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Abstract

The basidiomycete Chondrostereum purpureum (Silverleaf fungus) is a saprotroph and

plant pathogen commercially used for combatting forest “weed” trees in vegetation manage-

ment. However, little is known about its lignocellulose-degrading capabilities and the enzy-

matic machinery that is responsible for the degradative potential, and it is not yet clear to

which group of wood-rot fungi it actually belongs. Here, we sequenced and analyzed the

draft genome of C. purpureum (41.2 Mbp) and performed a quantitative proteomic approach

during growth in submerged and solid-state cultures based on soybean meal suspension or

containing beech wood supplemented with phenol-rich olive mill residues, respectively. The

fungus harbors characteristic lignocellulolytic hydrolases (GH6 and GH7) and oxidoreduc-

tases (e.g. laccase, heme peroxidases). High abundance of some of these genes (e.g. 45

laccases, nine GH7) can be explained by gene expansion, e.g. identified for the laccase

orthogroup ORTHOMCL11 that exhibits a total of 18 lineage-specific duplications. Other

expanded genes families encode for proteins more related to a pathogenic lifestyle (e.g. pro-

tease and cytochrome P450s). The fungus responds to the presence of complex growth

substrates (lignocellulose, phenolic residues) by the secretion of most of these lignocellulo-

lytic and lignin-modifying enzymes (e.g. alcohol and aryl alcohol oxidases, laccases, GH6,

GH7). Based on the genetic and enzymatic constitution, we consider the ‘marasmioid’ fun-

gus C. purpureum as a ‘phytopathogenic’ white-rot fungus (WRF) that possesses a complex

extracellular enzyme machinery to accomplish efficient lignocellulose degradation during

both saprotrophic and phytopathogenic life phases.
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Introduction

Wood-degrading organisms play an important role in carbon and nitrogen cycling. The most

efficient ones are filamentous fungi, which can ecologically be categorized into brown-rot,

white-rot and soft-rot fungi, colonizing compact wood (logs, branches, stumps) and degrading

all polymeric cell wall components [1, 2]. Ascomycetous soft-rot fungi (SRF) erode the second-

ary wall or form discrete cavities within the cell wall where they break down mainly cellulose

and hemicelluloses but have little or no effects on the wood lignin and the middle lamellae [3,

4]. Basidiomycetous brown-rot fungi (BRF) degrade primarily the polysaccharide components

of wood and leave a partially modified lignin framework behind, whereas basidiomycetous

white-rot fungi (WRF) decompose efficiently all cell wall components. The rate and extent of

lignin, cellulose, and hemicellulose removal varies among white-rot species [5, 6]. They are

considered to decompose the three wood components via the synergistic action of extracellular

hydrolases and oxidoreductases classified within the CAZy database [7]. The class of Agarico-

mycetes includes numerous well-known WRF (wood and litter decomposers) and BRF, e.g.

within the orders Polyporales (Trametes versicolor, Phlebia radiata, Bjerkandera adusta, Irpex
lacteus), Gloeophyllales (Gloeophyllum trabeum) and Agaricales (Agaricus bisporus, Stropharia
coronilla, Agrocybe praecox) [7].

Despite the crustous morphology of its fruiting body (basidiocarp), Chondrostereum pur-
pureum (Pers. ex Fr.) Pouzar, belongs to the order Agaricales. It is a wood-decomposing fun-

gus commonly found on broad-leaved trees in temperate and boreal vegetation zones. The

fungus is saprotrophic mainly during the initial decomposition phase affecting felled trees or

stumps. However, it also occurs as a secondary parasite causing the silverleaf disease in orchard

trees [8, 9]. Spores can penetrate dead wood of living trees or on wounded wood where they

grow and pair with other spores forming heterokaryotic mycelia that grows deeper into the

wood [10]. When the hyphae of C. purpureum spread within a stump, tree vessels are occluded

[11]. Induced dehydration combined with fungal toxins (sterpurenes, sesquiterpene metabo-

lites) strengthens the adverse effects of the fungus in preventing the resprouting of stumps [11,

12]. The fungus consumes carbohydrates and during that process, it also decomposes lignin

with the help of a large set of extracellular enzymes [1, 13–15]. When the decay process has

penetrated deep enough into the wood, the ability of a stump to produce new sprouts dimin-

ishes and the stump dies. Later, C. purpureum is quickly replaced by other fungi [16]. Due to

these abilities, C. purpureum has been used as a biocontrol agent against sprouting and root

suckering of tree species such as red alder (Alnus rubra), black cherry (Prunus serotina), white

birch (Betula papyrifera) and aspen (Populus spp.) [9, 17, 18].

Fruiting bodies of C. purpureum have a characteristic laminar-like shape and therefore, it

was for a long time taxonomically assigned within the Polyporales (Meruliaceae; [18]).

Matheny et al. [19] analyzed a larger phylogeny of agaric species, which resulted in the affilia-

tion of C. purpureum within the Agaricales order, more precisely in the family of Cyphellaceae

within the ‘marasmioid clade’ (comprising seven fungal families). However, other recent

reports have claimed no strict consensus about the phylogenetic position of C. purpureum,

being still included either within Polyporales or Agaricales [9, 20].

Beside the discrepancy in the phylogenetic affiliation of C. purpureum, there is only little

known concerning its lignocellulolytic enzyme machinery, by which the fungus accomplishes

its saprotrophic life style with that strong tendency to pathogenicity. In this context, it is yet

not clear to which type of wood-rot fungi C. purpureum actually belongs. Next generation

sequencing has enormously accelerated studies in fungal genomics and evolution, for example,

the genomes of over 50 basidiomycetous fungi have been made available in 2014, including

those of numerous Polyporales species [21]. Riley and coworkers [21] were able to separate
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white-rot (and white-rot like fungi) vs. brown-rot species based on the content of lignocellu-

lose decomposing genes. Kohler et al. [22] found dramatic lignocellulose-related gene losses in

brown-rot and ectomycorrhizal species compared to white-rot species, and Hess et al. [23]

observed a similar tendency within the genus Amanita. Floudas et al. [24], and recently Nagy

and coworkers [25], used comparative genomics to trace back the origins of lignocellulose

decay capabilities. Sipos et al. [26] used a similar approach to elucidate the ‘signature’ of the

pathogenicity in the genus Armillaria and found a large repertoire of plant cell wall degrading

enzymes and pathogenicity factors, which are seemingly involved in the severe tree pathoge-

nicity of several Armillaria species.

Several recent studies have evaluated the gene inventory of saprotrophic fungi often in

combination with transcriptomic and secretomic analyses. Thus, the secretomes of ligno-

cellulose-degrading fungi were studied when growing on different complex media often based

on lignocellulosic materials [27]. Among them were basidiomycetous fungi causing typical

white or brown-rot in deadwood (e.g. Phanerochaete chrysosporium, [28–30]; Pleurotus ostrea-
tus, [27] or Serpula lacrymans, [2]; Postia placenta, [31]), or so far unclassified/unspecific

types of wood-rot (e.g. Schizophyllum commune, [24]) as well as phytopathogenic wood-decay

fungi (i.e. facultative parasites such as Heterobasidion irregulare, [32] or Armillaria mellea,

[33]).

From the biotechnological perspective, wood-degrading fungi and their enzymes are prom-

ising tools for the bioconversion of natural lignocellulose-containing polymers into renewable

resources and feedstocks, e.g. chemicals and biofuels [34]. In that context, the fermentation of

unused lignocellulosic by-products or their extractives, given in large quantities by various

industrial processes manufacturing agricultural or forestal products, offers a promising

approach to convert cheap, underutilized materials (e.g. rape straw, grain or olive mill resi-

dues) into useful final goods (e.g. base chemicals, fibers or fertilizers). An important preparing

step of such biotechnological fermentation processes is the biological pretreatment of lignocel-

lulosic materials, which reduces substances inhibiting fermentation (i.e. toxic, persistent and

protecting plant ingredients like lignin, suberin, tannins and phenolics) via their enzymatic

degradation and transformation [34–36]. For example, dry olive mill residue (DOR), a by-

product of a two-phase extraction process during olive oil manufacturing, is rich in organic

matter and nutritionally relevant substances, which makes it attractive for an agronomic use.

However, DOR contains significant amounts of phytotoxic ingredients. For that reason, fungal

pretreatments of DOR to get rid of the toxic compounds have been intensively studied during

the last years [37]. It was demonstrated that fungus-treated DOR enhances the growth of

tomato plants and hence is applicable as a valuable organic fertilizer [38–40].

From the eco-physiological point of view, the addition of agricultural by-products to fungal

cultures may reflect growth conditions in a complex environment close to nature and could

therefore stimulate the secretion of enzymes required for degradation, ‘digestion’ and detoxifi-

cation of lignocelluloses [38, 41, 42]. On the other hand, to our best knowledge, not much is

known about the effects of natural phenolics, tannins and humic substances in leaf-litter,

organic soil fractions, compost or agricultural wastes (e.g. DOR) on the protein expression

profiles of fungi [43, 44].

Against this ecological and biotechnological background, it has been our intention–besides

the general analysis of the C. purpureum genome–to analyze the secretomes of this fungus

when growing on natural substrates (beech and birch wood), on the agricultural by-product

DOR and on nutrient-rich soy medium. This approach may both help to deepen our under-

standing of the physiology and ecology of C. purpureum and to develop new fungus-based

technologies.
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Materials and methods

Dry olive mill residue (DOR)

DOR was obtained from the Sierra Sur olive oil company in Granada, Spain (2011–2012 har-

vest). It was sieved, autoclaved in three cycles and stored at 4˚C before use. The aqueous

extract of DOR (abbreviated as ADOR) was produced by a 1:2 (w:v) DOR:water extraction

process lasting 8 h under orbital shaking (170 rpm) and subsequent centrifugation and filtra-

tion through glass fiber filters (Whatman no. 5) [41].

