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Abstract: This editorial paper presents a special issue devoted to the development of mathematical
tools from kinetic and swarms theory to the modeling and simulations of the dynamics of living
systems constituted by very many interacting living entities. Applications refer to several fields:
collective learning, behavioral economy, multicellular systems, vehicular traffic, and human crowds.
A forward look to research perspectives is focused on the conceptual links between swarms methods
and the kinetic theory approach.
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1. Introduction

This paper presents the conceptual framework of the special issue “Kinetic Theory and Swarming
Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems” published
in the journal Symmetry. The special issue is devoted to report the research activity in the field by means
of a selection of scientific articles, where mathematical tools of the kinetic theory and swarms dynamics
can contribute to modeling and simulations of living systems. Indeed, it focuses on a fascinating
objective which cannot be tackled by the approach of the so-called hard sciences, specifically mathematics
without the invention of new mathematical theories.

It is a highly challenging objective. We cannot naively claim that the contents of this issue provide
fundamental contributions to the said objective. On the other hand, it can be claimed that the contents
witness the ongoing research activity as well as the growing interest of scientists this field requires
an interdisciplinary approach.

Essentially, all papers published in the issue technically refer to the so called kinetic theory of active
particles, which is a mathematical theory towards the modeling of large systems of interacting living
entities [1]. The edited collection of surveys [2] reports about a broad variety of fields of applications
from social sciences to the dynamics of vehicular traffic. The key problem of the modeling approach
consists in capturing the complexity features of living systems.

Applications have been developed in various fields of life sciences and, more in general,
the so-called behavioral sciences where individual behaviors play a key role in the interactions
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and subsequently on the overall dynamics. The survey [3] shows how research activity keeps
attracting a growing interest of applied mathematicians and physicists. The very first step
of the methodological approach is the representation of the system by a distribution function which
defines the probability distribution over the state at the micro scale (individual based) of the interacting
entities. Subsequently, the modeling of interactions can be developed according to the specific
features of the specific system under consideration, and finally tools of statistical physics are developed
to transfer the dynamics of interactions to that of the collective behaviors of the whole system.

It is worth stressing that the specific features of living systems often lead to nonsymmetric
interactions, namely, loss of symmetry appears in the dynamics at the low scale. In fact, living entities
always apply a selection to the various signals received in the interaction with other entities.

The interested reader can refer to [1] to obtain a picture of the details and of the framework
which constitutes the conceptual basis of the mathematical theory. Therefore, we do not add here
further details on the methodological approach, but simply mention that interactions present key
features which are typical of living systems, namely interactions are nonlocal and nonlinearly additive,
collective and often non symmetric. These features are shared also by alternative approaches such as
the theory of swarms reviewed in [4] and developed after the celebrated paper by Cucker and Smale [5],
while the interest of applied mathematicians and physicists is witnessed in vast literature, e.g., [6–8]
including papers specifically related to economic problems [9,10]. In addition, we mention with
the aim of providing a fully detailed framework the kinetic theory approach developed by mean
field and Fokker–Plank models [11], where a variety of interesting models mainly on social dynamics
are reported and implemented by sharp numerical tools.

This editorial note is not limited to report about the contents, but it aims also to develop a forward
look to research perspectives somehow motivated by the contents of the issue. The presentation
of the contents given in Section 2 is followed by a forward look to research perspectives which
is proposed in Section 3. In more details, the outline of the research perspectives avoids being generic
and focuses on a well defined topic, namely the link between swarms and kinetic approaches somehow
related to the development by discrete variables methods. This topic is treated within a multiscale
vision somehow inspired by the sixth Hilbert problem [12].

2. On the Contents of the Special Issue

Let us now present the contents of the issue following a sequence somehow related to the rationale
of the modeling approach, where each paper is related to the conceptual framework and some key
literature related to it.

• A new approach to collective learning is proposed in [13] following previous contributions
of the authors, where they developed an approach based on the kinetic theory of active
particles [14,15]. The novel contents proposed in [13] refer to the specialization of the different
types of learning, which is proposed in the fist part of the paper, and the study of the interactions
between collective learning and different types of dynamics, which appears in almost all
behavioral phenomena, for instance social conflicts related to welfare strategies [16,17].
Learning dynamics is a key feature of the various dynamics treated in the papers cited in
the following.

• A model of opinion dynamics is studied in [18], where a sharp asymptotic analysis shows how
kinetic type models lead to diffusion problems. This paper refers to a topic which has been widely
studied by the kinetic theory approach, for instance [19–21], where learning dynamics is the first
step of the complex process leading to opinion formation.

• A contribution to behavioral economy is given in [22]. The authors specifically refer to the approach
of the kinetic theory for active particles [23–25] which appears to be effective in
capturing the main features of behavioral economy [26,27]. Heterogeneity, up to unethical
behaviors [28–30], and interactions between economy and social sciences are fundamental aspects
of the mathematical approach to behavioral economy.
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• The biology of cells, in particular the immune competition, has been one of the very first
fields of application of kinetic theory methods [31]. Motivations to account for the specific
features of cells, to be viewed as a living system, have been frequently posed to mathematicians
and physicists by biologists, as shown by the celebrated paper by the Nobel Laureate
Leland Hartwell [32] who, focusing on biological systems, indicates some important features
which distinguish living systems from the inert matter. Indeed, research hints look at a new
biology for this century [33]. The dynamics of cell motion is treated in [34], where authors
account for structure of the extracellular matrix, considering cell membrane reactions, haptotaxis
and chemotaxis. The modeling is performed at a microscopic scale, while a macroscopic model
is derived by a scaling limit.

