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ABSTRACT  25 

The effect of recent climatic warming is significant in the Mediterranean region, especially in 26 

high mountain areas. This study uses multiple sedimentary proxies from Río Seco Lake, a remote alpine 27 

lake in the Sierra Nevada, southeastern Spain, to reconstruct recent environmental and ecological changes 28 

in the lake and catchment. Two main climatic periods can be distinguished during the past 180 years: 29 

Period One (1820- ~1920s) characterized by colder and wetter conditions than the more recent Period 30 

Two (~1920s to the present), characterized by warmer and drier conditions. Independent proxies such as 31 

subfossil chironomid assemblages, n-alkane indices, pollen data and/or spectrally-inferred chlorophyll-a 32 

concentrations indicate a longer ice-cover period, colder water temperature and more pronounced 33 

accumulation of snow in the catchment during Period One than in Period Two, likely producing water 34 

stress for catchment plant growth because of the low rate of ice melting in Period One. As temperatures 35 

increase and precipitation decreases from the 1920s onwards, a wider development of wetland plants 36 

observed, which is associated with the longer warm season that contributed to snow and ice melting in 37 

the catchment. This continuing temperature rise and precipitation decrease over the past 60-years by ~0.24 38 

°C per decade and –0.92 mm/yr, respectively, lead to an important increase in chlorophyll-a and changes 39 

in lake biotic assemblages. Major chironomid community structure changes to warmer water taxa were 40 

recorded, resulting in a 2 ºC increase in mean July air temperature inferred by chironomids from ~1950 41 

onwards. An inferred increase in primary production for the past few decades is consistent with higher 42 

temperatures, whilst wider development of wetland plants is associated to longer warm season. The 43 

coherence between independent environmental proxies, each associated with distinct mechanistic 44 

linkages to climatic shifts, strengthens our interpretations of a recent warming trend and an intensification 45 

of summer drought in this high mountain area leading to distinct changes in the lake and its catchment. 46 

The impact of this climate change on the summits of Sierra Nevada and its influence transcends its 47 
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geographical limits because these systems provide ecosystem services to a vast area.  48 

  49 

Keywords: alpine lakes, Sierra Nevada, warming, chironomids, n-alkanes, chlorophyll-a, primary 50 

production 51 

 52 

 53 

INTRODUCTION  54 

 Over the last 150 years, the global average air temperature at the Earth's surface has increased by 55 

~0.8 ºC, while in the Northern Hemisphere the last 30-year period was the warmest period on record 56 

(IPCC 2013). High mountain areas are among the most sensitive to anthropogenic climate change and are 57 

experiencing some of the highest rates of warming due to the elevation-dependent warming (EDW), i.e. 58 

the rate of warming is amplified with altitude (Pepin and others 2015). The Mediterranean region is 59 

considered to be the largest "climate change hot-spot" in the world (Giorgi 2006). In particular, 60 

Mediterranean high mountain ecosystems have been identified as especially susceptible to global 61 

warming (Lionello, 2012; Pauli and others, 2012). This susceptibility is partially associated to the 62 

increased risk of summer drought in this region, caused by the rise in average summer air temperature 63 

and the reduction in annual rainfall (Nogués-Bravo and others, 2012). 64 

Remote areas, referred as unpopulated high altitude regions above the tree line as well as high 65 

latitude areas, are excellent sites to study climate change effects because the climate signal is not as 66 

strongly obscured by other human impacts as in more populated areas (Battarbee and others 2002) and 67 

because they are sensitive to both natural and anthropogenic factors (Pauli and others 1996; Adrian and 68 

others, 2009; Smol, 2008).High mountain ecosystems are strongly influenced by physical conditions and 69 

strongly limited by nutrients, exhibiting steep ecological gradients and narrow ecotonal boundaries. 70 

Therefore, changes in environmental conditions (e.g. temperature patterns, ice-free period duration, water 71 
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thermal regime, habitat and water availability) are expected to have great effects in them (Beniston 2003; 72 

Rühland and others 2015).  73 

 One way to assess the pressures influencing these remote sites is through the study of lake 74 

sediments, which are excellent archives of long-term environmental changes and allow environmental 75 

and ecosystem conditions to be reconstructed from limnological, ecological and geochemical lake-76 

sediment proxies (Smol 2008). Ecosystem responses to warming are complex and show many direct and 77 

indirect interactions, with numerous climate-related processes affecting to different biotic and abiotic 78 

parameters. The analysis of independent proxies allows for the tracking of processes within lakes and 79 

their catchment. Since individual proxies can have different mechanistic links that determine their 80 

response to external stressors, studies based on multiple proxies offer a holistic approach to interpreting 81 

past lake and catchment-related changes.   82 

The Sierra Nevada of southernmost Spain is a protected high-mountain area situated where alpine 83 

conditions and the influence of Mediterranean climate coexists. It is one of the most important 84 

biodiversity hotspots in Europe and plant species loss in its summits attributed to climate change in the 85 

last decades has been reported (Pauli and others 2012). This Mediterranean mountain range has shown a 86 

rapid response to the recent warming with the disappearance of permanent ice from the highest north-87 

facing cirques (Oliva and others 2016). A trend in declining mean annual rainfall (Ruiz-Sinoga and others 88 

2011) and a reduction of snow and ice cover since the 1960s (Pérez-Palazón and others 2015) has become 89 

more pronounced since the onset of the 21st century (Bonet and others 2016). In addition, climate models 90 

project an ongoing warming trend in this region for the end of the 21st century (Pérez-Luque and others 91 

2016).  92 

With this background, alpine ecosystems in the Sierra Nevada have become the focus of several 93 

paleoecological research projects over the Holocene in order to understand their post-glacial 94 
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environmental responses. Most of the wetlands and peatlands in the Sierra Nevada developed in 95 

depressions carved during glacial times. Actually, the studied site, Río Seco Lake, bears the longest 96 

sedimentary record in Sierra Nevada, registering the Pleistocene-Holocene transition (between ~11000-97 

12000 cal yr BP) (Anderson and others 2011). All the paleoenvironmental studies in Sierra Nevada alpine 98 

wetlands agree with the Holocene climatic evolution of the western Mediterranean region, with an humid 99 

early-middle Holocene that changes towards more arid conditions in the middle-late Holocene. Saharan 100 

dust inputs in the Sierra Nevada after 6000 cal yr BP affected alpine aquatic primary production (Jiménez-101 

