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Abstract: The behaviour of many dynamic real phenomena shows different phases, with each one
following a sigmoidal type pattern. This requires studying sigmoidal curves with more than one
inflection point. In this work, a diffusion process is introduced whose mean function is a curve of
this type, concretely a transformation of the well-known Gompertz model after introducing in its
expression a polynomial term. The maximum likelihood estimation of the parameters of the model is
studied, and various criteria are provided for the selection of the degree of the polynomial when real
situations are addressed. Finally, some simulated examples are presented.

Keywords: multi-sigmoidal growth curves; diffusion processes; maximum likelihood estimation;
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1. Introduction

Growth curves with sigmoidal behaviour are widely used for data analysis across several fields
of application. Given the variety of approaches employed in the profuse literature dealing with this
subject, several mathematical models have been proposed for their study.

In general terms, a sigmoidal function is a function defined in the real line, bounded and
differentiable with positive derivative. Its graph has a typical S shape showing a slow growth at the
beginning, followed by a fast (exponential) growth that slows down gradually until it reaches an
equilibrium value (usually named carrying capacity or level of saturation). Often, the sigmoid function
refers to the particular case of the logistic function f(t) = k/(1 + be™""), although there is a great
variety of curves with these characteristics. One of them is the Gompertz function, which is used in
the modeling of systems that are saturated for large values of ¢, and whose most general expression is
f(t) =aexp(—bexp(—ct)).

New sigmoidal curves have been introduced over the years, and their application has extended
to several new fields. Among them we may mention hyperbolic curves (Eby et al. [1]), sigmoidal
hyperbolic functions of the first and second kind (Menon et al. [2]), or the beta growth function
(Yin et al. [3]). Regarding their application to new fields, researchers have looked into the diffusion
of innovations (Giovanis and Skiadas [4]); the calculation of oil production peaks (Gallagher [5]);
predicting changes in language (Yokohama and Sanada [6]); analyzing fatigue and fractures in materials
and structures (Paolino and Cavatorta [7]); etc.

Traditionally, most of the sigmoidal growth models cited above have arisen from the solution
of ordinary differential equations. In that sense, they are deterministic and do not include other
information than that provided by the variable under study. In order to incorporate these influences,
the idea of growth in a random environment emerged (see Ricciardi, [8] and references therein).
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Thus, the so-called dynamic growth models appeared, and among them diffusion processes. Some
of these diffusion models emerge as solutions to a stochastic differential equation after modifying a
deterministic one by introducing in it a term of white noise. Other diffusion processes are constructed
in such a way that their mean function is a certain sigmoidal growth curve. Usually, those of the first
type retain the name of the corresponding deterministic equation of origin. For instance, Schurz [9],
collect a wide variety of logistic diffusion processes. However, for most of them the stochastic
differential equation does not have an explicit solution. For this reason, Roméan and Torres [10]
constructed a logistic-type stochastic differential equation in the second sense (its mean is a logistic
function). The same situation has presented itself in the context of other growth curves and related
diffusion processes. Such is the case of the Gompertz process, which was introduced by [11]. In such
process, the upper limit of the curve is independent of the initial value of the population under study,
something not always verified in real situations. For this reason, Gutiérrez et al. [12] introduced a
new Gompertz-type process in which the carrying capacity of the system depends on the initial state.
This line of action has also been applied to the Bertalanffy curve (see Quiming et al. [13] and Romaén et
al. [14]), the Hubbert curve (Luz-Sant’Ana et al. [15]), and, more recently, to the hyperbolastic curve of
type I (Barrera et al. [16]).

Dynamic models are used in the fields in which the deterministic case has proved to be useful in
fitting sigmoidal behaviour patterns to observed data. Researchers have developed several methods
of estimation for these dynamic models. As far as maximum likelihood estimation methods are
concerned, we can differentiate between those that take as a starting point the stochastic differential
equation related to the model (usually known as continuous sampling methods) from those who
build the likelihood function from the transition density functions of the process (discrete sampling
methods). Alternatively, some authors have dealt with inference from a Bayesian perspective
(Tang and Heron [17]).

An interesting aspect in this type of processes is the possibility of introducing, into their
infinitesimal moments, time functions that allow us to regulate the evolution of the variable under study.
Given that the functional form of such functions is not known, several strategies have been devised for
their estimation. Some work carried out along this line includes studies by Albano et al. [18,19] and
Romadn et al. [20] which centered on modifications of the Gompertz process.

