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Abstract: This paper studies wave propagation in a periodic parallel-plate waveguide with equilateral
triangular holes. A mode-matching method is implemented to analyze the dispersion diagram of the
structure possessing glide and mirror symmetries. Both structures present an unexpected high degree
of isotropy, despite the triangle not being symmetric with respect to rotations of 90◦. We give some
physical insight on the matter by carrying out a modal decomposition of the total field on the hole and
identifying the most significant modes. Additionally, we demonstrate that the electrical size of the
triangular hole plays a fundamental role in the physical mechanism that causes that isotropic behavior.
Finally, we characterize the influence of the different geometrical parameters that conform the unit
cell (period, triangle size, hole depth, separation between metallic plates). The glide-symmetric
configuration offers higher equivalent refractive indexes and widens the stopband compared to the
mirror-symmetric configuration. We show that the stopband is wider as the triangle size is bigger,
unlike holey structures composed of circular and elliptical holes where an optimal hole size exists.

Keywords: metasurfaces; periodic structures; equilateral triangular holes; mode-matching;
dispersion analysis; glide symmetry; mirror symmetry; isotropy

1. Introduction

Holey metasurfaces are obtained by etching small holes on a metallic plate in a periodic or locally
periodic arrangement [1]. The simplicity of the fabrication process together with the advantageous
wave-propagation properties obtained has boosted the interest in this class of structures. In fact, a single
metallic sheet etched with holes can support plasmon-like waves (the so-called spoof-plasmons) even in
the absence of dielectric or losses [2], in close similarity to the propagation in corrugated surfaces [3,4].
This phenomenon can be explained by considering that the presence of the periodic texture of holes
gives rise to an equivalent impedance of the surface that actually allows for the propagation of bounded
waves [3,4]. An alternative explanation in terms of equivalent plasma-like dielectric has also been
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presented [2]. The absence of material substrates in these fully metallic structures is quite beneficial
because of the consequent reduction of losses. It leads to potential applications in microwave and
photonics technology, not only for circuit devices [5] but also for antenna applications where the
bounded waves are converted to leaky waves, responsible for highly directive radiation features [6].

In a first stage, only a single surface was considered in the analysis of holey metasurfaces,
with no close scatterers interacting with that surface. However, in the last few years, a number of
works have shown that a second metasurface, placed in the proximity of the first one and parallel
to it, can drastically change the propagation properties of the complete structure. The wavenumber
and the phase velocity of the resulting guided modes heavily depend on the mutual transverse
shift between the metasurfaces. Interesting configurations are the mirror- and the glide-symmetric
ones. In the former, the metasurfaces are simply mirrored one into the other one while, in the
latter, they are off-shifted by half a period along the periodicity directions (see Figure 1). In this last
configuration, modes propagating between the surfaces are low-dispersive over a large frequency
band [7,8]. Furthermore, their stopbands benefit of stronger field attenuation and of a larger bandwidth
with respect to the mirror-symmetric configuration [9,10]. Finally, glide-symmetric unit cells are able
to produce higher levels of anisotropy [11], and higher magnetic responses [12].

In passband operation, the modal phase constant (and then the equivalent refractive index of
the mode) can easily be tuned by varying the geometry of the periodic lattice, leading to the design
of miniaturized structures [13,14] and synthesis of low-loss ultra-wideband graded-index lenses.
For example, Luneburg lenses have been reported to provide beam scanning in a wide angular region
without pattern deterioration [7,11,15]. In stopband operation, these surfaces can efficiently isolate
microwave circuits and enhance the performance of gap waveguides [16–20]. Apart from the previous
control on the the behaviour of holey structures by acting on the geometric parameters of the holes and
the lattice, it has also been shown that different shapes of the hole can render additional convenient
features. For instance, square holes provide ultra-large non dispersive isotropic propagation while
rectangular ones allow for a certain degree of anisotropy in the waveguide [21]. Circular and elliptical
holes were also studied due to their simpler fabrication [22–24].