Fungal cultivation

The C. purpureum strain used was obtained from the German Collection of Microorganisms

and Cell Cultures (DSMZ, Braunschweig, Germany) where it is deposited under DSM 4894.

Pre-cultures were incubated at 24˚C on 2% malt extract agar (MEA) over two weeks to obtain

fresh inoculum. Solid-state fermentations (SFFs) with the fungus were performed in 250-mL

Erlenmeyer flasks. Each flask contained 4 g of beech wood (BW) and 14 mL of distilled water.

After autoclaving BW two times for 20 min at 121˚C, the sterile wood was inoculated with 9

mL of a homogenized suspension from four fully overgrown agar plates in 80 mL sterile tap

water. After the fungal mycelium had grown for one week at 25˚C, half of the flasks were

mixed with DOR (50% w:w) for preparing the DOR supplemented beech wood cultures

(BWD). Sampling occurred weekly over an incubation time of seven weeks. To obtain the

extracellular enzymes as well as the complete secreted protein profile, the harvested cultures

were extracted with distilled water (1:5 w:v) by shaking on a rotatory shaker at 150 rpm for

two hours. Extracts for label-free proteome analyses were prepared after seven weeks of culti-

vation by aqueous extraction, centrifugation and concentration via lyophilization.

To identify differences in the enzyme secretion pattern in dependence of the composition

of the liquid media, submerged fermentation (SF) with C. purpureum was performed in 500

mL round-bottomed flasks using either 200 mL of complex soybean meal suspension (SM) or

200 mL of synthetic KIRK-medium (KM); the latter was prepared as described by [1]. SM was

prepared with distilled water in a 3% ratio (w:v). To both culture media, ADOR (5% (v:v);

ASKM & ASSM) as well as birch wood (1:2 (w:v); BSKM & BSSM) were supplemented after

four days of fungal growth, respectively (Table 1).

The liquid cultures were incubated at 25˚C and 100 rpm on a rotatory shaker. Every second

or third day, samples were taken (1.5 mL) from the culture liquids until the end of the

Table 1. Composition of solid and liquid media used for the analysis of the proteomes of Chondrostereum
purpureum.

Medium Composition

Solid state fermentation (SSF)

BW beech wood (1:3 with distilled water, w:v),

BWD beech wood (1:3 with distilled water, w:v),

plus DOR (50%, w:w)

Submerged fermentation (SF)

KM KIRK-medium

SM Soybean meal medium (3% suspension in distilled water, w:v),

ASKM KM, plus ADOR (5%, v:v)

ASSM SM, plus ADOR (5%, v:v)

BSKM KM, plus birch wood (1:2, w:v)

BSSM SM, plus birch wood (1:2, w:v)

https://doi.org/10.1371/journal.pone.0212769.t001
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experiment on day 16 and used for enzymatic measurements. After the end of the experiment,

culture liquids were concentrated by ultrafiltration, lyophilized and used for label-free prote-

ome analyses. All treatments were carried out in triplicate.

Enzymatic activity measurements

Manganese peroxidase (MnP) activity was determined as described by [40] by following the

formation of Mn3+-malonate complexes (ε270 = 11.95 mM-1 cm-1) spectrophotometrically in

the presence of MnCl2 (0.5 mM) and H2O2 (0.1 mM). To distinguish between activities of

laccase and manganese-independent peroxidase (MiP, including lignin, versatile and generic

peroxidase) a sequential assay was performed that based on the oxidation of ABTS (0.3 mM;

ε420 = 36 cm-1 mM-1) with and without H2O2 addition (0.1 mM); peroxidase activity was cor-

rected by the calculated Lac activity [45–47]. Unspecific peroxygenase activity (UPO) was mea-

sured as reported by Ullrich et al. [48] using veratryl alcohol at 310 nm (ε310 = 9.3 mM-1 cm-1)

and pH 7.0 in the presence of 1 mM H2O2. The mean of triplicate measurements was calcu-

lated and expressed in international units (U). An international unit is defined as the amount

of enzyme that forms 1 μmol of product or converts 1 μmol of substrate per minute under

assay conditions. Enzymatic activities detected in SSF cultures were expressed in U g-1 and

those determined in SF cultures as U L-1.

DNA isolation and genome sequencing

Genomic DNA was purified from a dikaryotic strain of C. purpureum. High quality RNA-free

DNA was obtained using DNeasy Plant Maxi Kit (QIAGEN). The obtained gDNA (a total of

1 μg) was fragmented with Ion Shear Plus Reagent to obtain a 200-basepair-read library. The

reaction was performed at 37˚C during 4 min. Fragmented gDNA was purified with the Agen-

court AMPure XP Kit and the fragment size was checked with the Agilent 2100 Bioanalyzer.

Adapters were ligated and blunt-end was nick-repaired with the Ion Plus Fragment Library

Kit, then the ligated DNA was again purified. Subsequently, fragments of 250 bp were size-

selected on an E-Gel SizeSelect agarose gel. Fragment size was again checked using the Agilent

2100 Bioanalyzer and a PCR amplification was not required. Library was diluted to a final

concentration of 26 pM with the aid of Bioanalyzer to calculate the dilution factor. Template-

positive ISPs containing clonally amplified DNA fragments were obtained using the Ion One-

Touch 200 Template Kit v2 according to the manufacturer protocol. The quality of the unen-

riched template-positive ISPs was assessed using a Qubit 2.0 fluorometer and the Quality

Control of the Ion Sphere kit. The percentage of Templated ISPs was 16%. ISP enrichment was

performed with the aid of Ion OneTouch ES. The enriched template-positive ISPs were

sequenced using an Ion Torrent Personal Genome Machine (PGM) (Life Technologies; Grand

Island, NY, USA) according to the manufacturer’s protocols provided for a 318v2 chip.

Assembly and genome annotation

All reads obtained from polyclonal and low quality ISPs were excluded. The assembly was per-

formed according to the procedure described by Kellner et al. [49]. Only raw-reads with a read

length between 120–250 bp were considered. They were assembled using MIRA 4 [50] with an

accurate sensibility and a minimum of 50 reads per contig. The obtained contigs were re-

assembled with the Geneious R8 de novo assembler to filter for duplicate contigs. To assess the

completeness of the assembled genome, we used CEGMA v2.5 [51] and the quality of the

assembly was calculated using QUAST [52]. To verify the assembly quality and to calculate the

coverage (empirical: number of reads � read length / assembly size), a remapping approach
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was performed. All reads were mapped against the assembly using the Geneious assembler

(sensitivity: low/fastest) to analyze coverage and their uniformity.

Ab initio gene prediction was performed with Augustus [53], using Laccaria bicolor as a ref-

erence organism. No transcript variants were selected. The contigs with higher coverage after

remapping were chosen for searching the rRNA genes’ cistron. The functional annotation of

the protein-coding genes after prediction with AUGUSTUS was carried out by a bulk blastp

search against a non-redundant database (nr) obtained from GenBank. The output file (xml)

with the BLAST results was imported into the Blast2GO platform, which was used for creating

a C. purpureum gene database as well as for mapping and annotating of the BLAST results and

displaying gene ontology terms (GO), which were merged with InterPro motifs after an Inter-

ProScan. The latter step helped in functional annotation of the genome and finding of relevant

proteins in the total set of 13,739 predicted gene models. Furthermore, it provided the anno-

tated protein database for subsequent proteomic analyses. The sequences of interest, such as

unspecific peroxygenase (UPO), dye-decolorizing peroxidase (DyP), laccase (Lac) and class II

peroxidase (POD), were also identified and annotated manually by BLAST searches against

the created proteine database and the genome contigs using gene models as references. A com-

prehensive analysis of CAZy genes was performed by custom BLAST searches and by using

the dbCAN webserver (settings: HMMER search, E-Value <1e-4, coverage>0.3) [54]. The

raw data and genome assembly is accessible at National Center for Biotechnology Information

under LBLO00000000 (BioProject PRJNA281625).

Phylogenetic analysis

To confirm broad phylogenetic placement of C. purpureum using genome-scale data, 35 pub-

lished Agaricomycete genomes [21, 26, 44, 55–60] as well as the newly sequenced C. purpur-
eum were used to infer a species tree. To this end, predicted proteomes of all species were

clustered into gene families using the FastOrtho (http://enews.patricbrc.org/fastortho/) imple-

mentation of the OrthoMCL software [61] with default search and clustering parameters. This

resulted in a dataset of 43,749 clusters of which 1,368 were single copy and present in at least

30 species, and consequently, selected for phylogenetic analysis. Amino acid (aa) sequences

constituting each cluster were aligned using Canopy (https://github.com/chunxiangli/Canopy)

with the PRANK aligner [62] and three iterations of alignment and guide tree building. The

resulting alignments were trimmed to remove poorly aligning regions using the software Tri-

mAl [63] with the ‘-automated1’ algorithm. ParGenes [64] was used to infer the best evolution-

ary model and a gene tree for each of the 1,368 clusters using the following parameters to

RAxML-NG: ‘-s 10 -p 10 -b 100’ [65]. Genes with strong phylogenetic signal were identified

based on average bootstrap support (BS) of>50% and a minimum alignment length of at least

150 aa.

