2 cos(✓)
+�,0

, which lie in
⇣

�, � + ⇡
cos(✓)

⌘

⇥ Rn (see Figure ??). Note that it is

asymptotic to the half-hyperplanes ⇧ (�) and ⇧
⇣

� + ⇡
cos(✓)

⌘

. Fix ✏ 2 (0, 2�). Using the

fact that G
⇡

2 cos(✓)
+�,0

is asymptotic to the half-hyperplanes outside the cylinder, then there

exists �
1

> r
1

, depending only on ✏, such that1

G
⇡

2 cos(✓)
+�,0\Z+

�1
⇢ ⇥��, � + ✏

2

�⇥ Rn
⇤ \ {x 2 Rn+1 : hx, u✓i > �

1

}. (59)

1Here we are using the same notation of Lemma ??.
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Figure 12 – Transversal section of the M and G
⇡

2 cos(✓)
+�,0

.

In turn, taking into account the asymptotic behaviour of M and our assumptions about

the wings, there exists a �
2

> �r
2

, depending only on ✏, such that

M
\

Z+

�2
⇢ ⇥�� � ✏

2

, � + ✏
2

�⇥ Rn
⇤ \ {x 2 Rn+1 : hx, u✓i < �

2

}. (60)

From (??) and (??), there exists a t > 0 such that the tilted grim reaper cylinder

G
⇡

2 cos(✓)
+�+t,��1��2�1

satisfies

G
⇡

2 cos(✓)
+�+t,��1��2�1

\

M = ?

Now, since ✏ 2 (0, 2�), there is a finite t
0

such that either M and G
⇡

2 cos(✓)
+�+t0,��1��2�1

have a first point of contact or there is a sequence
�

pi = (p1i , . . . , p
n+1

i )
 

in M satisfying

the next conditions:

i. {hpi, u✓i} is a bounded sequence;

ii.
�

(0, p2i , . . . , p
n+1

i )� hpi, u✓iu✓

 

is an unbounded sequence;

iii.

lim
i

⇢

dist

✓

pi,G
⇡

2 cos(✓)
+�+t0,��1��2�1

◆�

= 0, (61)

Notice that in this last case the sequence {p1i } is bounded because to the asymptotic

behaviour of M . Thus we can suppose {p1i } ! p11 and {hpi, u✓i} ! pu✓1 . In particular,
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from (??), we have

p11e
1

+ pu✓1u✓ 2 G
⇡

2 cos(✓)
+�+t0,��1��2�1

.

According to Theorem ?? and the asymptotic behaviour ofM the first case cannot happen.

Regarding the second case, let us define the sequence

�

Mi := M � (0, p2i , . . . , p
n+1

i ) + hpi, u✓iu✓

 

.

By Lemma ??, up to a subsequence, we have that Mi * M1, where M1 is a connected

stationary integral varifold. By Proposition ?? one has

p11e
1

+ pu✓1u✓ 2 sptM1 \ G
⇡

2 cos(✓)
+�+t,��1��2�1

.

Thus, by Corollary ?? we get

spt M1 = G
⇡

2 cos(✓)
+�+t0,��1��2�1

.

But this is impossible by the asymptotic behaviour of M .

The case when

H
1

=
�

x 2 Rn+1 : hx, u✓i < r
1

< 0, x
1

= ��
 

and

H
2

=
�

x 2 Rn+1 : hx, u✓i > r
2

> 0, x
1

= �
 

can be excluded using a symmetric argument. This concludes the proof.

Next we would like to conclude now that M lies in the slab limited by the

hyperplanes ⇧(��) and ⇧(�).

Lemma 0.4.5. M lies inside the slab S := (��, �)⇥ Rn.

Proof. The proof will be done by contraction. Let us assume that � := supM x
1

> �.

Thus, either M intersects ⇧(sup
M

x
1

) or dist(M,⇧(sup
M

x
1

)) = 0. Notice that the first case

cannot be possible by Theorem ??. On the other hand, using the argument at the end

of Lemma ?? we see that the second case is impossible because the behaviour of M (see

Figure ??). Thus, it must hold sup
M

x
1

< �. Analogously, we see that �� < inf
M

x
1

. This

completes the proof.

Next we show that the distance between the two half-hyperplanes is exactly
⇡

cos(✓)
, like in the tilted grim reaper cylinder G0,0. The distance here is computed with

respect to the Euclidean metric in Rn+1.

Lemma 0.4.6. We have 2� = ⇡
cos(✓)

.
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Figure 13 – Transversal section of the M and ⇧(sup
M

x
1

).

Proof. We proceed again by contradiction. Assume at first that 2� > ⇡
cos(✓)

. By the

asymptotic behaviour of M we can place a tilted grim reaper cylinder G0,l inside S, for

su�ciently large l, so that G0,l
T

M = ? (see Figure ??).

Next, consider A :=
�

l 2 R : G0,l
T

M = ?
 

and let l
0

= infA. Note that

l
0

> �1 by the asymptotic behaviour of M. If l
0

/2 A, then M and G0,l0 have a point

of contact. So M = G0,l0 by Theorem ??, but this is impossible once 2� > ⇡
cos(✓)

. In

turn, if it holds l
0

2 A then dist
�

M,G0,l0
�

= 0. This means that there exists a sequence
�

pi = (p1i , . . . , p
n+1

i )
 

in M such that the sequences {p1i } and {hpi, u✓i} are bounded, the

sequence
�

(0, p2i , . . . , p
n+1

i )� hpi, u✓iu✓

 

is unbounded and lim
i
dist

�

pi,G0,l0
�

= 0. Thus,

after to a subsequence, one holds p1i ! p11 and hpi, u✓i ! pu✓1 . At this time, we consider

the sequence of hypersurfaces {Mi} , where

Mi := M � (0, p2i , . . . , p
n+1

i ) + hpi, u✓iu✓.

Using Lemma ?? we can suppose that Mi * M1, where M1 is a connected stationary

integral varifold with p11e
1

+ pu✓1u✓ 2 sptM1, the last fact follows from Proposition ??.

Hence p11e
1

+ pu✓1u✓ is a point of contact between sptM1 and G0,l0 . Thus again by

Corollary ?? we get that G0,l0 = spt M1, which contradicts our assumptions about the

behaviour of M . Consequently 2�  ⇡
cos(✓)

. Comparing M with a tilted grim reaper

cylinder “outside” M we conclude 2� = ⇡
cos(✓)

. This finishes the proof.

In the next Lemma we prove that the connected components of M \C✓(r), that
we will call from now on the wings of M , are vertical graphs. Here we come back to see

M as a hypersurface in Rn+1 endowed with the Euclidean metric.

Lemma 0.4.7. If t > 0 is su�ciently large, then the two connected components of M+(t)

are vertical graphs over an open subset of the hyperplane [en+1

]?.
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Figure 14 – Transversal section of the behaviour of G0,l with respect to M .

Proof. Observe first that the C1�asymptotic implies that if we take a su�ciently large t,

then

M+(t) ⇢ M
+

✓

⇡

2 cos(✓)
� ⌧

◆

[M�

✓

� ⇡

2 cos(✓)
+ ⌧

◆

,

for a small enough ⌧ > 0. Therefore, we only need to prove that if � is small enough, then

M
+

✓

⇡

2 cos(✓)
� ⌧

◆

is a graph over a subset of [en+1

]?. The case of M�
⇣

� ⇡
2 cos(✓)

+ ⌧
⌘

is

treated in a similar way.

Fix a su�ciently small ✏ > 0, with ✏ < 1

8

. Since G (= G0,0) and M \ C✓(r) are
C1-asymptotic to the same half-hyperplane contained in ⇧

⇣

⇡
2 cos(✓)

⌘

by hypothesis and

Example ?? we can represent M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

as a graph over G. Hence, we can find a

smooth map

' : T⌧ :=
⇣

⇡
2 cos(✓)

� ⌧, ⇡
2 cos(✓)

⌘

⇥ Rn�1 ! R

such that

sup
T
⌧

|'| < ✏ and sup
T
⌧

|D'| < ✏, (62)

and the map eF : T⌧ �! Rn+1 given by

eF = F✓ + '⌫✓, (63)

is a parametrization of M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

, where F✓ is the parametrization given by (??)

and

⌫✓(x1

, . . . , xn) = sin(x
1

cos(✓))e
1

� cos(x
1

cos(✓))u✓.