In the present work, we study metasurfaces made of holes with equilateral-triangle shape and
show that, despite the triangle not being invariant under rotations of 90◦, an unexpected high degree of
isotropy is achieved, especially along the two orthogonal periodicity directions. We compare the two
extreme configurations of mirror- and glide-symmetric metasurfaces. On one side, we observe that the
isotropy is conserved in both cases, which points out that this feature is more related to the hole shape
than to the metasurface mutual arrangement. On the other side, the glide configuration benefits of the
suppression of frequency dispersion over a wide passband as well as of the enhancement of stopband
bandwidth and its corresponding field attenuation. Our study is carried out by using a mode-matching
approach specifically formulated for mirror- and glide-symmetric metasurfaces. The need for this
formulation comes from the fact that homogenized or simplified models applied to each surface
separately are no longer valid in the presence of two strongly interacting surfaces. Furthermore,
while commercial software can compute the phase constant of the Floquet modes, they cannot compute
their attenuation constant in stopbands. In our approach, each hole is considered as a waveguide with
triangular cross-section, with the field inside being decomposed as a sum of modes of this triangular
waveguide. This gives a modal base (with the relevant cutoff frequencies) to express the field excited on
each hole and allows us to explain the isotropy properties on the basis of this set of modes. While only
one mode is sufficient to describe a single metasurface, a larger number of modes is required when
two surfaces are interacting, as already discussed in [25].

The paper is organized as follows. In Section 2 we propose the analysis method with a detailed
presentation of the modes retained in the triangular cross-section waveguides. Section 3 shows
numerical results concerning the dispersion diagrams, including an in-depth discussion of the isotropic
behaviour of the metasurfaces and of their band-gap properties. In Section 4 some conclusions are
finally drawn.
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2. Formulation

This section presents a mode-matching formulation to analyze the wave propagation in a 2D
periodic (along x and y directions) holey structure composed of equilateral triangular holes. In the
present study we focus on the analysis of the mirror- and glide-symmetric configurations shown
in Figure 1. The metal is assumed to be a perfect conductor in both structures, and no dielectric
losses are present. Furthermore, the structures are completely shielded, and then without material
and/or radiation losses. Figure 1b illustrates the glide-symmetric configuration, with a zoom of
its unit cell (the bottom and upper planes are perfect electric conductors). The mirror-symmetric
configuration would have the triangular holes aligned along the vertical direction. Given the symmetry
plane that this structure has in this vertical direction, the even modes of the mirror-symmetric
structure would be studied considering the configuration shown in Figure 1a, where a perfect electric
conductor is placed at z = 0. The equilateral triangular holes can be filled with a dielectric of relative
permittivity εr hole. The gap region between top and bottom metallic plates is filled with a dielectric of
relative permittivity εr.

(a)

(b)

Figure 1. (a) Mirror-Symmetric and (b) glide-symmetric periodic metallic structures with equilateral
triangular holes and a zoom showing their unit cells.
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2.1. Mode Matching

The modal expansion of the tangential fields in the surface of the holes in both configurations in
Figure 1 can be expressed as [21]

EWG
t (x, y, z = −g/2) =

N

∑
i=1

r−i CiΦi(x, y) (1)

HWG
t (x, y, z = −g/2) =

N

∑
i=1

r+i YiCi [ẑ×Φi(x, y)] (2)

where Ci is the coefficient of the i-th mode, Φi(x, y) = φx,i x̂ + φy,iŷ is the modal vector function that
represents the i-th mode inside the hole, and Yi is the wave admittance of the i-th mode. The coefficients

r±i = 1± e−2jkzihhole take into account the short circuit at the end of the hole, with kzi =
√

εrholek2
0 − k2

ti
being the wavenumber in the z-direction of the triangular waveguide, hhole the hole depth, and kti the
transverse wavenumber, which here corresponds to the cutoff wavenumber (kc,mn) of the triangular
waveguide [26].

The tangential fields in the gap region can be described as the following Floquet-series
expansion [23]:

Egap
t =

1
dxdy

∞

∑
p=−∞

∞

∑
s=−∞

e−j(kx,px+ky,sy) ẽgap
t,ps(z) (3)

Hgap
t =

1
dxdy

∞

∑
p=−∞

∞

∑
s=−∞

e−j(kx,px+ky,sy) h̃gap
t,ps(z) (4)

where kx,p = kx,0 + 2πp/dx, ky,s = ky,0 + 2πs/dy, p and s are the integer values specifying the order
of the Floquet harmonics, dx is the period in x direction, dy is the period in y direction, and ẽgap

t,ps(z)
and h̃gap

t,ps(z) are the field amplitudes of each transversal electric and magnetic Floquet harmonic,
respectively. Both field-amplitude terms are expressed as a sum of sine and cosine functions [22,23].