This resulting high quality set of genes was then used to infer a species tree using two com-

plementary approaches: i) a partitioned Maximum Likelihood approach, encompassing a total

of 84,248 sites and ii) ASTRAL-III, a super tree approach based on the multispecies coales-

cence [66]. For i) PartitionFinder2 [67] was used to identify the best-fit partitioning scheme

using linked branch lengths, AICc-based model selection, the rclusterf search algorithm and

the following models of protein evolution: LG, LG+G, LG+I+G, WAG, WAG+G, WAG+I+G,

JTT, JTT+G, JTT+I+G, LG4X, LG4M+G. RAxML-NG [65] was run using the partition model,

encompassing 112 partitions, the Majority Rule Extended automatic stopping criterion for

bootstrap trees and scaled branch lengths. To infer the coalescent species tree (ii), gene trees of

the high quality gene set were modified to remove nodes with less than 70% BS and ASTRA-

L-III was run using default parameters.

Genome and secretome of Chondrostereum purpureum

PLOS ONE | https://doi.org/10.1371/journal.pone.0212769 March 1, 2019 6 / 30

http://enews.patricbrc.org/fastortho/
https://github.com/chunxiangli/Canopy
https://doi.org/10.1371/journal.pone.0212769


Evolutionary analyses of gene content

Genome-wide duplication and loss rates across the 36 studied genomes were inferred using

CAFÉ v4.1 [68]. To this end, an ultrametric tree was estimated using R8s v1.81 [69], with the

penalized likelihood algorithm and root age arbitrarily set to 350 MYA. As input tree, we used

the topology of the ASTRAL tree but with branch lengths estimated as substitution per site

using RAxML-NG with the partitioned model (see above). OrthoMCL clusters were filtered to

remove clusters with more than 100 gene copies in any of the species, as well as families repre-

sented in less than five species. This resulted in a final dataset of 12,032 clusters with wide taxo-

nomic distribution. CAFÉ was run estimating a single gain (λ) and loss (μ) parameter across

the tree. Gene families with significantly slower or faster rates of evolution were identified

using branch-specific P-values reported by CAFÉ with a threshold of 0.01.

For target gene families of interest (GH6, GH7 and Lac), we also implemented a full phylo-

genetic approach for inferring gene duplications and losses. Gene trees for each target cluster

were aligned as above. TreeFix v.1.1.10 [70] was run for species-tree aware error correction of

each gene tree using the following options: nquickiter = 100 and niter = 1000, and the best-fit

model determined by ParGenes [64], if available and WAG+G otherwise. Corrected gene trees

were then reconciled with the species tree using NOTUNG 2.9 [71] in the ‘phylogenomics’

mode.

Furthermore, a principal component analysis was performed for the number of core ligno-

cellulolytic enzyme encoding genes (according to Riley et al. [21] using PAST 3.22 [72]).

Proteome analysis of the C. purpureum strain

Lyophilized secreted protein fractions of fungal culture liquid (3 mg) were resuspended in 4

mL SDS buffer (1.25% SDS, 0.1 M TRIS, 0.3% DTT), a spatula of glass beads were added and

the solution was incubated for one hour at room temperature under shaking. Afterwards, the

FASTPrep (5.5 m/s, 45 sec, 3 cycles) protocol was applied followed by further steps including

three cycles of freezing and thawing (freezing in liquid nitrogen, thawing in 60˚C water bath),

the addition of 0.6 mL of 10% (w/v) SDS solution and two cycles of ultrasonic treatment using

an ultrasonic disintegrator (ultrasonic processor UP50H equipped with ultrasonic probe MS7,

Hilscher Inc., Germany; 4˚C, 2 min/80% amplitude/80% power, break of 2.5 min between

cycles). Phenol extraction was applied to the sample supernatant by adding 4 mL phenol solu-

tion (10 g mL-1 in ddH2O) and incubating under shaking at 500 rpm at room temperature for

one hour. The mixture was centrifuged at 4˚C and 12,000 × g for 10 min to achieve phase sepa-

ration (Sorvall RC 6 plus, Thermo Fisher Scientific, Waltham, MA, USA). The lower phase

was mixed with a fivefold volume of ice cold 100 mM ammonium acetate in methanol. Precipi-

tation was performed overnight at -20˚C followed by centrifugation at 12,000 × g. The super-

natant was removed and the pellet was air-dried. The resulting protein pellets were separated

on SDS-PAGE with a 15˚μL sample buffer. Each sample lane was then cut into one gel band

and prepared for proteolytic cleavage. Protein lysate was reduced (2.5 mM DTT for one hour

at 60˚C) and alkylated (10 mM iodacetamide for 30 min at 37˚C). Proteolysis was performed

overnight using trypsin (Promega, Madison, WI, USA) with an enzyme/substrate ratio of 1:25

at 37˚C. Peptide lysates were extracted from the gel and desalted using SOLAμ (Thermo Scien-

tific) [73].

The peptide lysates were separated on a UHPLC system (Ultimate 3000, Dionex/Thermo

Fisher Scientific, Idstein, Germany). Peptides were first trapped for 3 min on a C18-reverse

phase trapping column (Acclaim PepMap 100, 75 μm × 2 cm, particle size 3 μM, nanoViper,

Thermo Fisher Scientific), followed by separation on a C18-reversed phase analytical column

(Acclaim PepMap 100, 75 μm × 25 cm, particle size 3 μM, nanoViper, Thermo Fisher
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Scientific) using a two-step gradient (90 min from 4% to 30% B, then 30 min from 30% to 55%

B; A: 0.1% formic acid in MS-grade water; B: 80% acetonitrile, 0.1% formic acid in MS-grade

water) with a solvent flow-rate of 300 nL min- 1 and a column temperature of 35˚C.

Mass spectrometry was performed on a Q Exactive HF mass spectrometer (Thermo Fisher

Scientific, Waltham, MA, USA) with a TriVersa NanoMate (Advion, Ltd., Harlow, UK) source

in LC chip coupling mode with the following settings: MS resolution 120,000, MS automatic

gain control (AGC) target 3,000,000 ions, maximum injection time for MS 80 ms, intensity

threshold for MS/MS of 17,000 ions, dynamic exclusion 30 sec, TopN = 20, isolation window

1.6 m/z, MS/MS resolution 15,000, MS/MS AGC target 50,000 ions, maximum injection time

for MS/MS 120 ms.

Proteome Discoverer (v1.4.1.14, Thermo Scientific) was used for protein identification and

the acquired MS/MS spectra were searched with the Sequest HT algorithm against the protein-

coding database of C. purpureum (containing 13,739 protein-coding gene entries). Enzyme

specificity was selected to trypsin with up to two missed cleavages allowed using 10 ppm pep-

tide ion tolerance and 0.05 Da MS/MS tolerances. Oxidation (methionine) and carbamylation

(lysine and arginine) were selected as variable modifications and carbamidomethylation (cys-

teine) as a static modification. Only peptides with a false discovery rate (FDR) <1% calculated

by Percolator and peptide rank = 1 were considered as identified. Relative protein abundances

were calculated based on the normalized spectral abundance factor (NSAF) [74].

Statistical analysis

Secretome samples were triplicated for each treatment. Hotelling’s T2 was performed to find

statistically significant differences between treatments and principal component analysis

(PCA) using non-linear iterative partial least squares algorithms (NIPALS) was used to deter-

mine the main trend in the data set and to compare the samples replicates and treatments. The

software used for statistical analyses were SPSS Statistics 21, Unscrambler X10.2 and R [75].

Results

Assembly and quality assessment of Chondrostereum purpureum draft

genome

The genome of C. purpureum was assembled from 3,971,460 quality filtered reads obtained

from the Ion Torrent PGM System. The average fragment size was 168 bp and a final 41.2

Mbp-sized draft genome organized in 3,435 contigs was obtained after the assemblies using

MIRA and Geneious R8 (Table 2).

A remapping approach resulted in a uniform coverage (S1 Fig), and the average coverage

was 15.2x. From the subset of 248 ultra-conserved CEGMA CEGs considered, we found 229

(92.3%) complete and 237 (95.6%) partial proteins sequences. In sum, a number of 13,739 pro-

tein-coding gene models was predicted. For 99% of the sequences, a BLAST hit was obtained

and 30%, i.e. 4,016 sequences of the gene models contained a GO term associated. Considering

the ‘biological process domain’, 480 of the predicted models with a GO were related to the

metabolism of C. purpureum (S2 Fig). An assignment of gene sequences to enzymes and their

classification according to EC nomenclature is given in S3 Fig.

Classification of the C. purpureum genome and proteome

The C. purpureum genome comprised an extensive repertoire of CAZymes characteristic for

wood-rot fungi, including hydrolytic enzymes attacking cellulose and hemicelluloses (e.g.

almost 50% GHs, CEs & CBMs; Fig 1) as well as multiple oxidative ‘auxiliary’ activities acting

Genome and secretome of Chondrostereum purpureum

PLOS ONE | https://doi.org/10.1371/journal.pone.0212769 March 1, 2019 8 / 30

https://doi.org/10.1371/journal.pone.0212769


on lignin or lignin-derived aromatics (e.g. class II heme peroxidase, Lac, DyP and UPO; S4

Fig).