• The kinetic theory approach to vehicular traffic was initiated by the visionary idea of Prigogine [35].
An interesting contribution to our special issue has been delivered in [36] for models where
the microscopic state includes, in addition to position and velocity, also an additional variable
deemed to describe the quality of the driver-vehicle micro-system. An additional novelty of this
paper is that both short-range and mean field interactions are introduced to depict velocity changes
related to passing phenomena in view of modeling the role of toll gates or traffic highlights.

• Two papers have been published on modeling and simulation of the dynamics of human crowds.
The first one [37] motivates the kinetic theory approach as the most appropriate scale to describe
the dynamics of human crowds. Indeed, the authors show that models at this scale have
the ability to capture several features of human crowds, for instance subdivision into different
groups pursuing different walking strategies, heterogeneous distribution of the walking ability,
interaction between emotional states and walking strategies. The second paper [38], in turn, tackles
the problem of simulating the dynamics of human crowds under stress conditions in venues
with internal obstacles. Applied mathematicians have devoted a great deal of energy to this
research topics which has an impact on safety problems and require advanced mathematical tools
as witnessed in the very recent literature, see [4,11,39–43]. The authors account for the pertinent
literature and develop simulations in a geometry somehow inspired to that of Jamarat bridge.
Montecarlo particle methods [44,45] have been used to develop simulations. The application of this
computational approach is not straightforward due to the presence of the activity variable, on the
other hand it is the most appropriate to account for the specific stochastic feature of kinetic models.

3. On a Forward Look to Research Perspectives

The interesting contributions to this special issue motivate some reasonings on research
perspectives. However, rather than producing a list of open problems, we will focus this section
on a specific research perspective, namely, a multiscale vision of living systems. This topic has been
selected, out of various possible ones, according to the idea that only multiscale methods can lead to a
consistent description of living systems. Indeed, this is the visionary concept, posed to the attention
of mathematicians and physicists, in the Sixth Hilbert problem [12].

The reference scale, which this special issue refers to, is the mesoscale based on kinetic theory
methods which has been applied by all the papers herein reviewed. It is possible, according
to the methodological approach proposed in [46,47], to derive models at the macroscopic scale from
the underlying description at the microscale. Some examples are available in the literature concerning
vehicular traffic [48], crowd dynamics [49], and multicellular systems [50,51].

On the other hand, a key problem, related to the selection of the representation and modeling scale,
is the validity of the continuity assumption of the probability distribution. Indeed, this assumption
is consistent only if the number of interacting a-particles is high enough. Arguably, the number
of interacting entities is not large enough to justify the aforementioned assumption. Hence, a research
perspective consists in looking for dynamical systems with finite degrees of freedom suitable to model
systems at the lower scale.
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This objective requires the derivation of a mathematical framework accounting for the specific
features of the interaction dynamics, namely nonlinear additivity and nonlocal dynamics. A first
step towards this specific objective has been proposed in [52], referring to a large system of active
particles subdivided into functional subsystems. In more detail, the following general framework has
been proposed: 

duij

dt
= vij,

dvij

dt
=

n

∑
p=1

Np

∑
q=1

η
pq
ij (u, v) ϕ

pq
ij (u, v) +

n

∑
p=1

µ
p
ij(u,Ep)ψ

p
ij(u,Ep),

(1)

where the subscript i, j identify, respectively, the i-th functional subsystem and the j-th a-particle, while
Ni denotes the number of particles in the i-th FS, and n the number of FSs. In addition:

η
pq
ij models the interaction rate of individual based interactions between ij-particles and pq-particles;

µ
p
ij models the micro-macro interaction rate between ij-particles and p-functional subsystem;

ϕ
pq
ij denotes the micro-micro action, which occurs with rate η

pq
ij , of an pq-particle over an ij-particle;

ψ
p
ij denotes the micro-macro action, which occurs with rate µ

p
ij of a p-functional subsystem over

an ij-particle.

The mathematical structure is obtained modeling the action given by the product η ϕ for
the micro-micro interactions and by µ ψ for the micro-macro interactions and by equating the overall
action to the acceleration of the variable uij, where u = u(t) and v = v(t) denote, respectively,
the set of all states uij and speed of growth vij. Mathematical models are obtained by implementing
the structure (1) with the description of individual based interactions. The application studied in [52]
refers to modeling the dynamics of prices due to the interactions between producers-sellers and buyers.

It is useful observing that the behavioral swarm method can be viewed as a generalized
mathematical formalization of the Agent-Based Model (ABM) field. In an ABM perspective [53–55]
we have simple of complicated agents, with internal rules, interacting one to one or in groups or
with institutions. The starting point is always a population of agents, representing individuals or
more generally entities, as the component of a generic system, that we construct using small parts
of computer code operating in dedicated software environments. The goal is to search for regularities
at the macro level generated by the behavior of the agents (micro level, if individuals; meso level,
if more complex entities).

In ABMs, we are close to swarms, but operating in a very different manner. The mathematical
generalization requires limitations. As a consequence, we can develop our research in a double way,
with both a swarm construction and an agent-based one. The first one can be guided by strict formal
limitations, requiring to have a more in-depth look at the way the agents behave; the second one offers
interesting verifications that we can obtain relaxing some of the constraints introduced in the swarm
model. However, the behavioral swarm method provides a more general and flexible approach worth
to be further developed towards applications in behavioral sciences [3].
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