After applying the corresponding boundary conditions (continuity of electric and magnetic
tangential fields at z = −g/2 and z = g/2 for the glide case, and at z = −g/2 and z = 0 for the
non-glide case), the following linear system of equations is obtained [22,23]:

N

∑
i=1

Ci αri = 0 (r = 1, . . . , N) (5)

where N is the number of modal functions considered for the triangular hole and

αri = jk0η0dxdyYi Iri +
r−i
r+i

∞

∑
p=−∞

∞

∑
s=−∞

f̃ps(kz,ps)βri(kx,p, ky,s, kz,ps) . (6)

By setting the determinant of αri to zero, the dispersion equation can be obtained. In Equation (6),
Iri is the inner product of the r-th and i-th modal functions. Under the assumption of perfect conductors,
the modes are orthogonal to each other and, therefore, Iri can be reduced to

Iri =
∫

Shole

Φr(x, y) ·Φi(x, y) dS =

{∫ e/2
−e/2

∫ ht
0 Φr(x, y) ·Φi(x, y)dxdy , r = i

0 , r 6= i
(7)
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where the integration limits are defined by triangle side e and the triangle height ht. Both terms are
related in an equilateral triangle according to ht = e

√
3/2. The parameter βri(kps) is given by

βri(kx,p, ky,s, kz,ps) =
k2

0 − k2
y,s

kz,ps
φ̃x,iφ̃

∗
x,r +

kx,pky,s

kz,ps
φ̃y,iφ̃

∗
x,r +

k2
0 − k2

x,p

kz,ps
φ̃y,iφ̃

∗
y,r +

kx,pky,s

kz,ps
φ̃x,iφ̃

∗
y,r (8)

where kz,ps =
√

εrk2
0 − k2

x,p − k2
y,s is the vertical wavenumber of the (p, s)-th harmonic, φ̃x,i and φ̃y,i are

the x and y-components of the Fourier transform of the i-th modal function, and the symbol * denotes
complex conjugate. The x and y components of the 2D Fourier transform are written as

φ̃x,i(kx,p, ky,s) =
∫ e/2

x=−e/2

∫ ht

y=0
φx,ie j(kx,px+ky,sy) dxdy (9)

φ̃y,i(kx,p, ky,s) =
∫ e/2

x=−e/2

∫ ht

y=0
φy,ie j(kx,px+ky,sy) dxdy . (10)

Finally, the term f̃ps in (6), namely the vertical spectral function, distinguishes between the
mirror-symmetric and glide-symmetric structures [23]. For the mirror-symmetric configuration, it reads

f̃ps = cot
(
kz,ps g/2

)
(11)

and for the glide-symmetric configuration, it reads

f̃ps =

{
− tan

(
kz,ps g/2

)
, p + s even

cot
(
kz,ps g/2

)
, p + s odd .

(12)

2.2. Modal Functions

The longitudinal modal functions (electric field for TM modes and magnetic field for TE modes)
in an equilateral triangular waveguide are calculated as [26–28]:

φTE
z (x, y) =

3

∑
q=1

{
cos
(
kyq(y− ht)

)
cos(kxqx) , (S)

cos
(
kyq(y− ht)

)
sin(kxqx) , (A)

(13)

φTM
z (x, y) =

3

∑
q=1

{
sin
(
kyq(y− ht)

)
cos(kxqx) , (S)

sin
(
kyq(y− ht)

)
sin(kxqx) , (A)

(14)

where ky1 = −(m + n)π/ht, ky2 = mπ/ht, ky3 = mnπ/ht, kx1 = (m − n)π/(ht
√

3), kx2 =

(m + 2n)π/(ht
√

3), kx3 = −(2m + n)π/(ht
√

3). The symbols (S) and (A) denote symmetric and
antisymmetric modes, respectively.

By applying Maxwell’s equations [29], the tangential modal functions φx and φy can be derived
from the longitudinal component φz. In the case of TE modes, the tangential modal functions are
obtained as ΦTE(x, y) = φTE

x x̂ + φTE
y ŷ = ẑ×∇φTE

z (x, y), leading to

φTE
x (x, y) =

3

∑
q=1

kyq

{
sin
(
kyq(y− ht)

)
cos(kxqx) , (S)

sin
(
kyq(y− ht)

)
sin(kxqx) , (A)

(15)

φTE
y (x, y) =

3

∑
q=1

kxq

{
− cos

(
kyq(y− ht)

)
sin(kxqx) , (S)

cos
(
kyq(y− ht)

)
cos(kxqx) , (A) .