There are multiple real situations in which the maximum level of growth is reached after successive
stages, in each of which there is a deceleration followed by an explosion of the exponential type. For this
reason, the use of sigmoidal curves with more than one inflection point is a good approach. A typical
example of this behaviour is observed in the growth of various fruit species, such as stone fruits
(Alvarez and Boché [21]). Cairns et al. [22] used double-sigmoidal models to study fatigue profiles in
mouse muscles, while Amorim et al. [23] detected this type of behaviour in the different phases in
which the fungus Ustilago Scitaminea Sydow infects the sugarcane and produces its characteristic smut.

The way that this multi-sigmoidal behaviour is modeled is far from unique. For example,
Roper [24] used hyperbolic functions to study the transition between various temperature states in
certain geological zones. Other authors have achieved this goal by including terms that define inflection
points and additional parameters (Lipovetsky [25]). However, these models have not addressed the
incorporation of external information to the variable under study, similarly to the dynamic models
already mentioned. In this paper we address this problem by introducing a diffusion process whose
mean obeys a pattern of multi-sigmoidal behaviour. In particular, we will deal with the case of
Gompertz growth with multiple inflection points, following the idea mentioned in [23] for the case of
the generalized monomolecular and Gompertz curves.

The rest of the paper is organized as follows: in Section 2 the multi-sigmoidal Gompertz curve is
introduced by including a polynomial in the usual expression of the curve. In Section 3, the Gompertz
multi-sigmoidal diffusion process is defined. To this end, the lognormal diffusion process with
exogenous factors is considered, since it allows us to model behavioral patterns that verify the
properties exhibited by the curve. The estimation of the process, which is performed by maximum
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likelihood using discrete sampling, is the subject of Section 4. The matter of obtaining initial solutions
to solve the resulting system of equations deserves special attention. Other important aspect is to
determine the degree of polynomial that should be considered since, in general, this aspect will
be unknown in real applications. To this end, some criteria are considered in that section. Finally,
in Section 5, some simulation examples are considered.

2. Multi-Sigmoidal Gompertz Curve

Let Qp(t) = Zle B;t' be a p-degree polynomial , where B = (By, .. .,ﬁp)T (p > 1) denotes a
real parametric vector with positive leading coefficient f,. We define the multi-sigmoidal Gompertz
function as

fot) =kexp (—ae @), t=1>0, k>0, 0= (xpN). (1)
Denoting Pg(t) = det(t) , curve (1) satisfies the ordinary linear differential equation
dfe(t
fgf ) - fo(t)ho(t), ©)
where
ho(t) = a Pg(t) e~ %), 3)

Taking into account that In fy(t) = Ink — « e~ the above equation can be expressed as

o) _ gy (1) (kI 1)) Pp(0). W

However, the resolution of both equations, with initial condition fg(ty) = fo > 0, leads to two
expressions of curve (1). Indeed, the solution of (2) is

folt) = foesp (= (e @) —e-9x) ), o
while the solution of (4) is
folt) = exp <1n k (1 _ e*Qﬁ(t)*Qﬁ(tO)) +1nf e*Qﬁ(f)*Qﬁ(fo)) ) 6)

Equation (4) is a generalization of the classical gompertzian differential equation, giving rise to
the curve (6), used by authors like Ricciardi et al. [26] in the case Qﬁ(t) = Bt. On the other hand,
Equation (2) is a linear differential equation of the Malthusian type whose solution generalizes the
expression of the Gompertz curve used by authors such as Laird [27] and Gutiérrez et al. [12].

The main difference between (5) and (6) lies in their limit value, which in the first case is
k(6) = foexp («x ein‘(tO)), and k in the second. This may lead to the choice of either expression
depending on the knowledge available about the influence of initial value fy on the limit value. This is
the case when the phenomenon under study shows Gompertz-type growth and several sample paths
are available, each with a common growth pattern but with different initial values and a different
limit value (for example, the particular weight of each individual of the same species). In the rest
of the paper, we will consider the situation in which the carrying capacity of the system modeled by
the curve depends on the initial value of the population under study. So, (5) can be expressed as

fo(t) = k(0)ge(t) where gg(t) = exp (—oc e_Qﬁ(t)), verifying lim; . go(f) = 1.
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Focusing on the general expression given by (1), from (2) it follows that the growth intervals of
the curve depend on the roots of the equation Pg(t) = 0. As for the inflection points, the candidates

will be the solutions of % = 0, which results in solving the equation
dPg(t) -
5t = P3(1) (1 e QM) : @)

Figure 1 shows some possible situations for various choices of the polynomial Qg(#). In each case,
the Gompertz curve is represented together with its first and second derivatives. In particular, figure
(a) represents the case in which Pg(#) has no roots and the curve is strictly increasing and presenting
two inflection points, as in case (b), although in the latter case the curve presents both decreasing and
increasing intervals. Finally, figure (c) shows an example with three inflection points.