Many of these proteins were secreted by the fungus during its growth both in synthetic and

complex media (1,151 and 981 in solid-state and liquid media, respectively), especially key

enzymes involved in lignocellulose decomposition (Figs 2 & 3). Overall, CAZy enzymes

involved in lignocellulose degradation represented between 46 and 53% as well as 35 and 46%

NSAF in the C. purpureum secretome on solid (BW and BWD, respectively) and liquid cul-

tures (KM- and SM-based, respectively), respectively (S5 & S6 Figs). During liquid cultivation,

distinct secretion patterns were observed (S7 Fig). Altogether 67 GHs, seven CEs, eight PLs, 28

AAs and ten CBMs showed significant differences between the different cultivations.

Glycoside Hydrolases. The analysis of the putative C. purpureum enzymes classified in

the genome using dbCAN indicated that almost half of them were glycoside hydrolases (GHs,

49.5%) (Fig 1). The most abundant GHs were found in the functionally diverse families GH16

and GH5 with 43 and 25 sequences, respectively. In addition, a large set of genes from other

families encoding cellulolytic (e.g. GH6, GH7, GH12), hemicellulolytic (e.g. GH10, GH11,

GH30) and pectinolytic (e.g. GH43, GH28, GH53) proteins are present in the C. purpureum
genome and most of them were expressed by the fungus during the different liquid and solid

cultivations (GH6, 7, 10, 12, 28 & 43; S7 Fig). The GH class was with 34% and 32% NSAF and

with a number of 112 and 124 different genes the most abundant group in the secretome

obtained from the BW and BWD cultures of the fungus. Among them, GH6 and GH7 gene

products (e.g. g8516 & g6636, respectively) were strongly expressed (~0.9 & 0.5%, respectively)

in the BW cultures compared to the other lignocellulolytic enzymes. In the liquid cultures, a

high percentage of GHs (~44% NSAF of the overall set of secreted proteins) was determined in

SM and BSSM compared to the other liquid media (23–29% NSAF). High relative abundances

were specifically found for the GH6 class (e.g. g13545), with 12%, 8% and 14% NSAF in SM,

ASSM and BSSM, respectively. Together with the gene product g8516 (<3.9% NSAF), both

were the most abundant proteins secreted by C. purpureum in all soybean-containing media

(S8 Fig). The expressed CBM1 modules found in the fungal secretome pertain to a β-glucanase

(GH131; g3194) and an exoglucanase (GH7; g9459); the latter occurred with a relatively high

abundance mainly in BW (0.6% NSAF) (Fig 2).

Other CAZymes. CBMs are necessary for the functioning of most GHs; they were found

to be present in the C. purpureum genome in form of 14 different families (e.g. CBM1, 13, 18,

67) and could be identified in the secretome especially in BW (~0.6% NSAF for g9459) and

soybean-based media (0.1–0.3% NSAF for g1461).

Table 2. Statistical assembly of the C. purpureum genome.

Assembly statistics

Max contig length 207,970

Min contig length 390

Number of contigs 3,435

N50 23,869

L50 655

N’s per 100 kbp 98

Annotation statistics

Number of predicted CDS 13,739

Maximal CDS length (bp) 15,468

Mean CDS length 1,522

GC content (%) 47.5

https://doi.org/10.1371/journal.pone.0212769.t002
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Carbohydrate esterases (CE) accounted for approx. 22% of the predicted CAZy gene mod-

els with hydrolytic activities. Among them were putative pectinolytic enzymes like CE4, 8, 9

and 15, while the CE10 family (containing carboxyl and aryl esterases) was the most abundant

one with 57 predicted genes. Some of the CE families were expressed at higher levels (e.g. CE4,

8, 9; S7 Fig) when the fungus was growing in liquid media containing either soybean, wood or

ADOR components. An acetylxylan esterase belonging to the CE1 family associated with a

CBM1 module (g1461) was expressed by the fungus in soybean and wood cultures (Fig 3).

The addition of phenolic DOR to the solid-state cultures seemingly stimulated the secretion

of polysaccharide lyases (PL). The relative amount of PL was found to be three-fold higher

(9.6–2.9% NSAF) in BWD than in BW (S5 Fig). Also non-CAZy hydrolases such as peptidases

(25.4–11.9% S5 Fig) showed higher relative protein amounts after DOR addition. Interestingly,

Fig 1. C. purpureum CAZy genes classification (except auxiliary activities of oxidoreductases from AA1 to AA9).

https://doi.org/10.1371/journal.pone.0212769.g001
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the secretion level of the peptidase enzyme subclass (EC 3.4.x) was also remarkably increased

(up to 15% NSAF) when the fungus grew in ASSM compared to SM without ADOR supple-

mentation (8% NSAF) (S6 Fig).

Oxidoreductases. Altogether 153 oxidoreductases with relevance for lignocellulose

decomposition were found in the C. purpureum genome and 81 of them were expressed during

the different cultivations (Table 3).

Among them are typical enzymes involved in lignocellulose breakdown caused by wood-

rot fungi. Besides AA1 (multicopper oxidases, e.g. Lac) and AA3 (GMC, e.g. cellobiose dehy-

drogenase or alcohol oxidase), a high number of AA genes were found to encode LPMO

Fig 2. Distribution of the lignocellulose-degrading enzymes secreted by C. purpureum (after seven weeks of

cultivation). Relative abundance (% NSAF) of the proteins found in solid state cultures containing beech-wood (BW)

or beech-wood and DOR (BWD) is given (Table 1). CBM1 of �GH7, ��GH131 (β-glucanase) and #acetylxylan esterase.

https://doi.org/10.1371/journal.pone.0212769.g002

Fig 3. Distribution of the lignocellulose-degrading enzymes secreted by C. purpureum (after 16 days of cultivation). Relative abundance (% NSAF,>0.01)

of the proteins found in liquid cultures of synthetic KM, ASKM, BSKM and complex SM, ASSM and BSSM (Table 1). To obtain an appropriate resolution, high

NSAF values (>1%) were divided by the factor 10 (blue) or 100 (red). CBM1 of �GH7 and #acetylxylan esterase.

https://doi.org/10.1371/journal.pone.0212769.g003
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(AA9) and more than half of them were expressed with NSAF>0.01% (17 out of 31 LPMO

genes). During growth on wood (BW and BWD), LPMO made up the largest number of pro-

teins among the lignocellulose-modifying enzymes. Some of them had a higher relative abun-

dance in media supplemented with phenol-rich olive mill residues (e.g. in BWD with 0.36,

0.26, 0.33% NSAF for g3183, g2420, g1818, respectively and in ASKM with 0.19, 0.05, 0.11%

NSAF for g13314, g3183, g1818, respectively), or in soybean-based liquid media (Figs 2 & 3).

Whereas none of them was present in synthetic KM without any additive, 15 genes encoding

for LPMO were expressed in soybean-based medium (e.g. 0.097–0.186% NSAF for g3183) and

seven of these LPMOs showed significant differences during cultivation (S7 Fig).

Four class II peroxidases were found in the genome of C. purpureum (S9 Fig). Among them

two MnPs (g2700 & g5041), the key enzyme type of incipient lignin degradation by white-rot

fungi, were identified according to the conserved manganese-binding aa residues (D34, D39 &

D179; S10 Fig). The presence of MnP was confirmed by respective activity measurements in

both solid and liquid media (<10 to 30 U L-1; S9 and S10 Figs) and by detection of an

expressed short MnP protein (g5041; Fig 3) mainly in soybean-based medium but also in

ASKM. Due to the absence of typical manganese-binding aa residues and LiP-characteristic

tryptophan (at position W171 in P. chrysosporium, [76]), the other two sequences (g5379,

g10149) of class II peroxidases seemingly represent generic peroxidases (GPs) that typically

oxidize phenolics. One of the GPs was found to be expressed exclusively in ASKM (S10 Fig).

In addition to class II peroxidases, sequences encoding for seven DyPs and eight HTPs/

UPOs were predicted in the genome. Due to the presence of two specific amino acid motifs,

PCP and EHD [77], six complete UPO sequences could be assigned to the ‘short’ UPOs. The

other two sequences were incomplete but phylogenetic analysis related them also to the clade

Table 3. Oxidoreductases found in the C. purpureum genome and expressed in fungal cultures.

Proteins Total Expressed a

UPO b 8 5

DyP b 7 2

AA1 47 27

Lac 45 25

FeOx Fet3 1 1

Fungal pigment oxidase (MCO) 1 1

AA2 class II peroxidase (POD) 4 2

MnP 2 1

GP 2 1

AA3 GMC 36 16

AA4 VAO 3 0

AA5 GLX and CRO 12 9

AA7 GOO 3 3

AA8 iron reductase domain 2 0

AA9 LPMO 31 17

Abbreviations: unspecific peroxygenase (UPO), dye-decolorizing peroxidase (DyP), CAZy classified auxiliary

activities (AA): AA2 class II peroxidases (manganese peroxidase, MnP and generic peroxidase, GP) as well as AA1

(laccase, Lac), ferroxidase (FeOx) and fungal pigment multicopper oxidase (MCO), AA3 (glucose-methanol-choline

oxidoreductase, GMC), AA4 (vanillyl alcohol oxidase, VAO), AA5 (glyoxal oxidase, GLX) and cooper radical oxidase

(CRO), AA7 (glucooligosaccharide oxidase, GOO), AA8 and AA9 (lytic polysaccharide monooxygenase, LPMO)

enzymes.
aNumber of expressed genes in the secretomes obtained from different culture media.bNon CAZy protein families.

https://doi.org/10.1371/journal.pone.0212769.t003
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of ‘short’ UPOs. The fungus secreted one DyP (g5789) in BW and BWD, whereas one ‘short’

UPO (g2048) was exclusively found in BWD, the presence of which was confirmed by a corre-

sponding enzymatic activity 0.5 U g-1 after six weeks of cultivation (Figs 2 & S11). In SF,

another DyP gene (g6591) and four further ‘short’ UPO genes (g4556, g4785, g5554, g6938)

were expressed by the fungus. UPO activities were also detectable in all liquid cultures with

values up to ~10 U L-1 (S12 Fig). For the sake of completeness, three genes of intracellular class

I peroxidases–two ascorbic acid peroxidases (APXs) and one cyctochrome c peroxidase

(CcP)–were found in the C. purpureum genome as well (S9 Fig). The expression of CcP

(g2498) was confirmed for BW cultures on the protein level (NSAF <0.01%).