Espejo and others 2014; García-Alix and others 2017), as well as local vegetation and landscape 102 

(Anderson and others 2011; Jiménez-Moreno and Anderson 2012; García-Alix and others 2017). Most 103 

of the available long-term studies are not available at high resolution for the last hundred years, more 104 

specifically for the period after the end of the Little Ice Age, when the current environmental conditions 105 

of Sierra Nevada were established (García-Alix and others 2017; Oliva and others 2018). Some short-106 

term surveys (~150 years) based on biological proxies, such as cladocerans, diatoms and sedimentary 107 

algal pigments (Jiménez and others 2015; Pérez-Martínez 2016; Jiménez and others 2018), have shown 108 

significant response of biotic assemblages to direct and indirect effects of temperature increases at the 109 

turn of 20th century, and especially over the past ~50 years. As yet, detailed comparisons of the communal 110 

response of chironomids to climate variability have not been conducted in the Sierra Nevada. 111 

Paleolimnological studies combining chironomids with organic geochemical indices may further our 112 

understanding of climate and landscape processes in this alpine ecosystem.  113 

This study aims to provide a high-resolution multi-proxy reconstruction of recent 114 

palaeoenvironmental conditions from an alpine Mediterranean environment of the Sierra Nevada for the 115 

first time, helping to understand past changes and constrain future environmental scenarios. The aim is to 116 

put effects of recent climate changes in the context of a record extending back over the last 180 years to 117 
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assess the extent that lake and catchment-related processes are linked to direct and indirect climate-driven 118 

changes. To accomplish this, we use a combination of stratigraphic records of sub-fossil chironomid 119 

assemblages, leaf wax biomarkers (n-alkanes), spectrally-inferred chlorophyll-a concentrations, pollen, 120 

cladocera, diatoms, organic matter content, organic matter C/N ratio and organic carbon isotopic 121 

composition (Online Appendix 3). 122 

MATERIALS AND METHODS  123 

Study site  124 

 Sierra Nevada (SE Spain, maximum altitude 3482 masl) is the highest mountain range of the 125 

Southern Europe. Sierra Nevada summits experience a high mountain Mediterranean semi-arid climate 126 

characterized by a warm and dry season (from ~June to October). The meteorological station at the 127 

summit (2507 masl) reports a mean annual temperature of 3.9 ºC and total precipitation of 693 mm, with 128 

80% occurring as snow between October and April (Worldwide Bioclimatic Classification System, 1996-129 

2018). There are ~50 small lakes of glacial origin and many alpine meadows around lakes, streams and 130 

depressions. These high-mountain meadow ecosystems represents a small area of the mountain range but 131 

have a high rate of plant endemicity and host many threatened taxa (Pérez-Luque and others 2015).132 

 Río Seco (RS) Lake (37º 03’N, 3º 20’W) is a small, low primary production and shallow lake of 133 

glacial origin located above tree line at 3020 masl in the Sierra Nevada (southern Spain) (Fig. 1). The 134 

catchment bedrock is siliceous and largely comprised of mica-schist with graphite and/or feldspar. The 135 

soil is poorly developed and does not support agriculture or forestry. The catchment area is partially 136 

covered (~15%) by alpine meadows, consisting primarily of sedges (Cyperaceae) and grasses (Poaceae). 137 

The lake has no clearly differentiated littoral zone, but its shoreline is covered by bryophytes. With the 138 

exception of the meadows, most of the catchment vegetation consists of scarce xerophytic shrubland (see 139 

Anderson and others 2011).  140 
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The lake has diffuse inflows that provide water to the basin, and a small outlet. The inflow and 141 

outflow of water can disappear as the ice-free season progresses. The lake is ice covered from around 142 

October-November until June-July with a large interannual variability. Further details of physicochemical 143 

and biological features are shown in Online Appendix 1. During the ice-free period, Secchi disk visibility 144 

exceeds the water depth, the lake is not thermally stratified, and the maximum temperature is 16–18 ºC. 145 

It is a fishless lake, with low plankton diversity. Among chironomids, the species Psectrocladius 146 

limbatellus and Micropsectra radialis (as M. coracina) have been recorded in RS Lake (Laville and 147 

Vílchez-Quero 1986).  148 

 There are a few signs of significant human activity in the area. RS Lake is relatively remote, with 149 

local human activity currently limited to infrequent sheep herding around surrounding meadows during 150 

summer months. A dirt road, constructed between 1964 and 1965 and lying upgradient from RS Lake, 151 

experiences only foot traffic since the establishment of the Sierra Nevada National Park in 1999. A 152 

mountain hut was situated close to the shoreline and operated for three decades (1967-1997). The 153 

demolition of the hut at 1997 produced a large amount of inorganic material, which clouded the lake and 154 

had a major effect on biota and geochemical variables (Jiménez and others 2015). 155 

Sediment sampling, analyses and dating 156 

 A sediment core was collected from the deepest part of the lake in September 2008 using a slide-157 

hammer gravity corer (Aquatic Research Instruments, Hope, Idaho, USA) with an inner core-tube 158 

diameter of 6.8 cm. The core (16 cm long), was extracted in a methacrylate cylinder and immediately 159 

wrapped in a dark bag to keep it protected from the light, sectioned into 0.5 cm slices using an extruder, 160 

and sealed in sterile Whirlpak® bags, which were stored and transported in a cold box to the laboratory. 161 

Subsamples were collected at each interval in the laboratory and kept in a cold (4 ºC) and dark room until 162 

analysis. The sediment was dated by gamma (210Pb, 137Cs, and 226Ra) and alpha spectroscopy (210Pb in 163 
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deepest part of core) (Eakins and Morrison 1978) establishing a chronology for the past ~180 years. The 164 

dating and sedimentation rate were calculated by using the constant flux: constant sedimentation (cf:cs) 165 

model (Appleby and Oldfield 1983). The core was analyzed at the Center for Research, Innovation and 166 

Technology (CITIUS) of the University of Sevilla, Spain.   167 

Instrumental climate data  168 

 We use MAAT Madrid (mean annual air temperature series from Madrid station) and AP San 169 

Fernando (annual precipitation series from San Fernando station) as representative of air temperature and 170 

precipitation tendencies of the larger region around the Sierra Nevada during the last 170 years throughout 171 

the analyses. Geographical distance between Madrid and San Fernando climate stations from RS Lake 172 

are 376 and 262 km, respectively, while altitude differences are 2356 and 2992 m, respectively (Online 173 