(a)

—— Gompertz curve

0.15
I

—— First derivative
----  Second derivative

0.00

o 10 20 30 40 50

——  First derivative
-~ Second derivative

03

o 10 20 30 40 50 o 10 20 30 40 50

—— Gompertz curve —— First derivative
Q o _|---- Second derivative
3
w
o~
s

Figure 1. Strictly increasing Gompertz curve with two inflection points (a). Decreasing and increasing
curves with two (b) and three (c) inflection points.
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3. Multi-Sigmoidal Gompertz Diffusion Process

Assuming that (7) has at least one solution where fg presents an inflection point, this function is
found in the conditions listed in Roman and Torres [28], which ensures that the growth phenomenon
represented by the curve can be modeled by a non-homogeneous lognormal diffusion process whose
mean function is such a function. In Romdn et al. [29], a general study of this process is carried out,
including the distribution and main characteristics as well as aspects related to inference. Following
the notation used in that paper, we define the multi-sigmoidal Gompertz process as a diffusion process
{X(t);t € I} that takes values in (0, +0) and with infinitesimal moments

Ar(x,t) = h (t)
As(x) = o?x
where [ = [tg, +0o0) is a real interval (tg > 0) and ® C RP*! is an open set such that 8 = («, 87)T € ©,
where hy is given by (3). This process is determined from the stochastic differential equation

c>0

dX(t) = he(H)X(D)dt + oX(DAW(H),  X(to) = Xo,

where W(t) is a Wiener process (Brownian motion), independent of the initial condition Xy = X(t9),
t > to. The solution to this equation can be expressed as

X(t) = Xo exp (Hg(to, t) + o(W(t) — W(tp))), t > to (8)

where

t 2 2
Hg (s, t) = /S he(u)du — %(t —5)=—u (e*Qﬁ(t) - e*Qﬁ(s)) - %(t —s), s<t &=(0",0%)T.

Regarding the distribution of the process, if X is distributed according to a lognormal distribution
A [;40 ; Ug] , or Xy is a degenerate variable (i.e., P[Xy = xg] = 1), the finite dimensional distributions of
the process are lognormal. Thus, Vn € Nand t; < -+ < t,, vector (X(t1),..., X(ts))7 is distributed
according to an n-dimensional lognormal distribution A, [e, Z|, where the components of the vector
gare g; = pg + Hg(to, t;),i =1,...,n, being i = U’g + 0?(min(t;, tj) —t9),i,j=1,...,n, those of the
matrix X.

From the two-dimensional distributions (X(s), X())T, s < t, the transitions of the process can be
obtained, which are also lognormal; concretely,

X(H) | X(s) =y ~ Ay (1ny+ Hg(s, 1), 02 (t — s)) . s<t.

Once the distribution of the process has been established, different characteristics associated with
it can be calculated, including the mean and conditioned mean functions, whose expressions are

m(t) = E[X(t)] = E[Xo] exp (—a (") — ¢~ Q(t0)})
and
m(t|to) = E[X(t)[X(to) = x0] = xoexp (—tx (e’Qﬁ(t) - e*Qﬁ(tO)))

respectively, being able to verify that both functions are of the type introduced in the previous section.
The expression that adopts other characteristics can be consulted in Romén et al. [29].

4. Maximum Likelihood Estimation

In this section we will deal with the estimation of the parameters of the process by maximum
likelihood. In Romén and Torres [29], a general treatment of this question is carried out for the
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non-homogeneous lognormal process, of which the process dealt with in this paper is a particular case.
Below we summarize the main results obtained in the aforementioned paper, adapting them to the
actual case.

The starting point is a discrete sampling of the process based on d sample paths observed at
time instants tij, (i=1,...,d,j=1,...,n;). Note that the observation time instants do not have
to be the same in each trajectory, although we will suppose that tj; = tg, i = 1,...,d. Denote by
X=(X]]---x]) T, where X! is the vector that contains the variables of the i-th sample-path, that is
Xi = (X(tn), ..., X(tix, ), i=1,...,d.