A remarkable finding has been the high number of Lac genes (45, including 38 full-length

sequences) predicted in the genome of C. purpureum. Phylogenetic analysis of the whole MCO

family (including Lac, ferroxidase and pigment oxidase) revealed 40 full-length sequences and

14 partial sequences, which frequently were split on the end of contigs, i.e. showing only the

N- or C terminus in an alignment (S13 Fig). Considering the 40 full-length genes, 38 can be

defined as Lac sensu stricto. Highest identity between two full-length Lacs was 97% (S14 Fig)

and more than half of all Lacs were expressed (in total 25, S13 Fig) with NSAF >0.01% in liq-

uid and solid state cultures (23 and four proteins, respectively; Figs 2 and 3). Moreover, mod-

erate Lac activities were detected during cultivations (up to ~10 U L-1; S11 and S12 Figs). The

secretion of some of the Lacs was obviously stimulated in the presence of phenol-rich olive

mill residues (e.g. g1744 in SSF and g9564, g6664, g5639, g1744 in KM with DOR and birch

wood supplemented ASKM and BSKM, respectively). One MCO sequence turned out to

belong to a Fet3 ferroxidase cluster (FeOX; g718) and another one to a fungal pigment MCO

cluster (g10148; S13 Fig).

Further CAZy AA representatives (AA3-9) predicted in the genome rank among enzymes

supporting peroxide-dependent biocatalysts acting on lignin and aromatics (i.e. oxidases that

supply class II POD, UPO and DyP) or interacting with carbohydrates (GMC, GLX, LPMO);

some of them occur with high relative abundance (4 to 36 genes; Table 3 & S4 Fig). The num-

ber of predicted proteins producing hydrogen peroxide (AA3 & AA5) was 48. Among this

enzyme group, the only available CDH gene (AA3_1; g6352), encoding an enzyme involved in

Fenton-based chemistry and LPMO activation, was expressed by C. purpureum in all culture

media tested (Figs 2 and 3). Interestingly, the respective CDH gene product was in the solid-

state cultures one of the most abundant proteins (NSAF ~0.9%) among the lignocellulose-rele-

vant enzymes (Fig 2). From the AA3_2 group (GMCs), 24 genes encoding for glucose and aryl

alcohol oxidases were predicted and the fungus expressed up to six of them in all media tested

(Figs 2 and 3). In KM, the addition of DOR or birch wood (ASKM and BSKM) led to a higher

relative abundance of some of the AAOs (e.g. g12545, g8332, g8331), which were also present

in the soybean medium with and without additives. Furthermore, ten sequences of alcohol oxi-

dases (AA3_3) and one pyranose oxidase gene (AA3_4) were identified in the genome (S4

Fig). Several genes of the former groups (e.g. g12139) were expressed both in SSF and SF.

There is indication that the AA3_3 gene g12139 could be constitutive, since it showed also

high relative abundance in KM, in which eligible inducing compounds (e.g. aromatics from

wood or DOR) were not present (Fig 3). The number of genes encoding for copper radical oxi-

dases (CRO and GLX, AA5) was twelve, and some of them were expressed in SSF and SF with

NSAF>0.01% (e.g. g9579, g9433, g9062, g2075). Eventually, four genes encoding for benzoqui-

none reductase (AA6) were found in the genome indicating that the enzymatic basis of Fen-

ton-based attack on lignocellulose is realized in C. purpureum.

Taxonomy. A phylogenetic analysis that comprised of 609 single copy genes from 36

basidiomycete genomes placed C. purpureum in a clade close to Moniliophthora perniciosa
(Marasmiaceae) and four Armillaria species (Physalacriaceae), which all represent distinct
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pathogens within the Agaricales (Fig 4). Complementary approaches using either ML recon-

struction or a summary method based on the multispecies coalescent resulted in nearly identi-

cal, well resolved trees (Fig 4 and S15 Fig), with the exception of the branching order of C.

purpureum and M. perniciosa. Currently only few genomes of the so called ‘marasmioid clade’

[19] are known and larger numbers of taxa in this clade will be required for accurate resolution

of the relationship between C. purpureum and M. perniciosa. In analyses with a more dense

taxon sampling but less phylogenetically relevant genes (two to six genes), a possible phyloge-

netic position to the Cyphellaceae was shown [19, 78]; the genes found in the assembled

genome were identical to the previously analyzed C. purpureum genes in the study of Matheny

and coworkers.

Gene content evolution. Inference of gene duplication (λ) and loss (μ) rates yielded global

estimates of 9.27e-4 and 2.59e-3 events per unit branch length, respectively. A total of 25

orthogroups showed significant deviation from these genomic background rates on the C. pur-
pureum branch (P<0.01), and in any case, this entailed expansions rather than contractions

(Table 4). Approximately two thirds of significantly expanded families were attributable to

transposable elements based on annotation with PFAM domains or BLAST searches. The

most pronounced expansion among structural genes was ORTHOMCL11, encoding a family

of Lac, in the case of which we inferred a total of 18 lineage-specific duplications using the

model-based approach. Significantly expanded families also included a putative non-ribo-

somal peptide synthase, two families of proteases and a family of cytochrome P450s.

Since both Lac and GH7 cellobiohydrolase were found in unusually high numbers in the C.

purpureum genome, we also included a focused phylogenetic analysis of orthogroups encoding

genes in these families (Fig 4). Among annotated Lac, 39 were found spread across five

orthogroups, ORTHOMCL11 being the largest (Fig 4 and S1 Fig). Thirteen Lacs did not clus-

ter into orthogroups, of which ten constituted partial gene models, suggesting that FastOrtho

clustering mitigates the problem of fragmentation for downstream evolutionary analyses. All

Fig 4. Genome-level species tree of 36 basidiomycete fungi inferred using ASTRAL [66]. All branches had posterior probabilities of 1, except where

indicated otherwise above branches. Bubble plots show the numbers of inferred duplications across all orthogroups encoding Lacs (green, left) or GH7

cellobiohydrolases (purple, right). The middle section indicates the number of orthogroups housing genes in each of the respective classes and their copy

number in each species.

https://doi.org/10.1371/journal.pone.0212769.g004
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annotated GH7s were found in ORTHOMCL56 (Fig 4). Phylogenetic analyses confirmed

model-based inference, showing an exceptionally large lineage-specific expansion of Lac in C.

purpureum mainly driven by ORTHOMCL11. Similarly, five of the eight GH7 copies likely

arose on the C. purpureum branch (based on six duplications and one loss; Fig 4). Patterns

for GH6 were complex, since members of this family were spread among two different

orthogroups, with two out of five copies constituting singletons (S16 Fig).

To classify the position of C. purpureum within genome-sequenced wood decomposing

fungi, a principal component analysis was performed using the core lignocellulolytic genes

(Fig 5). The axis 1 explained 44.3% of the variation and axis 2 explained 32%. Brown-rot fungi

formed a distinct group, whereas white-rot and the so called ‘white-rot-like’ species (Botryoba-
sidium botryosum, Jaapia argillacea and S. commune; all containing no class II peroxidase

genes) formed a far more variable group (Fig 5). The lignocellulolytic gene content placed C.

purpureum close to Stereum hirsutum, M. perniciosa and three Armillaria species. Conspicu-

ous differences in the gene repertoire among the ecological classifications ‘white-rot’ (without

the pathogenic species), ‘white-rot-like’, ‘pathogenic white-rot’ (Armillaria species, M. perni-
ciosa and C. purpureum) and ‘brown-rot’ were found (S4 Fig). For example, class II peroxi-

dases (AA2) occurred in average with seven genes in pathogenic WRF, twelve in the

remaining WRF, and none in WRF-like and BRF. Class AA3_2 occurred on average with 52

genes in pathogenic WRF, 27 in the remaining WRF, 18 in WRF-like and 13 in BRF. Class

AA1_1, Lac, occurred on average with 27 genes in pathogenic WRF, nine in the remaining

WRF, one in WRF-like and four in BRF (S4 Fig).

Table 4. Significantly expanded orthogroups in C. purpureum.