Appendix 2).  174 

Sedimentary proxy record   175 

Sedimentary chlorophyll-a was inferred by visible reflectance spectroscopy using a FOSS 176 

NIRSystems Model 6500 series Rapid Content Analyzer (Tidestone Technologies, Inc.) to measure 177 

spectral reflectance of sediments that had been freeze-dried and sieved through a 125 μm-mesh, following 178 

the methods described by Michelutti and others (2005). The chlorophyll-a concentration includes native 179 

chlorophyll-a, as well as all chlorophyll isomers and its major derivatives (pheophytin a and 180 

pheophorbide a), and therefore accounts for the major diagenetic products (Michelutti and Smol 2016). 181 

 Loss on ignition (LOI) was measured to calculate the organic matter and carbonate content in the 182 

sediments (Heiri and others 2001). LOI was assessed sequentially on all core intervals (every 0.5 cm) 183 

using a muffle furnace. Samples were dried in an oven at 105 ºC for 24 h and weighed. The content of 184 

the organic and carbonate matter was analysed by incinerating the samples at 550 ºC for 4 h and at 900 185 
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ºC for 2 h, respectively (see detailed methods in Dean 1974 and Heiri and others 2001). 186 

 Total and inorganic carbon, and nitrogen content were analyzed with a CARLO ERBA EA 1108 187 

CHNSO Elemental Analyzer system. The organic fraction was determined as the difference between the 188 

total and the inorganic carbon fraction (Meyers and Teranes 2001). The carbon/nitrogen (C/N) ratio was 189 

calculated from the mass data and expressed as atomic ratio.  190 

Prior to the carbon isotope analysis from the bulk sediment organic matter (δ13Corg), 1 g of freeze-191 

dried sediment was extracted by drying the samples (50 ºC) for 24h. The carbonate fraction was then 192 

removed by addition of 10% HCl to the solution. The C isotopic composition (13C/12C) of acid-treated 193 

samples was analyzed using a mass multicollector spectrometer (Isoprime; GV Instruments) equipped 194 

with a EuroVector elemental analyzer (mod. Euro EA 3000) and continuous flow inlet. The results are 195 

expressed as δ13Corg in the conventional delta (δ) notation versus Vienna PeeDee Belemnite (V-PDB). 196 

Reproducibility measured for working standards during each run was better than ± 0.15 ‰.  197 

The total lipid extract (TLE) from 32 freeze-dried sediment samples was extracted with a Thermo 198 

Scientific™ Dionex™ ASE™ 350 Accelerated Solvent Extractor system using 9:1 DCM:methanol. The 199 

obtained TLE was separated in neutral and acid fractions by aminopropyl-silica gel chromatography using 200 

1:1 DCM:isopropanol and ether with 4% acetic acid, respectively. Afterwards, the n-alkanes were 201 

obtained by eluting the neutral fraction with hexane through a 230-400 mesh/35-70 micron silica-gel 202 

chromatographic column and analyzed using a GC-FID (Shimadzu 2010) and a GC-MS (Shimadzu 203 

QP2010-Plus Mass Spectrometer interfaced with a Shimadzu 2010 GC). To check the reproducibility of 204 

the measurements and to quantify the n-alkane content, a mixture of n-alkanes (C16, C18, C19, C20, C23, 205 

C25, C26, C28, C30, C32, and C37) was measured every five samples. The measurement error was lower than 206 

1.5%.  207 

For fossil pollen, a modified Faegri and Iversen (1989) procedure was followed using 1 cm3 of 208 
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sediment. Pre-treatment included (NaPO3)6 to deflocculate clays and the addition of Lycopodium spores 209 

for calculation of pollen concentration. Sediments were suspended in Na4P2O7 and sieved, then treated 210 

with HCl, HF and acetolysis solution. Samples were stained and suspended in silicone oil and identified 211 

at 400-1,000x to their lowest taxonomic level – mostly genus, sometimes family or other grouping – using 212 

a light microscope. For more details on the methodology see Anderson and others (2011).  213 

 For chironomid analysis, samples (~0.3 g dry weight) for each analysed interval of sediment were 214 

immersed in 10% KOH for 2-3 hours and subsequently sieved through a 100 µm fraction. The head 215 

capsules were sorted from other sieve residue under a dissection microscope. Chironomids were prepared 216 

in Eurapal mounting medium and identified at 100-400x magnification with a compound microscope. 217 

The minimum count threshold was 40 (range 43-83.5), except for the uppermost sample, which only 218 

consisted of 32 head capsules. Taxonomy mainly followed Oliver and Roussel (1983) and Brooks and 219 

others (2007). Comparatively, fewer intervals were counted for chironomids (10 samples) than for the 220 

other proxies (32 samples). Chironomid samples were analyzed every 2 cm from 0 to 16 cm.  221 

Cladoceran and diatom assemblages from the sediment core of RS Lake were previously analyzed 222 

and published in Pérez-Martínez (2016) and Jiménez and others (2018). In this study we use the PCA 223 

axis 1 sample scores of both assemblages to compare with the rest of the proxies.  224 

Interpretation of selected sedimentary proxies in RS Lake can be found in Online Appendix 3.   225 

Data analyses 226 

 Principal component analysis (PCA) was used to summarize the dominant pattern of assemblage 227 

variability in chironomid, cladocera and diatom assemblages, as detrended correspondence analysis 228 

(DCA) indicated relatively short lengths of the first two compositional gradients (1.43 and 0.73 standard 229 

deviation units on the DCA axis 1 and 2, respectively). Chironomid relative abundances were square root 230 
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transformed prior to analyses to equalize variance among taxa. Ordinations were conducted using the 231 

vegan package (Oksanen and others 2015) for the R software environment (R Development Core Team, 232 

2015). The annually resolved climate series (MAAT Madrid and AP San Fernando) were averaged over 233 

the period of accumulation for each dated interval, thereby integrating the instrumental data with the 234 

paleolimnological data (Sorvari and others 2002). The relationships between sedimentary proxies 235 

(downcore PCA axis 1 sample scores, organic geochemical proxies and sedimentary chlorophyll-a 236 

record) and changes in climatic series (MAAT Madrid and AP San Fernando) were then examined. 237 