Next, we consider the projection ⇧ : Rn+1 �! Rn given by ⇧(x
1

. . . , xn+1

) = (x
1

. . . , xn)
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and its restriction

e⇧ := ⇧����int
✓
M+

✓
⇡

2 cos(✓)
�⌧

◆◆ : int
⇣

M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘⌘

�! T⌧ . (64)

Note that the image of e⇧ lies on T⌧ , because for all x 2 int
⇣

M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘⌘

we have
⇡

2 cos(✓)
� ⌧ < hx, e

1

i < ⇡
2 cos(✓)

,

by the definition of M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

. The idea here is to show that e⇧ is a di↵eomorphism.

To deduce this, by a standard topological argument, we only must check that:

1. e⇧ is a proper covering map;

2. int
⇣

M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘⌘

is path connected.

First, let us show that e⇧ is a local di↵eomorphism. Equivalently, let us show

that H > 0 on M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

. The proof of this fact will follow from the next claim.

Claim 0.4.2. The unit normal N eF along of eF is given by the formulae

D ·N eF = AE
1

(✓) + B
Pn�1

j=2

(�1)j[n�
j+1
2 ]@x

j

'ej + C@x
n

'En(✓) + B⌫✓, (65)

where

E
1

(✓) := cos(x
1

cos(✓))e
1

+ sin(x
1

cos(✓))u✓, (66)

A := (�1)n�2 (sin(✓) sin(x
1

cos(✓))@x
n

'� cos(x
1

cos(✓))@x1') , (67)

B := 1 + ' cos(✓) cos(x
1

cos(✓)), (68)

C := (�1)n�1 cos(✓) (1 + ' cos(✓) cos(x
1

cos(✓))) (69)

and

D2 :=

8

>

>

<

>

>

:

[sin(✓) sin(x
1

cos(✓))@x
n

'� cos(x
1

cos(✓))@x1']
2

+ [1 + ' cos(✓) cos(x
1

cos(✓))]2
h

1 +
Pn

j=2

�

@x
j

'
�

2

i

+ cos2(✓) [1 + ' cos(✓) cos(x
1

cos(✓))]2 (@x
n

')2
(70)

Proof of the Claim ??. Here we will use the following positive orthonormal basis for Rn+1

(

E
1

(✓) = cos(x
1

cos(✓))e
1

+ sin(x
1

cos(✓))u✓, Ej := ej, j 2 {2, . . . , n� 1}
En(✓) := cos(✓)en + sin(✓)en+1

, ⌫✓

)

(71)

Before we figure out N eF , let us observe the following equalities.

@x1F✓ =
E

1

(✓)

cos(x
1

cos(✓))
+ tan(✓) tan(x

1

cos(✓))En(✓), @x
j

F✓ = Ej for j 2 {2, . . . , n� 1},

@x
n

F✓ =
1

cos(✓)
En(✓), @x1⌫✓ = cos(✓)E

1

(✓), and @x
j

⌫✓ = 0 for all j 2 {2, . . . , n}.
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From these equalities follow

@x1
eF = @x1F✓ + @x1'⌫✓ + '@x1⌫✓

=
E

1

(✓)

cos(x
1

cos(✓))
+ tan(✓) tan(x

1

cos(✓))En(✓) + @x1'⌫✓ + ' cos(✓)E
1

(✓)

= [1 + ' cos(✓) cos(x
1

cos(✓))]
E

1

(✓)

cos(x
1

cos(✓))
+ tan(✓) tan(x

1

cos(✓))En(✓) + @x1'⌫✓

= ↵E
1

(✓) + �En(✓) + @x1'⌫✓,

where

↵ :=
1 + ' cos(✓) cos(x

1

cos(✓))

cos(x
1

cos(✓))

and

� := tan(✓) tan(x
1

cos(✓))

@x
j

eF = @x
j

F✓ + @x
j

'⌫✓ = Ej + @x
j

'⌫✓ for j 2 {2, . . . , n� 1}

and

@x
n

eF = @x
n

F✓ + @x
n

'⌫✓ =
1

cos(✓)
En(✓) + @x

n

'⌫✓.

These equalities together imply that X := @x1
eF ^ . . .^ @x

n

eF has the following expression

X =

8

>

>

<

>

>

:

(�1)

n�2

cos(✓)
{�@x

n

' cos(✓)� @x1'}E1

(✓)

+ ↵
cos(✓)

Pn�1

j=2

(�1)j[n�
j+1
2 ]@x

j

'Ej

+ ↵
cos(✓)

⌫✓ + (�1)n�1↵@x
n

'En(✓)

(72)
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Indeed, straightforward calculation gives

X = (↵E
1

(✓) + �En(✓) + @x1'⌫✓) ^ . . . ^ (En�1

+ @x
n�1'⌫✓) ^

✓

1

cos(✓)
En(✓) + @x

n

'⌫✓

◆

=

8

>

>

<

>

>

:

↵E
1

(✓) ^ (E
2

+ @x2'⌫✓) ^ . . . ^ (En�1

+ @x
n�1'⌫✓) ^

✓

1

cos(✓)
En(✓) + @x

n

'⌫✓

◆

+�@x
n

'En(✓) ^ E
2

^ . . . ^ En�1

^ ⌫✓ +
@x1'

cos(✓)
⌫✓ ^ E

2

^ . . . ^ En�1

^ En(✓)

=

8

>

>

<

>

>

:

↵E
1

(✓) ^ (E
2

+ @x2'⌫✓) ^ . . . ^ (En�1

+ @x
n�1'⌫✓) ^

✓

1

cos(✓)
En(✓) + @x

n

'⌫✓

◆

+�@x
n

'(�1)n�2E
2

^ . . . ^ En(✓) ^ ⌫✓ +
@x1'

cos(✓)
(�1)n�1E

2

^ . . . ^ En(✓) ^ ⌫✓

=

8

>

>

<

>

>

:

↵E
1

(✓) ^ (E
2

+ @x2'⌫✓) ^ . . . ^ (En�1

+ @x
n�1'⌫✓) ^

✓

1

cos(✓)
En(✓) + @x

n

'⌫✓

◆

+(�1)n�2

⇢

�@x
n

'� @x1'

cos(✓)

�

E
1

(✓)

=

8

>

>

>

<

>

>

>

:

(�1)n�2

⇢

�@x
n

'� @x1'

cos(✓)

�

E
1

(✓) + ↵E
1

(✓) ^ . . . ^ En�1

^
✓

En(✓)

cos(✓)
+ @x

n

'⌫✓

◆

+
↵

cos(✓)

n�1

X

j=2

@x
j

'E
1

^ . . . ^ Ej�1

^ ⌫✓ ^ Ej+1

^ . . . ^ En

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(�1)n�2

⇢

�@x
n

'� @x1'

cos(✓)

�

E
1

(✓) +
↵

cos(✓)
E

1

(✓) ^ E
2

^ . . . ^ En�1

^ En(✓)

+↵@x
n

'E
1

(✓) ^ E
2

^ . . . ^ En�1

^ ⌫✓

+
↵

cos(✓)

n�1

X

j=2

(�1)j[n�
j+1
2 ]@x

j

'Ej+1

^ . . . ^ En(✓) ^ ⌫✓ ^ E
1

(✓) ^ . . . ^ Ej�1

=

8

>

>

<

>

>

:

(�1)n�2

cos(✓)
{�@x

n

' cos(✓)� @x1'}E1

(✓) +
↵

cos(✓)

n�1

X

j=2

(�1)j[n�
j+1
2 ]@x

j

'Ej

+
↵

cos(✓)
⌫✓ + (�1)n�1↵@x

n

'En(✓)

(73)

Consequently, it holds

hX,Xi =
1

cos2(✓)
{�@x

n

' cos(✓)� @x1'}2 +
↵2

cos2(✓)

n�1

X

j=2

(@x
j

')2 +
↵2

cos2(✓)
+ ↵2(@x

n

')2

=
1

cos2(✓)

(

{�@x
n

' cos(✓)� @x1'}2 + ↵2

 

n�1

X

j=2

(@x
j

')2 + 1

!

+ ↵2(@x
n

')2 cos2(✓)

)

=
D2

cos2(✓) cos2(x
1

cos(✓))
, (74)

in the last equality we have used the definition of ↵ and �. Using again the definition of

� together with (??) and (??) we get the expression to N
˜F , and this finishes the proof of

the claim.
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Now the equality (??) and (??) with v = en+1

imply

D ·H
⇠

=

(

1 + ' cos(✓) cos(x
1

cos(✓)) + (�1)n sin(x
1

cos(✓))@x1'

+(�1)n sin(✓) cos(x
1

cos(✓))@x
n

'+ (�1)n cos(✓) sin(✓)'@x
n

'
, (75)

where ⇠ := cos ✓ cos(x
1

cos(✓)). Thus, by our assumptions about ✏, ' and D' we see that

H(p) > 0 at all p 2 M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

. Hence, e⇧ is a local di↵eomorphism.