(16)
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In the case of TM modes, the tangential modal functions are obtained as ΦTM(x, y) = φTM
x x̂ +

φTM
y ŷ = −∇φTM

z (x, y), leading to

φTM
x (x, y) =

3

∑
q=1

kxq

{
sin
(
kyq(y− ht)

)
sin(kxqx) , (S)

− sin
(
kyq(y− ht)

)
cos(kxqx) , (A)

(17)

φTM
y (x, y) = −

3

∑
q=1

kyq

{
cos
(
kyq(y− ht)

)
cos(kxqx) , (S)

cos
(
kyq(y− ht)

)
sin(kxqx) , (A) .

(18)

Figure 2 plots the normalized magnitude of the tangential modal functions Φi(x, y) in the
equilateral triangular waveguide. The fourteen considered modes are ordered according to their
increasing cutoff frequency fc,mn = kc,mnc/(2π), kc,mn = 4π

√
m2 + n2 + mn/(3e) being the cutoff

wavenumber [26]. Additionally, the modes are labeled following the notation TM/TEs/a mn. Note that
the total tangential field in the surface of the triangular hole will be a linear combination of the fourteen
considered modal functions (see Equations (1) and (2)).

Figure 2. Normalized magnitude of the tangential modal functions in the equilateral triangular waveguide.

3. Results

In this section we study the dispersion characteristics of the mirror- and glide-symmetric periodic
structures with equilateral triangular holes. The results are calculated following the formulation
presented in the previous section and validated with the commercial software CST Microwave Studio
(version 2018, Dassault Systemes, 78140 Vélizy-Villacoublay, France). Initially, we characterize the
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influence of the different geometrical parameters that conform the unit cell on the wave propagation
through the structure. Then, its unexpected isotropic behavior is discussed in detail, giving a physical
insight on the matter. Finally, we study the capabilities of triangular holes as electromagnetic bandgap
(EBG ) structures.

3.1. Dispersion Diagram

In order to simplify the analysis of the structure, a reference unit cell is defined with the following
geometrical parameters: Period dx = dy = d = 4.5 mm, triangle height ht = 3 mm, hole depth
hhole = 1.5 mm, gap height g = 0.5 mm, and relative permittivities εr = εrhole = 1.

Figure 3 shows the dispersion diagrams of the mirror- and glide-symmetric unit cells. The interval
Γ-X refers to wave propagation along the x-direction and Γ-Y to wave propagation along the y-direction.
As shown in the figure, an excellent agreement is found between the results computed with the
proposed mode-matching method (solid lines) and CST (dashed lines). The dispersion diagrams
associated with the glide-symmetric structures are here plotted with red lines. In Figure 3, it can be
appreciated that the stop band between the first and second modes disappears, as expected for this
symmetric configuration. Furthermore, the frequency dispersion of propagating modes is considerably
reduced compared to the mirror-symmetric structure (blue lines). Surprisingly, both configurations
with mirror and glide symmetries present a very high isotropic behavior, despite the triangle is
asymmetric in x and y directions with associated wave propagation paths clearly different. Specifically,
the glide-symmetric structure exhibits a isotropic behavior in a wider range of frequencies. This issue
will be treated in more detail in the next subsection.

Figure 3. Dispersion diagram of the glide-symmetric (red lines) and mirror-symmetric (blue lines) unit
cells. Dashed lines represent the results extracted from CST and solid lines the results extracted from
the mode-matching. The light line is displayed in gray.

Figure 4 shows the effects on the dispersion diagram of varying the size of the triangular hole (ht)
in the mirror- and glide-symmetric configurations. As it can be noticed, both structures become denser
(higher equivalent refractive index) as the triangle is larger, since its interaction with the propagating
wave is greater. Additionally, the bandgap regions also become wider as the size of the hole increases.