Assuming that the distribution of X(t;) is lognormal A (p1,0?), and taking into account the
transitions of the process, the probability density function of X is given by

In(x;i01/%;; T
oxp [ — xia—ml? exp —[ Crige I]‘)+1‘ 3 }
P 2(712 n;—1 2(72A¥ 7)

d
fx(x) = — ——
111 X101V 27 ]1;]1: Xijoy/ 27TA£+1']

Y and Afrl’] are given by

where mg] *

imn

2
. ’0 o .
mg"" = Hg(tin, tim) = —a P — 7A§M
Alm,n = tim — tin
with
(pfr’rlm = tﬁm e~ Qptim) _ ti-n e~ Qtin), 1=0,1,..; i=1,...,d; m,ne€{1,...,n,_1},m>n.
Next, we consider the change of variables

Voi= X, i=1,...,d
Vi= @) =1 ==
if

T
that transforms vector Xin V = [V{|VI|. .. |V]] T= {Vg |V(Tl)} , whit probability density function

T
exp (—;'%(lnvo —1115) T (Invg — ylld)) exp <—$2 (v(l) - 75) (V(l) — 76))

d d
TTvo (271012) 3 (27t02)
i=1

fv(v) = 9)

NI=

where Invy = (Invgy,...,Invg) T, n = Z‘l-’l:l(nl- -1,1,=(,..., 1)§X1, and 9% is an n-dimensional
vector with components 'y% = (Afﬂ’])’l/zmg]’]ﬂ, i=1,...,.dj=1,...,n—1
For a fixed value v, expression (9) provides the likelihood function, whose logarithm is

]2

p [Invg; — 1
L ( g)__(n_"d)ln(zn)_dlnglz_zlnv'_ _Yllno‘z_Z1+q)§—2rg
v\, - 2 2 = 0i 20_12 2 202

I
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where 77 = (1, 07)7 is the vector that contains the parameters of the initial distribution, being

d ni—1 d ni—1 (mgj+l'j)2 d ni—1 Uijmgj-‘rl'j
2
U“ ¢§ = e E— r = I
Z Z ’ Z 1] g Z E 1
i=1 j=1 Y i=1 j=1 Af 4 i=1 j=1 (A;+ ’])1/2

Assuming that # and ¢ are functionally independent, the estimate of # leads to

1d ~
=7 Zlnvol- and 77 =
i=1

&.\P—‘

d
Z h’l 00i — ’

while that of ¢ is obtained (see [29] for details) from the system of equations

Yo— Q=0
Z1+ CDg — ng — 0‘2Z2 + (Tng = no?
where 20 ar 90
10%¢ 1dl¢ ¢
¢ g9er 0T gger  YeT T2 2T 250
Taking into account that
ami,j-&-l]
g
00T ( (PJHJ ¢1J+1] api J+1J>

7 of 18

(10)
(11)

and the previous expressions of ()z and Y, the subsystem of equations (10) remains in the form

2
(%
XPraxf+Swh=0,  1=01..p

where, for! =0,1, ..., p one has

B ZJ(P ]+1] ol ¢ﬁ]+1 ](P ]+l]
i=1 j= i=1 j=

On the other hand, and since

o2

(12)

ot o? .
O =Y + T2+’ W), Tp=-aX{- 72, Y=-aWi-S2Zy,  Zy=) A

Equation (11) transforms into
o? [n+02Z3/4} - {ZXg +ucY(ﬂ — 71 =0.

4.1. System of Equations and Numerical Computations

(13)

The system of Equations (12) and (13) can not be solved explicitly, and it is therefore necessary to
use numerical methods, such as Newton-Raphson, for which an initial solution is required. Next, we

present a strategy to achieve this, based on the information provided by the sample data.

As a matter of fact, and taking into account that the mean function of the process is a Gompertz

multi-sigmoidal curve, as well as the expression (1), it follows

k
lnlnfe—(t) =Ina — Qg(t).
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Noting m; the values of the mean of the sample paths at t;, we propose to fit, by linear regression,
a polynomial taking as data the pairs of values (t;,In(In(k/m;))). The estimated coefficients will
provide the initial values for « and B. Regarding o, its initial estimation is based on the fact that for
a lognormal distribution A1 [7, 5], the quotient between the arithmetic mean and the geometric one
provides an estimation of §; concretely & = 2In(E[X]/Eg[X]). Applying this result to the distribution
of X(t) we obtain, for each t;, an estimate of 02 (; — ty); thatis, 02 = 2In(m;/m$), i = 1,..., where m$
are the values of the geometric sample mean. Finally, the initial value of ¢ is calculated by performing
a simple linear regression of the ¢; values against ¢;.