The previous argument also implies that e⇧ is onto as follows: Otherwise, it

there would be a vertical cylinder which intersects T⌧ but it would not intersect the set

M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

. Taking into account the asymptotic behaviour of M , we could translate

horizontally this cylinder until having a first contact with

int
⇣

M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘⌘

.

At this first contact the normal vector field to M would be horizontal, which is absurd

because we have proved that H > 0 on M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘

.

Finally, let us check that e⇧ is proper. Let K ⇢ T⌧ a compact set and {pi}i2N
be a sequence on e⇧�1(K). Note that the sequence {pi}i2N is bounded, because of the

asymptotic behaviour of M and the fact that dist (K, @T⌧ ) > 0. So, up to a subsequence,

we can assume that pi ! p1. Since the set e⇧�1(K) is closed, it follows that p1 2 e⇧�1(K).

This proves that e⇧�1(K) is compact.

At this point, we have that any connected component of int
⇣

M
+

⇣

⇡
2 cos(✓)

� ⌧
⌘⌘

is a graph over T⌧ . But only one of them contains the wing. This means that if there

were another connected component, ⌃, then the function x 7! hx, u✓i would be bounded

on ⌃ and @⌃ ⇢ ⇧
⇣

⇡
2 cos(✓)

� ⌧
⌘

, which is impossible by Lemma ??. Repeating the same

argument we should obtain that M�
⇣

� ⇡
2 cos(✓)

+ ⌧
⌘

is smooth vertical graph over a subset

of the hyperplane [en+1

]?.

Now we are going to show that is possible to place a tilted grim reaper cylinder

below M . This means that M lies in the convex region limited by the tilted grim reaper

cylinder. Henceforth, up to a translation, we will assume that infMhx, u✓i = 0.

Lemma 0.4.8. There is a tilted grim reaper cylinder that contains M “inside” it, i.e.,

M lies in the convex region of the complement of a tilted grim reaper cylinder.

Proof. Consider the family of “half”-tilted grim reaper cylinders

Gt,�✏
± :=

�

x 2 G0,�✏ : ±hx, e
1

i � 0
 ± te

1

(76)

where ✏ > 0 is fixed and t 2 [0,1).

Let us work with the “half”-tilted grim reaper cylinder Gt,�✏
+

. By taking a
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Figure 15 – Transversal section of the behaviour of Gt,�✏
+

and Gt,�✏
� with respect to M .

su�ciently large t
0

, we obtain Gt0,�✏
+

\M = ?. Hence the set A defined by

A := {t 2 [0,1) : Gt,�✏
+

\M = ?}

is not empty. Take s
0

= infA. We claim that s
0

= 0. Otherwise, we have two possibilities

for s
0

> 0: either s
0

2 A or s
0

/2 A. If s
0

/2 A then Gt,�✏
+

\M 6= ? and since @Gt,�✏
+

\M = ?,

we conclude that Gt,�✏
+

⇢ M , by Theorem ??, but this is absurd because

0 = inf
M
hx, u✓i > inf

Gt,�✏

hx, u✓i = �✏.

In turn, if s
0

2 A then dist
�Gt,�✏

+

,M
�

= 0. This tells us that there exists a

sequence
�

pi = (p1i , . . . , p
n+1

i )
 

in M such that:

1. limi dist
�

pi,Gt,�✏
+

�

= 0;

2. {p1i } ! p11 and a < p1i � t < b, where 0 < a < b < ⇡
2 cos(✓)

are constants;

3. {hpi, u✓i} ! pu✓1 ;

4. The sequence
�

(0, p2i , . . . , p
n+1

i )� hpi, u✓iu✓

 

is unbounded.

In this case, we consider again the sequence of hypersurfaces

�

Mi = M � (0, p2i , . . . , p
n+1

i ) + hpi, u✓iu✓

 

.

Naturally, by Lemma ?? we may admit Mi * M1, where M1 is a connected stationary

integral varifold. Notice that we would have p11e
1

+ p✓1u✓ 2 Gt,�✏
+

\ sptM1, so Corol-

lary ?? implies Gt,�✏
+

= M1. But this again contradicts the asymptotic behaviour of M .

Therefore infA = 0, and

G0,�✏
+

\M = ?,

for all ✏ > 0. A similar argument allows us to conclude that G0,�✏
� \ M = ?. Thus

G0,�✏ \M = ?.

This completes the proof.

As an application of the previous two lemmas, we shall conclude now that the

hypersurface M is itself in vertical a graph over a slap on the hyperplane [en+1

]?.
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Figure 16 – Transversal section of the behaviour of G0 with respect to M .

Lemma 0.4.9. M is a vertical graph over
�� ⇡

2 cos ✓
, ⇡
2 cos ✓

�⇥ Rn�1.

Proof. For each i 2 N consider the sets

Ti :=
�

v 2 Rn+1 : hv, En(✓)i � i
 

,

where En(✓) := cos(✓)en + sin(✓)en+1

, and call ↵ := lim
i

inf
T
i

\M
hx, u✓i. Consider a sequence

�

pi =
�

p1i , . . . , p
n+1

i

� 

in M such that:

i. pi 2 Ti \M and hpi, u✓i � infT
i

\Mhx, u✓i < 1

i

ii. {p1i } ! p11 and � ⇡
2 cos(✓)

< p11 < ⇡
2 cos(✓)

;

iii. {hpi, u✓i} ! ↵.

Consider the sequence of hypersurfaces

�

Mi = M � (0, p2i , . . . , p
n+1

i ) + hpi, u✓iu✓

 

.

We know from Lemma ?? that, up to a subsequence, Mi * M1, where M1 is a connected

stationary integral varifold. Since p11e
1

+↵u✓ 2 sptM1, it follows that inf
sptM1

hx, u✓i  ↵.

We would like to conclude that ↵ = inf
sptM1

hx, u✓i. Indeed, take any p 2 Rn+1

such that hp, u✓i < ↵. Let Br(p) be the open ball in Rn+1, where r 2
⇣

0, ↵�hp,u
✓

i
4

⌘

. Note

that Br(p) \ ⇧↵ = ?, where ⇧↵ = [u✓]? + ↵u✓. Take any ✏ 2
⇣

0, ↵�hp,u
✓

i)
4

⌘

. By the

definition of ↵, there is an i
0

such that if i > i
0

then

inf
T
i

\M
hx, u✓i > ↵� ✏ > 0. (77)

Notice that (??) implies that if i > i
0

one has

µM
i

(Br(p)) =

Z

B
r

(p)

dµM
i

= 0,
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where µM
i

denotes the weight measure associated to the varifold Mi in Rn+1 with the

Ilmanen’s metric. This implies that µM1(Br(p)) = 0, and so p /2 sptM1. Consequently

↵ = inf
sptM1

hx, u✓i. As we are going to see, this equality implies that spt M1 is the element

of the family of the grim reaper cylinder associated to ✓ with u✓ height ↵.

Claim 0.4.3. M1 coincides with the tilted grim reaper cylinder associated to ✓ with u✓

height ↵ into the direction of u✓.

Proof of the Claim ??. The proof follows by using a similar idea as in Lemma ??, (see

Figure ??). Consider the “half”-tilted grim reaper cylinder

Gt,↵�✏
+

:=
�

x 2 G0,↵�✏ : hx, e
1

i � 0
 

+ te
1

(78)

where ✏ > 0 and t 2 [0,1). Naturally, we can take a su�ciently large t
0

in such that way

that

Gt0,↵�✏
+

\ sptM1 = ?,

by Lemma ??. Next, we consider the set

A = {t 2 [0,+1) : Gt,↵�✏
+

\ sptM1 = ?},

which is non-empty. We would like to show that infA = 0. Indeed, otherwise, s
0

=

infA > 0 satisfy one of the following conditions:

a. Gs0,↵�✏
+

and sptM1 have a point of contact;

b. dist
�Gs0,↵�✏

+

, sptM1
�

= 0.

According to Corollary ?? and Lemma ??, the first case is not possible. Regarding the

second case, by Lemma ?? there exists a sequence
�

zi = (z1i , . . . , z
n+1

i )
 

in sptM1 such

that:

i. lim
i
dist

�

zi,Gs0,↵�✏
+

�

= 0;

ii. {z1i } ! z11 and a < z1i � t < b where 0 < a < b < ⇡
2 cos(✓)

are constants;

iii. {hzi, u✓i} ! zu✓1 ;

iv. The sequence
�

(0, z2i , . . . , z
n+1

i )� hzi, u✓iu✓

 

is unbounded;

v. ⇥(sptM1, zi) � 1.