In Figure 5, the influence of the gap height g on the dispersion diagram is analyzed. It is observed
that the equivalent refractive index is inversely proportional to the gap height; namely, the structure
is denser for smaller g. Additionally, the glide-symmetric configuration is denser compared to the
mirror-symmetric one (i.e., the green curves at the Γ point show that the second mode propagates
at lower frequencies in glide-symmetric cells). This fact was already exploited in [24] to increase the
compression factor of a wideband Maxwell fish-eye lens made of glide-symmetric elliptical holes.
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Finally, Figure 6 shows the influence of the hole depth hhole on the dispersion diagram. In this case,
the equivalent refractive index is directly proportional to hhole; that is, the structure is denser as the
hole is deeper. Similarly to the findings in [21,23,24], once the depth is increased beyond a threshold
value, hhole has no longer influence on the structure. This can be explained by the fact that the modes
inside the hole are evanescent (operation frequency below the cutoff frequency of the triangular hole)
and, therefore, they exponentially attenuate inside the hole without “reaching” the ground at the
bottom of the hole, so that the position of this bottom ground has an almost negligible influence on the
metasurface behavior.

(a) (b)

Figure 4. Dispersion diagram of the (a) mirror-symmetric and (b) glide-symmetric unit cells when
varying the height of the triangle. Dashed lines represent the results extracted from CST and solid lines
the results extracted from the mode-matching. The light line is displayed in gray. The geometrical
parameters of the unit cells are: hhole = 1.5 mm, g = 0.5 mm, and dx = dy = 4.5 mm.

(a) (b)

Figure 5. Dispersion diagram of the (a) mirror-symmetric and (b) glide-symmetric unit cells when
varying the gap between the metallic plates. Dashed lines represent the results extracted from CST
and solid lines the results extracted from the mode-matching. The light line is displayed in gray.
The geometrical parameters of the unit cells are: hhole = 1.5 mm, ht = 3 mm, and dx = dy = 4.5 mm.
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(a) (b)

Figure 6. Dispersion diagram of the (a) mirror-symmetric and (b) glide-symmetric unit cells when
varying the hole depth. Dashed lines represent the results extracted from CST and solid lines the results
extracted from the mode-matching. The light line is displayed in gray. The geometrical parameters of
the unit cells are: g = 0.5 mm, ht = 3 mm, and dx = dy = 4.5 mm.

3.2. Isotropic Behavior

In this subsection, we give a physical insight on the unusual wave propagation isotropy observed
in periodic structures with equilateral triangular holes. Firstly, we extend the analysis of wave
propagation in x and y directions to all spatial directions (both kxd/π and kyd/π varying in the
range [−1, 1]). Figure 7 shows isofrequency color-map plots for the mirror- and glide-symmetric
configurations. For the sake of conciseness, only the first propagating mode is considered in the
color maps. Additionally, white-dashed circumferences have been included to easily compare
the isotropy condition in both structures. As the isofrequency plots illustrate, both mirror- and
glide-symmetric structures are quite isotropic for frequencies below 20 GHz (ht/λ0 < 1/5). Note that
in the plots, radial color symmetry indicates perfect isotropy. However, as previously discussed
in Section 3.1, the glide-symmetric configuration keeps the isotropy condition in a wider range
of frequencies. The mirror-symmetric structure starts to show its anisotropic behavior near the
stopband region (above 25 GHz), where the frequency dispersion is more evident. While less
pronounced, the anisotropic behavior of the structure also becomes apparent at these frequencies in
the glide-symmetric configuration, specially for wave propagation along the 45o direction (kx = ky).

(a) (b)