In this procedure there are several questions that must be taken into account:

o  The value of k, in general, will not be known. Therefore, we suggest taking as an approximation
the last value of the mean. However, it is possible that in real cases, and due to the fluctuations of
the process, there could be values m; verifying k < m;, so transformation In(In(k/m;)) would not
be determined. In such cases, usually not many in practical cases, those points must be removed
from the regression analysis.

e  Since, generally, the degree of the polynomial will not be known a priori, it is necessary to have
some mechanism that will allow for its selection. To this end we propose a forward procedure,
introducing polynomials in a consecutive way in the model. Each time a polynomial is introduced,
a measure of the adjustment made is calculated and compared with the previous ones. If the
adjustment is improved, the procedure continues; otherwise it stops. However, and even in this
case, it is convenient to perform one more iteration due to the parity of the polynomial.

e Regarding the measures that can be used to evaluate the adjustment, we propose the following:

-  The absolute relative errors between the sample mean of the process and the fitted mean for
each estimated model

_ 1 fmi— EXO ()]
RAE; = N; mi

i=12,...

—  The resistor-average distance (see Johnson and Sinanovic [30]). This is a distance based on
the Kullback-Leibler divergence, which will be used for calculating the distance between the
sample distribution (available from the data) and that obtained from each estimated model.
The expression for this measure is

\ _ Dxc(fsllfi) - Dxe(fillfs)
Dra(fsllfi) = Dx(fsllfi) + Dxe (fillfs)”

where Dg; (fs||fi) denotes the Kullback-Leibler divergence between the sample distribution
(fs) and that for the i-th estimated model (f;). Its expression is given by

= 2
kL(fsllfi) = 2 (712 72(t — to) 2t — to)

In practice, this is the expression of the distance that should be used since the theoretical
model will not be known in real applications. However, for simulation studies the distance
between theoretical and estimated models could be considered. In this case, the previous
expression would be slightly modified.

—  The Akaike information criterion (AIC) and the Bayes information criterion (BIC).
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4.2. About tg

Another interesting aspect to consider is that of the time instants, especially when they take high
values. This can mainly affect the obtention of the initial values for the parameters since a polynomial
regression has been proposed. One option is to apply orthogonal polynomials, as it is usual when
considering this type of regression.

One alternative is to consider a new diffusion process {Y(t);t > 0} obtained from {X(¢);t > to}
by considering a shift of length fy in time, thatis Y(t) = X(t + to), so that the original data can be
considered as observations of the new process with an initial instant equal to zero. Let’s see how this
change affects the infinitesimal moments of the processes:

In general, let {X(t);t > to} be the original process and {Y (t);t > 0} verifying X(t) = Y(t — to).
Denote by AX(x,t) and A),(x, t) their respective m-th order infinitesimal moments. Taking into account
the definition of infinitesimal moment of order m,

AX(x,£) =lim ~E [(X(¢ + ) — X(£)"|X(£) = 2],
h—0 h
it verifies that A% (x,t) = A),(x,t — ty). Obviously, the strategy of considering this translation over
time will be useful when the resulting process is of the same type as the original.
In the case of the multi-sigmoidal Gompertz process, let us consider {Y(¢);t > 0} with

infinitesimal moments B
AY(x,t) =By (e @0, AY(x) = 22

where y = (71,...,7p)T.
Taking into account that

Q'y(t - tO) =

M=

p
M (t—to) =Bo+ Y But™ = Po+ Qp(t),
m=1

1

where ¢y = (7y1,...,Ym), being

P . P ] )
Bo=)_i(~t), ﬁm—Z(:y4wwm_me,
j=1

; m
J=m

then the corresponding infinitesimal moments for the process {X(t);t > to} given by X(t) = Y (t — t¢)
are

A (x,8) = AY (x,t — to) = nPy(t — to) =@ 70) = a Pg(1)e %W, AX(x) = AY (x)

with « = 57e7Po and Pg the derivative of polynomial Qg.

Note that X(t) is also a multi-sigmoidal Gompertz diffusion process whose infinitesimal moments
differ from those of Y (t) in the reparametrization occurred in 77 and 7. The same happens for the finite
dimensional distributions, transition distributions and main characteristics of the process. In particular,
E[X()] = E[Y(t — to)].