Here we are using that on sptM1 we have ⇥(M1, p) � 1 at all p 2 sptM1. At this point,

let us consider the sequence

�

Mi := M1 � (0, z2i , . . . , z
n+1

i ) + hzi, u✓iu✓

 

.

Claim 0.4.4. {Mi} has locally bounded area.

Proof of the Claim ??. Firstly observe that each Mi is the limit weakly* of the sequence

{Mj � (0, z2i , . . . , z
n+1

i ) + hzi, u✓iu✓} as j ! +1. Secondly, we know that outside C✓(r)
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the following estimative holds

Ag[(Mj � (0, z2i , . . . , z
n+1

i ) + hzi, u✓iu✓) \ Br(p)]  1

2
Ag[@B✏(p)] (79)

for all j and i by Proposition ??, where p 2 Rn+1 \ C✓(r) and ✏ is taken small enough

so that B✏(p) does not intersect C✓(r). Thus, taking the limit at (??) as j ! +1 one

obtains

µM
i

[Br(p)]  1

2
Ag[@B✏(p)] for all j.

Consequently, the area blow-up set B of {Mi} lies inside C✓(r). Proceeding as in Lemma

?? we shall conclude that B = ?.

By the previous claim, observing that each Mi satisfies the conditions of The-

orem ?? outside C✓(r) and inside C✓(r) it is just an n-dimensional stationary integral

varifold. So we can apply Theorem ?? and Theorem ?? together to conclude that, after

to passing to a subsequence, Mi * M1, where M1 is a connected stationary integral

varifold. This last fact can be obtained by arguing as in the proof of Lemma ??. Notice

that Proposition ?? implies p1 2 sptM1, consequently it holds

z11e
1

+ zu✓1u✓ 2 sptM1 \ Gs0,↵�✏
+

.

Moreover, note that the item ii implies that z11e
1

+ zu✓1u✓ is an interior point of Gs0,↵�✏
+

.

Therefore, by Corollary ?? and Lemma ?? we arrive at a contraction since inf
sptM1

hx, u✓i = ↵.

Thus, infA = 0 and

G0,↵�✏
+

\ sptM1 = ?,

because ✏ > 0 and inf
sptM1hx, u✓i = ↵. Similarly, we deduce that

G0,↵�✏
� \ sptM1 = ?.

Hence G0,↵�✏ \ sptM1 = ?.

Now, letting ✏ ! 0+ and using the fact that

inf
sptM1

hx, u✓i = min
sptM1

hx, u✓i = ↵

we conclude that sptM1 touches the tilted grim reaper cylinder G0,↵ at p11e
1

+ ↵u✓. In

particular, by Corollary ?? we conclude that spt M1 = G0,↵. This concludes the proof of

our claim. Notice that since Mi converges weakly* to spt M1 = G0,↵ then Mi converges

as set to G0,↵ and the multiplicity is one outside C✓(r) because sing M1 = ? and each

Mi is a horizontal graph outside C✓(r). Thus, all conditions of Theorem ?? are satisfied,

consequently one has Mi ! G0,↵, with multiplicity one everywhere.
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In turn, consider the sets

Si :=
�

v 2 Rn+1 : hv, En(✓)i  �i
 

,

where i 2 N, and take � = lim
i

inf
S
i

\M
hx, u✓i. Let

�

qi =
�

q1i , . . . , q
n+1

i

� 

be a sequence in M

such that:

i. qi 2 Si \M and hqi, u✓i � infS
i

\Mhx, u✓i < 1

i

ii. {q1i } ! q11 and � ⇡
2 cos(✓)

< q11 < ⇡
2 cos(✓)

;

iii. {hqi, u✓i} ! �.

Then, reasoning as before, we obtain

Ni := M � (0, q2i , . . . , q
n+1

i ) + hqi, u✓iu✓ �! G0,�,

with multiplicity one everywhere.

By Lemma ??, we know that there exists a su�ciently large t
0

, so that M+(t
0

)

is a graph over an open set in the hyperplane [en+1

]?. Moreover, we can choose at the

same time a small enough ⌧ > 0 so that

M
+

⇣

⇡
2 cos(✓)

� 2⌧
⌘

[M�
⇣

� ⇡
2 cos(✓)

+ 2⌧
⌘

⇢ M+(t
0

).

Hence, these together with Mi ! G0,↵ and Ni ! G0,� imply that there is i
0

2 N such

that:

a. There exist strictly increasing sequences of positive numbers {m1

i }, {m2

i }, {n1

i } and

{n2

i } so that

m1

i < m2

i and �n1

i < �n2

i , for all i > i
0

;;

b. There exist smooth functions:

'i :
⇣

� ⇡
2 cos(✓)

+ ⌧, ⇡
2 cos(✓)

� ⌧
⌘

⇥ �m1

i ,m
2

i

�n�1 �! R (80)

and

�i :
⇣

� ⇡
2 cos(✓)

+ ⌧, ⇡
2 cos(✓)

� ⌧
⌘

⇥ ��n1

i ,�n2

i

�n�1 �! R (81)

satisfying

|'i| < 1

i
, |D'i| < 1

i
, |�i| < 1

i
and |D�i| < 1

i
for all i > i

0

(82)

and such that the hypersurfaces

Ri :=

(

x = (x
1

, . . . , xn+1

) 2 M : � ⇡
2 cos(✓)

+ ⌧ < x
1

< ⇡
2 cos(✓)

� ⌧

(x
2

, . . . , xn�1

) 2 (m1

i ,m
2

i )
n�2

, hx,En(✓)i 2 (m1

i ,m
2

i )

)
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Figure 17 – Picture of ⇤i and ⇤i(s0).

and

Li :=

(

x = (x
1

, . . . , xn+1

) 2 M : � ⇡
2 cos(✓)

+ ⌧ < x
1

< ⇡
2 cos(✓)

� ⌧

(x
2

, . . . , xn�1

) 2 (�n1

i ,�n2

i )
n�2

, hx,En(✓)i 2 (�n1

i ,�n2

i )

)

can be written as graphs of functions 'i and �i, respectively, over the corresponding

pieces of the tilted grim reaper cylinder as in the proof of Lemma ??, where En(✓) :=

cos(✓)en + sin(✓)en+1

.

Now following the same idea as in Lemma ??, we see that Ri and Li are smooth vertical

graphs over domains in the hyperplane [en+1

]? (for i
0

large enough). Note that Ri and

Li are connected because they are graphs over the connected sets and the convergences

Mi ! G0,↵ and Ni ! G0,� have multiplicity one. Finally, let us consider the exhaustion

{⇤i} of M by compact sets given by

⇤i :=

(

x = (x
1

, . . . , xn+1

) 2 M : (x
2

, . . . , xn�1

) 2 [�ai, bi]
n�2

hx,En(✓)i 2 [�ai, bi] , hx, u✓i  i}

)

(83)

where ai =
n1
i

+n2
i

2

and bi =
m1

i

+m2
i

2

.

Since M+(t
0

), Ri and Li are vertical graphs, then a small strip Bi around the

boundary of ⇤i is a graph over the hyperplane [en+1

]?. Now we would like to use a Rado’s

argument to conclude that in fact each ⇤i must be a vertical graph over a subset of the

hyperplane [en+1

]? if i > i
0

. Indeed, assume to the contrary that this is not true. Consider

the family

{⇤i(s) := ⇤i + sen+1

}s2R
of translations of ⇤i into the direction of en+1

. Since ⇤i is compact there exists a su�ciently
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large s
0

so that

⇤i(s0) \ ⇤i = ?.

Now move ⇤i(s0) back into the direction of �en+1

(see Figure ??). Since ⇤i is not a graph

and Bi \ {Bi + sen+1

} = ?, because Bi is a graph over a subset of [en+1

]?. Then there

exists a s
1

2 (0, s
0

) such that ⇤i(s1) has a point of contact at interior with ⇤i. Therefore

⇤i(s1) = ⇤i, but this gives us to a contraction. Hence, each ⇤i must be a graph only

continuous. However, since
S

i ⇤i = M , then M is also a vertical graph. Notice that this

argument only allows to conclude that M is a continuous vertical graph and it is a smooth

vertical graph at its wings. In particular, taking a subtle orientation on M we see that

the mean curvature H is positive along of the wings of M. Now, as M is a continuous

vertical graph we can orient M in such that way that H = hN, en+1

i � 0 on M , but by

Proposition ?? H satisfies

�H + hrH,rxn+1

i = �|A|2H  0.