STATISTICA v.7 (Statsoft) software was used to test the data normality and calculate Pearson 238 

correlations. The Kolmogorov-Smirnov test with Lilliefor's correction was performed to determine the 239 

normality of the data distribution. Pearson correlation coefficients were used to provide an indication of 240 

the strength of the relationships between parameters. For the sedimentary chlorophyll-a record, the 241 

uppermost sedimentary interval (0-0.5 cm) was excluded because it could not be reliably identified as 242 

exclusively representing sedimentary chlorophyll-a due to the presence of algal mat material. Lake 243 

sediment records can be affected by bioturbation and other factors which can to some extent smooth out 244 

short-term variability (e.g. between year variability). We therefore do not report p values for correlations 245 

between lake sediment records as well as between lake sediment records and instrumental data series, 246 

since statistical testing of correlation coefficients assumes statistical independence of the data points. 247 

However, all of the discussed relationships would have been statistically significant if tested using 248 

standard tests for statistical significance of p values. 249 

A stratigraphically constrained cluster analysis was carried out in the R software environment (R 250 

Development Core Team 2015), using the Rioja package (Juggins, 2012) to identify the periods with 251 

homogeneous response of the different proxies. Stratigraphic zonation was done by a cluster analysis with 252 

a constrained incremental sum of squares (coniss method), using the chclust() function (method=‘coniss’) 253 
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of the Rioja package. The cluster analysis was applied using the combination of all biogeochemical 254 

proxies. To characterize the timing of largest change in MAAT Madrid and AP San Fernando series data, 255 

breakpoint analyses using a two-segment piecewise linear regression were applied to each series to 256 

identify where the slope changes (Toms and Lesperance 2003). 257 

   Zonation of the stratigraphic profiles of chironomid data was performed by a cluster analysis with 258 

a constrained incremental sum of squares (CONISS), square root transformation of data and chord 259 

distance as the dissimilarity coefficient, using Tiliagraph View (TGView) version 2.02 (Grimm 2004) 260 

and determining the number of significant zones by means of the broken stick model (Bennett 1996). 261 

Chironomid-inferred mean July air temperature (MJAT) reconstruction was performed using the program 262 

C2 (Juggins 2007) based on a 274-lake chironomid-temperature calibration dataset from Switzerland and 263 

Norway (Heiri and others 2011) and a temperature inference model (transfer function) developed from 264 

these data. The calibration dataset covers a mean July air temperature gradient from 4 to 18.4°C and a 265 

wide range of arctic, alpine, subalpine and temperate lowland lakes. The applied transfer function was 266 

based on weighted averaging-partial least squares regression (WA-PLS; ter Braak and Juggins 1993; ter 267 

Braak and others 1993). The model featured a cross-validated r2 of 0.84 and a root mean square error of 268 

prediction (RMSEP) of 1.55°C. RMSEP, r2, and sample-specific errors of prediction (eSEPs) were 269 

calculated based on 9999 bootstrapping cycles in C2. Chironomid assemblage percentage data were 270 

square root transformed before calculation of WA-PLS and distance metrics. To assess the trajectory of 271 

RS chironomid assemblages relative to summer temperature, we compare the RS data to mountain lakes 272 

in the Swiss Alps, see details in Online Appendix 4 (Fig S2).  273 

RESULTS  274 

Chronology 275 

 The 210Pb dating of the sediment core from RS Lake shows sedimentation rates of 0.9-1.1 mm 276 
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year-1 from 0 to 6 cm depth (from ca. 2008 to 1948) and 0.7-0.8 mm year-1 from 6 cm to 15.5 cm depth 277 

(from ca. 1948 to 1821) (Jiménez and others 2018). For further details see Online Appendix 5. 278 

Instrumental climate data  279 

Over the 143-year record, mean annual air temperature (MAAT) from the Madrid climate station 280 

indicates a warming trend beginning at the turn of the 20th century (Fig. 2 and Fig. S1 in Online Appendix 281 

2). Total annual precipitation (AP) from the San Fernando climate station indicates that over the 172-year 282 

record, the second half of the 19th century was wet, reaching a maximum around 1860-70 and then 283 

decreasing from the late 19th century to the present, interrupted only by positive anomalies in the 1960s 284 

(Fig. 2 and Fig. S1 in Online Appendix 2). The last 40 years of the AP San Fernando record exhibit 285 

persistent low precipitation values that were particularly low from 1985-1995.  286 

According to main shifts in climatic data, consistent with noticeable changes in direction, 287 

magnitude and timing in the major paleoenvironmental proxies in the present study, two distinct climatic 288 

periods are indicated for the climate data: Period One from 1820 to ~1920s, a period of relatively high 289 

precipitation and low and decreasing temperature; and Period Two from ~1920s to the present, a warmer 290 

and drier period, particularly since the mid-70s (Fig. 2).  291 

Sedimentary proxy record   292 

 A similar trend is observed in % organic matter content (estimated by Loss on ignition; LOI550) 293 

and sedimentary chlorophyll-a through the entire profile (Pearson r=0.52, n=32). The two variables show 294 

a progressive decrease from 1820 to ~1920s followed by an increase to the present, except for the abrupt 295 

decrease of LOI550 in the 1990s (Fig. 2). The trend of sedimentary chlorophyll-a is parallel to MAAT 296 

Madrid for the entire record (Pearson r=0.76, n=24), and also similar between LOI550 and MAAT Madrid 297 

until the late 1980s (Pearson r=0.46, n=20). The abrupt decrease of LOI550 values from ~1990s is 298 
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responsible for the decoupling of trends between LOI550 and sedimentary chlorophyll-a record and MAAT 299 

Madrid, and is associated with the demolition of the mountain hut in 1998, altering sediment composition 300 

as is also apparent in the 210Pb activity profile (Jiménez and others 2015) (Fig. S3; Online Appendix 5). 301 

 From 1860 to the ~1920s, the C/N ratio shows the lowest values of the entire period (11.7±2.1, 302 

mean±SD), coincident with high values of AP San Fernando and low values of MAAT Madrid, while 303 

higher values are recorded from ~1920s to the present (15.6±2.6) coincident with a warmer and drier 304 

period. C/N ratio and δ13Corg show opposite tendencies for almost all the record. C/N peaks in the mid-305 

19th century (1860-1870s) and ~1920s, associated with δ13Corg decreases, except for the last four decades 306 

(from mid-1970s to the present), a period in which the C/N ratio shows the highest persistent values and 307 