Mathematics 2019, 7, 541 10 of 18

5. Simulations

In this section, some simulation examples will be carried out with the aim of illustrating the
developments previously established, focusing on the strategies related to the estimation of the
parameters of the model as well as the selection of the model that best fits the data. All the simulations
were performed according to the following common pattern: 25 sample paths were simulated, each
one obtained from expression (8), which relates the Gompertz process under consideration and the
Wiener process. All of them contain the same number of data (501), being (i —1)-0.1,i =1,...,501
the observation time instants. For simplicity we have chosen a degenerate initial distribution
(P[X(0) = 5] =1). After obtaining each trajectory, we chose 51 values starting from the first one
and using a step equal to 1. Hence, a sample of 51 data was obtained for each sample path.

With regard to the processes chosen for the simulation, two have been selected that correspond
to situations in which there are two inflection points. The former presents a strictly increasing mean,
while in the second an initial decrease is observed.

5.1. The Case of Increasing Mean

As a first example we have selected a multi-sigmoidal Gompertz diffusion process for
which the degree of the polynomial included in the infinitesimal mean is p = 3, being
B = (0.1225, —0.0075; 0.00017) T, The value of & is « = e~!, while two values of ¢ have been considered
(concretely o = 0.01, 0.05) to verify the effect of increasing the infinitesimal variance in the estimation
process. Figure 2 shows the 25 simulated sample paths for each value of ¢.

Example 1. Simulated sample paths. 6=0.01 Example 1. Simulated sample paths. 6=0.05

14
|

Time Time

Figure 2. Example 1. Simulated sample-paths. Black lines represent the sample mean.

In order to find the process that best fits the data, for each sigma value, multi-sigmoidal Gompertz
processes including polynomials from grade 2 to 5 have been considered successively. Table 1 includes,
for each model, the initial values of the parameters as well as their definitive estimates. The initial
values have been obtained following the procedure described above. Note that the initial ¢ value is
common for all cases since it is calculated directly from the sample data.
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Table 1. Example 1. Estimates of the parameters of the models for each value of p.

o =0.01
Degree o« o B1 B2 B3 Ba Bs
5 Initial 0.43264 0.00951 —0.08412 0.00405
Final 0.44732  0.01632 0.19938 0.00726
3 Initial 0.82721  0.00951 0.09462 —0.00576 0.00014
Final 0.90536  0.00975 0.12100  —0.00738 0.00016
4 Initial 1.01846  0.00951 0.19476  —0.01580 0.00048  —0.0000037
Final 0.52895 0.01221 0.33611 —0.02349 0.00043 0.0000019
5 Initial 0.80607  0.00951 0.01539 0.01266 —0.00119 0.000037  —0.00000037
Final 0.80607  0.00951 0.01539 0.01266 —0.00119 0.000037  —0.00000037
o = 0.05
5 Initial 0.40172 0.05147 —0.09713 0.00468
Final —0.04547 0.05450 —0.98848 0.28151
3 Initial 0.89617 0.05147 0.14054 —0.00929 0.00021
Final 0.87641 0.04832 0.11912  —0.00698 0.00015
4 Initial 0.93752  0.05147 0.16394 —0.01181 0.00030  —0.0000010
Final 0.95883  0.05139 0.15846  —0.01143 0.00030  —0.0000016
5 Initial 0.76767 0.05147 —0.00203 0.01645 —0.00147 0.0000458  —0.00000043

Final 0.76767 0.05147 —0.00203 0.01645 —0.00147 0.0000458  —0.00000043

Figure 3 displays the theoretical and the sample mean functions, together with those
corresponding to each estimated model. This figure suggests considering the model with p = 3
as the optimum, although this must be endorsed by numerical measures of goodness of fit.

Example 1. Theoretical, sample and estimated mean functions. 0=0.01 Example 1. Theoretical, sample and estimated mean functions. c=0.05

—— Theoretical mean
—— Sample mean

——— Theoretical mean
—— sample mean

12
|

Estimated mean (p=2) Estimated mean (p=2)

12
1

Estimated mean (p=3)
Estimated mean (p=4)
Estimated mean (p=5)

Estimated mean (p=3)
Estimated mean (p=4)
Estimated mean (p=5)

10
1

Means
Means

o 10 20 30 40 50 o 10 20 30 40 50

Time Time

Figure 3. Example 1. Theoretical, sample and estimated mean functions.

Table 2 summarizes the measures that have been used (RAE, AIC and BIC). For all of them, it can
be observed how from p = 3 the goodness of fit can not be improved. Therefore, the third-degree
model has been chosen as the optimal one.
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Table 2. Example 1. Measures for choosing the estimated model.