Consequently, the maximum principle implies H > 0 ,i. e. M is a smooth vertical graph.

To finalize the proof, notice that the argument of the Lemma ?? allows us to conclude that

the restriction of projection over [en+1

]? on M is onto over
�� ⇡

2 cos ✓
, ⇡
2 cos ✓

�⇥ Rn�1.

Since the mean curvatureH > 0 onM , then given any v 2 Rn+1 ifNv = hN, vi,
then hv = N

v

H
are well defined on whole M , where N unit normal along of M and H is

the mean curvature of M . At that moment, we will consider the stand Euclidean metric

in Rn+1.

Lemma 0.4.10. The function hv =
N

v

H
satisfies the following linear PDE in M

�hv + hrhv,r(xn+1

+ 2 logH)i = 0. (84)

Proof. To deduce this, notice firstly that since v and en+1

are Killing fields in Rn+1, then

by Proposition ?? we have

�Nv + hrNv,rxn+1

i+ |A|2Nv = 0 and �H + hrH,rxn+1

i+ |A|2H = 0.
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These equality together with rhv =
1

H
rNv � Nv

H2

rH imply

�hv = �

✓

Nv

H

◆

= div(rhv) = div

✓rNv

H
� Nv

H2

rH

◆

= div

✓rNv

H

◆

� div

✓

Nv

H2

rH

◆

=
�Nv

H
�
⌧

rNv,
rH

H2

�

� Nv

H2

�H �
⌧

r
✓

Nv

H2

◆

,rH

�

=
�Nv

H
� 2

⌧

rNv,
rH

H2

�

� Nv

H2

�H + 2
Nv

H3

hrH,rHi

= �hrNv,rxn+1

i
H

� 2

⌧

rNv,
rH

H2

�

+
Nv

H2

hrH,rxn+1

i+ 2
Nv

H3

hrH,rHi

= �
⌧rNv

H
� Nv

H2

rH,rxn+1

�

� 2

⌧rNv

H
� Nv

H2

rH,
rH

H

�

= �hrhv,rxn+1

i � 2 hrhv,r logHi = �hrhv,r(xn+1

+ 2 logH)i .

This completes the proof.

Before we prove that for some choose of the vector v the function hv go to zero

at the end of M , we need to prove M is in fact C2�asymptotic to two half-hyperplanes

with respect to the Euclidean metric. This is the statement of the next result.

Lemma 0.4.11. The hypersurface M is C2�asymptotic outside the cylinder to two half-

hyperplanes with respect to the Euclidean metric.

Proof. To prove this lemma, we will need of the following fact.

Claim 0.4.5. There exist a tilted grim reaper cylinder inside the region that lie “above”

M . This means that M lies in the region concave in Rn+1 limited by that tilted grim

reaper.

Proof of the Claim ??. Indeed, by our hypothesis over M we know that if t is su�ciently

large then M+(t) is graph over the hyperplane ⇧(0), so we fix such t. Next we consider

the tilted grim reaper G0,t. We will show that it lies in the region above M (see Figure

??). Following the idea from of the Lemma ??, let us consider the family of “half”-M

{M⇤(s) := M
+

(0) + se
1

}s2[0,+1)

.

Taking into account the asymptotic behaviour of M , there exists a su�ciently

large s
0

> 0 so that M⇤(s0) \ G0,t = ?. Arguing as in Lemma ?? and using the fact that

M+(t) is graph over ⇧(0), we shall conclude that infA = 0, where

A :=
�

s 2 [0,+1) : M⇤(s) \ G0,t = ?
 

.
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Figure 18 – Transversal section of the behaviour of M and G0,t.

Hence, one holds M
+

(0) \ G0,t = ?. In turn, the same argument applying to the family

{M⇤(s) := M�(0)� se
1

}s2[0,+1)

,

proves M�(0) \ G0,t = ?. Therefore M \ G0,t = ? and this proves the claim.

In order of proof that M is in fact C2�asymptotic to the half-hyperplanes

⇧
⇣

� ⇡
2 cos(✓)

⌘

and ⇧
⇣

⇡
2 cos(✓)

⌘

in the sense of Definition ??, let us work with the wing

of M which is C1�close to the half-hyperplane H
1

of ⇧
⇣

⇡
2 cos(✓)

⌘

. As we know, given

✏ > 0, there exists � > 0 so that M can be represent a graph of ' defined over H
1

,

with supH1(�) |'| < ✏ and supH1(�) |D'| < ✏, where D indicates the Euclidean derivative.

Arguing by contraction, that is, let us suppose that there exist ✏ > 0 and a sequence {pi}
in M such that:

|D2'(pi)| � ✏ and hpi, u✓i ! 1. (85)

Consider the sequence {Mi := M � pi} . Fix some s > 0 small enough so that

the intersection of the geodesic ball Bs(0) with Mi has only one connected component,

and we denote it by Si = Bs(0)\Mi. Thus, {Si} is a sequence of stable hypersurfaces in

Bs(0) with locally bounded area, by Proposition ?? and Proposition ??, so by Theorem

?? we may suppose Si * S1, where S1 is an n-dimensional stationary integral varifold

in Bs(0) so that 0 2 sptS1, by Proposition ??. Now using the fact that M lies in the

concave region limited by G0,t we conclude that sptS1 ⇢ ⇧(0)\Bs(0), but as Si ! sptS1
with multiplicity one, since each Si is a horizontal graph, then by Theorem ?? we conclude

Si ! ⇧(0)\Bs(0) = sptS1 with multiplicity one everywhere, with respect to the Ilmanen

metric. Notice that we can represent Si are the graph of a function 'i(·) = '(·+pi)�'(pi)
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which is defined on an open subset of ⇧(0) that contain the origin.

Next, consider a small geodesic cylinder Wr,✏(p) over Dr(p) ⇢ T⇧(0), with

respect to Ilmanen’s metric. By definition of convergence in the C1�topology, there

exist su�ciently large i
0

2 N so that for all i > i
0

the set Wr,✏(p) \ Mi is a graph of a

function ⌘i defined over Dr(p) ⇢ ⇧(0) such that supD
r

(p)\⇧(0)

|Dl⌘i| < ✏/8, for all l 2 N.
Notice that the hyperplanes parallel to en+1

are totally geodesic and e
1

is the unit normal

vector to T
0

⇧(0) and we have the following relation between 'i and ⌘i:

'i(exp
0

(q + ⌘i(q)e1)� hexp
0

(q + ⌘i(q)e1), e1ie1) = hexp
0

(q + ⌘i(q)e1), e1i,

where exp
0

denotes the exponential map of Rn+1 at 0 with respect to the metric g. Thus

di↵erentiating twice this expression with respect to a geodesic frame at 0 and evaluating

at q = 0, we deduce that

hD2 exp
0

(ui, wi), e1i+D2⌘i(u, w) =

(

d'i[D2 exp
0

(ui, wi)� hD2 exp
0

(ui, wi), e1ie1]
+D2'i(u, w)

)

where ui := u + d⌘i(u)e1 and u 2 T
0

⇧(0). From this expression, the control on the C1

norm of ⌘i, the C1 norm of ' and using that ⇧(0) is totally geodesic we get a contraction

with |D2'i(0)| = |D2'(pi)| � ✏, if i is su�ciently large. This proves the lemma.

Next, let us set hj :=
hN,e

j

i
H

, where j 2 {2, . . . , n�1} and hn = hN,E
n

(✓)i
H

. Using

the previous lemma, we can obtain some information about the behaviour of the functions

hj at the ends of M .

Lemma 0.4.12. The functions hj, j 2 {2, . . . , n}, tend to zero as we approach the end

of M.

Proof. The proof we will be done as follows: consider the exhaustion {⇤i} given by (??).

Notice that the boundary of each ⇤i consists of the following 2n� 1 regions

⇤1

i :=

(

x = (x
1

, . . . , xn+1

) 2 M : (x
2

, . . . , xn�1

) 2 [�ai, bi]
n�2

hx,En(✓)i 2 [�ai, bi] , hx, u✓i = i

)

⇤�2

i :=

(

x = (x
1

, . . . , xn+1

) 2 M : hx, u✓i  i , x
2

= �ai

(x
3

, . . . , xn�1

) 2 [�ai, bi]n�3 , hx,En(✓)i 2 [�ai, bi]

)

⇤2

i :=

(

x = (x
1

, . . . , xn+1

) 2 M : hx, u✓i  i , x
2

= bi

(x
3

, . . . , xn�1

) 2 [�ai, bi]n�3 , hx,En(✓)i 2 [�ai, bi]

)

...