δ13Corg exhibits a decreasing trend after maximum values (Fig. 2). 308 

 The RS Lake record shows a predominance of n-alkanes with odd carbon chains. The CPI ranges 309 

from 3.6 to 4.4 and Paq values are higher than 0.28 for the whole period (Fig. 2). From 1820 to ~1920, Paq 310 

shows the lowest and very homogeneous (∼0.3) values, while ACL shows the highest values of the record. 311 

ACL values show an opposite trend than Paq values (Pearson r=-0.97, n=32) for the entire record. The 312 

main difference between ACL and Paq values is observed during the first period, between ~1850 and 313 

~1880, with a small increase (0.32) of Paq in the 1860s, agreeing with decreasing ACL values during this 314 

period (~1850-1880) and coincident with the highest persistent precipitation. CPI and Paq do not show 315 

any correspondence before ~1915, but from ~1920s to the present CPI and Paq have an opposite trend. 316 

The most important change in the n-alkane record is indicated by the maximum Paq value (∼0.48) and 317 

minimum ACL values (~28.30) recorded at ~1963, agreeing with increase in the AP San Fernando record, 318 

followed by a Paq decrease and ACL increase after ~1970s (Fig. 2). This Paq decrease is coeval with the 319 

drop of δ13Corg and increase of the C/N ratio of bulk sediment around 1978. Just after ~1988, the increase 320 

in CPI and ACL values, as well as the decrease in Paq agrees with the MAAT Madrid increase and AP 321 
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San Fernando decrease which reflects a severe and long drought period from the late 1980s to mid-1990 322 

(Fig. 2). 323 

In the pollen assemblages, the Cyperaceae/Poaceae (C/P) ratio shows low values (0.17±0.04) 324 

from 1820 to 1920s coincident with low values of Paq and MAAT Madrid, together with high values of 325 

AP San Fernando. Higher values (0.27±0.1) are recorded from ~1920s to the present, agreeing with 326 

MAAT Madrid increase and AP San Fernando decrease. A similar trend is observed between C/P ratio 327 

and Paq (Pearson r=0.41, n=31). In addition, the appearance of the green alga Pediastrum from ca. 1950 328 

onwards is noticeable (Fig 2). 329 

 Major changes in aquatic organism groups are observed for the last 60 years preceded by a period 330 

of minor changes. A total number of 7 morphotypes of chironomids were identified. The taxa 331 

Micropsectra radialis-type and Psectrocladius sordidellus-type are abundant throughout the sedimentary 332 

intervals (Fig. 3). Based on cluster analysis, the most significant change is observed around 1950s and 333 

consists in the new arrival of Chironomus plumosus-type, Heterotrissocladius marcidus-type and 334 

Micropsectra insignilobus-type (Fig. 3). One major significant zone boundary in the chironomid record 335 

~1940-1950 was identified based on comparison with the broken-stick model, coincident with a major 336 

change of PCA axis 1 sample scores for chironomids (which explain 51% of the variance). The 337 

chironomid-based MJAT reconstruction suggests a trend of increasing MJAT from ~1940-1950s 338 

onwards, presumably driven by increasing summer water temperature in RS from this period onwards 339 

(Fig. 3 and 4, and Fig. S2 in Online Appendix 4).  340 

Cladoceran PCA axis 1 sample scores identified the greatest change at ~1990, while a 341 

significantly shift in diatom PCA axis 1 sample scores is observed from ~1960 onwards (Fig. 4). These 342 

changes consisted in changes in species relative abundance but also in appearance and disappearance of 343 

certain species. The taxon-specific cladoceran and diatom changes (not shown) started at the turn of the 344 
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20th century (~1920s), but became especially striking in the last five decades (Pérez-Martínez and others 345 

2012; Jiménez and others 2018). The first PCA axis explained 38% (cladocera) and 26% (diatoms) of the 346 

variance of the biological assemblage data. Cladoceran and diatom PCA axis 1 sample scores are 347 

consistent with major changes observed for MAAT Madrid (increasing trend) and AP San Fernando 348 

(decreasing trend).  349 

Overall, major changes for geochemical proxies started after the ~1920s consistent with the rise 350 

in temperature and preceded by a period of minor changes; however the main changes in biological 351 

proxies seem to be delayed, and their response intensified after the ~1940-1950s onwards, consistent with 352 

recent intensification of warming.  353 

DISCUSSION  354 

The combination of analysis of C/N ratio, δ13Corg values and n-alkanes indices from the sediments 355 

from the RS Lake core provides an opportunity to identify the main sources of organic matter in the study 356 

area. The values of C/N ratio (9.5 to 19.7), δ13Corg (-23.63 to -20.57 ‰) and CPI (~3.6 to 4.5) indicate the 357 

deposition of a mixed source of algal-derived and terrestrial organic matter for the entire record. This is 358 

expected for this system due to the small lake size (0.42 ha) and catchment area (9.9 ha), together with 359 

its partial coverage (~15%) by alpine meadows. It is worth noting that the mixed sources that led to the 360 

observed δ13Corg values in RS Lake are also in accordance with a water-column study of this system 361 

(Pulido-Villena and others 2005), and with long-term and modern surveys of plants and lacustrine algae 362 

in other alpine lakes of the Sierra Nevada (García-Alix and others 2012; Jiménez-Moreno and others 363 

2013). 364 

Three factors suggest a predominance of wet environments in the catchment basin, in agreement 365 

with the previously discussed C/N ratio values. These include the low CPI values (<4.5), which show a 366 

dominance of n-alkanes with odd carbon chains indicating vascular plant input (Bush and McInerney 367 
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2013) and algal contributions (Han and Calvin 1969) and the Paq values, which exceed 0.28 pointing to 368 

an emergent aquatic plant predominance (Ficken and others 2000) for the entire record. In RS Lake there 369 

are no emergent aquatic plants, but this Paq value likely indicates bryophyte and others semi-aquatic 370 

vegetation, that formed the alpine meadows and surrounded the catchment (García-Alix and others 2017). 371 

However, variations in the different proxies indicate differences in the degree of wet conditions in the RS 372 

catchment basin over the study period (discussed below).  373 

Related to biological proxies, the observed low taxonomic richness in chironomids is consistent 374 

with an oligotrophic alpine lake, and is similar to conditions found in other alpine lakes (Heiri and others 375 

2011). The chironomid assemblages were heavily dominated by the two taxa:  Psectrocladius sordidellus-376 

type (~77%), which often dominates in alpine lakes (Heiri and Lotter 2010) and Micropsectra radialis 377 