OrthoGroup PFAM domains Putative Function

ORTHOMCL2869[+4] Plavaka (PF18759) Likely transposable element

ORTHOMCL7313[+2] None (RT based on BLAST) Likely transposable element

ORTHOMCL383[+20] None (Gag-Pol based on BLAST) Likely transposable element

ORTHOMCL194[+21] KDZ (PF18758) Likely transposable element

ORTHOMCL305[+16] CxC2 (PF18803) Likely transposable element

ORTHOMCL7306[+15] Transposase_21 (PF02992) Likely transposable element

ORTHOMCL7397[+2] None Hypothetical protein

ORTHOMCL477[+16] RVT_1 (PF00078) Likely transposable element

ORTHOMCL480[+2] KDZ (PF18758) Likely transposable element

ORTHOMCL7175[+2] None (FAR1 based on BLAST) Likely transposable element

ORTHOMCL3789[+21] None -

ORTHOMCL88[+3] RVT_1 (PF00078) Likely transposable element

ORTHOMCL7296[+2] None -

ORTHOMCL404[+5] PIF1 (PF05970) Helicase—possibly TE

ORTHOMCL601[+2] DUF4470 (PF14737) -

ORTHOMCL330[+7] Retrotrans gag (PF03732) Likely transposable element

ORTHOMCL75[+4] AMP-binding (PF00501) Non-ribosomal peptide synthetase (NRPS)

ORTHOMCL812[+3] None -

ORTHOMCL526[+5] None (RT from BLAST) Likely transposable element

ORTHOMCL727[+3] RVT_2 (PF07727) Likely transposable element

ORTHOMCL80[+6] Helitron-like N (PF14214) Likely transposable element

ORTHOMCL86[+3] Peptidase_M36 (PF02128) Fungalysin metalloprotease

ORTHOMCL192[+5] Peptidase_S8 (PF00082) Subtilisin like protease

ORTHOMCL11[+18] Cu-oxidase (PF00394) Laccase

ORTHOMCL43[+4] P450 (PF00067) Cytochrome P450

https://doi.org/10.1371/journal.pone.0212769.t004
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Discussion

Phylogenetic position of C. purpureum
C. purpureum has been placed in the Cyphellaceae within the so called ‘marasmioid clade’ by

Matheny and coworkers [19], and the current databases (MycoBank, Index Fungorum) follow

this taxonomic affiliation. A follow-up study using a six gene approach could not further

resolve the positioning of C. purpureum [78]. In our approach using more than 600 single

copy genes, it has not been expected to reach further resolution, since only a ‘handful’ of

genomes is currently being available from the ‘marasmioid clade’. Nevertheless, the identified

genes of C. purpureum perfectly match with those of both studies of Matheny et al. [19, 78],

and hence support its current phylogenetic position. Thus, the C. purpureum genome pre-

sented here will contribute to future studies dealing with the phylogeny of the marasmioid

clade by using comparative genomics.

Repertoire of genes and secreted proteins related to lignocellulose

degradation in comparison to other wood-rot fungi

In addition to the C. purpureum genome, we provide insights into one of the few existing

secretomes of fungi that can switch between phytopathogenic and saprotrophic life-styles. To

obtain a broad proteomic data set, the fungus was cultured in liquid synthetic and plant-based

Fig 5. Principal component analysis of main CAZy lignocellulolytic gene content in the analysed genomes (published data from JGI & NCBI). A

variance-covariance matrix of the values in (S4 Fig) were used. Agabi, Agaricus bisporus; Agrae, Agrocybe aegerita [60]; Armce, Armillaria cepistipes; Armga,

Armillaria gallica; Armme, Armillaria mellea; Armso, Armillaria solidipes, Armos, Armillaria ostoyae; Aursu, Auricularia subglabra; Bjead, Bjerkandera adusta;

Botbo, Botryobasidium botryosum; Cersu, Ceriporiopsis subvermispora; Chopu, Chondrostereum purpureum; Conpu, Coniophora puteana; Copci, Coprinopsis
cinereus; Dacsp, Dacryopinax sp.; Dicsq, Dichomitus squalens; Fomme, Fomitiporia mediterranea; Fompi, Fomitopsis pinicola; Galma, Galerina marginata;

Glotr, Gloeophyllum trabeum; Hetan, Heterobasidion annosum; Jaaar, Jaapia argillacea; Mycch, Mycena chlorophos [79]; Monpe, Moniliophthora perniciosa;

Phaca, Phanerochaete carnosa; Phchr, Phanerochaete chrysosporium; Phlbr, Phlebia brevispora; Pleos, Pleurotus ostreatus; Pospl, Postia placenta; Punst,

Punctularia strigosozonata; Pycci, Pycnoporus cinnabarinus; Schco, Schizophyllum commune; Serla, Serpula lacrymans; Stehi, Stereum hirsutum; Trave,

Trametes versicolor; Volvo, Volvariella volvacea and Wolco, Wolfiporia cocos.

https://doi.org/10.1371/journal.pone.0212769.g005
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complex media as well as in solid media containing wood and/or olive-wastes to follow

enzyme secretion under different degradation and detoxification strategies.

The size of the C. purpureum genome (46.5 Mbp) is within the typical range of other fungi’s

genomes, especially basidiomycetes (40–50 Mbp; [80]). On the other hand, the fungus secreted

a high number of proteins (981 to 1,151 in dependence of the culture medium) in comparison

to other basidiomycetes [27]. For example, following numbers of secreted proteins were

reported for some other basidiomycetes: 243 for Ceriporiopsis subvermispora [81], 293 for A.

mellea [33], 356 and 413 for P. chrysosporium and P. placenta, respectively [82] as well as 508

for P. ostreatus [27] when growing on lignocellulose-containing or synthetic media. An equally

large number of secreted proteins (with almost 800) was reported for the secretome of P. chry-
sosporium when growing on the wood of three different poplar genotypes [83]. However, it

should be taken into consideration that steady improvements in mass spectrometry may have

influenced these data sets [84].

The fungus C. purpureum possesses in the genome and secretes diverse hydrolases and oxi-

doreductases that are involved in the degradation and modification of lignocelluloses and are

typical for saprotrophic fungi. C. purpureum pertains to the ecological group of ‘pathogenic

white-rot’ fungi like Armillaria spp. or M. perniciosa as indicated by a PCA considering core

lignocellulolytic genes. Sensu lato, C. purpureum belongs to the WRF ecotype, incorporating

key enzymes of lignin attack like manganese peroxidase.

Glycoside hydrolases. Although cellobiohydrolases of the families GH6 and GH7 are

known to correlate with white-rot, the number of six genes belonging to family GH6 in the C.

purpureum genome is one of the highest reported so far, considering all available data on WRF

and BRF (<5 genes). The number of GH7 genes was nine and thus ranges in the middle of

reported numbers for other WRF (e.g. one and 16 genes for Heterobasidion annosum and P.

ostreatus, respectively). In this context, the fungus houses the highest number of GH7s in its

clade and six lineage-specific duplications in this family (Fig 4). This is contrary to BRF, in

which genes encoding these enzymes are rarely present and only few of them have one or two

respective enzymes (GH6 or GH7) available. The presence of cellulases (families GH6 and

GH7) in the secretome of C. purpureum is also a characteristic that it shares with other WRF

(e.g. P. chrysosporium, C. subvermispora; [81, 83]), for which these enzymes were shown to be

major proteins secreted in wood-containing media. These enzymes act on ‘bulky’ polysaccha-

ride backbones and are seemingly up-regulated in C. purpureum when it grows in soybean-

based medium for more than two weeks.

It has been accepted that seven CAZy families preferably target complex hemicelluloses

(e.g. GH10, GH11, GH30), and eleven families the even more heterogeneous pectins (e.g.

GH43, GH28) [21, 85]. Most of these enzymes were found to be present in the C. purpureum
genome except families GH11 and GH26. Highly abundant GHs found in the C. purpureum
secretomes of liquid cultures containing wood or ADOR belong to the families GH3 (g3528),

GH5 (g6251, g7580) and GH10 (g13143). These proteins were also reported to be over-pro-

duced in other WRF in the presence of lignocellulosic substrates [27]. GH5 represents a large

protein family that contains a range of enzymes acting on β-linked oligo- and polysaccharides

[64], and 17 out of 25 genes present in the genome were expressed by C. purpureum, predomi-

nantly in soybean-based medium.

Pectinolytic hydrolases expressed by C. purpureum in SF (e.g. GH28; CE4, 8, 9 and 15) play

probably a role during the invasive step of fungal plant pathogens as proposed for typical rep-

resentatives such as Botrytis cinerea and Fusarium oxysporum [14, 21, 86]. The GH28 family

comprises endo- and exo-[rhamno]galacturonases, essential for pectinolysis by both parasitic

and saprotrophic fungi [87]. Genes encoding such enzymes that disintegrate the middle lamel-

lae of plant cell walls, are highly abundant in facultative parasites (i.e. WRF that are both
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necrotrophic and biotrophic such as the tree pathogen A. mellea that contains 17 respective

genes in its genome) and are just moderately represented in exclusively saprotrophic fungi

(e.g. dead-wood dwellers such as C. subvermispora with six and P. chrysosporium with four

respective genes; [33, 87]).

The expressed CE proteins of C. purpureum–found in the secretome of A. mellea as well–

are also involved in the degradation of pectins, e.g. by members of the CE8 family, which

cleave methyl esters. CE4 is a chitin deacetylase and acts on the acetyl group of N-acetyl glucos-

amine [33]. It may cooperate with fungal chitinase, e.g. GH18 of C. purpureum, to deacetylate

chitin to chitosan oligomers that do not longer elicit a plant defence response, and thus

enabling the fungus to invade living plants/trees without any appreciable resistance [88]. The

high abundance of pectinolytic enzymes and the presence of chitin-degrading enzymes in the

genome and secretome of C. purpureum implies that they are part of its pathogenic system

causing the silver-leaf disease ([89, 90], originally described to be caused by ‘Stereum’ purpur-
eum [91]).