Degree
2 3 4 5
RAE 0.168 0.002 0.171 0.092
c=0.01 AIC -9034903 —10314.497 —8952.280 —7870.896
BIC  —9014.380 —10288.842 —8921.495 —7834.980
RAE 0.459 0.011 0.056 0.099
c=0.05 AIC 5967582  —6315.135 —6275.419 —6188.681
BIC  —5947.058 —6289.480 —6244.633 —6152.765

The use of the resistor-average distance also leads us to this conclusion. For each value of p,
and for each value of £, the distance between the estimated one-dimensional distribution and the
corresponding theoretical and sample distributions has been calculated. This provides, for each degree,
two functions whose graphs are shown in Figure 4, showing how odd-grade models seem to be
preferable. With the idea of obtaining a globalizing measure that allows selecting the best model,
Table 3 shows, for each of them, the means and medians of the values of the distances. These two
measures confirm that the model with p = 3 is the one that should be selected as optimal. It should
be noted that in practical applications, as the theoretical model is not available, the distance to be
considered is that which takes the sample distribution as a reference. However, in this first example
we have included the two possibilities.

Example 1. Resistor—average distance (theor. vs est. distributions). 0=0.01

aRwWN

TTTT

Time

Example 1. Resistor—average distance (sample vs est. distributions). 0=0.01

aAwN

06
|

0.2

0.0

o 10 20 30 40 50
Time

Distance

Distance

Example 1. Resistor—average distance (theor. vs est. distributions). 6=0.05

TTTT

aRwWN

T T T T T T
o 10 20 30 40 50

Time

Example 1. Resistor—average distance (sample vs est. distributions). 0=0.05

TITT
adwWN

0.20
1

0.15
1

0.10
1

0.05
1

0.00
1

Time

Figure 4. Example 1. Resistor-average distances between the theoretical and estimated models (up)

and between the sample and estimated models (down).
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Table 3. Example 1. Means and medians of the resistor-average distances.

Degree
2 3 4 5
Distr. Mean Median Mean Median Mean Median Mean Median
o= 001 Theoretical 2.71439  1.24435 0.00210 0.00208 3.33965 3.45329 2.60928  0.95538
Sample 0.34820 0.35109 0.00641 0.00421 0.11279  0.10989 0.01249  0.00759
o =005 Theoretical 1.58825 1.59751 0.00148 0.00139 0.03698 0.02188  0.10850  0.03090

Sample 0.10873  0.10398  0.00464 0.00257 0.01023  0.00473  0.00938  0.00408

Finally, Figure 5 shows, for each o value, the first and second derivatives of the theoretical, sample
and estimated mean functions for the selected model. In order to obtain the derivatives of the sample
mean function, a smoothing of the function has previously been carried out using polynomial local
regression. A good fit between these functions can be observed, which is corroborated by Table 4,
which contains the theoretical, sample, and estimated values of the inflection time instants.

Example 1. Theoretical, sample and estimated inflection points. c=0.01 Example 1. Theoretical, sample and estimated inflection points. c=0.05

—— Theoretical 1st derivative —— Theoretical 1st derivative

- - - Theoretical 2nd derivative - - - Theoretical 2nd derivative

2 —— Sample 1st derivative (smooth) 2 —— Sample 1st derivative (smooth)
- - - Sample 2nd derivative (smooth) - - - Sample 2nd derivative (smooth)
Estimated 1st derivative Estimated 1st derivative

- - - Estimated 2nd derivative - - - Estimated 2nd derivative

Figure 5. Example 1. Theoretical, sample, and estimated inflection time instants.

Table 4. Example 1. Sample and estimated inflection time instants for the model chosen. Theoretical
values are in parentheses.

Inflection Time Instants

t1 (14.787)  t (30.589)

— 001 Sample 14.922 30.522
=% Estimated 14869 30.834
o =005 Sample 14.595 30.394

e Estimated 14.789 30.553

5.2. The Case of Mean Decreasing, Then Increasing

This example illustrates a case in which the data present an initial decrease and then grow up to
the value of the upper bound. As in the previous case, we have selected a model with p = 3, being
B = (0.0626, —0.009,0.0002)T, & = ¢! and o = 0.025. Figure 6 shows the simulated sample paths.
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Example 2. Simulated sample paths. 0=0.025

Time
Figure 6. Example 2. Simulated sample-paths. The black line represents the sample mean.

Following the same methodology developed in the previous example, once again the procedure
stops when considering the polynomial of degree 5. Figure 7 shows the estimated means together with
the theoretical and the sample ones.