(~15%), which in small lakes is restricted to cold arctic and alpine habitats (Heiri and others 2011). 378 

However, the arrival of chironomid groups and the most marked changes in chironomid community 379 

composition are observed for the last 60 years, coincident with the main observed changes in cladoceran 380 

and diatom assemblages. The similar timing in changes indicates a parallel response of the lacustrine 381 

biota to the effects related to climate change. Most of the chironomid taxa are typical for cold, nutrient 382 

poor and oxygen rich environments (Lotter and others 1998; Heiri and others 2011). However, 383 

Chironomus plumosus-type is typically found in more nutrient rich, warmer and oxygen poor 384 

environments (Lotter and others 1998; Heiri and others 2011). The appearance of this taxon agrees with 385 

higher nutrient availability and higher oxygen depletion (e.g. in the sediments) in RS Lake from ~1960 386 

onwards.  387 

The general environmental trends deduced from RS Lake organic proxies follow the long-term 388 

late Holocene changes described in the same site and in neighbor alpine wetlands (Anderson and others 389 

2011; Jiménez-Moreno and Anderson 2012; Jiménez-Moreno and others 2013; García-Alix and others 390 
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2017). The Period One, from 1820 to the 1920s, with colder and wetter conditions, registers the 391 

environmental response to the warming after the LIA conditions, and Period Two, from 1920s to the 392 

present, with drier and warmer conditions, records the response of RS Lake to the recent and ongoing 393 

climate change. The identification of these two different environmental periods agrees with an abrupt 394 

environmental change registered in other alpine peatlands in the region (Borreguil de la Virgen and 395 

Borreguil de la Caldera) that occurred at ~1920s (García-Alix and others, 2017). Furthermore, high-396 

resolution cladoceran records from 6 lakes of the Sierra Nevada region, including RS Lake (Jiménez and 397 

others 2018), indicate that the onset cladoceran changes also occurred at the turn of the 20th century and 398 

intensified in the past 50 years. All these results indicate a regional-scale response to climate change. 399 

Period One: period between 1820 and ~1920s  400 

 The paleolimnological changes observed in Period One may have been promoted by the seasonal 401 

character of the Mediterranean precipitation, mainly concentrated during winter, as well as a longer cold 402 

season in southern Iberia coeval with lower temperature than experienced during Period Two. Hence, 403 

because precipitation occurs mainly during the cold winter season, the combined effects of relatively high 404 

precipitation and decreasing air temperatures (Fig. S1; Online Appendix 2) during the Period One 405 

probably led to later seasonal lake ice-off period, colder water temperatures and larger accumulation of 406 

snow in the catchment basin, and as a consequence, the reduction of aquatic and/or terrestrial primary 407 

production, as can be observed by the gradual decrease of LOI550 and sedimentary chlorophyll-a in 408 

parallel with MAAT Madrid. However, despite the overall decrease of aquatic primary production during 409 

Period One, the C/N ratio indicates a higher contribution of algae to the bulk organic matter than in the 410 

most recent climatic period, which agrees with the homogeneous Paq values (~0.3), which indicate there 411 

is a predominance of emergent aquatic plants (Ficken and others 2000). This is probably the consequence 412 

of a reduced catchment surface and growing season for wetland plants (lower C/N values) and a reduced 413 
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water availability (lower Paq values in Period One than in Period Two). This may have been caused by 414 

delayed ice and snow melting in the catchment basin and higher snow accumulation by the precipitation 415 

increase and the presumably low temperatures. Besides, any shortening of the ice-free period in the 416 

catchment may also hinder input of terrestrial organic matter into the lake.  417 

 The highest ACL and lowest C/P ratio values of the entire record also indicate less water 418 

availability (Fig. 2). The main difference in Period One between Paq and ACL values is characterized by 419 

a small increase (0.32) of Paq in the decade of 1860, concomitant with the ACL decrease (average of 420 

28.93) from 1850 to 1880, indicating a preponderance of n-alkanes with lower chain length. This response 421 

of Paq and ACL can be read as indicating relatively wetter environment compared to the rest of Period 422 

One, likely induced by the combination of persistent high precipitation coeval with milder temperature.  423 

This scenario (cold and wet conditions) presumably fostered the maintenance of glacial and other 424 

perennial ice banks in the highest north-facing cirque of Sierra Nevada during the final periods of the 425 

Little Ice Age (LIA) (Oliva and Gómez-Ortiz 2012), which began to disappear around the ~1920s 426 

(Grunewald and Scheithauer 2010). Colder water conditions would explain the chironomid community 427 

composition in Period One (Fig. 3), with a high abundance of cold-tolerant taxa such as M. radialis-type 428 

and P. sordidellus-type, a very low diversity and the absence of warm-water chironomids. This is also 429 

supported by the dominance of the cladoceran species Chydorus sphaericus, which has been mainly 430 

associated with long ice cover period in the Sierra Nevada (Jiménez and others 2018). PCA axis 1 sample 431 

scores of cladocerans, diatoms and chironomids show minor changes during this period (Fig. 4).  432 

Period Two: period from ~1920s to the present 433 

Warmer and drier climate conditions during Period Two produced substantial changes in 434 

biological and organic geochemical proxies. The increasing values of the sedimentary chlorophyll-a and 435 

LOI550 may indicate a progressive increase of aquatic and terrestrial primary production probably 436 
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associated with longer growing seasons and higher water temperatures with the onset of the 20th century 437 

rise in air temperature (Fig. 2). An increase in aquatic primary production in remote lakes by warming 438 

has been reported (Adrian and others 2009). Warming may cause a longer ice-free season which increases 439 

light availability and mean water temperature, while also increasing water lake residence time through 440 

reduced inflows and increasing evaporation but enhanced melting of snow and weathering (increasing 441 

lake solute inputs; Preston and others 2016). These processes may enhance biological production in lakes, 442 

and a longer growing season could also increase annual biomass accumulation (Fee and others 1992) in 443 

lakes and catchment. This effect may have been enhanced by atmospheric deposition of Saharan dust at 444 

these low-productive lakes. For example, the delivery of atmospheric P-rich Saharan dust during the last 445 

50 years may partially explain the trends in the sedimentary chlorophyll-a record in RS Lake, a 446 

phenomenon that has been demonstrated in Sierra Nevada lakes (Morales-Baquero and others 2006; 447 