⇤�n
i :=

(

x = (x
1

, . . . , xn+1

) 2 M : hx, u✓i  i

(x
2

, . . . , xn�1

) 2 [�ai, bi]n�2 , hx,En(✓)i = �ai

)
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and

⇤n
i :=

(

x = (x
1

, . . . , xn+1

) 2 M : hx, u✓i  i

(x
2

, . . . , xn�1

) 2 [�ai, bi]n�2 , hx,En(✓)i = bi

)

Next we would like to study the behaviour of hj at a small strip around the

boundary of ⇤i. Let us begin our study at the connected component ⇤1

i . Consider any

su�ciently small ✏ > 0. Taking into account Lemma ?? and the definition of M+(t), we

can use a similar argument as at the proof of Lemma ?? to guarantee the existence of a

su�ciently large i
1

(> i
0

), a su�ciently small ⌧ > 0 and a smooth function ' defined on

the strip

S⌧ :=
h⇣

� ⇡
2 cos(✓)

,� ⇡
2 cos(✓)

+ ⌧
⌘

[
⇣

⇡
2 cos(✓)

� ⌧, ⇡
2 cos(✓)

⌘i

⇥ Rn�1

satisfying

sup
S
⌧

|'| < ✏, sup
S
⌧

|D'| < ✏ and sup
S
⌧

|D2'| < ✏ (86)

and such that M+(i
1

) is a graph of this function over the corresponding strip in the tilted

grim reaper cylinder. From (??) and (??) we obtain

hj =
↵(j)

cos(✓)

@x
j

'

cos(x
1

cos(✓))

1 + ' cos(✓) cos(x
1

cos(✓))

1 + �(', D')
, (87)

where ↵(j) = (�1)
j


n� j+1

2

�

, if j 2 {2, . . . , n� 1} and ↵(n) = (�1)n�1 cos(✓). Here

�(', D') :=

(

(�1)n [sin(✓)(1 + ' cos(✓))@x
n

'+ sin(x
1

cos(✓))@x1']

+ ' cos(✓) cos(x
1

cos(✓))

)

.

In turn, using the fact that M+(i
1

) is a graph over the tilted grim reaper

cylinder and it is C2�asymptotic to the half-hyperplane, we conclude that for all fixed

(x
2

, . . . , xn) we have

lim
x1! ⇡

2 cos(✓)
�
|'| = lim

x1! ⇡
2 cos(✓)

�
|D'| = 0.

Therefore

|@x
j

'(x
1

, x
2

, . . . , xn)| =
�

�

�

�

�

�
Z

⇡
2 cos(✓)

x1

@x
j

x1'(x, x2

, . . . , xn)dx

�

�

�

�

�


⇣

⇡
2 cos(✓)

� x
1

⌘

✏. (88)

So, by (??), (??) and (??) we obtain that |hj(x)| < o(✏), for all x near ⇤1

i , here o(✏)

denotes a term that goes to zero as ✏ ! 0. Thus

sup
N(⇤1

i

)
|hj| < o(✏) (89)

where N (⇤1

i ) is a small neighbourhood the ⇤1

i in ⇤i, if i > i
1

.
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Now we are going to work with the components of @⇤i that intersect M�(i
1

).

Since Ri and Li are C1-close to a strip in the tilted grim reaper cylinder, there is a

su�ciently large i
2

such that Ri \ {(x
1

, . . . , xn+1

) 2 Rn+1; hx, u✓i  i
1

} is a graph over

the strip in the tilted grim reaper cylinder of a function 'i defined in the strip

G⌧ :=

✓

� ⇡

cos(✓)2
+

⌧

2
,

⇡

2 cos(✓)
� ⌧

2

◆

⇥ (m1

i ,m
2

i )
n�1

satisfying the following properties

sup
G

⌧

|'i| < ✏ and sup
G

⌧

|D'i| < ✏. (90)

The same estimate is true for Li. Furthermore, since cos(x
1

cos(✓)) >  > 0 in G⌧ , for a

suitable constant , then (??) and (??) gives us that supG
⌧

|hj| < o(✏). Hence

sup
N(⇤±k

i

)
|hj| < o(✏), (91)

where k 2 {2, . . . , n} and N
�

⇤±k
i

�

is a small neighbourhood of the ⇤±k
i in ⇤i. Hence for

(??) and (??) we have supN(@⇤
i

)

|hj| < o(✏), for any i 2 N, i > max{i
1

, i
2

}.
This lemma is the last ingredient that we need to prove Theorem ??. Here we come

back to adopt the Euclidean metric in Rn+1.

Proof of Theorem ??. Recall that we are assuming that M is asymptotic to two half-

hyperplanes that are contained in di↵erent hyperplanes and that infM(hx, u✓i) = 0. Ac-

cording to Lemma ?? there is an interior point where hj has an extremum. Then, be-

cause hj is a solution of (??), we can apply Hopf’s maximum principle to conclude that

hj = 0, that is, ⇠j = 0 on M for all j 2 {2, . . . , n}. In particular, each ej and En(✓)

are tangent vectors of M for j 2 {2, . . . , n� 1} at all point of M . Thus, we can con-

sider a global orthonormal basis on M , {E
1

, Ej = ej; j 2 {2, . . . , n� 1, } ;En(✓)}, where
E

1

= E
2

^ . . . ^ En ^ N . Di↵erentiating each Nj, j 2 {2, . . . , n}, with respect to Ek,

k 2 {1, . . . , n} one deduces

0 = Ek(Nj) = EkhN,Eji = hrE
k

N,Eji = �A(Ek, Ej).

Hence,

|A|2 =
X

i,j

A(Ej, Ek)
2 = A(E

1

, E
1

)2 = H2.

Therefore, by Theorem B in (?), we conclude that M = G0,0, because we are assuming

that 0 = inf
M
hx, u✓i.
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0.4.3.1.1 Topological consequences

In this little part we prove that the number of half-hyperplanes at Theorem

?? cannot be odd. So before proceeding, we need to do a little modification at definition

??.

Definition 0.4.2. We say that a smooth hypersurface M ⇢ Rn+1 is Ck�asymptotic

outside a cylinder to k half-hyperplanes H
1

, H
2

, . . . , Hk if there exists a solid cylinder C
such that:

i. The boundary of the solid cylinder C contains the boundaries of the half-hyperplanes

Hi for all i,

ii. M \ C consists of k connected components M
1

, . . . ,Mk which are Ck�asymptotic to

H
1

, . . . ,Hk, respectively.

Defining this we will prove the non-existence theorem. Here no conditions are

required over the cylinder.

Proposition 0.4.3. There not exist a complete, connected, properly embedded translating

soliton in Rn+1 which is C1-asymptotic to k half-hyperplanes outside a solid cylinder C,
if k is odd.

Proof. The proof follows from the topological result that says that a properly embedded

hypersurface in Rn+1 must intersect any transversal loop at an even number counting

with multiplicity. So if such M exists, then we should be able to construct a curve ↵

around the cylinder C which is transversal to M , and it intersects M at an odd number

of points.

0.4.3.2 Case ✓ = ⇡/2

Now we are going to work in the case when the cylinder is vertical, i.e. the

axis of the cylinder is parallel to the translating velocity en+1

. So first of all, let us point

out the following version of Lemma ?? in this setting.

Lemma 0.4.13. Let Mn ⇢ Rn+1 be a complete, connected, properly embedded translating

soliton and C⇡/2(r) := {x 2 Rn+1 : hx, e
1

i2 + hx, eni2  r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside C⇡/2(r). Suppose that {bi}i2N is a sequence

in [e
1

, en]? and let {Mi}i2N be a sequence of hypersurfaces given by Mi := M + bi. Then

there exist a connected stationary integral varifold M1 and a subsequence {Mi
k

} ⇢ {Mi}
so that

(i) Mi
k

⇤
* M1 in Rn+1;

(ii) sing M1 satisfies Hn�7+�(sing M1 \ (Rn+1 \ C(r))) = 0 for all � > 0 if n � 7,

sing M1 \ (Rn+1 \ C(r)) is discrete if n = 7 and sing M1 \ (Rn+1 \ C(r)) = ? if

1  n  6;

(iii) Mi
k

! sptM1 in Rn+1 \ (C(r) [ sing M1).
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Proof. The proof works exactly as in the case ✓ < ⇡/2 at Lemma ??, except the proof

that the sequence {Mi} has locally bounded area. More precisely, when we would like to

conclude that the area blow-up set associated to the sequence {Mi} is empty. In order

to prove that this fact, we use as barriers the family P� = W 2

� ⇥Rn�2 (cylinders over the

translating catenoid of dimension 2), for a su�ciently large � > 0 so that the cylinder

lies inside the neck of P� = W 2

� ⇥ Rn�2. Hence, if the set of area blow-up is not empty,

then we could move P� = W 2

� ⇥ Rn�2 until we get a first finite contact point with the

area blow-up set, which is impossible by Theorem ??. The remaining conditions may be

obtained by arguing as in the proof of Lemma ??.