Figure 7. Isofrequency plot for the (a) mirror-symmetric and (b) glide-symmetric configurations.
To compare the isotropy level, perfect circles are marked in white. The geometrical parameters of the
unit cells are: g = 0.2 mm, ht = 3 mm, hhole = 1.5 mm, and dx = dy = 4.5 mm.
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The isotropic behavior of the structures can be related to the electrical size of the equilateral
triangular hole and the cutoff frequency of the equivalent triangular waveguide. If the modal functions
in the equilateral triangular waveguide are sorted according to their cutoff frequencies, the cutoff
frequency of the first mode (labeled as #1 in Figure 2) is much higher compared to other canonical
waveguides, such as the square or circular waveguides of the same lateral size [26,30]. This means that,
in comparison with the same geometric size, the “effective” electrical size of the triangular hole is much
smaller compared to other holes used in isotropic periodic holey structures. To illustrate this fact, let us
consider an equilateral triangular waveguide whose side e is identical to the side of a square waveguide
as well as to the diameter of a circular waveguide. The cutoff frequency of the first modal function
in the triangular hole (m = 1, n = 0) filled with air is (2c/3e)/(c/2e) = 1.333 times higher than the
cutoff of the fundamental mode of a square hole, and (2c/3e)/(1.8412c/πe) = 1.138 times higher than
the cutoff of the fundamental mode of a circular hole. To further test this hypothesis, we compare in
Figure 8 the dispersion features of our triangular structure with a benchmark holey metasurface whose
holes have a double-ridged shape. The geometry of the holes are chosen so that their fundamental
modes have the same cutoff frequency (60 GHz). Under this assumption, the size of the triangular hole
is found to be much larger than the double-ridged hole. The same will be true for square and circular
geometries, being the triangular hole one of the canonical geometries with higher cutoff frequency.
Certainly, the propagation paths in x and y directions of the structure with double-ridged holes are
different. Thus, this structure is expected to present a clear anisotropic behavior. However, at the low
frequencies (below the hole cutoff at 60 GHz in the green region), both structures are quite isotropic.
Only at frequencies above the hole cutoff frequency (red region), the shape of the hole has an impact
on the anisotropy of the metasurface.

Figure 8. Dispersion diagram of two mirror-symmetric structures with triangular (black lines) and
double-ridged (red lines) holes. The right panel shows a detail of the double-ridged hole. The light
line is displayed in gray. The cutoff frequency of the triangular and double-ridged waveguides is
chosen to be the same, fc = 60 GHz. Independently of the shape of the holes, the anisotropy of the
structures is hardly noticeable below the cutoff frequency (green region). The geometrical parameters
of the unit cells are: hhole = 1.5 mm, g = 0.2 mm, dx = dy = 4.5 mm, ht = 2.88 mm, a1 = b2 = 1.46 mm,
and a2 = b1 = a1/3.

An additional physical mechanism can also contribute to enhance the isotropy in the
low-frequency region of the dispersion diagram. In Figures 9 and 10, we plot the magnitude of
the Ci “excitation” coefficient in (1) for the first 14 modes of the triangular hole. The analysis is
performed at different frequencies: 10, 20 and 40 GHz for the mirror-symmetric configuration, and 10,
20, 30 and 40 GHz for the glide-symmetric configuration (the mirror-symmetric configuration being in
stopband at 30 GHz). Therefore, these figures decompose the total field at the hole surface into the
modal basis discussed in Subsection 2.2 and Figure 2. In the insets, we also plot the total transverse
electric field when propagation occurs along the x and y directions. We observe that, at all the
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considered frequencies, the total field on the hole has the same distribution independently on the
propagation direction. At low frequencies, the most excited mode is #4, while at higher frequencies
modes #1 (when propagation is along x) and #2 (when propagation is along y) become gradually
more important. This trend happens for both symmetric configurations. We should note that mode #4
is the fundamental TM mode and modes #1 and #2 are the first TE modes (this is clear in Figure 2).
This fact agrees well with the findings reported in [25], where it was discussed that the presence of
a metallic surface close to a holey metasurface requires to consider both the fundamental TE and TM
modes when computing the field on a hole. In the present work, the most relevant modes have a rather
symmetric behavior with respect to the center of the triangle, which gives rise to the excitation of
basically the same total field independently of the propagation direction.

(a) (b)

(c)

Figure 9. Normalized magnitude of the coefficients Ci in the mirror-symmetric configuration for
wave propagation in x and y directions at different frequencies: (a) 10 GHz, (b) 20 GHz, (c) 40 GHz.
The normalized magnitude of the tangential electric field, calculated according to Equation (1), is also
displayed for both propagating directions. The geometrical parameters of the considered unit cells
are: hhole = 1.5 mm, g = 0.2 mm, ht = 3 mm, and dx = dy = 4.5 mm. The dispersion diagram of the
structure is displayed in the green curve of Figure 5a.
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(a) (b)

(c) (d)

Figure 10. Normalized magnitude of the coefficients Ci in the glide-symmetric configuration for
wave propagation in x and y directions at different frequencies: (a) 10 GHz, (b) 20 GHz, (c) 30 GHz,
(d) 40 GHz. The normalized magnitude of the tangential electric field, calculated according to (1),
is also displayed for both propagating directions. The geometrical parameters of the considered unit
cells are: hhole = 1.5 mm, g = 0.2 mm, ht = 3 mm, and dx = dy = 4.5 mm. The dispersion diagram of
the structure is displayed in the green curve of Figure 5b.