Jiménez and others 2018). Hence, it is likely that the combination of warmer temperatures, longer growing 448 

seasons and increased delivery of P-laden dust has resulted in notable increases in chlorophyll-a in RS 449 

Lake. These observations are consistent with the appearance of the green alga Pediastrum from ~1950 450 

onwards and the chironomid Chironomus plumosus-type from ~1960 onwards, also agreeing with an 451 

increase of primary production (Lotter and others 1998; Weckström and others 2010).  452 

The previous findings are consistent with the higher C/N values from the entire period indicating 453 

a higher contribution of vascular land plants to bulk organic matter. A longer warm season with increased 454 

temperatures probably enhanced snow and ice melting in the catchment basin and, as a consequence, the 455 

catchment surface and growing season for wetland plants. This is supported by the increasing values of 456 

Paq after ~1921, reaching 0.38 at ~1928 simultaneous to the decreasing values of ACL. The maximum Paq 457 

value (~0.48) and minimum ACL values (~28.30) are recorded by ~1963, agreeing with recorded periods 458 

of elevated precipitation (Fig. 2). Unlike conditions with higher precipitation and colder temperatures 459 
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around ~1850 and the 1880s, climate during the 1960s shows high precipitation with higher temperatures, 460 

thereby enhancing the melting season and providing more net water availability. This combination of a 461 

longer growing season and greater water availability triggered the development of larger wetland areas, 462 

as shown by higher C/P ratio values. This is in concordance with Pérez-Palazón and others (2015) 463 

indicating a decreasing extent and persistence of the ice and snow covered area over the Sierra Nevada 464 

from the 1960s onwards.  465 

Warmer conditions are likely responsible for the transition in cladocera, diatoms and chironomid 466 

assemblages from the 1940-1950s onwards, following the shifts in Paq and ACL values after the 1920s. 467 

Assemblage shifts as a consequence of the rise of temperature in the first part of the 20th century have 468 

been observed in many others remote areas (Sorvari and others 2002; Rühland and others 2015). Over 469 

the last ~60 years the most notable changes in lacustrine biota are shown by the trend of PCA axis 1 470 

scores coincident with major shift in MAAT Madrid and AP San Fernando (Fig. 4). Lacustrine biota 471 

apparently exhibited a delayed response to changes in air temperatures and precipitation, and significant 472 

responses to climate change are observed when the climatic shift intensified for the last ~60 years. 473 

Temperature is particularly important in determining shifts in chironomid assemblage 474 

composition (Heiri and others 2003; Bigler and others 2006). Cluster and PCA analyses indicate that the 475 

most relevant changes were characterized by the reduction of cold-tolerant taxa P. sordidellus-type and 476 

M. radialis-type and the increase of taxa better adapted to warmer condition such as C. plumosus-type, 477 

H. marcidus-type, M. insignilobus-type in the uppermost section of the sediment core. The taxon C. 478 

plumosus-type includes a number of species, and is generally considered to be thermophilic and indicative 479 

of relatively warm lakes (Brooks and Heiri 2013), although it can also occur in lakes in the subalpine 480 

vegetation belt at low abundances (Heiri and Lotter 2010). Hence, the new arrival and increase of C. 481 

plumosus-type in RS Lake is probably, at least partially, related to water temperature rise and possibly 482 
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promoted by the increase in in-lake nutrient availability discussed above. This represents the first 483 

occurrence of the genus Chironomus in alpine lakes of Sierra Nevada (Laville and Vílchez-Quero 1986; 484 

Real and others 2000), yet it does occur in subalpine lakes of Central Europe (Heiri and Lotter 2010). 485 

Similarly, M. insignilobus-type has its maximum abundances at lower altitudes in the Alps (Bigler and 486 

others 2006). Overall, the timing of appearance and major contribution to change of these two taxa in RS 487 

Lake suggest warmer summer water temperature, which is also reflected in a warming of chironomid-488 

inferred mean July air temperatures by about 2 ºC from ~1950s onwards. This warming in climatic 489 

conditions is consistent with changes in cladoceran and diatom community composition at RS Lake 490 

(Pérez-Martínez and others 2012; Jiménez and others 2018). The similar timing and direction of changes 491 

in chironomid community composition as observed for cladoceran and diatom assemblages, coincident 492 

with changes in other Sierra Nevada lakes (Jiménez and others 2018), corroborate the hypothesis of 493 

climate-driven shifts in the ecological status of distinct trophic levels in these alpine lakes. These changes 494 

are also in good agreement with changes in aquatic community structure in others remote ecosystems 495 

(Rühland and others 2014), coinciding with recent warming.  496 

Maximum values of C/N ratio and decreasing δ13Corg values from mid-1970s to the end of the 80s 497 

are interpreted as a major vascular land plant contribution to bulk organic matter. There was a decrease 498 

in this time in the Paq values (simultaneous with ACL values increase), and therefore apparently a decrease 499 

in the water availability in the catchment, agreeing with unprecedented high temperatures and a 500 

precipitation decrease. This suggests lesser water availability induced by greater evaporation rates, 501 

enhanced by higher frequency of intense summer droughts as a consequence of intensified warming in 502 

the Mediterranean area (Giorgi 2006). Even though this warming promoted a longer growing season and 503 

increased lake primary production (more Pediastrum, higher sedimentary chlorophyll-a and LOI550), the 504 

C/N ratio suggests a higher vascular land plant contribution to the bulk organic matter. 505 
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After ~1988, CPI and ACL values sharply increase and Paq decreases, which agrees with the 506 

extreme droughts of the early 1990s in the Mediterranean region, and is in concordance with the 507 

temperature rise and precipitation decrease. It suggest less water availability in the catchment likely 508 

affecting those meadow plant species with highest water requirements. These observations, together with 509 

the decrease of the C/N ratio values, point towards a relative decrease in terrestrial vegetation production 510 

in the catchment, probably related to the regional drought. By contrast, these conditions of increasing 511 

temperatures and less water availability in the catchment likely enhanced biological production in the 512 

lake by different processes such as longer ice-free season, higher mean water temperature and higher 513 

solute concentrations. Cladocera results strongly support this findings considering that the main shift 514 

within the sedimentary cladoceran assemblages occurred at the 90s in RS Lake (Jiménez and others 2018) 515 

and is coincident with the severe periods of drought during the late-1980s and 1990s in Southern Spain 516 