Remark 0.4.3. Let ⌃ be a translating soliton in R3. The cylinder over ⌃ denoted by

⌃ ⇥ Rn�2 is defined as follows: if X : ⌃ ! R3 is an immersion of ⌃ in R3, where

X = (X
1

, X
2

, X
3

), then X̃(p, x
1

, . . . , xn�2

) = (X
1

(p), X
2

(p), x
1

, . . . , xn�2

, X
3

(p)) is an

immersion of ⌃ ⇥ Rn�2. Moreover, a simple computation proves that X̃(⌃ ⇥ Rn�2) is

a translating soliton in Rn+1 with respect to en+1

. Such translating soliton is called the

cylinder over ⌃.

Once we have proven this version of compactness lemma, we can prove the

main result of this part.

Theorem 0.4.2. Let Mn ⇢ Rn+1 be a complete, connected, properly embedded translating

soliton and C⇡/2(r) = {x 2 Rn+1 : hx, e
1

i2 + hx, eni2  r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside C⇡/2(r). Then M must coincide with a

hyperplane parallel to en+1

.

Proof. We start by proving that H
1

and H
2

are parallel.

Claim 0.4.6. The half-hyperplanes H
1

and H
2

are parallel.

Proof of the Claim ??. Otherwise, we could take a hyperplane parallel to en+1

, �, such

that it does not intersect M and such that the normal vector v to � is not perpendicular to

w
1

and w
2

. Translating � by t
0

2 R in the direction of v until we get a hyperplane �t0 :=

�+ t
0

v in such that way either �t0 and M have a first point of contact or dist (�t0 ,M) = 0

and �t0 \ M = ?. The first case is not possible by Theorem ??. Regarding the second

case, if we argue as in Lemma ??, we shall see that this case is also impossible.

Notice that we cannot have either H
1

⇢ H
2

or H
2

⇢ H
1

, because in these

cases we could take a hyperplane parallel to en+1

, ⌥, whose normal is exactly w
1

and do

not intersect M. Now we could move ⌥ into direction of w
1

until there exists t
0

> 0 such

that either ⌥ + t
0

w
1

and M have a first point of contact or {⌥+ t
0

w
1

} \ M = ? and

dist (⌥+ t
0

w
1

,M) = 0. Reasoning as in the above paragraph, we can conclude that both

situations are impossible.

Denote by ⇧
1

and ⇧
2

the hyperplanes that contain the half-hyperplanes H
1

and H
2

, respectively, notice that the previous claim implies that ⇧
1

and ⇧
2

are parallel.
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Moreover, if they are di↵erent, then the proof of Lemma ?? implies that M lies in the slab

between ⇧
1

and ⇧
2

, moreover M does touch ⇧j, unless M = ⇧j. Notice that if ⇧
1

= ⇧
2

,

then using the strategy at the end of Lemma ?? we shall conclude that M coincides with

⇧
1

= ⇧
2

. So we only need to prove that ⇧
1

= ⇧
2

. Suppose that this is not the case.

Claim 0.4.7. For all s � r fixed we have dist(M \ C(s),⇧i) > 0.

Proof of the Claim ??. Otherwise, we could find a sequence {pi = (pi
1

, . . . , pin+1

)} in M \
C(s) so that dist(pi,⇧i) = 0, so considering the sequence of hypersurfaces {Mi := M �
(0, pi

2

, . . . , pin�2

, 0, pin+1

)} by Lemma ?? we would have that Mi
⇤
* M1, after passing

to a subsequence, where M1 is a connected n-dimensional stationary integral varifold.

Using that {pi} lies in C(s) we may also suppose hpi, e1i ! a
1

and hpi, eni ! an. Now

(a
1

, 0, . . . , 0, an, 0) 2 spt M1 \⇧
1

by Proposition ??. So by Corollary ?? we would have

sptM1 = ⇧i, which is impossible because that ⇧
1

6= ⇧
2

and part of sptM1 is close to

⇧
1

and ⇧
2

.

We know that M \ C(r) = Graph[u
1

] [ Graph[u
2

], where ui : Hi ! R and it

holds

sup
H

i

(�)

|ui| < ✏ and sup
H

i

(�)

|Dui| < ✏,

where � depends on ✏ and � ! +1 as ✏ ! 0. Fix some s > r and define

✏ =
1

10
min

i
{dist{M \ C(s),⇧i}} > 0.

New take � > 0 so that

sup
H

i

(�)

|ui| < ✏ and sup
H

i

(�)

|Dui| < ✏.

With these choices, we will attain at a contradiction with ⇧
1

6= ⇧
2

as follows:

let ⌫ be the unit normal vector to ⇧
1

which point outside to the slab limited by ⇧
1

and ⇧
2

. Next call s
0

= dist(⇧
1

,⇧
2

) > 0, and notice that for this choice of s
0

we have

that M + s
0

⌫ does not intersect the slab limited by ⇧
1

and ⇧
2

, but the wing of M +

s
0

⌫ correspondents to H
2

+ s
0

⌫ asymptotic a half-hyperplane in ⇧
1

with unit inward

normal to its boundary is �w
1

, where w
1

denotes the upward unit normal to @H
1

. Define

M✏ := {x 2 M : min{dist(x,⇧
1

), dist(x,⇧
2

)} � ✏}. By what we have seen above it holds

M \ C(s) ⇢ M✏. Now consider a su�ciently large t
0

> 0 so that M✏ + s
0

⌫ + t
0

w
1

lies in

Z+

1,2� (see Lemma ??).

Define the set

A := {s 2 [0, s
0

] : (M + s⌫ + t
0

w
1

) \M = ?}.
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Figure 19 – Transversal section of the behaviour of Mi(blue) and cMi(red).

Let s
1

:= infA > 0, since before we arrive at 0 we must have

(M + s⌫ + t
0

w
1

) \M 6= ?,

because our supposition about s
0

and ✏. We have two possibilities for s
1

: either s
1

/2 A or

s
1

2 A. The first case implies that M +s
1

⌫+ t
0

w
1

and M have points of contact, which is

impossible by the maximum principle and our hypothesis over M. Consequently, it holds

s
1

2 A. Turn out that this implies

dist (M + s
1

⌫ + t
0

w
1

,M) = 0

and {M + s
1

⌫ + t
0

w
1

} \M = ?. This fact together our choice of ✏ imply that there exist

sequences {pi} inM \C(s) and {qi} in (M \C(s))+s
1

⌫+t
0

w
1

such that dist(pi, C(s)\M) >

2✏, dist(qi, C(s)\M) > 2✏, dist(pi, C(s)\M + s
1

⌫ + t
0

w
1

) > 2✏, dist(qi, C(s)\M + s
1

⌫ +

t
0

w
1

) > 2✏ and dist(pi, qi) = 0. Observe that we can assume that {hqi, e1i}, {hpi, e1i} ! a

and {hqi, eni}, {hpi, eni} ! b.

In Rn+1 \ {C(s) [ (C(s) + s
1

⌫ + t
0

w
1

)} consider the following sequences

{Mi := (M1 \ C(s))� (0, p
2

, . . . , pn�1

, 0, pn+1

)}

and

{cMi := (M2 \ C(s)) + s
1

⌫ + t
0

w
1

� (0, q
2

, . . . , qn�1

, 0, qn+1

)},

where M t (t 2 {1, 2}) indicates the wing of M which is asymptotic to Hi (see Figure

??). In particular Mi and cMi are stable hypersurface and {Mi} and {cMi} have locally

bounded area, by Proposition ?? and Proposition ??