Example 2. Theoretical, sample and estimated mean functions. =0.025

« _| — Theoretical mean
- —— Sample mean

Estimated mean (p=2)

Estimated mean (p=3)

Estimated mean (p=4)

Estimated mean (p=5)
w -

Time

10
|

Means

Figure 7. Example 2. Theoretical, sample, and estimated mean functions.

Table 5 contains the values of goodness-of-fit measurements, from which it follows that the model
containing the third-degree polynomial must be chosen.

Table 5. Example 2. Measures for choosing the estimated model.

Degree
2 3 4 5

RAE 0.168 0.002 0.171 0.092
AIC  —9034.903 —10314.497 —8952.280 —7870.896
BIC —9014.380 —10288.842 —8921.495 —7834.980

Regarding resistor-average distances, in this example we have only considered those calculated
between the estimated models and the sample distribution. Figure 8 and Table 6 contain the results
obtained, confirming the previous choice of the model.
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Example 2. Reactor—average distance (sample vs est. distributions). 0=0.025 Example 2. Resistor—average distance (sample vs est. distributions). 0=0.02&
— p=2 p=3
- p=3 s | — p=4
2 — g
|
|

20

Distance
15
| |
Distance
0.04 0.06
Il Il
)

10

\

|

|

|
000

1

Time Time

Figure 8. Example 2. Resistor-average distances between the sample and estimated models. The figure
on the right enlarges the previous one for a better view.

Table 6. Example 2. Means and medians of the resistor-average distances between estimated and
sample unidimensional distributions.

Degree
2 3 4 5
Mean Median Mean Median Mean Median Mean Median
3.60322  3.39936 0.00288 0.00270 0.23962 0.13691 0.15147 0.01742

Table 7 shows the theoretical values of the inflection points (in parentheses) together with the
sample and the estimated ones. In each case, the values have been obtained by numerically solving
Equation (7) for the theoretical, estimated, and sample mean functions. In the latter case, a natural
cubic spline has been previously adjusted to the sample mean. Figure 9 shows the situation graphically.
It is readily apparent how the estimation is optimal and provides estimated values very close to the
theoretical and sample values.

Table 7. Example 2. Sample and estimated inflection time instants for the model chosen. Theoretical
are in parentheses.

Inflection Time Instants
t; (13.888)  t, (38.403)

Sample 13.884 38.926
Estimated 13.903 38.474

The results of the simulations carried out demonstrate the suitability of the procedures developed
to adjust data that follow a Gompertz multi-sigmoidal pattern. The method of obtaining initial
solutions for the resolution of the system of likelihood equations provides optimal values for this
purpose from the information provided by the data. The procedures introduced for calculating the
degree of the polynomial operate according to two types of criteria: one based on the adjustment of
the data to the model and another based on the existing proximity between the sample and estimated
distributions of the process. It can be seen, in the two simulations carried out, how both types of
criteria coincide in the conclusions drawn from their application.
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Example 2. Theoretical, sample and estimated inflection points. 6=0.025

—— Theoretical 1st derivative

- - - Theoretical 2nd derivative

—— Sample 1st derivative (smooth)
- - - Sample 2nd derivative (smooth)
Estimated 1st derivative

- - - Estimated 2nd derivative

1.0
|

0.8
|

0.4

-0.2 0.0 0.2
1 |
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]

i

1
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Figure 9. Example 2. Theoretical, sample and estimated inflection time instants.

6. Conclusions

A wide variety of curves (logistic, Gompertz, Bertalanffy, Richards, among others) have been
used in order to describe sigmoidal growth patterns in many scientific fields. All these curves have a
point of inflection that is always at a fixed proportion of its asymptotic value. Nevertheless, there are
real situations in which several growth phases appear, each representing a sigmoidal pattern.

Starting from a modification of the classic Gompertz curve (by including a polynomial function in
it), this paper introduces a diffusion process whose mean function is a curve of such characteristics,
which allows us to model situations showing this type of behaviour. The process introduced, following
the methodology given in Roméan and Torres [28], is a particular case of the lognormal process with
exogenous factors, to which we apply the findings of Romdn et al. [29]. In particular, the results
relative to the estimation of the process by maximum likelihood are adapted, providing strategies that
provide the initial solutions required for solving the system of equations by which the parameters are
estimated.

One of the main problems arising from the use of this model in real situations is that of determining
the degree of the polynomial. For this purpose, the use of several criteria has been suggested.
These criteria are based on the goodness of fit (relative absolute error and Akaike and BIC criteria),
as well as on the measurement of the distance between the estimated and sample distributions
(resistor-average distance, based on the Kullback-Leibler divergence).
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