Oxidoreductases. The number of LPMO genes (31) is in the upper range of that of other

WRF like B. adusta (Meruliaceae, 28 genes; [44]) or P. ostreatus (Pleurotaceae, 29 genes; [21])

and leaf-litter decomposers such as Coprinopsis cinerea (Psathyrellaceae, 34 genes; [56]). Even

in ‘atypical’ wood-rot fungi, high numbers of LPMO genes can be found (e.g. 32 genes in B.

botryosum), while in BRF, the number of LPMO genes generally goes below ten [21]. LPMOs

are thought to be involved in the oxidative cleavage of recalcitrant wood polysaccharides, par-

ticularly in that of crystalline cellulose [92] but may have also completely different roles, for

example, during chitin development in ancient arthropods [93]. The expression levels of

LPMOs reported for wood-degrading fungi differ considerably. Thus, during growth on

woody substrates, almost half of the existing 15 genes were expressed in P. chrysosporium [94];

Phlebia gigantea expressed six out of 15 genes [95], C. subvermispora five out of nine genes

[81] and P. radiata seven out of twelve [96]. On the other hand, only low or even no expression

of LPMOs was observed for Wolfiporia coccos [97] and P. ostreatus [27] under comparable

conditions. LPMOs are capable of enhancing oxidative attack on crystalline cellulose by coop-

erating with CDH [98]. The high abundance of LPMO in SF of C. purpureum points to a cer-

tain LPMO-stimulating effect by plant secondary ingredients and hemicellulose derivatives

[39, 40, 99]. Furthermore, it could be an indication for their joint action with CDH that func-

tions as an activating electron donor for LPMO and thereby improving the incipient degrada-

tion of crystalline cellulose [98]. Moreover, CDH has been proposed to play a role in the

generation of hydroxyl radicals (HO•) via Fenton chemistry and thereby may also contribute

to the degradation of cellulose as well as the modification of lignin [100]. CDH is uniformly

present as a single gene copy in all WRF but absent in the majority of BRF [21, 22, 100]. High

expression of CDH in relation to lignocellulose degradation (e.g. of aspen wood or wheat

straw) was reported for P. chrysosporium [94], I. lacteus [101], P. gigantea [95], C. subvermis-
pora [81] and P. radiata [96]. In contrast to these findings, CDH was not detectable in secre-

tomes of P. ostreatus grown on poplar wood or wheat straw.

The presence of high-redox potential class II PODs (i.e. MnPs) in the genome of C. purpur-
eum fulfills a well-known characteristic of all WRF and is a prerequisite for the efficient degra-

dation of lignin. BRF, on the other hand, are completely lacking these biocatalysts similar as

some ‘uncategorized’ (atypical or ‘white-rot-like’) wood-rot fungi [21]. Ligninolytic PODs can

occur in various combinations of MnP, VP and LiP (and there are several subtypes of MnPs

with somewhat different substrate spectra; [58, 102]. The number of MnP genes in white-rot

fungi ranges from two in A. bisporus to 13 and 16 in C. subvermispora and Fomitoporia medi-
teranea, respectively [21, 81]. C. purpureum with its two MnP encoding genes rather groups in

the WRF clade with few MnP genes in this classification system. As an agaric WRF, C.
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purpureum is lacking LiP genes; the occurrence of LiP is seemingly restricted to the evolution-

ary old order of Polyporales, for example, to species like T. versicolor, P. chrysosporium, P. radi-
ata or B. adusta [58].

Among the two ‘short-type’ MnPs of C. purpureum, only one was expressed and only in liq-

uid culture. Similarly, the necrotrophic WRF H. irregulare possesses six short MnPs out of

seven class II PODs but none of them showed strong expression when the fungus grew on

spruce heartwood [32]. For P. gigantea, a similar observation was made; from seven genes

encoding MnPs, the expression level in the corresponding secretome was rather low during

growth on acetone-extracted and non-extracted pine wood [95]. A possible explanation for the

low expression level of MnP genes in C. purpureum could be related to the fungus’ affiliation

to the group of ‘agaric’ WRF, which seemingly possess a simpler ligninolytic enzyme system

compared to ‘polyporous’ WRF. Volvariella volvacea (Rice straw mushroom) with its two

MnPs can serve as a typical example of such fungi [57]. Possibly, lignin degradation by fungi

with small numbers of class II peroxidases may be supported by other oxidative enzymes and/

or mechanisms. Furthermore, MnPs are known to be secreted during early stages of fungal lig-

nocellulose degradation (e.g. second to fourth week [103]) so that they may have already disap-

peared at the time point when the C. purpureum secretome was analyzed (after six weeks).

Interestingly also HTPs, with UPOs as their most prominent representatives, were found to

be present in the C. purpureum genome. In general, these enzymes are widespread among the

whole fungal kingdom including all phyla of true fungi (Eumycota) and a few ‘pseudofungal’

stramenopiles (‘Oomycota’) [77]. However, it is not much known on their physiological func-

tions and on the natural substances that regulate their expression [104]. C. purpureum
expressed five out of six UPOs, which all belonged to the phylogenetically older ‘short’ type

genes. Because of their catalytic versatility, it is conceivable that UPOs may be involved in

extracellular detoxification reactions, e.g. of low molecular weight compounds typically found

in living plants, wood, and soil (secondary metabolites, tannins, phytoalexins, microbial toxins,

xenobiotics, etc.). In addition to triggering UPO production by soybeans and their ingredients

in different fungi (e.g. by soybean meal, [48]; soybean peptone, [105]; glycinin or conglycinin,

[106]), recently published data indicate that DOR and its aqueous extract (ADOR) have stimu-

lating effects on UPO secretion too [38, 107].

Two of six genes encoding for DyPs were expressed by C. purpureum, but both only in

beech-wood supplemented soybean medium and in solid-state cultures; in the latter case, the

corresponding NSAF (%) was higher in beech-wood (BW) than in respective solid cultures

supplemented with DOR (BWD). It cannot be ruled out that both types of peroxide-using

enzymes, UPOs and DyPs, are partially overlapping with class II PODs in their ability to oxi-

dize lignin structures, and thus, they should be included in the pool of lignin-modifying

enzymes [46–48, 108, 109].

Peroxide generating enzymes (e.g. AA3 and AA5) constitute another important component

of the ligninolytic system of wood-rot fungi, since H2O2 is required as the oxidant (electron

acceptor) in peroxidative (and peroxygenating) reactions. The high abundance of respective

genes/proteins in C. purpureum‘s genome/secretome reflects this fact and indirectly points to

the importance of peroxidase-based processes during wood decay [110, 111].

There are other oxidoreductases that are thought to be involved in lignin modification. The

most prominent ones are Lacs being abundant in most WRF (though they are lacking in the

model organisms P. chrysosporium and B. adusta; [5, 112]) and they also occur in some BRF

[21]. Taking into account all information from fungal genomes, C. purpureum has, with 45

sequences in total, the largest number of Lac genes so far reported for a fungus. It exceeds the

23 to 25 Lac genes of the phylogenetically related, phytopathogenic Armillaria species, which

were hitherto the ‘record holders’ in terms of the number of Lac genes [113, 114]. Birth-death

Genome and secretome of Chondrostereum purpureum

PLOS ONE | https://doi.org/10.1371/journal.pone.0212769 March 1, 2019 20 / 30

https://doi.org/10.1371/journal.pone.0212769


model based analyses of gene content evolution pinpoint Lacs as some of the most rapidly

evolving gene families in C. purpureum, showing significant lineage-specific expansion in this

species (Table 4). This was confirmed by sequence-based analyses, in the course of which we

inferred 37 lineage-specific duplications in five families (Fig 4). High numbers of Lac genes

were also found in the genomes of the biotrophic (parasitic) fungi H. annosum (14 genes,

[21]), H. irregulare (18 genes, [115]) and M. perniciosa (24 genes, [55]). Remarkably, the high

abundance of Lac genes was adequately reflected by the expression patterns of C. purpureum
cultures comprising 25 Lac proteins in total. This has led to the assumption that Lacs are not

only involved in fruiting body development [116] and mycelial growth [117] but may be also

active in both parasitic and saprotrophic life styles of the fungus (e.g. during plant tissue inva-

sion or cell wall modification; [55]). Such role of Lacs in virulence (e.g. by detoxifying phenolic

compounds during host-defense) has already been postulated for A. mellea and H. annosum
[32, 33, 115], and also for phytopathogenic Ascomycota like Colletotrichum spp. and Scleroti-
nia spp. [118, 119] [94, 95] and even for human pathogens like Talaromyces marneffei [120].

A further genomic feature that may be associated with C. purpureum’s phytopathogenic life

style is the significant expansion of non-ribosomal peptide synthetases (NRPSs), proteases and

cytochrome P450 (Table 4), all of which were also found to be expanded in pathogenic Armil-
laria spp. highlighting the dual ecology of this genus [26]. The whole repertoire of genes–with

expansions, for example, in Lacs, GH7 and proteases combined with relative high abundances

of pathogenicity and lignocellulose-related proteins (e.g. Lacs, GH7, AA3_3) in different cul-

ture media–is, from our point of view, indicative for the switching lifestyle of C. purpureum
and suggests its adaptability to changing environmental conditions. It confirms the affiliation

of C. purpureum to the group of facultative parasitic agarics among the WRF (along with

Armillaria spp. and M. perniciosa), which are notorious for their changing lifestyles.