3.3. Bandgaps

A bandgap study of the mirror- and glide-symmetric periodic structures when varying the size of
the hole (the triangle side e) and the period d of the unit cell is shown in Figure 11. The glide-symmetric
configuration offers a wider bandwidth compared to the mirror-symmetric one, as also pointed
out by previous studies on holey structures with circular [9] and elliptical [31] holes. Furthermore,
the relative bandgap increases as the period of the unit cell is larger. Additionally, the relative bandgap
is an increasing function of e/d; that is, the larger the triangular hole, the larger the relative bandgap.
This fact can be explained taking a look at the dispersion diagrams in Figure 4. At the Γ point of
the mirror-symmetric configuration, the second mode approximately stays at the same frequency
but the first mode decreases in frequency as the size of the hole increases, opening a wider bandgap.
A similar behavior is also observed for the glide-symmetric configuration but considering now the
second and third modes. Unlike what found for triangular holes, in the case of circular and elliptical
holes [9,31], there is an optimum ratio between the size of the hole and the period at which the bandgap
is maximum. Beyond that ratio, the relative bandgap starts to decay.
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(a) (b)

Figure 11. Relative bandgap in the (a) mirror-symmetric and (b) glide-symmetric structures with
equilateral triangular holes as a function of the period d and the triangle side e. The geometrical
parameters of the considered unit cells are: hhole = 1.5 mm, and g = 0.2 mm.

Figure 12 presents a bandgap study when varying the gap height g and the hole depth hhole
for both the mirror- and glide-symmetric unit cells. In all cases under study, the glide-symmetric
configuration offers a wider bandgap than the mirror-symmetric one. In both cases, the relative
bandgap is inversely proportional to the gap height and directly proportional to the hole depth.
Similarly to what was depicted in Figure 6, there is a threshold after which increasing the hole depth
has no longer influence on the relative bandgap, since the modes exponentially attenuate inside
the hole.

(a) (b)

Figure 12. Relative bandgap in the (a) mirror-symmetric and (b) glide-symmetric structures with
equilateral triangular holes as a function of the gap height g and the hole depth hhole. The geometrical
parameters of the considered unit cells are: ht = 3.8 mm, and d = 4.5 mm.

3.4. Applications

In this subsection we compare the major properties of different isotropic metastructures possessing
glide symmetry. For this study, three glide-symmetric structures with triangular, circular, and square
holes are considered. The results are summarized in Tables 1 and 2.

As a comparison criterion for Table 1, we consider an equilateral triangular hole whose side
e = 0.99d, very close to the entire period, is identical to the side of a square hole as well as to the
diameter of a circular hole. This is considered here as a "maximum" hole side. In order to calculate
the frequency range in which the structures are regarded as isotropic and low-dispersive, we allow
a maximum relative deviation of the refractive index of 5% with respect to its reference value at f → 0
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and propagating direction 0o. The analysis of the “isotropic” degree of the structure is carried out by
comparing the dispersion properties in the propagating directions of 0o and 45o. For the maximum
hole size, the triangular geometry offers the highest equivalent refractive index, as well as the least
isotropic and low-dispersion bandwidth. Note that the circular hole is isotropic in a higher bandwidth
compared to the other geometries; that is, it is less dispersive for different propagating directions.
This could be associated to the rotational symmetry that possesses. Additionally, we calculate the
maximum achievable bandgap in the three structures. In this calculation of the bandgap, the trends
are different in the square, circular, and triangular holes. As previously discussed, the circular and
square holes have an optimal value that maximizes the bandgap and beyond this value, the bandgap
starts to close. As a consequence, in the case of maximum hole size, the bandgap within the first four
propagating modes is very narrow in the case of circular and square holes (null in the case of the
square geometry). However, in the case of the triangular hole, the bigger the hole is, the wider the
bandgap. For this reason, the triangular geometry offers a wide bandgap when fixing the maximum
hole size as a comparison criterion.