(Udelhoven and others 2009).   517 

This short-core multiproxy study provides a valuable high-resolution record of 518 

paleoenvironmental and paleolimnological change for the last ~180 years. The climate-driven changes 519 

from Period One to Period Two – shorter duration of ice-cover period, higher summer water temperature 520 

and greater water availability for catchment plant growth – are responsible for the primary changes in 521 

lake and catchment history between both distinguished periods. From ~1970 forward the steep rising in 522 

temperature and decrease in precipitation likely lead to a drier ambient in the catchment, with less water 523 

availability for plant growth and increasing drought as the summer advances. Pauli and others (2012) 524 

evidence that flora species richness has declined on the southern European summits (including Sierra 525 

Nevada) within the 2000s but increased in European boreal-temperate mountain regions. Differences are 526 

attributed to the decrease of the availability of water in the European south. In this study, we show a 527 

tendency to increased aridity in the Sierra Nevada, starting at the turn of the 20th century and intensified 528 
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from the 70s onward. Consequences for the vegetation are serious in terms of species loss considering 529 

that the flora of Sierra Nevada summits comprises a sizable percentage of endemic species in Europe, 530 

implying therefore an important loss of endemic European species. 531 

Consequences of the changes observed in climate for lakes are also pronounced. We show an 532 

increase in chlorophyll-a and changes in biota assemblages from the mid-20th century onward, mainly 533 

governed by different processes as longer growing season, increasing water temperature and reduced 534 

water level because of higher evaporation rates and reduced water inflow. All these processes, and the 535 

additional P enrichment due to Saharan dust affecting this region, may lead to further trophic state changes 536 

of the Sierra Nevada lakes. An increase in algal biomass and the appearance and disappearance of lake 537 

species signify deep changes in the ecosystem functioning as both primary producer biomass and lake 538 

trophic web are major components of the ecosystem structure. The similar timing and direction of changes 539 

in chironomid community composition as observed for cladoceran and diatom assemblages, coincident 540 

with changes in other Sierra Nevada lakes (Jiménez and others 2018), corroborate the hypothesis of 541 

climate-driven shifts in the ecological status of distinct trophic levels in these alpine lakes. Hence, it is 542 

likely the ecological thresholds for biotic communities were crossed after the intensification of 543 

temperature and precipitation changes since the last decades. 544 

If, as predicted by climate models, the rising of temperature and decrease in rainfall continue in 545 

the Sierra Nevada region and drought processes observed in this study intensify, physical and biological 546 

transformations can be expected in the catchment ecosystem of RS Lake and in other glacial valleys of 547 

Sierra Nevada, even modifying the Sierra Nevada summits’ image of glacier valleys with clear water 548 

lakes and green alpine meadows. The impact of this climate change on the summits of Sierra Nevada and 549 

its influence transcends its geographical limits because these systems provide ecosystem services as 550 

important as being the largest source of water for the population living in the lowlands, for agricultural 551 
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uses, for the generation of hydroelectric power, habitat for the species (many of them endemic), 552 

ecotourism, and the aesthetic value and source of scientific knowledge (Palomo and others 2013). The 553 

beneficiaries of water resources are primarily the inhabitants of the large cities near Sierra Nevada 554 

(Granada and Almería) and many other smaller towns since this is a very populated area. Moreover, South 555 

East of Spain is a preeminently agricultural and tourist area and the numerous rivers whose sources are 556 

in Sierra Nevada supply water for these activities. For millennia, humans have inhabited the Sierra 557 

Nevada environment and have benefited from these services, however the magnitude of human pressures, 558 

including climate change, could exceed the resilience of these ecosystems. 559 

This is the first study at short-time scale (180 years) to use multiples proxies to provide an 560 

integrated view of how this and similar alpine ecosystems are responding to climate change. Because so 561 

little is known concerning the effects of recent warming on these alpine ecosystems, further investigations 562 

on similar lakes in the region are needed to provide a more comprehensive understanding of the effect of 563 

climate change on these vulnerable ecosystems and their surroundings. 564 
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FIGURES 762 

Figure 1. Geographical location of the study site. A) Inset map: Contour map of Iberian Peninsula 763 

showing the location of the study area; Contour of Sierra Nevada National Park indicating the study area; 764 

B) map of the Sierra Nevada mountain range showing locations of Río Seco (RS) Lake (circle) and highest 765 

mountain peaks (white triangles); C) RS Lake bathymetry (digitized map of bathymetry report from 766 

Egmasa S.A.); D) photo of RS Lake (August 2012). 767 

Figure 2. Comparison of the downcore sedimentary proxies. Profiles of organic matter content (LOI550), 768 

sedimentary chlorophyll a (Chl a) (mg g-1 DW); δ13Corg (V-PDB), atomic C/N ratio, biomarkers (CPI, Paq 769 
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and ACL) and pollen data (C/P ratio and Pediastrum %) from 1820 to 2008 A.D. Two distinct climatic 770 

period are defined based on the climate data: Period One (from 1820 to ~1920s) and Period Two (from 771 

~1920s to the present). Stratigraphically constrained cluster analyses using biological and geochemical 772 

proxies is also shown. The mean annual air temperature anomaly from Madrid climate station (MAAT 773 

Madrid) and annual precipitation anomaly from San Fernando climate station (AP San Fernando) is 774 

shown since 1860 and 1840, respectively. Temperature anomalies are related to the period 1961-1990 775 

and precipitation anomalies are related to the whole period. A LOESS smoother (span = 0.2) was applied 776 

to all the variables (bold line). Applying a two-segment, piecewise linear regression to the MAAT Madrid 777 

series identified a threshold change to higher mean temperatures in the early 1970s (breakpoint= 1972 ± 778 

4.7, p < 0.0001), while a potential additional breakpoint, not considered statistically significant, is also 779 

identified in the time interval of 1912-1915. For precipitation data, no significant breakpoint was 780 

identified.  781 

Figure 3. Chironomid remains in the sediment core from RS Lake, together with a cluster analysis of 782 

assemblage data using Constrained Incremental Sum of Squares (CONISS). Light grey silhouettes show 783 

×10 exaggeration. The horizontal grey-shaded area represent the period post-1820 A.D. 784 

Figure 4. Comparison of Cladocera, diatom and chironomid PCA axis 1 sample scores for RS Lake 785 

sediment core, together with chironomid-inferred mean July air temperatures based on the chironomid 786 

records (see text for details). The error bar lines indicate the sample-specific estimated standard error of 787 

prediction. Note the inverted scales in the axis scores for Cladocera and chironomids. 788 
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