Conclusion

C. purpureum is a member of the order Agaricales, family Cyphellaceae within the current tax-

onomic classification. According to its genome, the fungus has a diverse genetic repertoire of

heme peroxidases (including MnPs, HTPs/UPOs and DyPs), LPMOs, Lacs as well as of H2O2-

generating oxidases. The presence of a single CDH, CBMs as well as of diverse cellulolytic and

hemicellulolytic hydrolases perfectly matches the eco-physiological classification of C. purpur-
eum as a WRF. Secretomic analyses revealed that the fungus realizes production and secretion

of all these enzymes degrading and modifying lignocelluloses during growth in different com-

plex solid and liquid media. Some of these media facilitated higher protein abundances in the

presence of special medium components such as soybean meal (mainly with respect to GH6,

seven LPMOs and one UPO, g5554), milled wood or phenol-rich agro-wastes (mainly for

CBMs, PLs and LPMOs). These findings, along with the close relation of C. purpureum to

other wood-rot agarics with both phytopathogenic and saprotrophic life styles, implies a par-

ticular role of these enzymes in transformation and detoxification of plant secondary metabo-

lites, in a way of self-protection and manipulation of the environment in order to overcome

plant resistance mechanisms. At the same time, they are responsible for the disintegration of

biopolymers in the fungus’ micro-environment and thus contribute to its acquisition of nutri-

ents. Not least, in that context, C. purpureum seems to be a suitable candidate for further bio-

technological studies regarding the disintegration and modification of recalcitrant materials.

Supporting information

S1 Fig. Remapping of raw reads to the assembly. Examples are given for few full length lac-

case, GH6 and GH7 genes. Coverage is given on the top in blue, tracks indicate intro-exon and
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CDS structure and the red arrow indicates the track with the non-synonymous SNP positions.

(TIF)

S2 Fig. Gene sequences of C. purpureum classified according Gene Ontology domains:

(left) biological process, (middle) molecular function and (right) cellular component.

(TIF)

S3 Fig. Assignment of gene sequences of C. purpureum to main enzyme classes according

to the EC nomenclature.

(TIFF)

S4 Fig. Lignocellulose-degrading enzymes in different basidiomycetous wood-decay fungi

(modified according to Riley et al., 2014; published data from JGI & NCBI), yellow–WRF,

grey–BRF, blue–unresolved wood-rot fungi. Agabi, Agaricus bisporus; Agrae, Agrocybe aeger-
ita (Gupta et al. 2018); Armce, Armillaria cepistipes; Armga, Armillaria gallica; Armme, Armil-
laria mellea; Armso, Armillaria solidipes, Armos, Armillaria ostoyae; Aursu, Auricularia
subglabra; Bjead, Bjerkandera adusta; Botbo, Botryobasidium botryosum; Cersu, Ceriporiopsis
subvermispora; Chopu, Chondrostereum purpureum; Conpu, Coniophora puteana; Copci,

Coprinopsis cinereus; Dacsp, Dacryopinax sp.; Dicsq, Dichomitus squalens; Fomme, Fomitiporia
mediterranea; Fompi, Fomitopsis pinicola; Galma, Galerina marginata; Glotr, Gloeophyllum
trabeum; Hetan, Heterobasidion annosum; Jaaar, Jaapia argillacea; Mycch, Mycena chlorophos
(Tanaka et al. 2014); Monpe, Moniliophthora perniciosa; Phaca, Phanerochaete carnosa; Phchr,

Phanerochaete chrysosporium; Phlbr, Phlebia brevispora; Pleos, Pleurotus ostreatus; Pospl,

Postia placenta; Punst, Punctularia strigosozonata; Pycci, Pycnoporus cinnabarinus; Schco,

Schizophyllum commune; Serla, Serpula lacrymans; Stehi, Stereum hirsutum; Trave, Trametes
versicolor; Volvo, Volvariella volvacea and Wolco, Wolfiporia cocos; �generic peroxidase, !

probably a generic peroxidase.

(PDF)

S5 Fig. Relative protein abundance (% NSAF) of enzymes produced by C. purpureum dur-

ing solid-state fermentation (SSF). Beech-wood (BW, inner ring) and beech-wood plus DOR

(BWD, outer ring). CAZy proteins are highlighted in bold letters. Organelle proteins include

ribosomal, peroxisomal and vacuolar proteins without defined catalytic properties. Values are

the mean of three replicates.

(TIF)

S6 Fig. Relative protein abundance (% NSAF) of enzymes produced by C. purpureum during

(submerged) liquid fermentation (SF). (A) KM (inner ring) ASKM, (middle ring) and BSKM

(outer ring) and (B) SM (inner ring), ASSM (middle ring) and BSSM (outer ring). CAZy proteins

are highlighted in bold letters. Organelle proteins include ribosomal, peroxisomal and vacuolar

proteins without defined catalytic properties. Values are the mean of three replicates.

(TIF)

S7 Fig. Heat map of the secreted CAZymes of C. purpureum that show significant differ-

ences during SF in KM, SM, ASKM, ASSM, BSKM and BSSM. Differences between treat-

ments were corroborated with Hotelling’s T2 test. Abundance is demonstrated by the

normalized spectral abundance factor (% NSAF). GHs are shown in the upper side while the

rest of the CAZymes (including AAs) are given in the lower side.

(PDF)

S8 Fig. Principal component analysis (PCA) bi-plot of the C. purpureum secretome from SSF

cultures. (left; BW and BWD loadings are highlighted in red) and SF cultures (right; SM, ASSM,
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BSSM, KM, ASKM and BSKM loadings are highlighted in red) using NIPALS algorithms.

(PDF)

S9 Fig. Neighbor-Joining phylogenetic tree of 54 class I and II peroxidase protein

sequences (manganese, lignin, versatile and generic peroxidases (MnP, LiP, VP, GP),

ascorbate peroxidases (APX) and cytochrome c peroxidases (CcP)). The sequences of C.

purpureum are marked by a “g” and in bold. Numbers with asterisks indicate proteins detected

in the secretomes; only complete sequences were considered. Sequences were aligned with

Clustal W and Jukes-Cantor distance models were used.

(TIF)

S10 Fig. Alignment of a versatile peroxidase of Pleurotus eryngii (2BOQ_A) with the class

II peroxidases of C. purpureum. The three acidic amino acid residues typical for the manga-

nese-binding sites of MnPs are indicated.

(TIF)

S11 Fig. Time course of extracellular oxidoreductase production by C. purpureum during

solid-state fermentation (SSF) of cultures containing beech wood (BW, left) and beech

wood supplemented with olive-mill residues ‘DOR’ (BWD, right); manganese-dependent

peroxidase activities (MnP, squares), unspecific peroxygenase (UPO, circles) and laccase activ-

ities (Lac, triangles) and pH (dashed line).

(PDF)

S12 Fig. Time course of extracellular oxidoreductase production by C. purpureum during

SF in cultures containing (a) KIRK medium (KM) and (b) soybean meal suspension (SM),

(c) KM-ADOR (ASKM), (d) SM-ADOR (ASSM), (e) KM-birch wood (BSKM) and (f) SM-

birch wood (BSSM); manganese-dependent peroxidase activities (MnP, squares), unspecific

peroxygenase (UPO, circles) and laccase activities (Lac, triangles).

(PDF)

S13 Fig. Neighbor-Joining phylogenetic tree of 67 multicopper oxidases (MCO) protein

sequences (laccase (Lac), ferroxidase (FeOX), ascorbate oxidase (ASC). The sequences of C.

purpureum (38 full length and 3 partial sequences (from C-terminal)) are marked by an “g”

and in bold. Numbers with asterisks indicate that the proteins were found in the secretome.

Sequences were aligned by Clustal W and Jukes-Cantor distance model were used.

(TIF)

S14 Fig. Alignment of all full-length and partial MCO genes. The alignment was performed

using ClustalW with parameters: BLOSUM cost matrix, gap opening cost = 10, gap extension

cost = 0.1.

(TIF)

S15 Fig. Maximum likelihood phylogeny. Maximum Likelihood phylogeny based on 609

genes across 36 genomes. Numbers indicate bootstrap support at each node.

(PDF)

S16 Fig. Numbers of inferred duplications across all orthogroups encoding GH6 cellobio-

hydrolases. The middle section indicates the number of orthogroups housing genes in each of

the respective classes and their copy number in each species. Agabi, Agaricus bisporus; Agrae,

Agrocybe aegerita; Armce, Armillaria cepistipes; Armga, Armillaria gallica; Armme, Armillaria
mellea; Armso, Armillaria solidipes, Armos, Armillaria ostoyae; Aursu, Auricularia subglabra;

Bjead, Bjerkandera adusta; Botbo, Botryobasidium botryosum; Cersu, Ceriporiopsis subvermis-
pora; Chopu, Chondrostereum purpureum; Conpu, Coniophora puteana; Copci, Coprinopsis
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cinereus; Dacsp, Dacryopinax sp.; Dicsq, Dichomitus squalens; Fomme, Fomitiporia mediterra-
nea; Fompi, Fomitopsis pinicola; Galma, Galerina marginata; Glotr, Gloeophyllum trabeum;

Hetan, Heterobasidion annosum; Jaaar, Jaapia argillacea; Mycch, Mycena chlorophos; Monpe,

Moniliophthora perniciosa; Phaca, Phanerochaete carnosa; Phchr, Phanerochaete chrysospor-
ium; Phlbr, Phlebia brevispora; Pleos, Pleurotus ostreatus; Pospl, Postia placenta; Punst, Punctu-
laria strigosozonata; Pycci, Pycnoporus cinnabarinus; Schco, Schizophyllum commune; Serla,

Serpula lacrymans; Stehi, Stereum hirsutum; Trave, Trametes versicolor; Volvo, Volvariella vol-
vacea and Wolco, Wolfiporia cocos.
(PDF)
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