In Table 2 we compare the optimal values of glide-symmetric structures with triangular,
circular and square holes. We carry out a parameter sweep in order to find the hole sizes associated
with the optimal major properties of the three structures. In order to compute the optimal bandwidths,
a maximum deviation of the refractive index of 5% is allowed. However, we should remark that any
other comparison criterion, as fixing the same refractive index in all the structures and looking for
the optimal bandwidths, would have been equally valid. According to the results shown in Table 2,
the square hole offers the highest equivalent refractive index (it is the densest structure) as well as the
widest stopband. The triangular hole shows similar characteristics (high equivalent refractive index
and wide bandgap), being less frequency-dispersive than the square hole. Furthermore, the circular
hole is isotropic and low-dispersive in a larger bandwidth compared to the triangular and square
geometries, as also pointed out in Table 1.

The potential application of the different structures can readily be inferred from the properties
observed in Tables 1 and 2. Thus, square holes arranged in a glide-symmetric configuration are good
candidates for the design of EBG (electromagnetic bandgap) structures, because of the widest stopband
they offer. Circular holes are easier to fabricate and cost-effective compared to triangular and square
holes, specially if the drilling technique is considered. For this reason, they have been widely used in
the design of EBG structures, despite square and triangular holes offer a wider stopband. Additionally,
the frequency dispersion of the structure with circular holes is lower compared to triangular and square
geometries. Furthermore, Table 1 shows that the glide-symmetric configurations with triangular and
square holes are denser (higher equivalent refractive index) than the configuration that uses circular
holes. This feature is very suitable for the design of graded-index metalenses (metamaterial lenses).

Table 1. Comparison among different metastructures possessing glide symmetry for the maximum hole
size. For each line, the frequency values in the columns “Anisotropy” and “Dispersion” correspond
to the maximum frequency that shows a deviation less than 5% with respect to the value at f = 0.
The geometrical parameters of the unit cells are: hhole = 1.5 mm, g = 0.2 mm, and dx = dy = 4.5 mm.

HOLE SHAPE Anisotropy
(<5%)

Refr. Index
(@10 GHz)

Dispersion
(<5%) Bandgap (%)

Triangular 16.20 GHz 1.31 25.71 GHz 39.50
Circular 28.86 GHz 1.17 46.04 GHz 0
Square 22.98 GHz 1.21 32.10 GHz 6.81
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Table 2. Comparison among the optimal values of different metastructures possessing glide symmetry.
The geometrical parameters of the unit cells are: hhole = 1.5 mm, g = 0.2 mm, and dx = dy = 4.5 mm.
The optimal values for the triangular hole are: Min. Iso. Range, Max. Refr. Index, Min. Low-Disp.
Range and Max. Bandgap (e = 0.99d). The optimal values for the circular hole are: Min. Iso. Range
(2rcircle = 0.78d), Max. Refr. Index (2rcircle = 0.85d), Min. Low-Disp. Range (2rcircle = 0.85d), and Max.
Bandgap (2rcircle = 0.78d). The optimal values for the square hole are: Min. Iso. Range (lsquare = 0.71d),
Max. Refr. Index (lsquare = 0.76d), Min. Low-Disp. Range (lsquare = 0.76d), and Max. Bandgap
(lsquare = 0.71d).

HOLE SHAPE Min. Iso.
Range

Max. Refr. Index
(@10 GHz)

Min. Low-Disp.
Range

Max. Bandgap
(%)

Triangular 16.20 GHz 1.31 25.71 GHz 39.50
Circular 24.76 GHz 1.23 34.41 GHz 22.55
Square 19.85 GHz 1.34 21.76 GHz 48.66

4. Conclusions

In this paper we have applied a mode-matching formulation to analyze the wave propagation
in periodic metallic structures with equilateral triangular holes. We have studied the influence
of the geometrical parameters of the unit cell in both mirror- and glide-symmetric configurations.
The outcomes of this study have confirmed some the advantages of glide symmetry in relation
to the mirror-symmetric structure; namely, reduced frequency dispersion, wider bandwidth,
higher equivalent refractive index, and wider stopband. Interestingly, we have also noticed unexpected
isotropic behavior from both mirror- and glide-symmetric triangular holey configurations. Since this
behavior appears in both configurations, we associated the isotropic behavior to the triangular
geometry rather than to the symmetry of the unit cell. A physical insight on the matter has shown
that the cause of that isotropic behavior is two-fold. First, the reduced electrical size (high cutoff
frequency) of the triangular hole compared to other canonical geometries such as the square or circle.
Second, the particular distribution of the most significant modes in the modal basis at the lowest
frequencies, which makes possible the excitation of the same total field in the hole independently of
the propagation direction.
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