Turn out that Theorem ?? and Proposition ?? imply, up to a subsequence, that

Mi * M1 and cMi * cM1, whereM1 and cM1 are connected stable integral varifolds, and

(a, 0, . . . , 0, b, 0) 2 spt M1 \ sptcM1. Here the connectedness can be deduced by arguing
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as in Lemma ??. On the other hand, Theorem ?? implies that reg M1 and reg cM1 are

connected subset of Rn+1 \ {C(s) [ (C(s) + s
1

⌫ + t
0

w
1

)}. Consequently, the asymptotic

behaviour of spt M1 and spt cM1 imply that reg M1 does not intersect reg cM1. Thus it

holds sptM1\sptcM1 ⇢ singM1[singcM1. In particular,Hn�1(sptM1\sptcM1) = 0, so

by Theorem ?? we have sptM1\sptcM1 = ?, which is impossible since (a, 0, . . . , 0, b, 0) 2
sptM1 \ sptcM1. Therefore, we must have ⇧

1

= ⇧
2

, and consequently M = ⇧
1

.

0.4.3.3 The minimal case

In this little subsection we are going to adapt the argument of the subsection

?? to the minimal case. Here we are considering the Euclidean metric in Rn+1.

Lemma 0.4.14. Let Mn ⇢ Rn+1 be a complete, connected, properly embedded minimal

hypersurface and C(r) := {x 2 Rn+1 : hx, e
1

i2 + hx, eni2  r2}, for r > 0. Assume that M

is C1-asymptotic to two half-hyperplanes outside C(r). Suppose that {bi}i2N is a sequence

in [e
1

, en]? and let {Mi}i2N be a sequence of minimal hypersurfaces given by Mi := M+bi.

Then there exist a connected stationary integral varifold M1 and a subsequence {Mi
k

} ⇢
{Mi} so that

(i) Mi
k

⇤
* M1 in Rn+1;

(ii) sing M1 satisfies Hn�7+�(sing M1 \ (Rn+1 \ C(r))) = 0 for all � > 0 if n � 7,

sing M1 \ (Rn+1 \ C(r)) is discrete if n = 7 and sing M1 \ (Rn+1 \ C(r)) = ? if

1  n  6;

(iii) Mi
k

! sptM1 in Rn+1 \ (C(r) [ sing M1).

Proof. The proof of this fact follows the same strategy of the proof of Lemma ??. The

unique di↵er is when we want to conclude that the are blow-up set is empty. In this case,

we shall use the barriers C(�)⇥ Rn�2 to conclude this, here C(�) indicates the catenoid

in R3 with neck �.

The proof of the next result is exactly the same proof given for Theorem ??.

Theorem 0.4.3. Let Mn ⇢ Rn+1 be a complete, connected, properly embedded minimal

hypersurface and C := {x 2 Rn+1 : hx, e
1

i2 + hx, eni2  r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside C. Then M must coincide with a hyperplane

parallel to en+1

.

Remark 0.4.4. It was proved by ? that if M2 is a minimal surface in R3 which lies

in half-space, then M2 is a plane. Their method was to use in a clever way part of the

catenoid to get a contraction, if M2 is not a plane. In fact, their proof also implies

Theorem ??, if we use part of the catenoid product with Rn�2 exactly as they did.
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0.5 CONCLUSION

In this thesis, we have obtained several results about translating solitons for

the mean curvature flow. We have divided our study into two central parts: Jenkins-

Serrin problem in M ⇥R and the characterization of the family of the tilted grim reaper

cylinders in Rn+1.

With respect to the Jenkins-Serrin problem we have divided our study into

two di↵erent cases, the horizontal one and the vertical one. About the horizontal one we

have obtained the following general result.

Theorem 0.5.1. Let ⌦ ⇢ P be an admissible domain such that for any admissible polygon

P ⇢ ⌦ we have

2↵f (P) < Lf [@P ] and 2�f (P) < Lf [@P ]. (92)

Then

(a) If {Ck} 6= ? and ck : Ck ! R are given continuous functions, then there exists an

unique Jenkins-Serrin solution of (??) with continuous boundary data ck.

(b) If {Ck} = ? and ↵f (⌦) = �f (⌦), then there exists an unique Jenkins-Serrin solution

of (??) up to translation.

Furthermore, if u is the unique Jenkins-Serrin solution of (??) with continuous boundary

data

ck : Ck ! R

and if {Ck} 6= ?, then inequalities (??) hold for all admissible polygon P in ⌦, and if

{Ck} = ? then we also have ↵f (⌦) = �f (⌦).

Unfortunately, in the vertical case we only could give the existence Jenkins-

Serrin solution type I when M has non-positive sectional curvatures and is rotationally

symmetric.

Theorem 0.5.2 (Existence of Jenkins-Serrin graph type I). Let ⌦ ⇢ M be an admissible

domain with {Bi} = ?. Given any continuous data ck : Ck ! R, there exists a Jenkins-

Serrin solution u : ⌦! R for the translating soliton equation with continuous data u|C
k

=

ck, if for any admissible polygon P we have

2↵(P) < L�(P). (93)

As we have mentioned earlier, the problem in this setting is because the vector

field @t is only conformal in M ⇥ R with the Riemannian metric gc. So when we try to

use the flux formula we always get a quantity that depends on the function, in fact, its

gradient. Maybe we could approach this problem by using the tools from the work of ?,

but it is not clear that is possible to do that. However, as we have mentioned earlier too,

? gave an example of Jenkins-Serrin solution over a rhombus without continuous data in
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Figure 20 – Nguyen’s trident translator.

R3. Nevertheless, the construction of their depends on the result of classification obtained

by ?, so it is not clear if their approaching can be done into other spaces.

About the result of characterization in Rn+1, we have proved the following

general result.

Theorem 0.5.3. Let M ,! Rn+1 be a complete, connected, properly embedded translat-

ing soliton and consider the cylinder C✓(r) := {x 2 Rn+1 : hx, e
1

i2 + hu✓, xi2  r2}, where
r > 0. Assume that M is C1-asymptotic to two half-hyperplanes outside C✓(r).

i. If ✓ 2 [0, ⇡/2), then we have one, and only one, of these two possibilities:

a. Both half-hyperplanes are contained in the same hyperplane ⇧ parallel to en+1

and M coincides with ⇧;

b. The half-hyperplanes are included in di↵erent parallel hyperplanes and M co-

incides with a vertical translation of the tilted grim reaper cylinder associated

to ✓.

ii. If ✓ = ⇡/2, then M coincides with a hyperplane parallel to en+1

.

Indeed, Theorem ?? is sharp in several senses. If we increase the number of

half-hyperplanes then there are a lot of counterexamples, this number cannot be odd

by Proposition ??. The cylinder over the pitchfork translator obtained recently by ?

is an example of a complete, connected, properly embedded translating soliton which is

C1�asymptotic to four half-hyperplanes outside a cylinder in Rn+1 (See Figure ??). In

general, the cylinder over the examples obtained by ?, ? and ? give similar examples

which are C1�asymptotic to 2k half-hyperplanes outside a cylinder, for any k � 2 (See

Figure ?? for a picture of Nguyen’s trident translator). The examples given by Nguyen

have infinity topology, however the pitchfork translator is simply connected. Hence, we

cannot increase the number of half-hyperplanes at Theorem ??. On the other hand, the

hypothesis about the asymptotic behaviour outside a cylinder is also necessary as it is
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shown by the examples obtained by ?.

Moreover, as a consequence of our approaching we also have getter the following

consequence in the minimal case.

Theorem 0.5.4. Let Mn ⇢ Rn+1 be a complete, connected, properly embedded minimal

hypersurface and C := {x 2 Rn+1 : hx, e
1

i2 + hx, eni2  r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside C. Then M must coincide with a hyperplane

parallel to en+1

.

Thus, we cannot improve Theorem ?? and Theorem ??. However, in Hn+1⇥R
we have proved the existence of an example that looks like the grim reaper cylinder in

Rn+2. Actually, this example is the authentic grim reaper cylinder with respect to a

specific vector in Hn+1 ⇥ R seen as Rn+2 with the metric

g := e2xn+1(dx2

1

+ · · ·+ dx2

n) + dx2

n+1

+ dx2

n+2

.

So we can ask if the analogy of Theorem ?? and Theorem ?? are true is this space.
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MARTÍN, Francisco; SAVAS-HALILAJ, Andreas; SMOCZYK, Knut. On the topology



134

of translating solitons of the mean curvature flow. Calc. Var. Partial Di↵erential
Equations, v. 54, n. 3, p. 2853–2882, 2015.

MASSARI, Umberto. Problema di Dirichlet per l’equazione delle superfici di curvatura
media assegnata con dato infinito. Ann. Univ. Ferrara Sez. VII Sci. Mat., v. 23,
n. 1, p. 111–141, 1977.
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